JP2016164049A - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
JP2016164049A
JP2016164049A JP2015045023A JP2015045023A JP2016164049A JP 2016164049 A JP2016164049 A JP 2016164049A JP 2015045023 A JP2015045023 A JP 2015045023A JP 2015045023 A JP2015045023 A JP 2015045023A JP 2016164049 A JP2016164049 A JP 2016164049A
Authority
JP
Japan
Prior art keywords
vehicle
braking
external environment
engine
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015045023A
Other languages
English (en)
Other versions
JP6619558B2 (ja
Inventor
秀之 種岡
Hideyuki Taneoka
秀之 種岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2015045023A priority Critical patent/JP6619558B2/ja
Publication of JP2016164049A publication Critical patent/JP2016164049A/ja
Application granted granted Critical
Publication of JP6619558B2 publication Critical patent/JP6619558B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

【課題】惰性走行時のエネルギ回生量を増大させることができ、燃費をより向上させることが可能なハイブリッド車両の制御装置を提供する。【解決手段】ハイブリッド車両の制御装置1は、エンジン10のクランク軸15との間で動力伝達が可能なBSG11と、該クランク軸15から駆動輪に伝達される駆動力を断続する前進クラッチ29と、惰性走行制御条件が満足されたときに、前進クラッチ29を解放するとともにエンジン10の燃料噴射を停止する惰性走行制御部44と、車両の外部環境を検知する運転支援装置80、ナビゲーションシステム90と、外部環境に基づいて、車両が制動されるか否か、車両の制動が必要になるか否かを予測する制動予測部43とを備える。惰性走行制御部44は、車両が制動されると予測された場合、又は車両の制動が必要になると予測された場合には、惰性走行制御条件が満足されたとしても前進クラッチ29の解放を禁止する。【選択図】 図1

Description

本発明は、ハイブリッド車両の制御装置に関し、特に、惰性走行制御機能を有するハイブリッド車両の制御装置に関する。
近年、エンジンと電動モータとを併用することで車両の燃料消費率(燃費)を効果的に向上させることができるハイブリッド車(HEV)が広く実用化されている。ハイブリッド車にはさまざまな方式が提案されているが、ハイブリッド車を駆動方式で分類した場合、主として、蓄電池を充電するためのエンジンと発電機とを備え、充電を行いながら電動モータで走行するシリーズ・ハイブリッド車、エンジンと電動モータとが並列に配置され、双方から駆動力を供給可能とされたパラレル・ハイブリッド車、及び、シリーズ方式とパラレル方式の両方の長所を併せ持つシリーズ・パラレル・ハイブリッド車の三つの方式に分けられる。
また、ハイブリッド車を機能的に分けた場合には、アイドリングストップ機能、加速アシスト機能、及びエネルギ回生機能に加えて、EV(Electric Vehicle)走行機能を有するストロング・ハイブリッド車と、エンジンを主要動力源とし、比較的小型の電動モータと蓄電池とを備え、比較的簡易な構成で、アイドリングストップ機能、加速アシスト機能、及びエネルギ回生機能を発揮するマイルド・ハイブリッド車(mHEV)とに分けられる。
上述したいずれの方式を採用するハイブリッド車も、車両制動時(減速時)には、電動モータを発電機として動作させることにより、従来はブレーキで熱として捨てていた運動エネルギを電力に変換して蓄電池を充電する(回生ブレーキ/エネルギ回生)。そして、例えば発進時や加速時等に、蓄電池の電力で電動モータを駆動して、エンジンをアシストする(又は電動モータのみで走行する)ことにより、燃費を向上させている。
一方、より燃費を向上させるために、走行中にアクセルペダルが戻され、車両が惰性走行(コースティング)しているときに、例えばエンジンと駆動輪との間に設けられたクラッチを解放することにより、エンジンを駆動系統から切り離すとともに、エンジンへの燃料の供給を停止(燃料カット)する惰性走行制御(コースティング制御)を行うハイブリッド車が提案されている(例えば、特許文献1参照)。
ここで、特許文献1には、下り勾配を走行中のハイブリッド自動車において、下り勾配の最下地点より手前にある惰性走行開始地点から惰性走行を開始し、他車両との車間距離が所定車間距離未満となった場合に惰性走行を中止する技術が開示されている。この技術によれば、最下地点の手前側から惰性走行を開始することにより、燃費性能を向上させることができる。また、惰性走行中に他車両との車間距離が詰まった場合に惰性走行を中止することにより、車両の安全性を確保することができる。
特開2012−131292号公報
ところで、上述したマイルド・ハイブリッド車(mHEV)では、通常、電動モータが、エンジンのクランク軸との間で動力伝達可能に構成されている。そのため、マイルド・ハイブリッド車に、上述した惰性走行制御(コースティング制御)を適用しようとした場合、惰性走行制御時に、クラッチが解放されてエンジンが駆動輪から切り離されるため、電動モータで発電すること、すなわち、エネルギ回生ができなくなる。そのため、燃費の向上が抑制されるという問題がある。
本発明は、上記問題点を解消する為になされたものであり、惰性走行時のエネルギ回生量を増大させることができ、燃費をより向上させることが可能なハイブリッド車両の制御装置を提供することを目的とする。
本発明に係るハイブリッド車両の制御装置は、エンジンと、該エンジンのクランク軸との間で動力伝達が可能な電動モータとを備えるハイブリッド車両の制御装置であって、エンジンのクランク軸と車両の駆動輪との間に設けられ、エンジンのクランク軸から車両の駆動輪に伝達される駆動力を断続するクラッチと、所定の惰性走行制御条件が満足されたときに、クラッチを解放するとともに、エンジンに対する燃料供給を停止する惰性走行制御を実行する惰性走行制御手段と、車両の外部環境を検知する外部環境検知手段と、外部環境検知手段により検知された外部環境に基づいて、車両が制動されるか否か、及び/又は、車両の制動が必要になるか否かを予測する制動予測手段とを備え、惰性走行制御手段が、制動予測手段により、車両が制動されると予測された場合、又は、車両の制動が必要になると予測された場合には、惰性走行制御条件が満足されたとしても、クラッチの解放を禁止することを特徴とする。
本発明に係るハイブリッド車両の制御装置によれば、まもなく(例えば数秒後に)車両が制動される(ブレーキが操作される、すなわち回生ブレーキが必要になる)と予測された場合、及び/又は、まもなく車両の制動が必要になる(エンジンブレーキや回生ブレーキが必要になる)と予測された場合には、惰性走行制御条件が満足されたとしても、クラッチの解放が禁止される。そのため、例えば、惰性走行制御(コースティング制御)が開始された直後に、回生ブレーキ制御に移行するといった機会を減少させることができる。ここで、惰性走行制御から回生ブレーキ制御に移行するには、クラッチの再締結やエンジン回転数とモータ回転数との同期を取るための時間などが必要なため、このような移行機会を減少させることにより、回生時間を増やすことができる。その結果、惰性走行時のエネルギ回生量を増大させることができ、燃費をより向上させることが可能となる。
本発明に係るハイブリッド車両の制御装置では、外部環境検知手段が、車両前方に、カーブ、踏み切り、横断歩道、又は、一時停止の道路標識が在るか否かを検知し、制動予測手段が、外部環境検知手段により、車両前方に、カーブ、踏み切り、横断歩道、又は一時停止の道路標識が在ると検知された場合に、車両が制動されると予測することが好ましい。
この場合、車両前方に、カーブ、踏み切り、横断歩道、又は一時停止の道路標識が在ると検知された場合に、まもなく車両が制動されると予測される。そのため、より的確に車両が制動されることを予測することができる。よって、例えば、惰性走行制御が開始された直後に、ブレーキが操作されることにより、回生ブレーキ制御に移行するといった機会を減少させることができ、回生時間を増やすことが可能となる。
本発明に係るハイブリッド車両の制御装置では、外部環境検知手段が、車両前方に移動障害物が在るか否か、又は先行車両が減速したか否かを検知し、制動予測手段が、外部環境検知手段により、車両前方に移動障害物が在ると検知された場合、又は先行車両の減速が検知された場合に、車両が制動されると予測することが好ましい。
この場合、車両前方に移動障害物が在ると検知された場合、又は先行車両の減速が検知された場合に、まもなく車両が制動されると予測される。そのため、より的確に車両が制動されることを予測することができる。よって、例えば、惰性走行制御が開始された直後に、ブレーキが操作されることにより、回生ブレーキ制御に移行するといった機会を減少させることができ、回生時間を増やすことが可能となる。
本発明に係るハイブリッド車両の制御装置では、外部環境検知手段が、走行路の路面勾配を検知し、制動予測手段が、外部環境検知手段により検知された路面勾配が、負の勾配でありかつ所定値以下である場合に、車両の制動が必要になると予測することが好ましい。
この場合、走行路の路面勾配が、負の路面勾配でありかつ所定値以下である場合(すなわち、急な下り坂の場合)に、まもなく車両の制動が必要になると予測される。そのため、より的確に、まもなくエンジンブレーキや回生ブレーキが必要になることを予測することができる。よって、例えば、惰性走行制御が開始された直後に、エンジンブレーキや回生ブレーキなどが必要になり、回生ブレーキ制御に移行するといった機会を減少させることができ、回生時間を増やすことが可能となる。
本発明に係るハイブリッド車両の制御装置は、外部環境検知手段が、走行路の路面摩擦係数を検知し、制動予測手段が、外部環境検知手段により検知された路面摩擦係数が所定値以下の場合に、車両の制動が必要になると予測することが好ましい。
この場合、路面摩擦係数が所定値以下の場合に、まもなく車両の制動が必要になると予測される。そのため、より的確に、まもなくエンジンブレーキや回生ブレーキが必要になることを予測することができる。よって、例えば、惰性走行制御が開始された直後に、エンジンブレーキや回生ブレーキが必要になり、回生ブレーキ制御に移行するといった機会を減少させることができ、回生時間を増やすことが可能となる。
本発明によれば、惰性走行時(コースティング時)のエネルギ回生量を増大させることができ、燃費をより向上させることが可能となる。
実施形態に係るハイブリッド車両の制御装置、及び該制御装置が適用されたハイブリッド車両の要部の構成を示すブロック図である。 実施形態に係るハイブリッド車両の制御装置による惰性走行制御(コースティング制御)の処理手順を示すフローチャートである。 カーブに近づいた場合における、実施形態に係るハイブリッド車両の制御装置の動作を示すタイミングチャートである。 カーブに近づいた場合における、実施形態に係るハイブリッド車両の制御装置の動作を示すタイミングチャートである。
以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、図中、同一又は相当部分には同一符号を用いることとする。また、各図において、同一要素には同一符号を付して重複する説明を省略する。
まず、図1を用いて、実施形態に係るハイブリッド車両の制御装置1、及び該制御装置1が適用されたマイルド・ハイブリッド車両の要部の構成について説明する。図1は、ハイブリッド車両の制御装置1、及び、該制御装置1が適用されたマイルド・ハイブリッド車両の要部の構成を示すブロック図である。
エンジン10は、どのような形式のものでもよいが、例えば水平対向型の筒内噴射式4気筒ガソリンエンジンである。エンジン10では、エアクリーナ(図示省略)から吸入された空気が、吸気管に設けられた電子制御式スロットルバルブ(以下、単に「スロットルバルブ」という)13により絞られ、インテークマニホールドを通り、エンジン10に形成された各気筒に吸入される。ここで、エアクリーナから吸入された空気の量はエアフローメータ61により検出される。さらに、スロットルバルブ13には、該スロットルバルブ13の開度を検出するスロットル開度センサ14が配設されている。各気筒には、燃料を噴射するインジェクタが取り付けられている。また、各気筒には混合気に点火する点火プラグ、及び該点火プラグに高電圧を印加するイグナイタ内蔵型コイルが取り付けられている。エンジン10の各気筒では、吸入された空気とインジェクタによって噴射された燃料との混合気が点火プラグにより点火されて燃焼する。燃焼後の排気ガスは排気管を通して排出される。
上述したエアフローメータ61、スロットル開度センサ14に加え、エンジン10のカムシャフト近傍には、エンジン10の気筒判別を行うためのカム角センサが取り付けられている。また、エンジン10のクランクシャフト近傍には、クランクシャフトの位置を検出するクランク角センサが取り付けられている。これらのセンサは、後述するエンジン・コントロールユニット(以下「ECU」という)60に接続されている。また、ECU60には、アクセルペダルの踏み込み量すなわちアクセルペダルの開度を検出するアクセルペダルセンサ62、及びエンジン10の冷却水の温度を検出する水温センサ等の各種センサも接続されている。
エンジン10のクランク軸15の一方(車両前方側)の端部には、BSG(Belt Starter Generator)11が取り付けられている。BSG11の出力軸とクランク軸15との間には駆動力を伝達するベルト12が掛け渡されている。これにより、BSG11は、エンジン10のクランク軸15との間で動力伝達可能とされる。BSG11は、車両の制動時(減速時)には、発電機として動作し、運動エネルギを電力に変換して蓄電池(例えば42Vバッテリ)を充電する(回生ブレーキ機能/エネルギ回生機能)。また、BSG11は、例えばアイドリングストップからの再始動時には、スタータモータとして動作し、エンジン10をクランキングして再始動する(スタータモータ機能)。さらに、BSG11は、例えば発進時や加速時等に、電動モータとして動作し、エンジン10をアシストして、エンジン10の負荷を軽減する(モータアシスト機能)。すなわち、BSG11は、特許請求の範囲に記載の電動モータとして機能する。
エンジン10のクランク軸15の他方(車両後方側)の端部には、クラッチ機能とトルク増幅機能を持つトルクコンバータ21、及び、前後進切替機構27を介して、エンジン10からの駆動力を変換して出力する無段変速機20が接続されている。
トルクコンバータ21は、主として、ポンプインペラ22、タービンライナ23、及びステータ24から構成されている。クランク軸15に接続されたポンプインペラ22がオイルの流れを生み出し、ポンプインペラ22に対向して配置されたタービンライナ23がオイルを介してエンジン10の動力を受けて出力軸を駆動する。両者の間に位置するステータ24は、タービンライナ23からの排出流(戻り)を整流し、ポンプインペラ22に還元することでトルク増幅作用を発生させる。
また、トルクコンバータ21は、入力と出力とを直結状態にするロックアップクラッチ25を有している。トルクコンバータ21は、ロックアップクラッチ25が締結されていないとき(非ロックアップ状態のとき)はエンジン10の駆動力をトルク増幅して無段変速機20に伝達し、ロックアップクラッチ25が締結されているとき(ロックアップ時)はエンジン10の駆動力を無段変速機20に直接伝達する。
前後進切替機構27は、駆動輪の正転と逆転(車両の前進と後進)とを切り替えるものである。前後進切替機構27は、主として、ダブルピニオン式の遊星歯車列28、前進クラッチ29及び後進ブレーキ30を備えている。前後進切替機構27では、前進クラッチ29、及び後進ブレーキ30それぞれの状態を制御することにより、エンジン駆動力の伝達経路を切り替えることが可能に構成されている。
より具体的には、Dレンジ(前進走行レンジ)が選択された場合には、前進クラッチ29を締結して後進ブレーキ30を解放することにより、タービン軸26の回転がそのまま後述するプライマリ軸32に伝達され、車両を前進走行させることが可能となる。また、Rレンジ(後進走行レンジ)が選択された場合には、前進クラッチ29を解放して後進ブレーキ30を締結することにより、遊星歯車列28を作動させてプライマリ軸32の回転方向を逆転させることができ、車両を後進走行させることが可能となる。なお、Nレンジ又はPレンジが選択された場合には、前進クラッチ29及び後進ブレーキ30を解放することにより、タービン軸26とプライマリ軸32とは切り離され(エンジン駆動力の伝達が遮断され)、前後進切替機構27はプライマリ軸32に動力を伝達しないニュートラル状態となる。
この前進クラッチ29及び後進ブレーキ30を利用して、惰性走行制御(コースティング制御)が行われる(詳細は後述する)。すなわち、惰性走行制御時には、前進クラッチ29及び後進ブレーキ30が解放され、エンジン10(クランク軸15)が駆動輪から切り離される。すなわち、前進クラッチ29及び後進ブレーキ30は、特許請求の範囲に記載のクラッチとして機能する。なお、前進クラッチ29及び後進ブレーキ30の動作は、後述するトランスミッション・コントロールユニット(以下「TCU」という)40、及びバルブボディ(コントロールバルブ)50によって制御される。
無段変速機20は、前後進切替機構27を介してトルクコンバータ21のタービン軸(出力軸)26と接続されるプライマリ軸32と、該プライマリ軸32と平行に配設されたセカンダリ軸37とを有している。
プライマリ軸32には、プライマリプーリ34が設けられている。プライマリプーリ34は、プライマリ軸32に接合された固定プーリ34aと、該固定プーリ34aに対向して、プライマリ軸32の軸方向に摺動自在に装着された可動プーリ34bとを有し、それぞれのプーリ34a,34bのコーン面間隔、すなわちプーリ溝幅を変更できるように構成されている。一方、セカンダリ軸37には、セカンダリプーリ35が設けられている。セカンダリプーリ35は、セカンダリ軸37に接合された固定プーリ35aと、該固定プーリ35aに対向して、セカンダリ軸37の軸方向に摺動自在に装着された可動プーリ35bとを有し、プーリ溝幅を変更できるように構成されている。
プライマリプーリ34とセカンダリプーリ35との間には駆動力を伝達するチェーン36が掛け渡されている。プライマリプーリ34及びセカンダリプーリ35の溝幅を変化させて、各プーリ34,35に対するチェーン36の巻き付け径の比率(プーリ比)を変化させることにより、変速比が無段階に変更される。ここで、チェーン36のプライマリプーリ34に対する巻き付け径をRpとし、セカンダリプーリ35に対する巻き付け径をRsとすると、変速比iは、i=Rs/Rpで表される。よって、変速比iは、プライマリプーリ回転数Npをセカンダリプーリ回転数Nsで除算する(i=Np/Ns)ことにより求められる。
ここで、プライマリプーリ34(可動プーリ34b)には油圧室34cが形成されている。一方、セカンダリプーリ35(可動プーリ35b)には油圧室35cが形成されている。プライマリプーリ34、セカンダリプーリ35それぞれの溝幅は、プライマリプーリ34の油圧室34cに導入されるプライマリ油圧と、セカンダリプーリ35の油圧室35cに導入されるセカンダリ油圧とを調節することにより設定・変更される。
無段変速機20を変速させるための油圧、すなわち、上述したプライマリ油圧及びセカンダリ油圧は、バルブボディ(コントロールバルブ)50によってコントロールされる。バルブボディ50は、スプールバルブと該スプールバルブを動かすソレノイドバルブ(電磁弁)を用いてバルブボディ50内に形成された油路を開閉することで、オイルポンプ(図示省略)から吐出された油圧を調整して、プライマリプーリ34の油圧室34c及びセカンダリプーリ35の油圧室35cに供給する。また、バルブボディ50は、前後進切替機構27等にも油圧を供給する。
無段変速機20の変速制御は、TCU40によって実行される。すなわち、TCU40は、上述したバルブボディ50を構成するソレノイドバルブ(電磁弁)の駆動を制御することにより、プライマリプーリ34の油圧室34c及びセカンダリプーリ35の油圧室35cに供給する油圧を調節して、無段変速機20の変速比を変更する。また、TCU40は、上述したバルブボディ50を構成する前進クラッチソレノイド50aの駆動を制御することにより、前進クラッチ29に供給/排出するATF(Automatic Transmission Fluid)量を調節して、前進クラッチ29の締結/解放を行う。同様に、TCU40は、バルブボディ50を構成する後進クラッチソレノイド50bの駆動を制御することにより、後進クラッチ30に供給/排出するATF量を調節して、後進クラッチ30の締結/解放を行う。
TCU40には、プライマリプーリ34の回転数を検出するプライマリプーリ回転センサ57や、セカンダリプーリ35の回転数(車速に対応)を検出するセカンダリプーリ回転センサ58などが接続されている。また、TCU40は、例えばCAN(Controller Area Network)100を介して、エンジン10を総合的に制御するECU60、ビークルダイナミック・コントロールユニット(以下「VDCU」という)70、運転支援装置80、及びナビゲーションシステム90等と相互に通信可能に接続されている。
ECU60では、上述したカム角センサの出力から気筒が判別され、クランク角センサの出力によって検出されたクランクシャフトの回転位置の変化からエンジン回転数が求められる。また、ECU60では、上述した各種センサから入力される検出信号に基づいて、吸入空気量、アクセルペダル開度、混合気の空燃比、及び水温等の各種情報が取得される。そして、ECU60は、取得したこれらの各種情報に基づいて、燃料噴射量や点火時期、並びにスロットルバルブ13等の各種デバイスを制御することによりエンジン10を総合的に制御する。ECU60は、惰性走行制御時(コースティング制御時)にエンジン10に対する燃料噴射を停止する(燃料カットを行う)。同様に、ECU60は、回生ブレーキ制御時にもエンジン10に対する燃料噴射を停止する。
また、ECU60では、エアフローメータ61により検出された吸入空気量に基づいて、エンジン10のエンジン軸トルク(出力トルク)が算出される。そして、ECU60は、CAN100を介して、エンジン回転数、エンジン軸トルク、及びアクセルペダル開度等の情報をTCU40に送信する。
VDCU70には、ブレーキペダルが踏まれているか否かを検出するブレーキスイッチ71や、ブレーキアクチュエータ74のマスタシリンダ圧力(ブレーキ油圧)を検出するブレーキ液圧センサ72が接続されている。また、VDCU70には、車両の各車輪の回転速度(車速)を検出する車輪速センサ73等も接続されている。
VDCU70は、ブレーキペダルの操作量(踏み込み量)に応じてブレーキアクチュエータ74を駆動して車両を制動するとともに、車両挙動を各種センサ(例えば車輪速センサ73、操舵角センサ、加速度センサ、ヨーレートセンサ等)により検知し、自動加圧によるブレーキ制御とエンジン10のトルク制御により、横滑りを抑制し、旋回時の車両安定性を確保する。また、VDCU70は、急制動や滑りやすい路面で制動した場合に生じる車輪ロックを防止し、各車輪のスリップ率を適正に保つことで、制動時の方向安定性と操舵性を確保するとともに、最適な制動力を得るアンチロックブレーキ機能(ABS機能)、及び、滑りやすい路面や過大な駆動力によって生ずる駆動輪の空転を抑えて、発進時や加速時の車両安定性と加速性を確保するトラクションコントロール機能(TCS機能)を兼ね備えている。
VDCU70は、検出したブレーキスイッチ71やブレーキ液圧等の制動情報(ブレーキ操作情報)や車輪速(車速)等を、CAN100を介してTCU40及びECU50に送信する。
運転支援装置80は、車両の外部環境(例えば車両前方の走行環境)を検知して前方障害物に対する警報や自動制動(自動ブレーキ)を行う機能(自動制動機能/プリクラッシュブレーキ機能)を有している。また、運転支援装置80は、検知した先行車両に対して追従制御や警報制御を行うことにより運転者の運転操作を支援する機能なども有している。
運転支援装置80は、車両前方の画像を取得する例えば一対のカメラからなるステレオカメラ81で撮像した画像データを処理して、例えば、走行路の状況や、先行車両、障害物等の車両外部の走行環境(外部環境)を検知する。すなわち、運転支援装置80は、特許請求の範囲に記載の外部環境検知手段として機能する。
特に、運転支援装置80は、画像データを画像処理し、車両が走行する道路上に描かれた道路区画線(白線)などを基に車線(走行レーン)を検出する。そして、運転支援装置80は、検出した車線に基づいて、例えば、カーブの有無、カーブまでの距離、カーブの半径(曲率)、及び道路の幅員等を検知する。また、運転支援装置80は、撮像した画像内からエッジ抽出やパターン認識処理などによって先行車を抽出し、左右の取得画像中における先行車位置の違いを基にして三角測量方式により先行車との車間距離を求めるとともに、前のフレーム時に求めた距離に対する変化量から相対速度(先行車両が減速したか否か)を求める。
同様に、運転支援装置80は、車両前方に、例えば、踏み切り、横断歩道、一時停止の道路標識等が在るか否か、また在る場合にはそれらとの距離を検知する。また、運転支援装置80は、車両前方に、例えば、移動障害物(例えば歩行者や自転車など)が在るか否か、また在る場合にはそれらとの距離等を検知する。
さらに、運転支援装置80は、走行路の路面勾配を検知する。また、運転支援装置80は、例えば路面の反射率情報などに基づいて、例えば、路面が濡れているか、積雪しているか、又は凍結しているかなどを認識する(すなわち、走行路の路面摩擦係数を検知する)。そして、運転支援装置80は、検知したこれらの外部環境情報をCAN100を介してTCU40に送信する。
カーナビゲーションシステム90は、GPS(Global Positioning System)によって受信されたGPS衛星信号に基づき自車位置を検出する。また、車速情報に基づいて走行距離を算出すると共に、ジャイロセンサからの信号に応じて車両進行方向を検出する。また、カーナビゲーションシステム90は、内蔵しているハードディスクやDVDディスクなどの地図情報記憶装置から、自車両が走行している道路(走行路)の道路情報(すなわち、例えば、カーブの有無、カーブまでの距離、カーブ半径、道路の幅員、踏み切り、横断歩道、一時停止標識、及び路面勾配などの外部環境情報)を取得する。すなわち、カーナビゲーションシステム90も特許請求の範囲に記載の外部環境検知手段として機能する。カーナビゲーションシステム90は、CAN100を介して、取得した自車位置情報や道路情報(例えば、カーブの有無、カーブまでの距離、カーブ半径、道路の幅員、踏み切り、横断歩道、一時停止標識、及び路面勾配などの外部環境情報)等をTCU40に送信する。
TCU40は、演算を行うマイクロプロセッサ、該マイクロプロセッサに各処理を実行させるためのプログラム等を記憶するROM、演算結果などの各種データを記憶するRAM、バッテリによってその記憶内容が保持されるバックアップRAM、及び入出力I/F等を有して構成されている。TCU40は、CAN100を介して、ECU60、VDCU70、運転支援装置80、ナビゲーションシステム90から、上述したさまざまな外部環境情報、ブレーキ操作情報、車速情報、及びアクセル操作情報等を受信する
TCU40は、変速マップに従い、車両の運転状態(例えばアクセルペダル開度及び車速等)に応じて自動で変速比を無段階に変速する。なお、自動変速モードに対応する変速マップはTCU40内のROMに格納されている。
また、TCU40は、惰性走行時(コースティング時)のエネルギ回生量を増大させることによって、燃費をより向上させる機能を有している。そのため、TCU40は、路面勾配検知部41、路面摩擦係検知部42、制動予測部43、及び惰性走行制御部44を機能的に有している。TCU40では、ROMに記憶されているプログラムがマイクロプロセッサによって実行されることにより、路面勾配検知部41、路面摩擦係検知部42、制動予測部43、及び惰性走行制御部44の各機能が実現される。
路面勾配検知部41は、走行路の路面勾配を検知する。すなわち、路面勾配検知部41も、特許請求の範囲に記載の外部環境検知手段として機能する。より具体的には、路面勾配検知部41は、例えば、次式(1)(2)で示されるように、車両の加速度に0点学習値が加算された補正後加速度センサ値と、車速の微分値との差に基づいて、路面勾配を検出する。
路面勾配値=補正後加速度センサ値−車速の微分値 ・・・(1)
ただし、補正後加速度センサ値は次式(2)により算出される。
補正後加速度センサ値=加速度センサ値+0点学習値 ・・・(2)
ここで、上記車速は、無段変速機20の出力軸の回転数(又は、すべての車輪速の平均値)に基づき、取得することができる。
なお、路面勾配検知部41は、エンジン10の出力トルクから求められる駆動力と、車速の微分値から求められる車両の加速度と、予め設定されている車両重量とに基づいて、路面勾配を推定するとともに、推定された路面勾配が略ゼロの(所定勾配以下の)平坦路を略一定速度で走行しているときに、前後加速度センサのゼロ点を学習する。そして、上式(2)で示されたように、前後加速度センサの出力値を学習したゼロ点で補正(加算)する。なお、路面勾配検知部41により検知された路面勾配は、制動予測部43に出力される。
路面摩擦係数検知部42は、走行路の路面摩擦係数μを取得する。すなわち、路面摩擦係数検知部42も、特許請求の範囲に記載の外部環境検知手段に相当する。より具体的には、路面摩擦係数検知部42は、例えば、路面摩擦係数μを、ABS作動時の減速度に基づいて判定(取得)することができる。すなわち、路面摩擦係数検知部42は、ABS作動時の前後Gに応じて、低い減速度でABSが作動した場合には低μ路であると判定し、高い減速度でABSが作動したときには高μ路であると判定することができる。ただし、この場合、例えばマンホール等で一瞬ABSが作動するような状況における誤判定を防止するため、車輪速比からディレイを設定し、そのディレイ中は路面摩擦係数μを判定しないことが好ましい。
また、路面摩擦係数検知部42では、車輪速から推定した横G(横G推定値)はタイヤスリップすると低下することを利用し、横Gセンサ値と横G推定値との差分を見て、横G推定値が低下したときの横G絶対値から、路面摩擦係数μを推定することもできる。さらに、路面摩擦係数検知部42では、パワーステアリングのラック反力に基づいて、路面摩擦係数μを推定することもできる。なお、路面摩擦係数検知部42により取得された路面摩擦係数μは、制動予測部43に出力される。
制動予測部43は、運転支援装置80、ナビゲーションシステム90、路面勾配検知部41、及び/又は、路面摩擦係検知部42により検知された上記外部環境情報に基づいて、まもなく(例えば数秒後に)車両が制動される(ブレーキペダルが踏み込まれる、すなわち回生ブレーキが必要になる)か否か、及び/又は、まもなく車両の制動が必要になる(エンジンブレーキや回生ブレーキが必要になる)か否かを予測する。すなわち、制動予測部43は、特許請求の範囲に記載の制動予測手段として機能する。
より具体的には、制動予測部43は、運転支援装置80、及び/又は、ナビゲーションシステム90により、車両前方に、カーブ、踏み切り、横断歩道、又は、一時停止の道路標識が在ると検知された場合に、まもなく車両が制動される(ブレーキペダルが踏み込まれる、すなわち回生ブレーキが必要になる)と予測する。
また、制動予測部43は、運転支援装置80により、車両前方に、例えば歩行者や自転車などの移動障害物が在ると検知された場合、又は、先行車両の減速が検知された場合に、まもなく車両が制動されると予測する。なお、その際に、制動予測部43は、走行路の幅員を考慮して、幅員が狭いほど制動される可能性が高いと予測してもよい。また、同様に、例えば歩行者や自転車などの移動障害物の数や速度を考慮し、数が多いほど、また速度が速いほど制動される可能性が高いと予測してもよい。
さらに、制動予測部43は、運転支援装置80、ナビゲーションシステム90、及び/又は、路面勾配検知部41により検知された路面勾配が、負の勾配であり、かつ所定値以下である場合(すなわち、急な下り坂の場合)に、まもなく車両の制動(エンジンブレーキや回生ブレーキ)が必要になると予測する。
同様に、制動予測部43は、運転支援装置80、ナビゲーションシステム90、及び/又は、路面摩擦係検知部42により検知された路面摩擦係数が所定値以下の場合(すなわち低μ路の場合)に、まもなく車両の制動が必要になると予測する。なお、制動予測部43による予測結果は、惰性走行制御部44に出力される。
惰性走行制御部44は、所定の惰性走行制御条件(例えば、車速が所定速度以上であり、アクセルペダルが踏まれておらず、かつブレーキペダルが踏まれていないこと等)が満足されたときに、前進クラッチ29(及び後進クラッチ30)を解放するとともに、エンジン10に対する燃料供給を停止する(燃料カット要求情報をECU60に送出する)惰性走行制御(コースティング制御)を実行する。すなわち、惰性走行制御部44は、特許請求の範囲に記載の惰性走行制御手段として機能する。
ただし、惰性走行制御部44は、制動予測部43により、まもなく(例えば数秒以内に)車両が制動される(ブレーキペダルが踏み込まれる)と予測された場合、及び/又は、まもなく車両の制動(エンジンブレーキや回生ブレーキ)が必要になると予測された場合には、惰性走行制御条件が満足されたとしても、前進クラッチ29(及び後進クラッチ30)の解放を禁止する(惰性走行制御の実行を禁止する)。そして、その後、例えば、ブレーキペダルが踏まれたときに、直ぐに回生ブレーキ制御に移行する。
次に、図2を参照しつつ、ハイブリッド車両の制御装置1の動作について説明する。図2は、ハイブリッド車両の制御装置1による惰性走行制御(コースティング制御)の処理手順を示すフローチャートである。本処理は、TCU40において、所定時間毎(例えば10ms毎)に繰り返して実行される。
まず、ステップS100では、車速情報、アクセル操作情報、及びブレーキ操作情報が読み込まれる。そして、続くステップS102において、ステップS100で読み込まれた情報に基づいて、惰性走行制御実行条件が満足されているか否か(すなわち、車速が所定値以上であり、アクセルペダルが踏まれておらず、かつブレーキペダルが踏まれていないか否か)についての判断が行われる。ここで、惰性走行制御実行条件が満足されている場合には、ステップS104に処理が移行する。一方、惰性走行制御実行条件が満足されていないときには、一旦本処理から抜ける。
ステップS104では、上述した外部環境情報が読み込まれる。なお、外部環境情報については、上述したとおりであるので、ここでは詳細な説明を省略する。
続いて、ステップS106では、ステップS104で読み込まれた外部環境情報に基づいて、まもなく(例えば数秒後に)車両が制動される(ブレーキペダルが踏み込まれる、すなわち回生ブレーキが必要になる)と予測されるか否か、及び/又は、まもなく車両の制動が必要になる(エンジンブレーキや回生ブレーキが必要になる)と予測されるか否かについての判断が行われる。
ここで、まもなく車両が制動されると予測されず、かつ、まもなく車両の制動が必要になると予測されなかった場合には、ステップS108において、惰性走行制御が実行される。すなわち、前進クラッチ29(及び後進クラッチ30)が解放されるとともに、エンジン10に対する燃料供給が停止される。そして、続くステップS110において、所定の惰性走行制御終了条件が満足されたか否かについての判断が行われる。ここで、惰性走行制御終了条件が満足されていない場合には、ステップS108に処理が戻り、惰性走行制御終了条件が満足されるまで、惰性走行制御が実行される。一方、惰性走行制御終了条件が満足されたときには、ステップS112において、惰性走行制御が停止された後、本処理から一旦抜ける。
一方、上述したステップS108が肯定された場合、すなわち、まもなく車両が制動される、又は、まもなく車両の制動が必要になると予測された場合には、そのまま、惰性走行制御が実行されることなく(すなわち、前進クラッチ29及び後進クラッチ30が解放されることなく)、本処理から一旦抜ける。
続いて、上述したハイブリッド車両の制御装置1の動作の一例を示すタイミングチャートを図3及び図4に示す。図3は、カーブに近づいた場合のハイブリッド車両の制御装置1の動作を示すタイミングチャートである。なお、図3の上段には、比較例として、従来技術のタイミングチャートを示し、図3の下段に、本実施形態のタイミングチャートを示した。また、図4は、カーブ半径をさらに考慮して車両が制動されるか否かを予測した場合のハイブリッド車両の制御装置1の動作を示すタイミングチャートである。なお、図3と同様に、図4の上段には、比較例としての従来技術のタイミングチャートを示し、図4の下段に、本実施形態のタイミングチャートを示した。
図3の上段に示されるように、時刻t10から、カーブに近づいて行った場合、従来の技術では、時刻t11でアクセルペダルの踏み込みが解除されたときに、惰性走行制御(コースティング制御)が開始され、前進クラッチ29(及び後進クラッチ30)が解放される。その後、さらにカーブに近づき、時刻t12でブレーキペダルが踏み込まれたとき(すなわち回生ブレーキ制御実行条件が成立したとき)に、惰性走行制御御から回生ブレーキ制御への切り替えが開始されるが、惰性走行制御から回生ブレーキ制御に移行するには、前進クラッチ29の再締結やエンジン回転数とBSG回転数の同期を取るための時間等が必要なため、実際に回生ブレーキがかかるまでには遅れが生じる。よって、その間(時刻t12〜t13の間)、BSG11で発電すること、すなわち、エネルギ回生ができない。
一方、図3の下段に示されるように、本実施形態によれば、時刻t11において、アクセルペダルの踏み込みが解除されたとしても、カーブまでの距離が近く、まもなく(例えば数秒後に)車両が制動されると予測される場合には、惰性走行制御の実行が禁止、すなわち前進クラッチ29の解放が禁止される。そのため、時刻t12でブレーキペダルが踏まれると(すなわち回生ブレーキ制御実行条件が成立すると)直ぐに回生ブレーキ動作に入ることができる。
次に、図4を参照して、カーブ半径をさらに考慮して車両が制動されるか否かを予測した場合の動作について説明する。なお、従来の技術では、元々車両が制動されるか否かを予測しないため、図4の上段に示されるように、上述した図3の上段に示したタイミングチャートと同一の動きとなる。
一方、本実施形態では、カーブ半径に応じて、設定されるコースティング制御禁止距離が変化する。すなわち、車速が同じであれば、カーブ半径が小さくなるほど、コースティング制御禁止距離が大きくなり、より遠くの位置で、これからブレーキペダルが踏まれる(又は、回生ブレーキが必要になる)と予測される。そのため、この場合、図4の下段に示されるように、時刻t21において、アクセルペダルの踏み込みが解除されたときに、前進クラッチ29の解放が禁止され、一旦、コースティング回生制御が実行される。そして、その後、さらにカーブに近づき、時刻t22でブレーキペダルが踏まれると(すなわち回生ブレーキ制御実行条件が成立すると)直ぐに回生ブレーキ制御が実行される。
以上、詳細に説明したように、本実施形態によれば、まもなく(例えば数秒後に)車両が制動される(ブレーキペダルが踏み込まれる、すなわち回生ブレーキが必要になる)と予測された場合、又は、まもなく車両の制動が必要になる(エンジンブレーキや回生ブレーキが必要になる)と予測された場合には、惰性走行制御条件が満足されたとしても、前進クラッチ29の解放が禁止される。そのため、例えば、惰性走行制御(コースティング制御)が開始された直後に、回生ブレーキ制御に移行するといった機会を減少させることができる。ここで、惰性走行制御から回生ブレーキ制御に移行するには、クラッチの再締結やエンジン回転数とBSG回転数の同期を取るための時間等が必要なため、このような移行機会を減少させることにより、回生時間を増やすことができる。その結果、惰性走行時のエネルギ回生量を増大させることができ、燃費をより向上させることが可能となる。
特に、本実施形態によれば、車両前方に、カーブ、踏み切り、横断歩道、又は、一時停止の道路標識が在ると検知された場合に、まもなく車両が制動される(ブレーキペダルが踏み込まれる)と予測される。そのため、より的確に車両が制動されることを予測することができる。よって、例えば、惰性走行制御が開始された直後に、ブレーキが操作されることにより、回生ブレーキ制御に移行するといった機会を減少させることができ、回生時間を増やすことが可能となる。
また、本実施形態によれば、車両前方に移動障害物が在ると検知された場合、又は、先行車両の減速が検知された場合に、まもなく車両が制動されると予測される。そのため、より的確に車両が制動されることを予測することができる。よって、例えば、惰性走行制御が開始された直後に、ブレーキが操作されることにより、回生ブレーキ制御に移行するといった機会を減少させることができ、回生時間を増やすことが可能となる。
本実施形態によれば、走行路の路面勾配が、負の勾配であり、かつ所定値以下である場合(すなわち、急な下り坂の場合)に、まもなく車両の制動が必要になると予測される。そのため、より的確にエンジンブレーキや回生ブレーキなどが必要になることを予測することができる。よって、例えば、惰性走行制御が開始された直後に、エンジンブレーキや回生ブレーキなどが必要になり、回生ブレーキ制御に移行するといった機会を減少させることができ、回生時間を増やすことが可能となる。
また、本実施形態によれば、路面摩擦係数が所定値以下の場合に、まもなく車両の制動が必要になると予測される。そのため、より的確にエンジンブレーキや回生ブレーキが必要になることを予測することができる。よって、例えば、惰性走行制御が開始された直後に、エンジンブレーキや回生ブレーキなどが必要になり、回生ブレーキ制御に移行するといった機会を減少させることができ、回生時間を増やすことが可能となる。
以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。例えば、上記実施形態では、外部環境を検知するために、ステレオカメラ61を用いたが、ステレオカメラに代えて、例えば、単眼カメラや、ミリ波レーダ、レーザレーダ、超音波センサなどを用いてもよい。また、異なる複数のセンサを組み合わせて用いてもよい。
上記実施形態では、外部環境情報に基づいて、まもなく車両が制動される(ブレーキペダルが踏み込まれる)か否か、及び/又は、まもなく車両の制動(エンジンブレーキや回生ブレーキ)が必要になるか否かを予測したが、上述した外部環境情報は例示であり、上記実施形態には限られない。
上記実施形態では、前後進切替機構27を、プライマリプーリ34の前段に配置したが、セカンダリプーリ35の後段に配置する構成としてもよい。
上記実施形態では、前進クラッチ29および後進ブレーキ30として油圧式のものを用いたが、例えば電磁式のものを用いることもできる。
上記実施形態では、本発明をチェーン式の無段変速機(CVT)に適用したが、チェーン式の無段変速機に代えて、例えば、ベルト式の無段変速機や、トロイダル式の無段変速機等にも適用することができる。また、無段変速機(CVT)に代えて、有段自動変速機(AT)に適用してもよい。
上記実施形態では、惰性走行制御の実行判断をTCU40で行ったが、惰性走行制御の実行判断をECU60側で行い、その判断結果をCAN100を介してTCU40に送信する構成としてもよい。また、上記実施形態では、エンジン10を制御するECU60と、無段変速機20を制御するTCU40とを別々のハードウェアで構成したが、一体のハードウェアで構成してもよい。
1 ハイブリッド車両の制御装置
10 エンジン
11 BSG
12 ベルト
20 無段変速機
21 トルクコンバータ
27 前後進切替機構
28 遊星歯車列
29 前進クラッチ
30 後進ブレーキ
34 プライマリプーリ
35 セカンダリプーリ
36 チェーン
40 TCU
41 路面勾配検知部
42 路面摩擦係検知部
43 制動予測部
44 惰性走行制御部
50 コントロールバルブ(バルブボディ)
60 ECU
70 VDCU
71 ブレーキ液圧センサ
72 車輪速センサ
73 ブレーキアクチュエータ
80 運転支援装置
90 ナビゲーションシステム
100 CAN

Claims (5)

  1. エンジンと、該エンジンのクランク軸との間で動力伝達が可能な電動モータと、を備えるハイブリッド車両の制御装置において、
    前記エンジンのクランク軸と車両の駆動輪との間に設けられ、前記エンジンのクランク軸から車両の駆動輪に伝達される駆動力を断続するクラッチと、
    所定の惰性走行制御条件が満足されたときに、前記クラッチを解放するとともに、前記エンジンに対する燃料供給を停止する惰性走行制御を実行する惰性走行制御手段と、
    車両の外部環境を検知する外部環境検知手段と、
    前記外部環境検知手段により検知された外部環境に基づいて、車両が制動されるか否か、及び/又は、車両の制動が必要になるか否かを予測する制動予測手段と、を備え、
    前記惰性走行制御手段は、前記制動予測手段により、車両が制動されると予測された場合、又は、車両の制動が必要になると予測された場合には、前記惰性走行制御条件が満足されたとしても、前記クラッチの解放を禁止することを特徴とするハイブリッド車両の制御装置。
  2. 前記外部環境検知手段は、車両前方に、カーブ、踏み切り、横断歩道、又は、一時停止の道路標識が在るか否かを検知し、
    前記制動予測手段は、前記外部環境検知手段により、車両前方に、カーブ、踏み切り、横断歩道、又は、一時停止の道路標識が在ると検知された場合に、車両が制動されると予測することを特徴とする請求項1に記載のハイブリッド車両の制御装置。
  3. 前記外部環境検知手段は、車両前方に移動障害物が在るか否か、又は、先行車両が減速したか否かを検知し、
    前記制動予測手段は、前記外部環境検知手段により、車両前方に移動障害物が在ると検知された場合、又は、先行車両の減速が検知された場合に、車両が制動されると予測することを特徴とする請求項1に記載のハイブリッド車両の制御装置。
  4. 前記外部環境検知手段は、走行路の路面勾配を検知し、
    前記制動予測手段は、前記外部環境検知手段により検知された路面勾配が、負の勾配であり、かつ所定値以下である場合に、車両の制動が必要になると予測することを特徴とする請求項1〜3のいずれか1項に記載のハイブリッド車両の制御装置。
  5. 前記外部環境検知手段は、走行路の路面摩擦係数を検知し、
    前記制動予測手段は、前記外部環境検知手段により検知された路面摩擦係数が所定値以下の場合に、車両の制動が必要になると予測することを特徴とする請求項1〜4のいずれか1項に記載のハイブリッド車両の制御装置。
JP2015045023A 2015-03-06 2015-03-06 ハイブリッド車両の制御装置 Active JP6619558B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015045023A JP6619558B2 (ja) 2015-03-06 2015-03-06 ハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015045023A JP6619558B2 (ja) 2015-03-06 2015-03-06 ハイブリッド車両の制御装置

Publications (2)

Publication Number Publication Date
JP2016164049A true JP2016164049A (ja) 2016-09-08
JP6619558B2 JP6619558B2 (ja) 2019-12-11

Family

ID=56875939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015045023A Active JP6619558B2 (ja) 2015-03-06 2015-03-06 ハイブリッド車両の制御装置

Country Status (1)

Country Link
JP (1) JP6619558B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180040022A (ko) * 2016-10-11 2018-04-19 주식회사 만도 차량 간 통신을 이용한 스마트 크루즈 컨트롤 시스템 및 그 제어 방법
JP2018103744A (ja) * 2016-12-26 2018-07-05 スズキ株式会社 ハイブリッド車両の駆動制御装置
JP2018127096A (ja) * 2017-02-08 2018-08-16 いすゞ自動車株式会社 走行制御装置、車両および走行制御方法
JP2018127138A (ja) * 2017-02-09 2018-08-16 いすゞ自動車株式会社 走行制御装置、車両および走行制御方法
JP2018127095A (ja) * 2017-02-08 2018-08-16 いすゞ自動車株式会社 走行制御装置、車両および走行制御方法
KR20190072802A (ko) * 2017-12-18 2019-06-26 현대자동차주식회사 마일드 하이브리드 차량의 mhsg 제어 방법 및 장치
US10569779B2 (en) 2018-03-20 2020-02-25 Hyundai Motor Company Coasting neutral control apparatus and method associated with speed camera
JP2020093560A (ja) * 2018-12-10 2020-06-18 株式会社Subaru パワートレーン制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092855A1 (ja) * 2010-01-29 2011-08-04 トヨタ自動車株式会社 車両制御装置
WO2013014741A1 (ja) * 2011-07-25 2013-01-31 トヨタ自動車株式会社 車両制御装置
WO2013190652A1 (ja) * 2012-06-20 2013-12-27 トヨタ自動車株式会社 車両の制御装置
WO2014002207A1 (ja) * 2012-06-27 2014-01-03 トヨタ自動車株式会社 車両の制御装置
JP2014218171A (ja) * 2013-05-09 2014-11-20 日野自動車株式会社 ハイブリッド車両の制御装置及びその制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092855A1 (ja) * 2010-01-29 2011-08-04 トヨタ自動車株式会社 車両制御装置
JPWO2011092855A1 (ja) * 2010-01-29 2013-05-30 トヨタ自動車株式会社 車両制御装置
WO2013014741A1 (ja) * 2011-07-25 2013-01-31 トヨタ自動車株式会社 車両制御装置
WO2013190652A1 (ja) * 2012-06-20 2013-12-27 トヨタ自動車株式会社 車両の制御装置
WO2014002207A1 (ja) * 2012-06-27 2014-01-03 トヨタ自動車株式会社 車両の制御装置
JP2014218171A (ja) * 2013-05-09 2014-11-20 日野自動車株式会社 ハイブリッド車両の制御装置及びその制御方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180040022A (ko) * 2016-10-11 2018-04-19 주식회사 만도 차량 간 통신을 이용한 스마트 크루즈 컨트롤 시스템 및 그 제어 방법
KR102489315B1 (ko) 2016-10-11 2023-01-17 주식회사 에이치엘클레무브 차량 간 통신을 이용한 스마트 크루즈 컨트롤 시스템 및 그 제어 방법
JP2018103744A (ja) * 2016-12-26 2018-07-05 スズキ株式会社 ハイブリッド車両の駆動制御装置
JP2018127096A (ja) * 2017-02-08 2018-08-16 いすゞ自動車株式会社 走行制御装置、車両および走行制御方法
JP2018127095A (ja) * 2017-02-08 2018-08-16 いすゞ自動車株式会社 走行制御装置、車両および走行制御方法
JP2018127138A (ja) * 2017-02-09 2018-08-16 いすゞ自動車株式会社 走行制御装置、車両および走行制御方法
KR20190072802A (ko) * 2017-12-18 2019-06-26 현대자동차주식회사 마일드 하이브리드 차량의 mhsg 제어 방법 및 장치
KR102041919B1 (ko) * 2017-12-18 2019-11-27 현대자동차 주식회사 마일드 하이브리드 차량의 mhsg 제어 방법 및 장치
US10569779B2 (en) 2018-03-20 2020-02-25 Hyundai Motor Company Coasting neutral control apparatus and method associated with speed camera
JP2020093560A (ja) * 2018-12-10 2020-06-18 株式会社Subaru パワートレーン制御装置
US10967866B2 (en) 2018-12-10 2021-04-06 Subaru Corporation Power-train controlling apparatus and method of controlling power train
JP7132839B2 (ja) 2018-12-10 2022-09-07 株式会社Subaru パワートレーン制御装置

Also Published As

Publication number Publication date
JP6619558B2 (ja) 2019-12-11

Similar Documents

Publication Publication Date Title
JP6619558B2 (ja) ハイブリッド車両の制御装置
US10611376B2 (en) Methods and system for decelerating a vehicle
JP5853690B2 (ja) 車両のエンジン自動停止制御装置
US9540004B2 (en) Vehicle control system
EP3608191B1 (en) Vehicle control method and vehicle control device
KR101535020B1 (ko) 차량의 크립토크 제어방법 및 제어시스템
US10487761B2 (en) Vehicle control apparatus and vehicle control method
US9365211B2 (en) Delay changing on/off state of engine during cruise control in a hybrid vehicle
KR102292291B1 (ko) 차량 주행 제어 방법 및 차량 주행 제어 장치
US20150197243A1 (en) Predictive engine pull up and pull down in hybrid vehicle
CN105313888A (zh) 用于启动混合动力车辆的发动机的方法和系统
US20150046006A1 (en) Control device for hybrid vehicle
US9937916B2 (en) Methods and system for reducing transmission shifting
US9168925B2 (en) Method for estimating grade and rolling direction
CN105035070B (zh) 基于发动机控制的车辆驶离
WO2017183519A1 (ja) 車両制御装置
JP6302269B2 (ja) 車両用制御装置
JP5843833B2 (ja) 車両の制御装置
JP5812852B2 (ja) 車両用制御装置
US10556591B2 (en) Vehicle control device
JP2005297612A (ja) 車両の駆動力制御装置および駆動力制御方法
JP6353730B2 (ja) 車両用制御装置
WO2018008536A1 (ja) 車両用制御装置
JP6442595B2 (ja) 車両用制御装置
JP6481536B2 (ja) エンジン制御方法及びエンジン制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191115

R150 Certificate of patent or registration of utility model

Ref document number: 6619558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250