JP2016156345A - 運転効率推定システム、運転効率推定方法、運転効率推定装置及びコンピュータプログラム - Google Patents

運転効率推定システム、運転効率推定方法、運転効率推定装置及びコンピュータプログラム Download PDF

Info

Publication number
JP2016156345A
JP2016156345A JP2015035679A JP2015035679A JP2016156345A JP 2016156345 A JP2016156345 A JP 2016156345A JP 2015035679 A JP2015035679 A JP 2015035679A JP 2015035679 A JP2015035679 A JP 2015035679A JP 2016156345 A JP2016156345 A JP 2016156345A
Authority
JP
Japan
Prior art keywords
pressure
information
flow rate
fluid
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015035679A
Other languages
English (en)
Other versions
JP6290119B2 (ja
Inventor
諒 難波
Ryo Nanba
諒 難波
理 山中
Satoru Yamanaka
理 山中
勝也 横川
Katsuya Yokogawa
勝也 横川
寿治 杉野
Toshiharu Sugino
寿治 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015035679A priority Critical patent/JP6290119B2/ja
Priority to PCT/JP2016/054934 priority patent/WO2016136636A1/ja
Priority to CN201680011612.8A priority patent/CN107532599B/zh
Priority to SG11201706913QA priority patent/SG11201706913QA/en
Publication of JP2016156345A publication Critical patent/JP2016156345A/ja
Application granted granted Critical
Publication of JP6290119B2 publication Critical patent/JP6290119B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems

Abstract

【課題】設備負担の増大を抑制しつつ個々のポンプの運転効率を推定することができる運転効率推定システム、運転効率推定方法、運転効率推定装置及びコンピュータプログラムを提供することである。【解決手段】実施形態の運転効率推定システムは流体輸送装置と運転情報取得部と運転期間抽出部と電力計測部と圧力計測部と流量計測部と運転効率推定部とを持つ。流体輸送装置は1点で合流する輸送路ごとに設置され流体を輸送する。運転情報取得部は各流体輸送装置の稼働又は停止を示す運転情報を取得する。運転期間抽出部は運転情報に基づいて流体輸送装置が単独で稼働した期間を抽出する。電力計測部は流体輸送装置の消費電力を示す電力情報を取得する。圧力計測部は流体の圧力情報を取得する。流量計測部は合流点における流量情報を取得する。運転効率推定部は前記期間における電力情報、圧力情報及び流量情報に基づいて流体輸送装置の運転効率を推定する。【選択図】図2

Description

本発明の実施形態は、運転効率推定システム、運転効率推定方法、運転効率推定装置及びコンピュータプログラムに関する。
上水道施設において水を輸送するポンプは多くの電力を消費する。そして、上水道施設全体の消費電力のうちの大部分をポンプの消費電力が占めている。そのため、ポンプによる消費電力を削減することは、上水道施設全体の消費電力を削減するのに有効である。一般に、ポンプは、経年劣化により運転効率が低下する。運転効率は、ポンプが電力を水力学エネルギーに変換できた割合を表すものであり、吐出流量、吐出圧力及び消費電力を用いて算出される。そのため、ポンプの運転効率を計測し、より効率のよいポンプを使用することでポンプによる電力消費を削減することができる。
ポンプの運転効率の計測には、個々のポンプについて吐出流量、吐出圧力及び消費電力を計測するための計器を備えることが理想的である。しかしながら、一般的な上水道施設では、ポンプの吐出流量、吐出圧力及び消費電力は、複数のポンプの合計値として計測される。個々のポンプに対応して各種計器を設置することは、コスト面で現実的でない。このため、従来はポンプごとの運転効率を把握するのが困難であった。
特開2008−14230号公報 特開2012−207546号公報
下水処理場に設置したポンプの余寿命を加味した維持管理の提案、学会誌「EICA」第18巻第4号、2014
本発明が解決しようとする課題は、設備負担の増大を抑制しつつ個々のポンプの運転効率を推定することができる運転効率推定システム、運転効率推定方法、運転効率推定装置及びコンピュータプログラムを提供することである。
実施形態の運転効率推定システムは、流体輸送装置と、運転情報取得部と、運転期間抽出部と、電力計測部と、圧力計測部と、流量計測部と、運転効率推定部と、を持つ。流体輸送装置は、1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する。運転情報取得部は、前記流体輸送装置ごとの稼働又は停止の状態を時系列に示す運転情報を取得する。運転期間抽出部は、前記運転情報に基づいて、前記流体輸送装置のそれぞれが単独で稼働している単独運転期間を抽出する。電力計測部は、前記流体輸送装置の消費電力の総量を計測し、前記消費電力の総量を時系列に示す電力情報を取得する。圧力計測部は、前記流体の圧力を計測し、前記圧力を時系列に示す圧力情報を取得する。流量計測部は、前記合流点における前記流体の流量を計測し、前記流量を時系列に示す流量情報を取得する。運転効率推定部は、前記単独運転期間における前記電力情報、前記圧力情報及び前記流量情報に基づいて、前記単独運転期間に稼働した前記流体輸送装置の運転効率を推定する。
送水施設の具体例を示す図。 第1の実施形態のポンプ効率推定装置100の機能構成を示す機能ブロック図。 第1の実施形態における運転効率の推定方法の具体例を示す図。 複数の運転効率における重心の値を運転効率の推定値として決定する具体例を示す図。 第1の実施形態の運転効率推定装置10がポンプの運転効率を推定する流れを示すフローチャート。 第2の実施形態のポンプ効率推定装置100aの機能構成を示す機能ブロック図。 第2の実施形態において運転効率を推定する方法の具体例を示す図。 第2の実施形態の運転効率推定装置10aがポンプの運転効率を推定する流れを示すフローチャート。 第3の実施形態のポンプ効率推定装置100bの機能構成を示す機能ブロック図。 第4の実施形態のポンプ効率推定装置100cの機能構成を示す機能ブロック図。 推定される圧力曲線が満たすべき前提条件を説明する図。 推定される電力曲線が満たすべき前提条件を説明する図。 推定される電力曲線が満たすべき前提条件を説明する図。 運転状態のパターンが限られている場合の例を示す図。 第5の実施形態のポンプ効率推定装置100dの機能構成を示す機能ブロック図。 間引きの対象となるポンプを変化させた場合のカバー率を示す図。 第6の実施形態のポンプ効率推定装置100eの機能構成を示す機能ブロック図。 運転効率情報の第1の表示態様の具体例を示す図。 運転効率情報の第2の表示態様の具体例を示す図。 運転効率情報の第3の表示態様の具体例を示す図。 不要データを削除する第1の方法を示す図。
以下、実施形態の運転効率推定システム、運転効率推定方法、運転効率推定装置及びコンピュータプログラムを、図面を参照して説明する。
(第1の実施形態)
図1は、送水施設の具体例を示す図である。
図1の符号1は、水が輸送される輸送路を表している。図中の実線矢印は水が輸送される方向を表しており、輸送路1を流れる水は符号2が示す合流点で合流する。このような輸送路を持つ送水施設には、ポンプ3−1〜3−4、流量計4、圧力計5が設置される。ポンプ3−1〜3−4(流体輸送装置)は、合流点2で合流する前の複数の輸送路1のそれぞれに設置される。流量計4は、合流点2又は合流後の輸送路1に設置される。流量計4は、設置位置の輸送路1を流れる水の流量を計測する。圧力計5は、合流点2又は合流後の輸送路1に設置される。圧力計5は、設置位置の輸送路1を流れる水の圧力を計測する。以下、説明を簡単にするため、特に区別しない限り、ポンプ3−1〜3−4をまとめてポンプ3と記載する。
また、図1の符号6は、ポンプ3を含む電力需要設備への電力供給を制御するスイッチを表す。以下、説明を簡単にするため、特に区別しない限りこれらのスイッチをまとめてスイッチ6と記載する。図1の例は、全てのスイッチがOFFとなっている状態を示しており、この状態では全てのポンプ3が運転を停止する。スイッチ6と各ポンプ3との間の線は送電線を表している。また、スイッチ6は、各ポンプ3に電力を供給する電力系統7に接続される。電力計8は、電力系統7が供給する電力を計測する。
運転制御システム9(運転情報取得部)は、ポンプ3の運転を制御する。運転制御システム9は、スイッチ6の各ポンプ3に対応するスイッチのON又はOFFを制御することによって、各ポンプ3の運転を制御する。
ポンプ効率推定装置100は、各ポンプ3の運転効率を推定する。ポンプ効率推定装置100は、流量計4(流量計測部)、圧力計5(圧力計測部)、電力計8(電力計測部)及び運転制御システム9から、それぞれ流量情報、圧力情報、電力情報及び運転情報を取得する。流量情報は、流量計4によって計測され、輸送路1を流れる水の流量を時系列に示す情報である。圧力情報は、圧力計5によって計測され、輸送路1を流れる水の圧力を時系列に示す情報である。電力情報は、電力計8によって計測され、電力系統7の供給電力を時系列に示す情報である。運転情報は、各ポンプ3の運転状況を時系列に示す情報である。具体的には、運転情報は、各ポンプ3に対応するスイッチ6のON又はOFFを示す情報である。ポンプ効率推定装置100は、取得された流量情報、圧力情報、電力情報及び運転情報に基づいて、各ポンプ3の運転効率を推定する。
以下、図1に示されたポンプ効率推定装置100の構成の詳細について説明する。
図2は、第1の実施形態のポンプ効率推定装置100の機能構成を示す機能ブロック図である。
ポンプ効率推定装置100は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備える。CPUは、メモリや補助記憶装置に記憶されたポンプ効率推定プログラムを実行する。ポンプ効率推定装置100は、ポンプ効率推定プログラムの実行によって運転情報取得部101、流量情報取得部102、圧力情報取得部103、電力情報取得部104、運転期間抽出部105及び運転効率推定部106を備える装置として機能する。なお、ポンプ効率推定装置100の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。ポンプ効率推定プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。ポンプ効率推定プログラムは、電気通信回線を介して送信されてもよい。
運転情報取得部101、流量情報取得部102、圧力情報取得部103及び電力情報取得部104は、例えばLAN(Local Area Network)等のネットワークに接続するための通信インターフェースを含み、他のシステムや装置との通信により各種情報を取得する。
運転情報取得部101は、運転制御システム9から運転情報を取得する。運転情報取得部101は、取得された運転情報を運転期間抽出部105に出力する。
流量情報取得部102は、流量計4から流量情報を取得する。流量情報取得部102は、取得された流量情報を運転効率推定部106に出力する。
圧力情報取得部103は、圧力計5から圧力情報を取得する。圧力情報取得部103は、取得された圧力情報を運転効率推定部106に出力する。
電力情報取得部104は、電力計8から電力情報を取得する。電力情報取得部104は、取得された電力情報を運転効率推定部106に出力する。
なお、運転情報取得部101、流量情報取得部102、圧力情報取得部103及び電力情報取得部104は、フレキシブルディスクやフラッシュメモリ等の記録媒体を接続するインターフェースを含んでもよい。この場合、運転情報取得部101、流量情報取得部102、圧力情報取得部103及び電力情報取得部104は、これらの記録媒体から情報を読み出すことにより、各種情報を取得してもよい。
図3は、第1の実施形態における運転効率の推定方法の具体例を示す図である。
図3において、図(a)は運転情報の具体例を示す図である。図(b)は流量情報の具体例を示す図である。図(c)は圧力情報の具体例を示す図である。図(d)は電力情報の具体例を示す図である。図(a)、(b)、(c)及び(d)の横軸は時間を表し、各図の時間軸は同じ時間を表す。図(a)の縦軸は、ポンプ1〜4の4基のポンプの運転状況を表す。図(b)、(c)及び(d)の縦軸は、それぞれ流量、圧力及び電力を表す。
各ポンプの運転状況は、ON又はOFFの2値で表され、ONはポンプの稼働を表し、OFFはポンプの非稼働を表す。図3は、図中の単独運転期間にはポンプ2のみが稼働していることを示している。
図2の説明に戻る。
運転期間抽出部105は、運転情報取得部101から運転情報を取得する。運転期間抽出部105は、運転情報が示す各ポンプの運転状況に基づいて、運転情報が示す期間から1つのポンプが単独で運転されている期間(以下、「単独運転期間」という。)を抽出する。運転期間抽出部105は、抽出された単独運転期間と、その単独運転期間に運転されていたポンプと、を示す単独運転情報を運転効率推定部106に出力する。
運転効率推定部106は、流量情報取得部102、圧力情報取得部103及び電力情報取得部104から、それぞれ流量情報、圧力情報及び電力情報を取得する。また、運転効率推定部106は、運転期間抽出部105から単独運転情報を取得する。運転効率推定部106は、取得された流量情報、圧力情報、電力情報及び単独運転情報に基づいて、各ポンプの運転効率を推定する。
具体的には、運転効率推定部106は、流量情報、圧力情報及び電力情報のそれぞれから、単独運転期間における情報を抽出する。運転効率推定部106は、抽出された流量情報、圧力情報及び電力情報に基づいて、その単独運転期間に対応するポンプの運転効率を算出する。運転効率は、例えば次の式(1)によって算出される。
Figure 2016156345
式(1)におけるη(t)は時刻tにおける運転効率を表す。式(1)右辺の分子におけるQ(t)及びH(t)は、それぞれ時刻tにおける流量及び圧力を表し、これらの積は供給された電力の一部がポンプによって変換された水力学的エネルギーである。式(1)右辺の分子は時刻tにおける電力を表す。すなわち、運転効率η(t)は、時刻tにおいて供給された電力が水力学的エネルギーに変換された割合となる。
運転効率推定部106は、前述した図3に示される単独運転期間における流量情報、圧力情報及び電力情報を用いることによって、ポンプ2の運転効率を算出することができる。このように、各ポンプについての単独運転期間を抽出することによって、運転効率推定装置10は、ポンプごとの運転効率を算出することが可能となる。
なお、図3に示されるように、単独運転期間において複数の時刻の計測データ(流量、圧力及び電力)が取得される場合、運転効率も複数算出される。この場合、運転効率推定部106は、複数の運転効率の値の代表値を決定し、その代表値を運転効率の推定値とする。例えば、運転効率推定部106は、次の図4のように複数の運転効率における重心の値を求めることにより運転効率の推定値を決定する。
図4は、複数の運転効率における重心の値を運転効率の推定値として決定する具体例を示す図である。
図4において縦軸は運転効率の値を表し、横軸は時間を表す。図4にプロットされた点は、単独運転期間における複数の計測データに基づいて算出された、複数の運転効率の値を示す。運転効率の各値は、各時刻における計測データから算出されたものである。図4の例は、運転効率推定部106が、各点の重心における値を運転効率の推定値とすることを示している。各点の重心における運転効率の値は、例えば次の式(2)によって表される。
Figure 2016156345
なお、運転効率推定部106は、各点の重心における値の他、他の統計値を運転効率の推定値としてもよい。例えば、運転効率推定部106は、各点の平均値を運転効率の推定値としてもよいし、単独運転期間の中間点における値を運転効率の推定値としてもよい。
図5は、第1の実施形態の運転効率推定装置10がポンプの運転効率を推定する流れを示すフローチャートである。
まず、ポンプ効率推定装置100は、運転情報、流量情報、圧力情報及び電力情報を取得する(ステップS101)。具体的には、運転情報取得部101が運転制御システム9から運転情報を取得し、流量情報取得部102が流量計4から流量情報を取得し、圧力情報取得部103が圧力計5から圧力情報を取得し、電力情報取得部104が電力計8から電力情報を取得する。運転情報取得部101は、取得した運転情報を運転期間抽出部105に出力する。流量情報取得部102、圧力情報取得部103、電力情報取得部104は、それぞれ取得した流量情報、圧力情報及び電力情報を運転効率推定部106に出力する。
運転期間抽出部105は、運転情報取得部101から出力された運転情報に基づいて、運転情報が示す期間から単独運転期間を抽出する(ステップS102)。運転期間抽出部105は、抽出した単独運転期間を示す情報を運転効率推定部106に出力する。
運転効率推定部106は、流量情報取得部102、圧力情報取得部103及び電力情報取得部104からそれぞれ出力された、流量情報、圧力情報及び電力情報を取得する。運転効率推定部106は、運転期間抽出部105から出力された単独運転期間を示す情報に基づいて、流量情報、圧力情報及び電力情報のそれぞれから、単独運転期間の計測データを取得する(ステップS103)。
運転効率推定部106は、取得した単独運転期間の計測データに基づいて、各単独運転期間に運転されたポンプの運転効率を算出する(ステップS104)。ここで算出される運転効率の値は、各単独運転期間において計測データが取得された複数の時刻に対応して、時刻ごとの計測データに基づいて複数算出される。運転効率推定部106は、算出された複数の運転効率の値から代表値を決定する(ステップS105)。運転効率推定部106は、決定された代表値を各ポンプの運転効率の推定値として出力する(ステップS106)。
このように構成された第1の実施形態のポンプ効率推定装置100は、運転情報から各ポンプが単独で運転された単独運転期間を抽出し、抽出された単独運転期間の計測データに基づいて各ポンプの運転効率を推定する。そのため、ポンプ効率推定装置100は、複数のポンプについてまとめて計測された計測値から個々のポンプの運転効率を推定することができ、設備負担の増大を抑制しつつ個々のポンプの運転効率を推定することが可能となる。
(第2の実施形態)
以下、第2の実施形態のポンプ効率推定装置100aについて説明する。第1の実施形態のポンプ効率推定装置100は、運転情報から各ポンプの単独運転期間を抽出することにより、ポンプごとの運転効率を推定した。しかしながら、第1の実施形態における推定方法では、計測データが存在する流量の範囲(以下、「流量範囲」という。)においては運転効率を推定することができるが、流量範囲外では運転効率を推定することができない場合がある。一般に、流量と圧力との間、及び流量と消費電力との間には相関があることが知られており、流量範囲が異なるポンプ同士の運転効率を単純に比較することができない。そのため、第2の実施形態のポンプ効率推定装置100aは、流量範囲の異なるポンプについて運転効率を比較することが可能となるように、あるポンプについて取得された単独運転期間における計測データから流量に対する圧力及び電力を推定する。
図6は、第2の実施形態のポンプ効率推定装置100aの機能構成を示す機能ブロック図である。
なお、図6では、図2と同じ符号を付すことによって図2と同様の機能部についての説明を省略する。
第2の実施形態のポンプ効率推定装置100aは、運転効率推定部106に代えて運転効率推定部106aを備える点、圧力曲線推定部107及び電力曲線推定部108をさらに備える点で第1の実施形態のポンプ効率推定装置100と異なる。
圧力曲線推定部107は、流量から圧力を推定するためのモデルのパラメータ(以下、「圧力パラメータ」という。)を決定する。具体的には、圧力曲線推定部107は、運転期間抽出部105から各ポンプの単独運転期間を示す情報を取得する。また、圧力曲線推定部107は、流量情報取得部102及び圧力情報取得部103から、それぞれ流量情報及び圧力情報を取得する。圧力曲線推定部107は、流量情報及び圧力情報における単独運転期間の計測データに基づいて、各ポンプの圧力パラメータを決定する。
電力曲線推定部108は、流量から電力を推定するためのモデルのパラメータ(以下、「電力パラメータ」という。)を決定する。具体的には、電力曲線推定部108は、運転期間抽出部105から各ポンプの単独運転期間を示す情報を取得する。また、電力曲線推定部108は、流量情報取得部102及び電力情報取得部104から、それぞれ流量情報及び電力情報を取得する。電力曲線推定部108は、流量情報及び電力情報における単独運転期間の計測データに基づいて、各ポンプの電力パラメータを決定する。
ここで、流量と圧力との相関関係は、例えば次の式(3)によって表され、流量と電力との相関関係は、例えば次の式(4)によって表される。
Figure 2016156345
Figure 2016156345
式(3)のα、β及びγが圧力パラメータであり、式(4)のδ、ε、λ及びμが電力パラメータである。圧力曲線推定部107及び電力曲線推定部108は、流量情報、圧力情報及び電力情報における単独運転期間の計測データに基づいて、それぞれ式(3)及び式(4)を最適化する圧力パラメータ及び電力パラメータを推定する。このようなパラメータの最適化は、線形の最適化問題として次の式(5)〜(8)のように定式化することができ、最小二乗法などの方法によって求解することができる。
Figure 2016156345
Figure 2016156345
Figure 2016156345
Figure 2016156345
なお、式(5)〜(8)における記号「^」を以下「ハット」と称し、ハット付きの変数は、その変数が推定値であることを意味するものとする。また、以下ではハット付きの記号を明細書中では「^記号」と記載する。
圧力曲線推定部107及び電力曲線推定部108は、上記の最適化問題を解くことによって、それぞれ圧力パラメータ及び電力パラメータを決定する。圧力曲線推定部107及び電力曲線推定部108は、それぞれ決定した圧力パラメータ及び電力パラメータを運転効率推定部106aに出力する。
運転効率推定部106aは、圧力曲線推定部107及び電力曲線推定部108からそれぞれ出力される圧力パラメータ及び電力パラメータを取得する。運転効率推定部106aは、取得した圧力パラメータ及び電力パラメータに基づいて、任意の流量に対する各ポンプの運転効率を示す運転効率推定モデルを構築する。運転効率推定部106aは、構築した運転効率推定モデルに基づいて各ポンプの運転効率を推定する。式(3)及び式(4)を用いた場合、運転効率推定モデルは次の式(9)のように表される。
Figure 2016156345
図7は、第2の実施形態において運転効率を推定する方法の具体例を示す図である。
図7における図(a)は、あるポンプの単独運転期間における圧力情報を示す図である。図(b)は、当該ポンプの単独運転期間における電力情報を示す図である。図(c)は、当該ポンプの単独運転期間における圧力情報及び電力情報に基づいて推定された、運転効率推定モデルを示す図である。このように、任意の流量範囲で取得される圧力情報及び電力情報に基づいて、任意の流量に対する運転効率を示す運転効率推定モデルが構築されることによって、第2の実施形態のポンプ効率推定装置100aは、異なる流量範囲のポンプ同士で運転効率を比較することを可能にする。
図8は、第2の実施形態の運転効率推定装置10aがポンプの運転効率を推定する流れを示すフローチャートである。
なお、図8では、図5と同じ符号を付すことによって図5と同様の処理についての説明を省略する。
圧力曲線推定部107は、運転期間抽出部105から各ポンプの単独運転期間を示す情報を取得する。また、圧力曲線推定部107は、流量情報取得部102及び圧力情報取得部103から、それぞれ流量情報及び圧力情報を取得する。圧力曲線推定部107は、流量情報及び圧力情報における単独運転期間の計測データに基づいて、各ポンプの圧力パラメータを決定する(ステップS201)。圧力曲線推定部107は、決定した各ポンプの圧力パラメータをポンプ効率推定部16aに出力する。
電力曲線推定部108は、運転期間抽出部105から各ポンプの単独運転期間を示す情報を取得する。また、電力曲線推定部108は、流量情報取得部102及び電力情報取得部104から、それぞれ流量情報及び電力情報を取得する。電力曲線推定部108は、流量情報及び電力情報における単独運転期間の計測データに基づいて、各ポンプの電力パラメータを決定する(ステップS202)。電力曲線推定部108は、決定した各ポンプの電力パラメータをポンプ効率推定部16aに出力する。
運転効率推定部106aは、圧力曲線推定部107及び電力曲線推定部108からそれぞれ出力される圧力パラメータ及び電力パラメータを取得する。運転効率推定部106aは、取得した圧力パラメータ及び電力パラメータに基づいて、任意の流量に対する各ポンプの運転効率を示す運転効率推定モデルを構築する(ステップS203)。運転効率推定部106aは、構築した運転効率推定モデルに基づいて各ポンプの運転効率を推定する。
このように構成された第2の実施形態のポンプ効率推定装置100aは、各ポンプの単独運転期間における計測データに基づいて、ポンプの任意の流量範囲における圧力及び電力を表すモデルを得るための圧力パラメータ及び電力パラメータをポンプごとに決定し、決定された圧力パラメータ及び電力パラメータを用いて、各ポンプの任意の流量範囲における運転効率を推定する運転効率推定モデルを構築する。この運転効率推定モデルの構築により、ポンプ効率推定装置100aは、流量範囲の異なるポンプについて運転効率を比較することを可能にする。
(第3の実施形態)
以下、第3の実施形態のポンプ効率推定装置100bについて説明する。第2の実施形態のポンプ効率推定装置100aは、ある流量範囲について取得された計測データに基づいて、任意の流量範囲における運転効率を推定する運転効率推定モデルを構築することによって、流量範囲の異なるポンプについて運転効率を比較することを可能にした。しかしながら、第2の実施形態における推定方法では、各ポンプについて単独運転期間の計測データが十分に得られない場合、運転効率推定モデルの圧力パラメータ及び電力パラメータを決定できない可能性がある。そのため、第3の実施形態のポンプ効率推定装置100bは、複数のポンプが同時に運転された状況で取得された計測データに基づいて、圧力パラメータ及び電力パラメータを決定することを可能にする。
図9は、第3の実施形態のポンプ効率推定装置100bの機能構成を示す機能ブロック図である。
なお、図9では、図6と同じ符号を付すことによって図6と同様の機能部についての説明を省略する。
第3の実施形態のポンプ効率推定装置100bは、運転期間抽出部105を備えない点、圧力曲線推定部107に代えて圧力曲線推定部107bを備える点、電力曲線推定部108に代えて電力曲線推定部108bを備える点で第2の実施形態のポンプ効率推定装置100aと異なる。
圧力曲線推定部107bは、運転情報取得部101から運転情報を取得する。運転情報は、時刻tにおける各ポンプの運転情報d(t)(iは各ポンプの識別番号)と表せば、次の式(10)のように表すことができる。
Figure 2016156345
このとき、圧力パラメータを求めるための最適化問題は次の式(11)〜(14)のように定式化できる。以下、識別番号iで表されるポンプをポンプiと記載する。
Figure 2016156345
Subject to
Figure 2016156345
Figure 2016156345
Figure 2016156345
式(12)及び(13)における^q(t)は、ポンプiにおいて時刻tに計測された流量の推定値を表す。また、式(13)及び(14)におけるα、β及びγは、ポンプiの圧力パラメータを表す。また、圧力は輸送路のいずれの地点においても一定であることから、^q(t)は圧力H(t)を用いて式(13)のように表される。
電力曲線推定部108bは、運転情報取得部101から運転情報を取得する。圧力パラメータと同様に、電力パラメータを求めるための最適化問題は次の式(15)〜(17)のように定式化できる。
Figure 2016156345
Subject to
Figure 2016156345
Figure 2016156345
上記のように定式化された式(12)〜式(14)の最適化問題は、非線形最適化問題となるため、圧力曲線推定部107b及び電力曲線推定部108bは、遺伝的アルゴリズム(Genetic Algorithm)や焼きなまし法(Simulated Annealing)、粒子群最適化(Particle Swarm Optimization)などのメタヒューリスティックな手法を用いて上記の最適化問題を解くことにより、それぞれ圧力パラメータ及び電力パラメータを推定する。圧力曲線推定部107b及び電力曲線推定部108bは、上記推定によりそれぞれ決定した各ポンプの圧力パラメータ及び電力パラメータを運転効率推定部106aに出力する。
なお、非線形最適化問題の定式化の方法では解の公式を用いているため、最適化問題の評価中に複素数が現れる場合がある。上記の定式化では、制約条件によって複素数の発生を抑制しているが、この複素数の発生を抑止する手法には他の手法が用いられてもよい。例えば、評価関数において複素数が出現した時点で評価関数の値を無限大にするなどの手法が考えられる。その場合、上述した最適化問題は次の式(18)〜(23)のように定式化することができる。
Figure 2016156345
Subject to
Figure 2016156345
Figure 2016156345
Figure 2016156345
Subject to
Figure 2016156345
Figure 2016156345
このように構成された第3の実施形態のポンプ効率推定装置100bは、複数のポンプが同時に運転された状況で取得された計測データに基づいて定式化される非線形最適化問題を解くことで、圧力パラメータ及び電力パラメータを決定する。圧力パラメータ及び電力パラメータを非線形最適化問題として解くことで決定することにより、ポンプ効率推定装置100bは、各ポンプについて単独運転期間の計測データが十分に得られない場合であっても、運転効率推定モデルの圧力パラメータ及び電力パラメータを決定することが可能となる。
(第4の実施形態)
以下、第4の実施形態のポンプ効率推定装置100cについて説明する。第3の実施形態のポンプ効率推定装置100bは、複数のポンプが同時に運転された状況で取得された計測データに基づいて定式化される非線形最適化問題を解くことで、圧力パラメータ及び電力パラメータを決定した。しかしながら、第3の実施形態におけるパラメータの決定方法では、最適化問題において推定すべきパラメータの数が多いため、可同定性が低下したり、最適解が得られない場合があった。そのため、第4の実施形態のポンプ効率推定装置100cは、まず計測データの近似直線を決定し、決定された近似直線のパラメータをもとに、ポンプの特性を考慮して外挿することで圧力パラメータ及び電力パラメータを決定する。
図10は、第4の実施形態のポンプ効率推定装置100cの機能構成を示す機能ブロック図である。
なお、図10では、図9と同じ符号を付すことによって図9と同様の機能部についての説明を省略する。
第4の実施形態のポンプ効率推定装置100cは、圧力曲線推定部107bに代えて圧力曲線推定部107cを備える点、電力曲線推定部108bに代えて電力曲線推定部108cを備える点、直線近似部109をさらに備える点で第3の実施形態のポンプ効率推定装置100bと異なる。以下、圧力パラメータ及び電力パラメータのそれぞれについて、各パラメータの決定における各機能部の構成について説明する。
[圧力パラメータの決定]
直線近似部109は、運転情報取得部101から運転情報を取得する。また、直線近似部109は、流量情報取得部102及び圧力情報取得部103から、それぞれ流量情報及び圧力情報を取得する。直線近似部109は、取得した運転情報、流量情報及び圧力情報に基づいて、各ポンプにおける流量によって圧力を表す近似直線を決定する。狭い流量範囲について計測データが取得される場合、圧力H(t)を示す近似直線は次の式(24)のように表される。
Figure 2016156345
この場合、式(24)によって示される近似直線のパラメータa及びbは、次の式(25)〜(27)のように定式化される最適化問題を解くことにより決定することができる。
Figure 2016156345
Subject to
Figure 2016156345
Figure 2016156345
上記のように定式化される最適化問題は、線形最適化問題となるため、最小二乗法などの手法を用いて解くことができる。直線近似部109は、上記の最適化問題を解くことにより決定した近似直線のパラメータを圧力曲線推定部107cに出力する。
圧力曲線推定部107cは、直線近似部109によって決定された近似直線のパラメータに基づいて、各ポンプの圧力パラメータを決定する。具体的には、圧力曲線推定部107cは、次の式(28)〜(30)で表される前提条件を連立方程式として解くことによって、圧力パラメータを決定する。
Figure 2016156345
Figure 2016156345
Figure 2016156345
図11は、推定される圧力曲線が満たすべき前提条件を説明する図である。
図11の横軸は流量を表し、縦軸は圧力を表す。図11の点群20は、圧力曲線を求める対象となるポンプについて取得された計測データがプロットされた点の集合を表す。ここでは、点群20に示される計測データに対応する単独運転しているポンプを仮にポンプAと記載する。また、点群21は、ポンプA単独ではなく、複数台のポンプが運転する計測データがプロットされた点の集合を表す。
また、図11におけるHは、計測された全圧力情報のうちの圧力の最大値を表す。同様に、Hは、計測された全圧力情報のうちの圧力の最小値を表す。図11の例の場合、Hは点群21に属し、Hは点群20に属している。
このとき、直線近似部109は、式(25)〜(27)で定式化された最適化問題を解くことにより、点群20の近似直線を表すパラメータ(図中のa及びb)を決定する。このパラメータの決定により、図11の近似直線22が得られる。
圧力曲線推定部107cは、直線近似部109により決定された近似直線のパラメータa及びbを用いて式(28)〜(30)を連立方程式として解くことにより、圧力曲線23を表す圧力パラメータを決定する。
式(28)におけるHini_maxは締切圧を表す。締切圧とは、全てのポンプが送水を行わない場合、換言すれば全てのポンプを締め切った場合の圧力のことである。すなわち、Hini_maxは、Q=0のときの圧力であり、式(28)はこの締切圧がポンプ効率によらず劣化しないという前提条件を表している。
式(29)及び(30)におけるQは、決定される圧力曲線23上の点であり、圧力がHのときの流量を表す。同様に、Qは、決定される圧力曲線23上の点であり、圧力がHのときの流量を表す。つまり、QからQまでの範囲が計測データが取得されたタイミングにおける流量範囲を表す。すなわち、式(29)は、流量範囲の中心(図中のg)における圧力曲線23の接線24の傾きが近似直線22の傾きと同じであるという仮定を表している。また、式(30)は、圧力曲線23が、流量範囲の最大値において近似直線22上の点を通るという前提条件を表している。
また、圧力曲線推定部107cは、上記の3つの前提条件を次の式(31)〜(33)ように設定することによって圧力パラメータを決定してもよい。
Figure 2016156345
Figure 2016156345
Figure 2016156345
図12は、推定される電力曲線が満たすべき前提条件を説明する図である。
図11に示された前提条件と、図12が示す前提条件との違いは、式(29)が式(32)に置き換えられた点である。そして、式(33)は、圧力曲線23が、流量範囲の最大値において近似直線22上の点を通るという前提条件を表しているのに対して、式(32)は、圧力曲線23が、流量範囲の最小値において近似直線22上の点を通るという前提条件を表している。
このように、圧力曲線推定部107cは、直線近似部109によって決定された近似直線のパラメータに基づいて、式(28)〜(30)又は式(31)〜(33)によって表される前提条件を連立方程式として解くことによって、圧力曲線が上記の前提条件を満たすように圧力パラメータを決定する。
[電力パラメータの決定]
直線近似部109は、運転情報取得部101から運転情報を取得する。また、直線近似部109は、流量情報取得部102及び電力情報取得部104から、それぞれ流量情報及び電力情報を取得する。直線近似部109は、取得した運転情報、流量情報及び電力情報に基づいて、各ポンプにおける流量によって電力を表す近似直線を決定する。狭い流量範囲について計測データが取得される場合、電力P(t)を示す近似直線は次の式(34)のように表される。
Figure 2016156345
この場合、式(34)によって示される近似直線のパラメータc及びeは、次の式(35)〜(37)のように定式化される最適化問題を解くことにより決定することができる。この最適化問題を解くにあたり、ポンプごとの流量q(t)には、圧力パラメータの決定により式(27)によって得られる流量の推定値を用いる。
Figure 2016156345
Subject to
Figure 2016156345
Figure 2016156345
上記のように定式化される最適化問題は、線形最適化問題となるため、最小二乗法などの手法を用いて解くことができる。直線近似部109は、上記の最適化問題を解くことにより決定した近似直線のパラメータを電力曲線推定部108cに出力する。
電力曲線推定部108cは、直線近似部109によって決定された近似直線のパラメータに基づいて、各ポンプの電力パラメータを決定する。具体的には、電力曲線推定部108cは、次の式(38)〜(41)で表される前提条件を連立方程式として解くことによって、電力パラメータを決定する。
Figure 2016156345
Figure 2016156345
Figure 2016156345
Figure 2016156345
図13は、推定される電力曲線が満たすべき前提条件を説明する図である。
図13の横軸は流量を表し、縦軸は電力を表す。図13の点群30は、電力曲線を求める対象となるポンプAについて取得された計測データがプロットされた点の集合を表す。また、点群31−1及び点群31−2は、ポンプAについて異なるタイミングで取得された計測データがプロットされた点の集合を表す。以下、説明を簡単にするために、特に区別しない限り点群31−1及び点群31−2を点群31と記載する。
また、図13におけるPは、点群30に含まれる点が示す電力の最大値を表す。同様に、Pは、点群30に含まれる点が示す電力の最小値を表す。
このとき、直線近似部109は、式(35)〜(37)で定式化された最適化問題を解くことにより、点群30の近似直線を表すパラメータ(図中のc及びe)を決定する。このパラメータの決定により、図13の近似直線32が得られる。
電力曲線推定部108cは、直線近似部109により決定された近似直線のパラメータc及びeを用いて式(38)〜(41)を連立方程式として解くことにより、電力曲線33を表す電力パラメータを決定する。
式(38)におけるPini_maxはQ=0のときの電力であり、式(38)は流量がゼロのときの電力は変化しないという前提条件を表している。
式(39)〜(41)におけるQは、決定される電力曲線33上の点であり、電力がPのときの流量を表す。同様に、Qは、決定される電力曲線33上の点であり、圧力がPのときの流量を表す。つまり、QからQまでの範囲が、計測データが取得されたタイミングにおける流量範囲を表す。すなわち、式(39)は、電力曲線33が、流量範囲の最小値において近似直線32上の点を通るという前提条件を表している。同様に、式(40)は、電力曲線33が、流量範囲の最大値において近似直線32上の点を通るという前提条件を表している。また、式(41)は、流量範囲の中心(図中のg)における電力曲線33の接線34の傾きが近似直線32の傾きと同じであるという前提条件を表している。
このように、電力曲線推定部108cは、直線近似部109によって決定された近似直線のパラメータに基づいて、式(38)〜(41)によって表される前提条件を連立方程式として解くことによって、電力曲線が上記の前提条件を満たすように電力パラメータを決定する。
このように構成された第4の実施形態のポンプ効率推定装置100cは、ある流量範囲について取得された計測データを直線で近似することによって、圧力パラメータ及び電力パラメータの決定を線形最適化問題に定式化することができる。そのため、第4の実施形態のポンプ効率推定装置100cは、圧力パラメータ及び電力パラメータの決定をより精度良く行うことが可能となる。
(第5の実施形態)
以下、第5の実施形態のポンプ効率推定装置100dについて説明する。上述した第2〜第4の実施形態のポンプ効率推定装置では、運転効率を推定するための圧力パラメータ及び電力パラメータの決定を最適化問題として定式化している。最適化問題を解くことにより運転効率を推定する場合、決定すべきパラメータの可同定性が重要となる。そして、上述した最適化問題の可同定性に本質的に影響を与えるのはポンプの運転情報である。
例えば、ポンプiの運転状態(稼働又は非稼働)を示す運転情報d(t)が常にゼロであった場合、ポンプiのパラメータを決定することができない。また、d(t)が常にはゼロでない場合であっても、d(t)が取り得る運転状態のパターンが限られている場合にはパラメータを決定することができない。なお、このような場合、仮にパラメータを決定することができたとしても、そのパラメータの信頼性は低いものとなる。
図14は、運転状態のパターンが限られている場合の例を示す図である。
図14は、3台のポンプの運転状態を示すd(t)が{1、1、0}又は{1、1、1}の2パターンの値しかとらない場合を示している。図14における全体流量は、各ポンプの流量の総和を表し、全体消費電力は、各ポンプの消費電力の総和を表す。この場合、ポンプ3については稼働及び非稼働の切り替わりが運転情報に含まれるため、パラメータの推定が可能である。しかしながら、ポンプ1及びポンプ2については、稼働及び非稼働の切り替わりが運転情報に含まれないため、パラメータを推定することができない。
そこで、本実施形態では、運転効率の推定をより精度良く行うための指標としてカバー率を定義する。カバー率は、運転情報が、取り得るパターンをどの程度網羅しているかを示す値である。そして、ポンプ効率推定装置100dは、運転情報がより高いカバー率を示す期間において取得された計測データを用いて最適化問題を解くことにより、より精度良く運転効率の推定を行うことを可能とする。
図15は、第5の実施形態のポンプ効率推定装置100dの機能構成を示す機能ブロック図である。
なお、図15では、図10と同じ符号を付すことにより、図10と同様の機能部についての説明を省略する。
第5の実施形態のポンプ効率推定装置100dは、カバー率向上部110をさらに備える点で第4の実施形態のポンプ効率推定装置100cと異なる。
カバー率向上部110は、運転情報取得部101から運転情報を取得する。カバー率最向上部120は、取得した運転情報のカバー率を向上させるカバー率向上処理を行うことによって、カバー率が向上された運転情報を生成する。カバー率向上部110は、生成した運転情報を圧力曲線推定部107c及び電力曲線推定部108cに出力する。
以下、カバー率向上部110が行うカバー率向上処理の詳細について説明する。
[カバー率向上処理]
カバー率Rは、例えば次の式(42)のように定義される。
Figure 2016156345
式(42)の分母として、考えられるパターンの数から減算される1は、全てのポンプが非稼働である場合を表す。例えば、図14の例の場合、考えられるパターンの数は、2=8であり、d(t)に含まれるパターンの数は2である。よって、この場合カバー率R=2/(8−1)≒0.29となる。
カバー率向上部110は、運転情報からカバー率を低くする要因となっているポンプの運転情報を間引くことによって、運転情報のカバー率を向上させる。例えば、カバー率向上処理前における4台のポンプの運転情報d(t)が次の式(43)で表される場合について説明する。
Figure 2016156345
式(43)右辺の列は各ポンプに対応し、行は各ポンプの運転状態のパターンに対応する。ここでは、式(43)右辺の列に対応するポンプを、左の列から順にポンプ1、ポンプ2、ポンプ3及びポンプ4と記載する。この場合、ポンプ4台でのカバー率は、5/(2−1)≒0.33となる。
この場合、例えば、カバー率向上部110は、ポンプ1及びポンプ2について運転情報を間引く。具体的には、カバー率向上部110は、式(43)右辺の行列からポンプ1又はポンプ2の稼働を示す行を間引く。その結果、運転情報は、次の式(44)のようになる。
Figure 2016156345
その結果、式(44)で表される運転情報のカバー率は、2/(2−1)≒0.67となり、カバー率が向上される。
図16は、間引きの対象となるポンプを変化させた場合のカバー率を示す図である。
図16は、式(43)で表される運転情報に対して、間引きの対象となるポンプの組み合わせを変えてカバー率向上処理を行った結果を示す。図16の間引きパターンは、間引きの対象となるポンプの組み合わせを表す。間引きパターンに「×」が記載されたポンプが間引きの対象となるポンプである。対象ポンプ台数は、カバー率向上処理後の運転情報でパラメータの推定が可能となるポンプの台数を表す。図16から、間引きの対象となるポンプが多くなるほど、カバー率が向上することが分かる。なお、図16において、対象ポンプ台数が1台の場合にカバー率をゼロとしているのは、式(43)で表される運転情報において、ポンプ1、ポンプ2及びポンプ3の全てが稼働しない運転状態を示すパターンがないことを表している。
このように構成された第5の実施形態のポンプ効率推定装置100dでは、カバー率向上部110によってカバー率が向上された運転情報が圧力曲線推定部107c及び電力曲線推定部108cに出力される。圧力曲線推定部107c及び電力曲線推定部108cが、カバー率向上部110から出力された運転情報に基づいて最適化問題を解くことで、ポンプ効率推定装置100dは、運転効率の推定をより精度よく行うことが可能となる。
(第6の実施形態)
図17は、第6の実施形態のポンプ効率推定装置100eの機能構成を示す機能ブロック図である。
なお、図17では、図15と同じ符号を付すことにより、図15と同様の機能部についての説明を省略する。
第6の実施形態のポンプ効率推定装置100eは、表示部111、記憶部112及び表示制御部113をさらに備える点で第5の実施形態のポンプ効率推定装置100dと異なる。
表示部111は、CRT(Cathode Ray Tube)ディスプレイや液晶ディスプレイ、有機EL(Electro-Luminescence)ディスプレイ等の表示装置を用いて構成される。又は、表示部111は、これらの表示装置を自装置に接続するインターフェースとして構成されてもよい。
記憶部112は、磁気ハードディスク装置や半導体記憶装置などの記憶装置を用いて構成される。記憶部112は、運転効率推定部106aにより出力された各ポンプの運転効率の推定結果を示す情報(以下、「運転効率情報」という。)を、運転効率が推定されたタイミングに対応づけて記憶する。
表示制御部113は、記憶部112から運転効率情報を取得し、表示部111に表示させる。例えば、表示制御部113は、運転効率情報に基づいて各ポンプの運転効率を示す曲線(以下、「効率曲線」という。)を一覧表示させる。表示制御部113は、例えば、次の図18〜20に示す3つの態様で効率曲線を表示する。
図18は、運転効率情報の第1の表示態様の具体例を示す図である。
運転効率情報の第1の表示態様は、各ポンプの運転効率を任意の流量について比較可能にする態様である。第1の表示態様では、表示制御部113は、例えばユーザによって指定された任意の流量に対して各ポンプの運転効率を算出し、算出した運転効率の値を効率曲線に対応づけて表示部111に表示させる。
図19は、運転効率情報の第2の表示態様の具体例を示す図である。
運転効率情報の第2の表示態様は、各ポンプの運転効率を運転効率の最大値で比較可能にする態様である。第2の表示態様では、表示制御部113は、各ポンプの運転効率の最大値を算出し、算出した運転効率の最大値を効率曲線に対応づけて表示部111に表示させる。
図20は、運転効率情報の第3の表示態様の具体例を示す図である。
運転効率情報の第3の表示態様は、任意のポンプの運転効率について時系列の変化を表示する態様である。第3の表示態様では、表示制御部113は、例えばユーザによって指定されたポンプについて、過去の所定期間ごとに推定された効率曲線を時系列に表示部111に表示させる。
このように構成された第6の実施形態のポンプ効率推定装置100eは、推定された各ポンプの運転効率の推定結果を、ポンプ間、又は任意のポンプの推定タイミング間で比較可能な態様で表示する。ポンプ効率推定装置100eがこのような機能を備えることにより、各ポンプの運転効率の変化が可視化され、ユーザは、ポンプのメンテナンスや更新などの運用計画をより柔軟に行うことが可能となる。
以下、上記のポンプ効率推定装置の変形例について説明する。
上記のポンプ効率推定装置は、計測データから不要なデータを除去した上で、運転効率の推定を行うように構成されてもよい。例えば、ポンプ効率推定装置は、次の第1の方法又は第2の方法により、不要データの除去を行ってもよい。
図21は、不要データを削除する第1の方法を示す図である。
第1の方法は、計測データから、ポンプの起動時や停止時に計測される過渡的なデータを除去する方法である。この場合、ポンプ効率推定装置は、例えば図21のように、ポンプの起動時又は停止時を含む所定期間のデータを計測データから削除する。
第2の方法は、計測データから、外れ値を除去する方法である。外れ値とは、センサの異常や通信のビットエラーなどによって、本来計測されるべき値と異なって取得された計測データである。このような外れ値を除去する方法として、計測データの中央値Qmed及び中央値絶対偏差Qmadを用いる方法がある。中央値Qmed及び中央値絶対偏差Qmadは、次の式(45)及び(46)で表される。
Figure 2016156345
Figure 2016156345
式(46)におけるcは修正係数を表し、正規分布を仮定した場合、c=1/0.6745である。このような、中央値Qmed及び中央値絶対偏差Qmadを用いれば、式(47)に示されるように計測データから不要データを除去することができる。
Figure 2016156345
式(47)においてκは調整パラメータを表し、通常2〜3の値に設定される。
上記の第1の方法又は第2の方法により、計測データから不要データを削除することにより、ポンプ効率推定装置は、運転効率の推定をより精度よく行うことが可能となる。
以上説明した少なくともひとつの実施形態によれば、1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する流体輸送装置と、前記流体輸送装置ごとの稼働又は停止の状態を時系列に示す運転情報を取得する運転情報取得部と、前記運転情報に基づいて、前記複数の流体輸送装置のそれぞれが単独で稼働している単独運転期間を抽出する期間抽出部と、前記複数の流体輸送装置の消費電力の総量を計測し、前記消費電力の総量を時系列に示す電力情報を取得する消費電力計測部と、前記流体の圧力を計測し、前記圧力を時系列に示す圧力情報を取得する圧力計測部と、前記合流点における前記流体の流量を計測し、前記流量を時系列に示す流量情報を取得する流量取得部と、前記単独運転期間における前記電力情報、前記圧力情報及び前記流量情報に基づいて、前記単独運転期間に稼働した前記流体輸送装置の運転効率を推定する推定部とを持つことにより、設備負担の増大を抑制しつつ個々のポンプの運転効率を推定することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1…輸送路,2…合流点,3…ポンプ,4…流量計,5…圧力計,6…スイッチ,7…電力系統,8…電力計,9…運転制御システム,100、100a、100b…ポンプ効率推定装置,101…運転情報取得部,102…流量情報取得部,103…圧力情報取得部,104…電力情報取得部,105…運転期間抽出部,106、106a…運転効率推定部,107、107b、107c…圧力曲線推定部,108、108b、108c…電力曲線推定部,109…直線近似部,110…カバー率向上部,111…表示部,112…記憶部,113…表示制御部

Claims (15)

  1. 1点で合流する複数の輸送路ごとに設置され、前記輸送路を流れる流体を輸送する流体輸送装置と、
    前記流体輸送装置ごとの稼働又は停止の状態を時系列に示す運転情報を取得する運転情報取得部と、
    前記運転情報に基づいて、前記流体輸送装置のそれぞれが単独で稼働している単独運転期間を抽出する運転期間抽出部と、
    前記流体輸送装置の消費電力の総量を計測し、前記消費電力の総量を時系列に示す電力情報を取得する電力計測部と、
    前記流体の圧力を計測し、前記圧力を時系列に示す圧力情報を取得する圧力計測部と、
    前記合流点における前記流体の流量を計測し、前記流量を時系列に示す流量情報を取得する流量計測部と、
    前記単独運転期間における前記電力情報、前記圧力情報及び前記流量情報に基づいて、前記単独運転期間に稼働した前記流体輸送装置の運転効率を推定する運転効率推定部と、
    を備える運転効率推定システム。
  2. 前記単独運転期間における前記流量情報及び前記圧力情報に基づいて、前記単独運転期間に稼働した前記流体輸送装置における流量と圧力との関係を示す圧力曲線を推定する圧力曲線推定部と、
    前記単独運転期間における前記流量情報及び前記電力情報に基づいて、前記単独運転期間に稼働した前記流体輸送装置における流量と電力との関係を示す電力曲線を推定する電力曲線推定部と、
    をさらに備え、
    前記運転効率推定部は、前記圧力曲線及び前記電力曲線に基づいて、前記単独運転期間に稼働した前記流体輸送装置の任意の流量に対する運転効率を推定する、
    請求項1に記載の運転効率推定システム。
  3. 1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する流体輸送装置と、
    前記流体輸送装置ごとの稼働又は非稼働の状態を時系列に示す運転情報を取得する運転情報取得部と、
    前記流体輸送装置の消費電力の総量を計測し、前記消費電力の総量を時系列に示す電力情報を取得する電力計測部と、
    前記流体の圧力を計測し、前記圧力を時系列に示す圧力情報を取得する圧力計測部と、
    前記合流点における前記流体の流量を計測し、前記流量を時系列に示す流量情報を取得する流量計測部と、
    前記運転情報、前記流量情報及び前記圧力情報に基づいて、前記流体輸送装置ごとの流量と圧力との関係を示す圧力曲線を推定する圧力曲線推定部と、
    前記運転情報、前記流量情報及び前記電力情報に基づいて、前記流体輸送装置ごとの流量と電力との関係を示す電力曲線を推定する電力曲線推定部と、
    前記圧力曲線及び前記電力曲線に基づいて、前記流体輸送装置ごとの運転効率を推定する運転効率推定部と、
    を備える運転効率推定システム。
  4. 前記圧力曲線推定部は、非線形最適化問題を解くことで前記圧力曲線を表すパラメータを推定し、
    前記電力曲線推定部は、非線形最適化問題を解くことで前記電力曲線を表すパラメータを推定する、
    請求項3に記載の運転効率推定システム。
  5. 前記圧力曲線推定部は、前記流量情報及び前記圧力情報が示す計測値を直線で近似し、前記流体輸送装置の締切圧は一定であることを条件の1つとして前記圧力曲線を表すパラメータを連立方程式の解として推定し、
    前記電力曲線推定部は、前記流量情報及び前記電力情報が示す計測値を直線で近似し、流量がゼロのときの電力は変化しないことを条件の1つとして前記電力曲線を表すパラメータを連立方程式の解として推定する、
    請求項3に記載の運転効率推定システム。
  6. 前記運転情報取得部によって取得された前記運転情報から非稼働の流体輸送装置の運転情報を削除することで、削除後の運転情報に含まれる各流体輸送装置の状態の組み合わせの数が、取り得る状態の組み合わせの数に占める割合を高めるカバー率向上処理を行うカバー率向上部をさらに備え、
    前記圧力曲線推定部は、前記カバー率向上処理が行われた前記運転情報、前記流量情報及び前記圧力情報に基づいて前記圧力曲線を推定し、
    前記電力曲線推定部は、前記カバー率向上処理が行われた前記運転情報、前記流量情報及び前記電力情報に基づいて前記電力曲線を推定する、
    請求項3から請求項5のいずれか一項に記載の運転効率推定システム。
  7. 前記運転効率の推定に関する処理が行われる前に、前記流量計測部によって取得された前記流量情報と、前記圧力計測部によって取得された前記圧力情報と、前記電力計測部によって取得された前記電力情報から、運転効率の推定精度を低下させる可能性のある情報を除去する除去部をさらに備える、
    請求項1から請求項6のいずれか一項に記載の運転効率推定システム。
  8. 前記運転効率の推定結果を表示する表示部と、
    前記推定結果を、前記流体輸送装置間で比較可能な態様で前記表示部に表示させる表示制御部と、
    をさらに備える、
    請求項1から請求項7のいずれか一項に記載の運転効率推定システム。
  9. 前記表示制御部は、前記流体輸送装置のうち選択された少なくとも1つの流体輸送装置について、前記推定結果を時系列で比較可能な態様で前記表示部に表示させる、
    請求項8に記載の運転効率推定システム。
  10. 1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する流体輸送装置ごとの稼働又は停止の状態を時系列に示す運転情報に基づいて、前記流体輸送装置のそれぞれが単独で稼働している単独運転期間を抽出する運転期間抽出ステップと、
    前記流体輸送装置の消費電力の総量を時系列に示す電力情報、前記流体の圧力を時系列に示す圧力情報、及び前記合流点における前記流体の流量を時系列に示す流量情報の前記単独運転期間の情報に基づいて、前記単独運転期間に稼働した前記流体輸送装置の運転効率を推定する運転効率推定ステップと、
    を有する運転効率推定方法。
  11. 1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する流体輸送装置ごとの稼働又は非稼働の状態を時系列に示す運転情報と、前記合流点における前記流体の流量を時系列に示す流量情報と、前記流体の圧力を時系列に示す圧力情報と、に基づいて前記流体輸送装置ごとの流量と圧力との関係を示す圧力曲線を推定する圧力曲線推定ステップと、
    前記運転情報と、前記流量情報と、前記流体輸送装置の消費電力の総量を時系列に示す電力情報と、に基づいて前記流体輸送装置ごとの流量と電力との関係を示す電力曲線を推定する電力曲線推定ステップと、
    前記圧力曲線及び前記電力曲線に基づいて、前記流体輸送装置ごとの運転効率を推定する運転効率推定ステップと、
    を有する運転効率推定方法。
  12. 1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する流体輸送装置について、前記流体輸送装置ごとの稼働又は停止の状態を時系列に示す運転情報に基づいて、前記流体輸送装置のそれぞれが単独で稼働している単独運転期間を抽出する運転期間抽出部と、
    前記流体輸送装置の消費電力の総量を時系列に示す電力情報と、前記流体の圧力を時系列に示す圧力情報と、前記流体の総流量を時系列に示す流量情報と、の前記単独運転期間における情報に基づいて、前記単独運転期間に稼働した前記流体輸送装置の運転効率を推定する運転効率推定部と、
    を備える運転効率推定装置。
  13. 1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する流体輸送装置について、前記流体輸送装置ごとの稼働又は停止の状態を時系列に示す運転情報に基づいて、前記流体輸送装置のそれぞれが単独で稼働している単独運転期間を抽出する運転期間抽出ステップと、
    前記流体輸送装置の消費電力の総量を時系列に示す電力情報と、前記流体の圧力を時系列に示す圧力情報と、前記流体の総流量を時系列に示す流量情報と、の前記単独運転期間における情報に基づいて、前記単独運転期間に稼働した前記流体輸送装置の運転効率を推定する運転効率推定ステップと、
    をコンピュータに実行させるためのコンピュータプログラム。
  14. 1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する流体輸送装置ごとの稼働又は非稼働の状態を時系列に示す運転情報と、前記流体の圧力を時系列に示す圧力情報と、前記合流点における前記流体の流量を時系列に示す流量情報と、に基づいて前記流体輸送装置ごとの流量と圧力との関係を示す圧力曲線を推定する圧力曲線推定部と、
    前記運転情報と、前記流量情報と、前記流体輸送装置の消費電力の総量を時系列に示す電力情報と、に基づいて前記流体輸送装置ごとの流量と電力との関係を示す電力曲線を推定する電力曲線推定部と、
    前記圧力曲線及び前記電力曲線に基づいて、前記流体輸送装置ごとの運転効率を推定する運転効率推定部と、
    を備える運転効率推定装置。
  15. 1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する流体輸送装置ごとの稼働又は非稼働の状態を時系列に示す運転情報と、前記流体の圧力を時系列に示す圧力情報と、前記合流点における前記流体の流量を時系列に示す流量情報と、に基づいて前記流体輸送装置ごとの流量と圧力との関係を示す圧力曲線を推定する圧力曲線推定ステップと、
    前記運転情報と、前記流量情報と、前記流体輸送装置の消費電力の総量を時系列に示す電力情報と、に基づいて前記流体輸送装置ごとの流量と電力との関係を示す電力曲線を推定する電力曲線推定ステップと、
    前記圧力曲線及び前記電力曲線に基づいて、前記流体輸送装置ごとの運転効率を推定する運転効率推定ステップと、
    をコンピュータに実行させるためのコンピュータプログラム。
JP2015035679A 2015-02-25 2015-02-25 運転効率推定システム、運転効率推定方法、運転効率推定装置及びコンピュータプログラム Active JP6290119B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015035679A JP6290119B2 (ja) 2015-02-25 2015-02-25 運転効率推定システム、運転効率推定方法、運転効率推定装置及びコンピュータプログラム
PCT/JP2016/054934 WO2016136636A1 (ja) 2015-02-25 2016-02-19 運転効率推定システム、運転効率推定方法、運転効率推定装置及び非一時的記憶媒体
CN201680011612.8A CN107532599B (zh) 2015-02-25 2016-02-19 运转效率推断系统、运转效率推断方法、运转效率推断装置以及非易失性存储介质
SG11201706913QA SG11201706913QA (en) 2015-02-25 2016-02-19 Operation efficiency estimation system, operation efficiency estimation method, operation efficiency estimation device, and non-transitory storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015035679A JP6290119B2 (ja) 2015-02-25 2015-02-25 運転効率推定システム、運転効率推定方法、運転効率推定装置及びコンピュータプログラム

Publications (2)

Publication Number Publication Date
JP2016156345A true JP2016156345A (ja) 2016-09-01
JP6290119B2 JP6290119B2 (ja) 2018-03-07

Family

ID=56788727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015035679A Active JP6290119B2 (ja) 2015-02-25 2015-02-25 運転効率推定システム、運転効率推定方法、運転効率推定装置及びコンピュータプログラム

Country Status (4)

Country Link
JP (1) JP6290119B2 (ja)
CN (1) CN107532599B (ja)
SG (1) SG11201706913QA (ja)
WO (1) WO2016136636A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143498A (ja) * 2018-02-16 2019-08-29 株式会社東芝 運転効率推定システム、運転効率推定方法、運転効率推定装置及びコンピュータプログラム
JP2020156172A (ja) * 2019-03-19 2020-09-24 株式会社東芝 電力算出装置、電力算出方法及びコンピュータプログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6665232B2 (ja) * 2018-06-29 2020-03-13 株式会社川本製作所 給水装置
CN110469893B (zh) * 2019-08-26 2021-02-09 中国计量大学 一种基于比例压力调节的循环泵自适应控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207546A (ja) * 2011-03-29 2012-10-25 Hitachi Ltd ポンプ消費電力特性モデル作成装置、ポンプ消費電力特性モデル作成方法、ポンプ消費電力特性モデル作成プログラム、およびこのプログラムを記録した記録媒体
JP2013096311A (ja) * 2011-11-01 2013-05-20 Hitachi Ltd ポンプ制御システム
JP2013227975A (ja) * 2012-04-26 2013-11-07 Schneider Toshiba Inverter Europe Sas 遠心ポンプを認識及び制御する方法並びにシステム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124089A (en) * 1981-01-26 1982-08-02 Hitachi Ltd Pump operation control method
KR20100071344A (ko) * 2008-12-19 2010-06-29 재단법인 포항산업과학연구원 뉴럴 네트워크와 역전파 알고리즘에 의한 펌프 유량 예측 장치 및 방법
JP2010216288A (ja) * 2009-03-13 2010-09-30 Sayama Seisakusho:Kk 並列ポンプの解列制御方法と並列ポンプの解列制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207546A (ja) * 2011-03-29 2012-10-25 Hitachi Ltd ポンプ消費電力特性モデル作成装置、ポンプ消費電力特性モデル作成方法、ポンプ消費電力特性モデル作成プログラム、およびこのプログラムを記録した記録媒体
JP2013096311A (ja) * 2011-11-01 2013-05-20 Hitachi Ltd ポンプ制御システム
JP2013227975A (ja) * 2012-04-26 2013-11-07 Schneider Toshiba Inverter Europe Sas 遠心ポンプを認識及び制御する方法並びにシステム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143498A (ja) * 2018-02-16 2019-08-29 株式会社東芝 運転効率推定システム、運転効率推定方法、運転効率推定装置及びコンピュータプログラム
JP7150445B2 (ja) 2018-02-16 2022-10-11 株式会社東芝 運転効率推定システム及び運転効率推定方法
JP2020156172A (ja) * 2019-03-19 2020-09-24 株式会社東芝 電力算出装置、電力算出方法及びコンピュータプログラム
JP7286360B2 (ja) 2019-03-19 2023-06-05 株式会社東芝 電力算出装置、電力算出方法及びコンピュータプログラム

Also Published As

Publication number Publication date
SG11201706913QA (en) 2017-10-30
CN107532599A (zh) 2018-01-02
JP6290119B2 (ja) 2018-03-07
WO2016136636A1 (ja) 2016-09-01
CN107532599B (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
JP6290119B2 (ja) 運転効率推定システム、運転効率推定方法、運転効率推定装置及びコンピュータプログラム
JP4705563B2 (ja) 配電系統の状態推定装置、状態推定方法及びそのプログラム
Sanchez Short-term prediction of wind energy production
CN102763048B (zh) 在虚拟量测中使用适应性预测算法及决定何时使用适应性预测算法的方法及设备
Catalão et al. Scheduling of head-dependent cascaded hydro systems: Mixed-integer quadratic programming approach
CN107748956B (zh) 一种配电网典型接线非整数分段可靠性的评估方法
JP5989754B2 (ja) 予測装置
SE1450161A1 (sv) System och förfarande för att optimera drift av ett vattennätverk
US20230420938A1 (en) Load forecasting for electrical equipment using machine learning
CN101871448B (zh) 一种泵站水泵特性曲线确定方法及系统
JP2011234434A (ja) 電力系統信頼性評価システム
KR20150059313A (ko) 송전 한계를 고려한 자동 발전 제어 방법
JP6196513B2 (ja) 情報処理装置およびその方法
Correia et al. Sizing of a pumped storage power plant in S. Miguel, Azores, using stochastic optimization
JP2008072791A (ja) 計測器設置位置の決定装置、決定方法及び決定用プログラム
JP6807190B2 (ja) 電力使用量または消費電流による居住者の生活状態・活動推定システムおよび方法
JP6622012B2 (ja) 運転支援装置、運転支援方法及びコンピュータプログラム
JP2015215659A (ja) 関数生成装置、熱源機器制御装置、空調システム、関数生成方法、および関数生成用プログラム
JP4664842B2 (ja) エネルギープラントの最適運用システムと方法、およびプログラム
Baran et al. State estimation for real time monitoring of distribution feeders
JP2019145166A (ja) 投資支援装置、投資支援方法及びコンピュータプログラム
WO2017163934A1 (ja) 電力制御システム、制御装置、制御方法およびコンピュータプログラム
JP7463075B2 (ja) 末端圧力制御支援装置、末端圧力制御支援方法及びコンピュータプログラム
JP7067895B2 (ja) 末端圧力制御支援装置、末端圧力制御支援方法及びコンピュータプログラム
JP7150445B2 (ja) 運転効率推定システム及び運転効率推定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170830

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180207

R150 Certificate of patent or registration of utility model

Ref document number: 6290119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150