WO2016136636A1 - 運転効率推定システム、運転効率推定方法、運転効率推定装置及び非一時的記憶媒体 - Google Patents

運転効率推定システム、運転効率推定方法、運転効率推定装置及び非一時的記憶媒体 Download PDF

Info

Publication number
WO2016136636A1
WO2016136636A1 PCT/JP2016/054934 JP2016054934W WO2016136636A1 WO 2016136636 A1 WO2016136636 A1 WO 2016136636A1 JP 2016054934 W JP2016054934 W JP 2016054934W WO 2016136636 A1 WO2016136636 A1 WO 2016136636A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
flow rate
information
power
fluid
Prior art date
Application number
PCT/JP2016/054934
Other languages
English (en)
French (fr)
Inventor
諒 難波
理 山中
勝也 横川
寿治 杉野
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to SG11201706913QA priority Critical patent/SG11201706913QA/en
Priority to CN201680011612.8A priority patent/CN107532599B/zh
Publication of WO2016136636A1 publication Critical patent/WO2016136636A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems

Definitions

  • Embodiments of the present invention relate to a driving efficiency estimation system, a driving efficiency estimation method, a driving efficiency estimation device, and a non-temporary storage medium.
  • the discharge flow rate, discharge pressure, and power consumption of the pump are measured as a total value of a plurality of pumps. It is not practical in terms of cost to install various instruments corresponding to individual pumps. For this reason, conventionally, it has not been easy to grasp the operation efficiency of each pump.
  • Problems to be solved by the present invention are an operation efficiency estimation system, an operation efficiency estimation method, an operation efficiency estimation device, and a non-temporary storage medium capable of estimating the operation efficiency of each pump while suppressing an increase in equipment burden Is to provide.
  • the operation efficiency estimation system of the embodiment includes a fluid transportation device, an operation information acquisition unit, an operation period extraction unit, a power measurement unit, a pressure measurement unit, a flow rate measurement unit, and an operation efficiency estimation unit.
  • the fluid transport device is installed for each of a plurality of transport paths that merge at one point, and transports the fluid that flows through the transport path.
  • An operation information acquisition part acquires the operation information which shows the operation or stop state for every said fluid transport apparatus in time series.
  • the operation period extraction unit extracts an individual operation period in which each of the fluid transport devices is operating independently based on the operation information.
  • the power measurement unit measures a total amount of power consumption of the fluid transportation device, and acquires power information indicating the total amount of power consumption in time series.
  • the pressure measurement unit measures the pressure of the fluid and acquires pressure information indicating the pressure in time series.
  • the flow rate measurement unit measures the flow rate of the fluid at the confluence, and acquires flow rate information indicating the flow rate in time series.
  • the operation efficiency estimation unit estimates the operation efficiency of the fluid transportation device operated during the single operation period based on the power information, the pressure information, and the flow rate information during the single operation period.
  • the figure which shows the specific example of a water supply facility The functional block diagram which shows the function structure of the pump efficiency estimation apparatus 100 of 1st Embodiment.
  • the figure which shows the specific example of the estimation method of the driving efficiency in 1st Embodiment The figure which shows the specific example of the estimation method of the driving efficiency in 1st Embodiment.
  • the figure which shows the specific example of the estimation method of the driving efficiency in 1st Embodiment The figure which shows the specific example of the estimation method of the driving efficiency in 1st Embodiment.
  • the figure which shows the specific example of the estimation method of the driving efficiency in 1st Embodiment The figure which shows the specific example which determines the value of the gravity center in several driving efficiency as an estimated value of driving efficiency.
  • the flowchart which shows the flow in which the pump efficiency estimation apparatus 100 of 1st Embodiment estimates the driving
  • the functional block diagram which shows the function structure of the pump efficiency estimation apparatus 100a of 2nd Embodiment.
  • the flowchart which shows the flow in which the pump efficiency estimation apparatus 100a of 2nd Embodiment estimates the driving
  • running state is restricted.
  • the figure which shows the specific example of the 1st display mode of driving efficiency information The figure which shows the specific example of the 2nd display aspect of driving efficiency information.
  • the figure which shows the specific example of the 3rd display mode of driving efficiency information The figure which shows the 1st method of deleting unnecessary data.
  • FIG. 1 is a diagram showing a specific example of a water transmission facility.
  • Reference numeral 1 in FIG. 1 represents a transportation path through which water is transported. Solid arrows in the figure indicate the direction in which water is transported, and the water flowing through the transport path 1 joins at the joining point indicated by reference numeral 2.
  • Pumps 3-1 to 3-4, a flow meter 4, and a pressure gauge 5 are installed in a water supply facility having such a transport path. Pumps 3-1 to 3-4 (fluid transport devices) are installed in each of the plurality of transport paths 1 before joining at the junction 2.
  • the flow meter 4 is installed at the junction 2 or the transport path 1 after the junction.
  • the flow meter 4 measures the flow rate of water flowing through the transportation path 1 at the installation position.
  • the pressure gauge 5 is installed in the junction 2 or the transport path 1 after the junction.
  • the pressure gauge 5 measures the pressure of water flowing through the transportation path 1 at the installation position.
  • the pumps 3-1 to 3-4 are collectively referred to as a pump 3 unless otherwise distinguished.
  • reference numeral 6 in FIG. 1 represents a switch for controlling power supply to the power demand facility including the pump 3.
  • these switches are collectively referred to as a switch 6 unless otherwise distinguished.
  • the example of FIG. 1 shows a state in which all the switches are OFF, and in this state, all the pumps 3 stop operating.
  • a line between the switch 6 and each pump 3 represents a power transmission line.
  • the switch 6 is connected to a power system 7 that supplies power to each pump 3.
  • the wattmeter 8 measures the power supplied by the power system 7.
  • the operation control system 9 (operation information acquisition unit) controls the operation of the pump 3.
  • the operation control system 9 controls the operation of each pump 3 by controlling ON or OFF of the switch corresponding to each pump 3 of the switch 6.
  • the pump efficiency estimation device 100 estimates the operation efficiency of each pump 3.
  • the pump efficiency estimation apparatus 100 includes flow rate information, pressure information, power information, and a flow meter 4 (flow rate measurement unit), a pressure gauge 5 (pressure measurement unit), a wattmeter 8 (power measurement unit), and an operation control system 9, respectively. Get driving information.
  • the flow rate information is information that is measured by the flow meter 4 and indicates the flow rate of water flowing through the transport path 1 in time series.
  • the pressure information is information measured by the pressure gauge 5 and indicating the pressure of water flowing through the transport path 1 in time series.
  • the power information is information measured by the wattmeter 8 and indicating the power supplied to the power system 7 in time series.
  • the operation information is information indicating the operation status of each pump 3 in time series. Specifically, the operation information is information indicating ON or OFF of the switch 6 corresponding to each pump 3.
  • the pump efficiency estimation apparatus 100 estimates the operation efficiency of each pump 3 based on the acquired flow rate information, pressure information, power information, and operation information.
  • FIG. 2 is a functional block diagram illustrating a functional configuration of the pump efficiency estimation apparatus 100 according to the first embodiment.
  • the pump efficiency estimation apparatus 100 includes a CPU (Central Processing Unit), a memory, an auxiliary storage device, and the like connected by a bus.
  • the CPU executes a pump efficiency estimation program stored in the memory or the auxiliary storage device.
  • the pump efficiency estimation apparatus 100 includes an operation information acquisition unit 101, a flow rate information acquisition unit 102, a pressure information acquisition unit 103, a power information acquisition unit 104, an operation period extraction unit 105, and an operation efficiency estimation unit 106 by executing a pump efficiency estimation program. It functions as a device provided.
  • the pump efficiency estimation apparatus 100 may be realized using hardware such as an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array). Good.
  • the pump efficiency estimation program may be recorded on a computer-readable recording medium.
  • the computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in the computer system.
  • the pump efficiency estimation program may be transmitted via a telecommunication line.
  • the operation information acquisition unit 101, the flow rate information acquisition unit 102, the pressure information acquisition unit 103, and the power information acquisition unit 104 include a communication interface for connecting to a network such as a LAN (Local Area Network), for example, and other systems and devices Various information is acquired by communicating with.
  • a network such as a LAN (Local Area Network), for example, and other systems and devices Various information is acquired by communicating with.
  • LAN Local Area Network
  • the driving information acquisition unit 101 acquires driving information from the driving control system 9.
  • the driving information acquisition unit 101 outputs the acquired driving information to the driving period extraction unit 105.
  • the flow rate information acquisition unit 102 acquires flow rate information from the flow meter 4.
  • the flow rate information acquisition unit 102 outputs the acquired flow rate information to the operation efficiency estimation unit 106.
  • the pressure information acquisition unit 103 acquires pressure information from the pressure gauge 5.
  • the pressure information acquisition unit 103 outputs the acquired pressure information to the operation efficiency estimation unit 106.
  • the power information acquisition unit 104 acquires power information from the wattmeter 8.
  • the power information acquisition unit 104 outputs the acquired power information to the driving efficiency estimation unit 106.
  • the operation information acquisition unit 101, the flow rate information acquisition unit 102, the pressure information acquisition unit 103, and the power information acquisition unit 104 may include an interface for connecting a recording medium such as a flexible disk or a flash memory.
  • a recording medium such as a flexible disk or a flash memory.
  • the operation information acquisition unit 101, the flow rate information acquisition unit 102, the pressure information acquisition unit 103, and the power information acquisition unit 104 may acquire various types of information by reading information from these recording media.
  • FIG. 3A to FIG. 3D are diagrams illustrating specific examples of the driving efficiency estimation method according to the first embodiment.
  • FIG. 3A is a diagram illustrating a specific example of driving information.
  • FIG. 3B is a diagram illustrating a specific example of the flow rate information.
  • FIG. 3C is a diagram illustrating a specific example of pressure information.
  • FIG. 3D is a diagram illustrating a specific example of power information.
  • 3A, 3B, 3C, and 3D the horizontal axis represents time, and the time axis in each figure represents the same time.
  • the vertical axis in FIG. 3A represents the operating status of the four pumps 1 to 4.
  • the vertical axes in FIGS. 3B, 3C, and 3D represent flow rate, pressure, and power, respectively.
  • each pump is represented by a binary value of ON or OFF, where ON represents the operation of the pump and OFF represents the non-operation of the pump.
  • ON represents the operation of the pump
  • OFF represents the non-operation of the pump.
  • 3A to 3D show that only the pump 2 is operating during the single operation period in the figure.
  • the driving period extraction unit 105 acquires driving information from the driving information acquisition unit 101.
  • the operation period extraction unit 105 extracts a period during which one pump is operated independently from the period indicated by the operation information (hereinafter referred to as “independent operation period”) based on the operation status of each pump indicated by the operation information. To do.
  • the operation period extraction unit 105 outputs the isolated operation information indicating the extracted isolated operation period and the pump operated during the isolated operation period to the operation efficiency estimation unit 106.
  • the operating efficiency estimation unit 106 acquires flow rate information, pressure information, and power information from the flow rate information acquisition unit 102, the pressure information acquisition unit 103, and the power information acquisition unit 104, respectively.
  • the driving efficiency estimation unit 106 acquires the single operation information from the driving period extraction unit 105.
  • the operation efficiency estimation unit 106 estimates the operation efficiency of each pump based on the acquired flow rate information, pressure information, power information, and single operation information.
  • the operation efficiency estimation unit 106 extracts information in the single operation period from each of the flow rate information, the pressure information, and the power information.
  • the operation efficiency estimation unit 106 calculates the operation efficiency of the pump corresponding to the single operation period based on the extracted flow rate information, pressure information, and power information.
  • the operating efficiency is calculated by the following equation (1), for example.
  • ⁇ (t) in equation (1) represents the operating efficiency at time t.
  • Q (t) and H (t) in the numerator on the right side of equation (1) represent the flow rate and pressure at time t, respectively, and these products are the hydraulic energy in which part of the supplied power is converted by the pump. It is.
  • the denominator on the right side of Equation (1) represents power at time t. That is, the operating efficiency ⁇ (t) is a rate at which the electric power supplied at time t is converted into hydraulic energy.
  • the operation efficiency estimation unit 106 can calculate the operation efficiency of the pump 2 by using the flow rate information, pressure information, and power information in the single operation period shown in FIGS. 3A to 3D described above. In this manner, by extracting the single operation period for each pump, the pump efficiency estimation apparatus 100 can calculate the operation efficiency for each pump.
  • the driving efficiency estimation unit 106 determines a representative value of a plurality of driving efficiency values, and uses the representative value as an estimated value of the driving efficiency. For example, the driving efficiency estimation unit 106 determines the estimated value of driving efficiency by obtaining the value of the center of gravity at a plurality of driving efficiencies as shown in FIG.
  • FIG. 4 is a diagram illustrating a specific example in which the value of the center of gravity at a plurality of driving efficiencies is determined as an estimated value of driving efficiency.
  • the vertical axis represents the value of operating efficiency
  • the horizontal axis represents time.
  • the points plotted in FIG. 4 indicate a plurality of operation efficiency values calculated based on a plurality of measurement data in the single operation period. Each value of operating efficiency is calculated from measurement data at each time.
  • the example of FIG. 4 indicates that the driving efficiency estimation unit 106 uses the value at the center of gravity of the point group as the estimated value of driving efficiency.
  • the value of the driving efficiency at the center of gravity of the point group is expressed by the following equation (2), for example.
  • the driving efficiency estimation unit 106 may use other statistical values as estimated values of driving efficiency in addition to the values at the center of gravity of each point. For example, the driving efficiency estimation unit 106 may use an average value of each point as an estimated value of driving efficiency, or may use a value at an intermediate point in the isolated operation period as an estimated value of driving efficiency.
  • FIG. 5 is a flowchart illustrating a flow in which the pump efficiency estimation apparatus 100 according to the first embodiment estimates the operation efficiency of the pump.
  • the pump efficiency estimation apparatus 100 acquires operation information, flow rate information, pressure information, and power information (step S101).
  • the operation information acquisition unit 101 acquires operation information from the operation control system 9, the flow rate information acquisition unit 102 acquires flow rate information from the flow meter 4, and the pressure information acquisition unit 103 acquires pressure information from the pressure gauge 5.
  • the power information acquisition unit 104 acquires power information from the wattmeter 8.
  • the driving information acquisition unit 101 outputs the acquired driving information to the driving period extraction unit 105.
  • the flow rate information acquisition unit 102, the pressure information acquisition unit 103, and the power information acquisition unit 104 output the acquired flow rate information, pressure information, and power information to the operation efficiency estimation unit 106, respectively.
  • the operation period extraction unit 105 extracts the single operation period from the period indicated by the operation information based on the operation information output from the operation information acquisition unit 101 (step S102).
  • the operation period extraction unit 105 outputs information indicating the extracted isolated operation period to the operation efficiency estimation unit 106.
  • the operating efficiency estimation unit 106 acquires the flow rate information, pressure information, and power information output from the flow rate information acquisition unit 102, the pressure information acquisition unit 103, and the power information acquisition unit 104, respectively.
  • the operation efficiency estimation unit 106 acquires measurement data of the isolated operation period from each of the flow rate information, the pressure information, and the power information based on the information indicating the isolated operation period output from the operation period extraction unit 105 (Step S103). ).
  • the operation efficiency estimation unit 106 calculates the operation efficiency of the pump operated during each individual operation period based on the acquired measurement data of the individual operation period (step S104). A plurality of values of the operating efficiency calculated here are calculated based on the measurement data for each time corresponding to the plurality of times when the measurement data was acquired in each individual operation period.
  • the driving efficiency estimation unit 106 determines a representative value from the calculated driving efficiency values (step S105).
  • the operating efficiency estimation unit 106 outputs the determined representative value as an estimated value of the operating efficiency of each pump (step S106).
  • the pump efficiency estimation device 100 extracts the single operation period in which each pump is operated independently from the operation information, and based on the extracted measurement data of the single operation period. Estimate the operating efficiency of the pump. Therefore, the pump efficiency estimation apparatus 100 can estimate the operation efficiency of each pump from the measured values collectively measured for a plurality of pumps, and estimate the operation efficiency of each pump while suppressing an increase in equipment burden. It becomes possible to do.
  • the pump efficiency estimation apparatus 100 estimates the operation efficiency for each pump by extracting the single operation period of each pump from the operation information.
  • the operation efficiency can be estimated in a flow rate range where measurement data exists (hereinafter referred to as “flow rate range”), but the operation efficiency is estimated outside the flow rate range. You may not be able to.
  • flow rate range a flow rate range where measurement data exists
  • the pump efficiency estimation apparatus 100a allows the pressure with respect to the flow rate to be determined from the measurement data acquired for a certain pump during a single operation period so that the operation efficiency can be compared for pumps with different flow rate ranges. And estimate the power.
  • FIG. 6 is a functional block diagram illustrating a functional configuration of the pump efficiency estimation apparatus 100a according to the second embodiment.
  • the pump efficiency estimation apparatus 100a of the second embodiment is a first implementation in that it includes an operation efficiency estimation unit 106a instead of the operation efficiency estimation unit 106, and further includes a pressure curve estimation unit 107 and a power curve estimation unit 108. It differs from the pump efficiency estimation apparatus 100 of a form.
  • the pressure curve estimation unit 107 determines a model parameter (hereinafter referred to as “pressure parameter”) for estimating the pressure from the flow rate. Specifically, the pressure curve estimation unit 107 acquires information indicating the individual operation period of each pump from the operation period extraction unit 105. Further, the pressure curve estimation unit 107 acquires flow rate information and pressure information from the flow rate information acquisition unit 102 and the pressure information acquisition unit 103, respectively. The pressure curve estimation unit 107 determines the pressure parameter of each pump based on the measurement data of the single operation period in the flow rate information and the pressure information.
  • pressure parameter a model parameter for estimating the pressure from the flow rate. Specifically, the pressure curve estimation unit 107 acquires information indicating the individual operation period of each pump from the operation period extraction unit 105. Further, the pressure curve estimation unit 107 acquires flow rate information and pressure information from the flow rate information acquisition unit 102 and the pressure information acquisition unit 103, respectively. The pressure curve estimation unit 107 determines the pressure parameter of each pump based on the measurement data of the single operation period in the flow
  • the power curve estimation unit 108 determines a model parameter (hereinafter referred to as “power parameter”) for estimating power from the flow rate. Specifically, the power curve estimation unit 108 acquires information indicating the single operation period of each pump from the operation period extraction unit 105. Further, the power curve estimation unit 108 acquires flow rate information and power information from the flow rate information acquisition unit 102 and the power information acquisition unit 104, respectively. The power curve estimation unit 108 determines the power parameter of each pump based on the flow rate information and the measurement data of the isolated operation period in the power information.
  • power parameter a model parameter for estimating power from the flow rate. Specifically, the power curve estimation unit 108 acquires information indicating the single operation period of each pump from the operation period extraction unit 105. Further, the power curve estimation unit 108 acquires flow rate information and power information from the flow rate information acquisition unit 102 and the power information acquisition unit 104, respectively. The power curve estimation unit 108 determines the power parameter of each pump based on the flow rate information and the measurement data of the isolated operation period
  • the correlation between the flow rate and the pressure is expressed by the following equation (3), for example, and the correlation between the flow rate and the power is expressed by the following equation (4), for example.
  • ⁇ , ⁇ , and ⁇ in equation (3) are pressure parameters
  • ⁇ , ⁇ , ⁇ , and ⁇ in equation (4) are power parameters.
  • the pressure curve estimator 107 and the power curve estimator 108 optimize the equations (3) and (4), respectively, based on the measurement data of the single operation period in the flow rate information, pressure information, and power information. Estimate the parameters.
  • Such parameter optimization can be formulated as a linear optimization problem as in the following equations (5) to (8), and can be solved by a method such as a least square method.
  • a symbol with a hat means that the variable is an estimated value.
  • a symbol with a hat is referred to as a “ ⁇ symbol” in the specification.
  • the pressure curve estimation unit 107 and the power curve estimation unit 108 determine the pressure parameter and the power parameter, respectively, by solving the above optimization problem.
  • the pressure curve estimation unit 107 and the power curve estimation unit 108 output the determined pressure parameter and power parameter to the operation efficiency estimation unit 106a, respectively.
  • the operating efficiency estimation unit 106a acquires the pressure parameter and the power parameter output from the pressure curve estimation unit 107 and the power curve estimation unit 108, respectively.
  • the operation efficiency estimation unit 106a constructs an operation efficiency estimation model indicating the operation efficiency of each pump for an arbitrary flow rate based on the acquired pressure parameter and power parameter.
  • the operation efficiency estimation unit 106a estimates the operation efficiency of each pump based on the constructed operation efficiency estimation model.
  • Expression (3) and Expression (4) are used, the driving efficiency estimation model is expressed as the following Expression (9).
  • FIG. 7A to 7C are diagrams illustrating specific examples of a method for estimating the driving efficiency in the second embodiment.
  • FIG. 7A is a diagram showing pressure information during a single operation period of a certain pump.
  • FIG. 7B is a diagram showing power information in the single operation period of the pump.
  • FIG. 7C is a diagram showing an operation efficiency estimation model estimated based on pressure information and power information during an independent operation period of the pump.
  • the pump efficiency estimation device is constructed by constructing the operation efficiency estimation model indicating the operation efficiency for an arbitrary flow rate based on the pressure information and the power information acquired in the arbitrary flow rate range. 100a makes it possible to compare operating efficiencies between pumps in different flow ranges.
  • FIG. 8 is a flowchart showing a flow in which the pump efficiency estimating apparatus 100a of the second embodiment estimates the operation efficiency of the pump.
  • the pressure curve estimation unit 107 acquires information indicating the single operation period of each pump from the operation period extraction unit 105. Further, the pressure curve estimation unit 107 acquires flow rate information and pressure information from the flow rate information acquisition unit 102 and the pressure information acquisition unit 103, respectively. The pressure curve estimation unit 107 determines the pressure parameter of each pump based on the measurement data of the single operation period in the flow rate information and the pressure information (step S201). The pressure curve estimation unit 107 outputs the determined pressure parameter of each pump to the operation efficiency estimation unit 106a.
  • the power curve estimation unit 108 acquires information indicating the single operation period of each pump from the operation period extraction unit 105. Further, the power curve estimation unit 108 acquires flow rate information and power information from the flow rate information acquisition unit 102 and the power information acquisition unit 104, respectively. The power curve estimation unit 108 determines the power parameter of each pump based on the flow rate information and the measurement data of the single operation period in the power information (step S202). The power curve estimation unit 108 outputs the determined power parameter of each pump to the operation efficiency estimation unit 106a.
  • the operating efficiency estimation unit 106a acquires the pressure parameter and the power parameter output from the pressure curve estimation unit 107 and the power curve estimation unit 108, respectively.
  • the operation efficiency estimation unit 106a constructs an operation efficiency estimation model indicating the operation efficiency of each pump for an arbitrary flow rate based on the acquired pressure parameter and power parameter (step S203).
  • the operation efficiency estimation unit 106a estimates the operation efficiency of each pump based on the constructed operation efficiency estimation model.
  • the pump efficiency estimating apparatus 100a of the second embodiment configured as described above is a pressure for obtaining a model representing the pressure and power in an arbitrary flow rate range of the pump based on the measurement data in the individual operation period of each pump.
  • a parameter and a power parameter are determined for each pump, and an operation efficiency estimation model for estimating an operation efficiency in an arbitrary flow rate range of each pump is constructed using the determined pressure parameter and power parameter.
  • the pump efficiency estimation device 100a can compare the operation efficiency of pumps having different flow ranges.
  • the pump efficiency estimation apparatus 100b of 3rd Embodiment has different flow rate ranges by constructing an operation efficiency estimation model that estimates the operation efficiency in an arbitrary flow rate range based on measurement data acquired for a certain flow rate range. It was possible to compare the operating efficiency of the pumps. However, in the estimation method according to the second embodiment, there is a possibility that the pressure parameter and power parameter of the operation efficiency estimation model cannot be determined if sufficient measurement data for the single operation period is not obtained for each pump. Therefore, the pump efficiency estimation apparatus 100b according to the third embodiment makes it possible to determine the pressure parameter and the power parameter based on measurement data acquired in a situation where a plurality of pumps are operated simultaneously.
  • FIG. 9 is a functional block diagram illustrating a functional configuration of the pump efficiency estimation apparatus 100b according to the third embodiment.
  • the pump efficiency estimation device 100b of the third embodiment is that the operation period extraction unit 105 is not provided, the pressure curve estimation unit 107b is provided instead of the pressure curve estimation unit 107, and the power curve is used instead of the power curve estimation unit 108. It differs from the pump efficiency estimation device 100a of the second embodiment in that it includes an estimation unit 108b.
  • the pressure curve estimation unit 107 b acquires operation information from the operation information acquisition unit 101. If the operation information is expressed as operation information d i (t) (i is an identification number of each pump) of each pump at time t, it can be expressed as the following expression (10).
  • the optimization problem for obtaining the pressure parameter can be formulated as the following equations (11) to (14).
  • the pump represented by the identification number i is referred to as pump i.
  • ⁇ Q i (t) in equations (12) and (13) represents an estimated value of the flow rate measured at time t in pump i.
  • ⁇ i , ⁇ i, and ⁇ i in the equations (13) and (14) represent pressure parameters of the pump i.
  • ⁇ q i (t) is expressed as in Expression (13) using the pressure H (t).
  • the power curve estimation unit 108b acquires driving information from the driving information acquisition unit 101. Similar to the pressure parameter, the optimization problem for obtaining the power parameter can be formulated as the following equations (15) to (17).
  • the pressure curve estimation unit 107b and the power curve estimation unit 108b have a genetic algorithm (Genetic Algorithm ), Annealing (Simulated Annealing), particle swarm optimization (Particle Swarm Optimization) and other metaheuristic techniques are used to solve the above optimization problems, thereby estimating pressure parameters and power parameters, respectively.
  • the pressure curve estimation unit 107b and the power curve estimation unit 108b output the pressure parameter and power parameter of each pump determined by the above estimation to the operating efficiency estimation unit 106a.
  • the pump efficiency estimation device 100b of the third embodiment configured as described above solves the nonlinear optimization problem formulated based on the measurement data acquired in a situation where a plurality of pumps are operated simultaneously, Determine pressure and power parameters.
  • the pump efficiency estimation device 100b estimates the operation efficiency even when the measurement data of the single operation period is not sufficiently obtained for each pump. It is possible to determine the pressure and power parameters of the model.
  • the pump efficiency estimation apparatus 100c of 4th Embodiment solves the nonlinear optimization problem formulated based on the measurement data acquired in a situation where a plurality of pumps are operated at the same time, thereby calculating the pressure parameter and the power parameter. Were determined.
  • the pump efficiency estimation apparatus 100c of the fourth embodiment first determines an approximate line of measurement data, and extrapolates by considering the characteristics of the pump based on the parameters of the determined approximate line, thereby increasing the pressure. Determine parameters and power parameters.
  • FIG. 10 is a functional block diagram illustrating a functional configuration of the pump efficiency estimation apparatus 100c according to the fourth embodiment.
  • the pump efficiency estimating apparatus 100c according to the fourth embodiment includes a pressure curve estimating unit 107c instead of the pressure curve estimating unit 107b, a point including a power curve estimating unit 108c instead of the power curve estimating unit 108b, and a linear approximation unit. 109 is further different from the pump efficiency estimation device 100b of the third embodiment.
  • the configuration of each functional unit in determining each parameter will be described.
  • the straight line approximation unit 109 acquires driving information from the driving information acquisition unit 101. Further, the straight line approximation unit 109 acquires flow rate information and pressure information from the flow rate information acquisition unit 102 and the pressure information acquisition unit 103, respectively. The straight line approximating unit 109 determines an approximate straight line representing the pressure by the flow rate in each pump based on the acquired operation information, flow rate information, and pressure information. When measurement data is acquired for a narrow flow rate range, an approximate straight line indicating the pressure H (t) is expressed by the following equation (24).
  • the parameters a i and b i of the approximate line shown by the equation (24) can be determined by solving an optimization problem formulated as the following equations (25) to (27). .
  • the straight line approximation unit 109 outputs parameters of the approximate line determined by solving the above optimization problem to the pressure curve estimation unit 107c.
  • the pressure curve estimation unit 107c determines the pressure parameter of each pump based on the parameters of the approximate line determined by the line approximation unit 109. Specifically, the pressure curve estimation unit 107c determines the pressure parameter by solving the preconditions expressed by the following equations (28) to (30) as simultaneous equations.
  • FIG. 11 is a diagram illustrating a precondition that the estimated pressure curve should satisfy.
  • the horizontal axis in FIG. 11 represents the flow rate, and the vertical axis represents the pressure.
  • a point group 20 in FIG. 11 represents a set of points on which measurement data acquired for a pump whose pressure curve is to be obtained is plotted.
  • a pump that is operating independently corresponding to the measurement data indicated by the point group 20 is referred to as a pump A.
  • the point group 21 represents a set of points on which measurement data operated by a plurality of pumps is plotted, not the pump A alone.
  • H 1 in FIG. 11 represents the maximum value of the pressure of the total pressure information measured.
  • H 2 represents the minimum value of the pressure of the total pressure information measured.
  • H 1 belongs to the point group 21 and H 2 belongs to the point group 20.
  • the straight line approximation unit 109 determines parameters (a and b in the figure) representing the approximate straight line of the point group 20 by solving the optimization problem formulated by the equations (25) to (27). . By determining this parameter, the approximate straight line 22 of FIG. 11 is obtained.
  • the pressure curve estimation unit 107c determines the pressure parameter representing the pressure curve 23 by solving the equations (28) to (30) as simultaneous equations using the parameters a and b of the approximate line determined by the line approximation unit 109. To do.
  • H ini_max in Equation (28) represents the cutoff pressure.
  • Q 1 in the equations (29) and (30) is a point on the pressure curve 23 to be determined, and represents a flow rate when the pressure is H 1 .
  • Q 2 is a point on the pressure curve 23 which is determined, the pressure is representative of the flow rate when the H 2. That represents a flow range at the time when the range from Q 1 to Q 2 measurement data is obtained. That is, Expression (29) represents an assumption that the slope of the tangent line 24 of the pressure curve 23 at the center of the flow rate range (g Q in the figure) is the same as the slope of the approximate line 22.
  • Expression (30) represents a precondition that the pressure curve 23 passes through a point on the approximate line 22 at the maximum value in the flow rate range.
  • the pressure curve estimation unit 107c may determine the pressure parameter by setting the above three preconditions as the following equations (31) to (33).
  • FIG. 12 is a diagram illustrating a precondition that the estimated pressure curve should satisfy.
  • the difference between the precondition shown in FIG. 11 and the precondition shown in FIG. 12 is that Expression (29) is replaced with Expression (32).
  • Equation (33) represents a precondition that the pressure curve 23 passes through a point on the approximate line 22 at the maximum value of the flow rate range
  • Equation (32) represents that the pressure curve 23 is This represents a precondition that a point on the approximate line 22 is passed at the minimum value in the flow rate range.
  • the pressure curve estimation unit 107c is based on the preconditions represented by the equations (28) to (30) or the equations (31) to (33) based on the parameters of the approximate line determined by the line approximation unit 109. Is determined as a simultaneous equation, and the pressure parameter is determined so that the pressure curve satisfies the above-mentioned preconditions.
  • the straight line approximation unit 109 acquires driving information from the driving information acquisition unit 101.
  • the straight line approximation unit 109 acquires flow rate information and power information from the flow rate information acquisition unit 102 and the power information acquisition unit 104, respectively.
  • the straight line approximation unit 109 determines an approximate straight line that represents power by the flow rate of each pump based on the obtained operation information, flow rate information, and power information.
  • an approximate straight line indicating the power P (t) is expressed as the following equation (34).
  • the parameters c i and e i of the approximate line represented by the equation (34) can be determined by solving an optimization problem formulated as the following equations (35) to (37). .
  • an estimated value of the flow rate obtained by Expression (27) by determining the pressure parameter is used as the flow rate q i (t) for each pump.
  • the straight line approximation unit 109 outputs, to the power curve estimation unit 108c, the parameters of the approximate line determined by solving the above optimization problem.
  • the power curve estimation unit 108c determines the power parameter of each pump based on the parameter of the approximate line determined by the line approximation unit 109. Specifically, the power curve estimation unit 108c determines the power parameter by solving the preconditions expressed by the following equations (38) to (41) as simultaneous equations.
  • FIG. 13 is a diagram illustrating a precondition that the estimated power curve should satisfy.
  • the horizontal axis in FIG. 13 represents the flow rate, and the vertical axis represents power.
  • a point group 30 in FIG. 13 represents a set of points on which measurement data acquired for the pump A for which a power curve is to be obtained is plotted.
  • the point group 31-1 and the point group 31-2 represent a set of points on which measurement data acquired for the pump A at different timings are plotted.
  • the point group 31-1 and the point group 31-2 are referred to as a point group 31 unless otherwise specified.
  • P 1 in FIG. 13 represents the maximum value of power indicated by the points included in the point group 30.
  • P 2 represents the minimum value of power indicated by a point included in the point group 30.
  • the straight line approximation unit 109 determines parameters (c and e in the figure) representing the approximate straight line of the point group 30 by solving the optimization problem formulated by the equations (35) to (37). . By determining this parameter, the approximate straight line 32 of FIG. 13 is obtained.
  • the power curve estimation unit 108c determines the power parameter representing the power curve 33 by solving the equations (38) to (41) as simultaneous equations using the parameters c and e of the approximate line determined by the line approximation unit 109. To do.
  • Q 1 in the equations (39) to (41) is a point on the power curve 33 to be determined, and represents a flow rate when the power is P 1 .
  • Q 2 is a point on the power curve 33 is determined, the pressure is representative of the flow rate when the P 2. That is, the range from Q 1 to Q 2 is representative of the flow rate range at the time when the measurement data is obtained. That is, Expression (39) represents a precondition that the power curve 33 passes through a point on the approximate straight line 32 at the minimum value of the flow rate range.
  • equation (40) represents a precondition that the power curve 33 passes through a point on the approximate line 32 at the maximum value of the flow rate range.
  • Equation (41) represents a precondition that the slope of the tangent 34 of the power curve 33 at the center of the flow rate range (g Q in the figure) is the same as the slope of the approximate line 32.
  • the power curve estimation unit 108c solves the preconditions expressed by the equations (38) to (41) as simultaneous equations based on the parameters of the approximate line determined by the line approximation unit 109, thereby generating the power
  • the power parameter is determined so that the curve satisfies the above precondition.
  • the pump efficiency estimation apparatus 100c of the fourth embodiment configured as described above formulates the determination of the pressure parameter and the power parameter as a linear optimization problem by approximating the measurement data acquired for a certain flow rate range with a straight line. Can be Therefore, the pump efficiency estimation apparatus 100c according to the fourth embodiment can determine the pressure parameter and the power parameter with higher accuracy.
  • the pump efficiency estimation apparatus 100d of the fifth embodiment will be described.
  • the determination of the pressure parameter and the power parameter for estimating the operation efficiency is formulated as an optimization problem.
  • the identifiability of parameters to be determined is important. It is the operation information of the pump that essentially affects the identifiability of the optimization problem described above.
  • the parameter of the pump i cannot be determined. Further, even if d i (t) is not always zero, the parameter cannot be determined if the operation state patterns that d (t) can take are limited. In such a case, even if a parameter can be determined, the reliability of the parameter is low.
  • FIG. 14 is a diagram illustrating an example in a case where the operation state pattern is limited.
  • FIG. 14 shows a case where d (t) indicating the operation state of three pumps takes only two patterns of ⁇ 1, 1, 0 ⁇ or ⁇ 1, 1, 1 ⁇ .
  • the total flow rate in FIG. 14 represents the sum total of the flow rate of each pump, and the total power consumption represents the sum of the power consumption of each pump.
  • the operation information since the operation information includes switching between operation and non-operation of the pump 3, the parameter can be estimated.
  • the pump 1 and the pump 2 since switching between operation and non-operation is not included in the operation information, the parameter cannot be estimated.
  • the coverage is defined as an index for estimating the driving efficiency more accurately.
  • the coverage is a value indicating how much the driving information covers possible patterns.
  • the pump efficiency estimation apparatus 100d makes it possible to estimate the operation efficiency with higher accuracy by solving the optimization problem using the measurement data acquired in the period in which the operation information shows a higher coverage. .
  • FIG. 15 is a functional block diagram illustrating a functional configuration of a pump efficiency estimation apparatus 100d according to the fifth embodiment.
  • the pump efficiency estimation apparatus 100d of the fifth embodiment is different from the pump efficiency estimation apparatus 100c of the fourth embodiment in that it further includes a cover ratio improvement unit 110.
  • the cover ratio improvement unit 110 acquires driving information from the driving information acquisition unit 101.
  • the cover ratio improvement unit 110 generates driving information with an improved cover ratio by performing a cover ratio improvement process for improving the cover ratio of the acquired driving information.
  • the cover ratio improvement unit 110 outputs the generated operation information to the pressure curve estimation unit 107c and the power curve estimation unit 108c.
  • the cover ratio R is defined as the following formula (42), for example.
  • the coverage improvement unit 110 improves the coverage of the operation information by thinning out the operation information of the pump, which is a factor that lowers the coverage from the operation information. For example, a case where the operation information d (t) of four pumps before the cover ratio improvement process is expressed by the following equation (43) will be described.
  • the column on the right side of Expression (43) corresponds to each pump, and the row corresponds to the pattern of the operating state of each pump.
  • the pumps corresponding to the column on the right side of Expression (43) are described as pump 1, pump 2, pump 3, and pump 4 in order from the left column. In this case, the coverage with four pumps is 5 / (2 4 ⁇ 1) ⁇ 0.33.
  • the cover ratio improvement unit 110 thins out the operation information for the pump 1 and the pump 2 with less change in the operation status. Specifically, the coverage improving unit 110 thins out rows indicating the operation of the pump 1 or the pump 2 from the matrix on the right side of the equation (43). As a result, the driving information is represented by the following equation (44).
  • the coverage of the operation information represented by the equation (44) is 2 / (2 2 ⁇ 1) ⁇ 0.67, and the coverage is improved.
  • FIG. 16 is a diagram illustrating the coverage when the pump to be thinned is changed.
  • FIG. 16 shows the result of performing the cover ratio improvement process by changing the combination of pumps to be thinned out with respect to the operation information represented by Expression (43).
  • the thinning pattern in FIG. 16 represents a combination of pumps to be thinned.
  • a pump with “ ⁇ ” written in the thinning pattern is a pump to be thinned.
  • the number of target pumps represents the number of pumps whose parameters can be estimated by the operation information after the cover ratio improvement process. From FIG. 16, it can be seen that the coverage rate improves as the number of pumps to be thinned increases. In FIG. 16, when the number of target pumps is one, the coverage rate is zero because the operation information represented by the equation (43) does not operate all of the pump 1, the pump 2, and the pump 3. This indicates that there is no pattern indicating the state.
  • the operation information whose cover rate is improved by the cover rate improving unit 110 is output to the pressure curve estimating unit 107c and the power curve estimating unit 108c.
  • the pump efficiency estimation device 100d can estimate the operation efficiency more accurately. Can be done.
  • FIG. 17 is a functional block diagram illustrating a functional configuration of a pump efficiency estimation apparatus 100e according to the sixth embodiment.
  • the pump efficiency estimation apparatus 100e of the sixth embodiment is different from the pump efficiency estimation apparatus 100d of the fifth embodiment in that it further includes a display unit 111, a storage unit 112, and a display control unit 113.
  • the display unit 111 is configured using a display device such as a CRT (Cathode Ray Tube) display, a liquid crystal display, or an organic EL (Electro-Luminescence) display. Or the display part 111 may be comprised as an interface which connects these display apparatuses to an own apparatus.
  • a display device such as a CRT (Cathode Ray Tube) display, a liquid crystal display, or an organic EL (Electro-Luminescence) display.
  • the display part 111 may be comprised as an interface which connects these display apparatuses to an own apparatus.
  • the storage unit 112 is configured using a storage device such as a magnetic hard disk device or a semiconductor storage device.
  • the storage unit 112 stores information (hereinafter referred to as “operation efficiency information”) indicating the estimation result of the operation efficiency of each pump output by the operation efficiency estimation unit 106a in association with the timing at which the operation efficiency is estimated. To do.
  • the display control unit 113 acquires the driving efficiency information from the storage unit 112 and displays it on the display unit 111. For example, the display control unit 113 displays a list of curves indicating the operation efficiency of each pump (hereinafter referred to as “efficiency curve”) based on the operation efficiency information.
  • the display control unit 113 displays the efficiency curve in, for example, the following three modes shown in FIGS.
  • FIG. 18 is a diagram illustrating a specific example of the first display mode of the driving efficiency information.
  • the first display mode of the operation efficiency information is a mode in which the operation efficiency of each pump can be compared for an arbitrary flow rate.
  • the display control unit 113 calculates the operation efficiency of each pump for an arbitrary flow rate specified by the user, for example, and associates the calculated operation efficiency value with the efficiency curve to display the display unit 111. To display.
  • FIG. 19 is a diagram illustrating a specific example of the second display mode of the driving efficiency information.
  • the second display mode of the operation efficiency information is a mode in which the operation efficiency of each pump can be compared with the maximum value of the operation efficiency.
  • the display control unit 113 calculates the maximum value of the operation efficiency of each pump, and causes the display unit 111 to display the calculated maximum value of the operation efficiency in association with the efficiency curve.
  • FIG. 20 is a diagram illustrating a specific example of the third display mode of the driving efficiency information.
  • the third display mode of the operation efficiency information is a mode in which a time-series change is displayed for the operation efficiency of an arbitrary pump.
  • the display control unit 113 causes the display unit 111 to display the efficiency curve estimated for each past predetermined period, for example, for the pump designated by the user.
  • the pump efficiency estimation device 100e of the sixth embodiment configured as described above displays the estimated results of the estimated operation efficiency of each pump in a manner that allows comparison between pumps or between estimated timings of arbitrary pumps. To do.
  • the pump efficiency estimation apparatus 100e has such a function, changes in the operation efficiency of each pump are visualized, and the user can more flexibly perform an operation plan such as maintenance and update of the pump.
  • the above-described pump efficiency estimation device may be configured to estimate the operation efficiency after removing unnecessary data from the measurement data.
  • the pump efficiency estimation device may remove unnecessary data by the following first method or second method.
  • FIG. 21 is a diagram illustrating a first method for deleting unnecessary data.
  • the first method is a method of removing transient data measured at the time of starting and stopping of the pump from the measurement data.
  • the pump efficiency estimation device deletes data for a predetermined period including when the pump is started or stopped from the measurement data as shown in FIG. 21, for example.
  • the second method is a method for removing outliers from measurement data.
  • An outlier is measurement data acquired differently from a value that should be measured due to a sensor abnormality or a communication bit error.
  • As a method of removing such outliers there is a method of using the median value Q med and the median absolute deviation Q mad of the measurement data.
  • the median value Q med and the median absolute deviation Q mad are expressed by the following equations (45) and (46).
  • represents an adjustment parameter and is usually set to a value of 2 to 3.
  • the pump efficiency estimation device can estimate the operation efficiency more accurately.
  • a fluid transportation device that is installed for each of a plurality of transportation routes that merge at one point and that transports a fluid that flows through the transportation route, and an operating or stopped state for each fluid transportation device
  • An operation information acquisition unit that acquires operation information indicating time series, a period extraction unit that extracts an individual operation period in which each of the plurality of fluid transport devices is operating independently based on the operation information, and
  • a power consumption measuring unit that measures a total amount of power consumption of a plurality of fluid transportation devices, acquires power information indicating the total amount of power consumption in time series, and measures the pressure of the fluid, and indicates the pressure in time series
  • a pressure measurement unit that acquires pressure information
  • a flow rate acquisition unit that measures the flow rate of the fluid at the confluence, and acquires flow rate information indicating the flow rate in time series; and the power information in the isolated operation period

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

 実施形態の運転効率推定システムは流体輸送装置と運転情報取得部と運転期間抽出部と電力計測部と圧力計測部と流量計測部と運転効率推定部とを持つ。流体輸送装置は1点で合流する輸送路ごとに設置され流体を輸送する。運転情報取得部は各流体輸送装置の稼働又は停止を示す運転情報を取得する。運転期間抽出部は運転情報に基づいて流体輸送装置が単独で稼働した期間を抽出する。電力計測部は流体輸送装置の消費電力を示す電力情報を取得する。圧力計測部は流体の圧力情報を取得する。流量計測部は合流点における流量情報を取得する。運転効率推定部は前記期間における電力情報、圧力情報及び流量情報に基づいて流体輸送装置の運転効率を推定する。

Description

運転効率推定システム、運転効率推定方法、運転効率推定装置及び非一時的記憶媒体
 本発明の実施形態は、運転効率推定システム、運転効率推定方法、運転効率推定装置及び非一時的記憶媒体に関する。
 上水道施設において水を輸送するポンプは多くの電力を消費する。そして、上水道施設全体の消費電力のうちの大部分をポンプの消費電力が占めている。そのため、ポンプによる消費電力を削減することは、上水道施設全体の消費電力を削減するのに有効である。一般に、ポンプは、経年劣化により運転効率が低下する。運転効率は、ポンプが電力を水力学エネルギーに変換できた割合を表すものであり、吐出流量、吐出圧力及び消費電力を用いて算出される。そのため、ポンプの運転効率を計測し、より効率のよいポンプを使用することでポンプによる電力消費を削減することができる。
 ポンプの運転効率の計測には、個々のポンプについて吐出流量、吐出圧力及び消費電力を計測するための計器を備えることが理想的である。しかしながら、一般的な上水道施設では、ポンプの吐出流量、吐出圧力及び消費電力は、複数のポンプの合計値として計測される。個々のポンプに対応して各種計器を設置することは、コスト面で現実的でない。このため、従来はポンプごとの運転効率を把握するのが容易ではなかった。
特開2008-14230号公報 特開2012-207546号公報
下水処理場に設置したポンプの余寿命を加味した維持管理の提案、学会誌「EICA」第18巻第4号、2014
 本発明が解決しようとする課題は、設備負担の増大を抑制しつつ個々のポンプの運転効率を推定することができる運転効率推定システム、運転効率推定方法、運転効率推定装置及び非一時的記憶媒体を提供することである。
 実施形態の運転効率推定システムは、流体輸送装置と、運転情報取得部と、運転期間抽出部と、電力計測部と、圧力計測部と、流量計測部と、運転効率推定部と、を持つ。流体輸送装置は、1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する。運転情報取得部は、前記流体輸送装置ごとの稼働又は停止の状態を時系列に示す運転情報を取得する。運転期間抽出部は、前記運転情報に基づいて、前記流体輸送装置のそれぞれが単独で稼働している単独運転期間を抽出する。電力計測部は、前記流体輸送装置の消費電力の総量を計測し、前記消費電力の総量を時系列に示す電力情報を取得する。圧力計測部は、前記流体の圧力を計測し、前記圧力を時系列に示す圧力情報を取得する。流量計測部は、前記合流点における前記流体の流量を計測し、前記流量を時系列に示す流量情報を取得する。運転効率推定部は、前記単独運転期間における前記電力情報、前記圧力情報及び前記流量情報に基づいて、前記単独運転期間に稼働した前記流体輸送装置の運転効率を推定する。
送水施設の具体例を示す図。 第1の実施形態のポンプ効率推定装置100の機能構成を示す機能ブロック図。 第1の実施形態における運転効率の推定方法の具体例を示す図。 第1の実施形態における運転効率の推定方法の具体例を示す図。 第1の実施形態における運転効率の推定方法の具体例を示す図。 第1の実施形態における運転効率の推定方法の具体例を示す図。 複数の運転効率における重心の値を運転効率の推定値として決定する具体例を示す図。 第1の実施形態のポンプ効率推定装置100がポンプの運転効率を推定する流れを示すフローチャート。 第2の実施形態のポンプ効率推定装置100aの機能構成を示す機能ブロック図。 第2の実施形態において運転効率を推定する方法の具体例を示す図。 第2の実施形態において運転効率を推定する方法の具体例を示す図。 第2の実施形態において運転効率を推定する方法の具体例を示す図。 第2の実施形態のポンプ効率推定装置100aがポンプの運転効率を推定する流れを示すフローチャート。 第3の実施形態のポンプ効率推定装置100bの機能構成を示す機能ブロック図。 第4の実施形態のポンプ効率推定装置100cの機能構成を示す機能ブロック図。 推定される圧力曲線が満たすべき前提条件を説明する図。 推定される圧力曲線が満たすべき前提条件を説明する図。 推定される電力曲線が満たすべき前提条件を説明する図。 運転状態のパターンが限られている場合の例を示す図。 第5の実施形態のポンプ効率推定装置100dの機能構成を示す機能ブロック図。 間引きの対象となるポンプを変化させた場合のカバー率を示す図。 第6の実施形態のポンプ効率推定装置100eの機能構成を示す機能ブロック図。 運転効率情報の第1の表示態様の具体例を示す図。 運転効率情報の第2の表示態様の具体例を示す図。 運転効率情報の第3の表示態様の具体例を示す図。 不要データを削除する第1の方法を示す図。
 以下、実施形態の運転効率推定システム、運転効率推定方法、運転効率推定装置及び非一時的記憶媒体を、図面を参照して説明する。
 (第1の実施形態)
 図1は、送水施設の具体例を示す図である。
 図1の符号1は、水が輸送される輸送路を表している。図中の実線矢印は水が輸送される方向を表しており、輸送路1を流れる水は符号2が示す合流点で合流する。このような輸送路を持つ送水施設には、ポンプ3-1~3-4、流量計4、圧力計5が設置される。ポンプ3-1~3-4(流体輸送装置)は、合流点2で合流する前の複数の輸送路1のそれぞれに設置される。流量計4は、合流点2又は合流後の輸送路1に設置される。流量計4は、設置位置の輸送路1を流れる水の流量を計測する。圧力計5は、合流点2又は合流後の輸送路1に設置される。圧力計5は、設置位置の輸送路1を流れる水の圧力を計測する。以下、説明を簡単にするため、特に区別しない限り、ポンプ3-1~3-4をまとめてポンプ3と記載する。
 また、図1の符号6は、ポンプ3を含む電力需要設備への電力供給を制御するスイッチを表す。以下、説明を簡単にするため、特に区別しない限りこれらのスイッチをまとめてスイッチ6と記載する。図1の例は、全てのスイッチがOFFとなっている状態を示しており、この状態では全てのポンプ3が運転を停止する。スイッチ6と各ポンプ3との間の線は送電線を表している。また、スイッチ6は、各ポンプ3に電力を供給する電力系統7に接続される。電力計8は、電力系統7が供給する電力を計測する。
 運転制御システム9(運転情報取得部)は、ポンプ3の運転を制御する。運転制御システム9は、スイッチ6の各ポンプ3に対応するスイッチのON又はOFFを制御することによって、各ポンプ3の運転を制御する。
 ポンプ効率推定装置100は、各ポンプ3の運転効率を推定する。ポンプ効率推定装置100は、流量計4(流量計測部)、圧力計5(圧力計測部)、電力計8(電力計測部)及び運転制御システム9から、それぞれ流量情報、圧力情報、電力情報及び運転情報を取得する。流量情報は、流量計4によって計測され、輸送路1を流れる水の流量を時系列に示す情報である。圧力情報は、圧力計5によって計測され、輸送路1を流れる水の圧力を時系列に示す情報である。電力情報は、電力計8によって計測され、電力系統7の供給電力を時系列に示す情報である。運転情報は、各ポンプ3の運転状況を時系列に示す情報である。具体的には、運転情報は、各ポンプ3に対応するスイッチ6のON又はOFFを示す情報である。ポンプ効率推定装置100は、取得された流量情報、圧力情報、電力情報及び運転情報に基づいて、各ポンプ3の運転効率を推定する。
 以下、図1に示されたポンプ効率推定装置100の構成の詳細について説明する。
 図2は、第1の実施形態のポンプ効率推定装置100の機能構成を示す機能ブロック図である。
 ポンプ効率推定装置100は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備える。CPUは、メモリや補助記憶装置に記憶されたポンプ効率推定プログラムを実行する。ポンプ効率推定装置100は、ポンプ効率推定プログラムの実行によって運転情報取得部101、流量情報取得部102、圧力情報取得部103、電力情報取得部104、運転期間抽出部105及び運転効率推定部106を備える装置として機能する。なお、ポンプ効率推定装置100の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。ポンプ効率推定プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。ポンプ効率推定プログラムは、電気通信回線を介して送信されてもよい。
 運転情報取得部101、流量情報取得部102、圧力情報取得部103及び電力情報取得部104は、例えばLAN(Local Area Network)等のネットワークに接続するための通信インターフェースを含み、他のシステムや装置との通信により各種情報を取得する。
 運転情報取得部101は、運転制御システム9から運転情報を取得する。運転情報取得部101は、取得された運転情報を運転期間抽出部105に出力する。
 流量情報取得部102は、流量計4から流量情報を取得する。流量情報取得部102は、取得された流量情報を運転効率推定部106に出力する。
 圧力情報取得部103は、圧力計5から圧力情報を取得する。圧力情報取得部103は、取得された圧力情報を運転効率推定部106に出力する。
 電力情報取得部104は、電力計8から電力情報を取得する。電力情報取得部104は、取得された電力情報を運転効率推定部106に出力する。
 なお、運転情報取得部101、流量情報取得部102、圧力情報取得部103及び電力情報取得部104は、フレキシブルディスクやフラッシュメモリ等の記録媒体を接続するインターフェースを含んでもよい。この場合、運転情報取得部101、流量情報取得部102、圧力情報取得部103及び電力情報取得部104は、これらの記録媒体から情報を読み出すことにより、各種情報を取得してもよい。
 図3A~図3Dは、第1の実施形態における運転効率の推定方法の具体例を示す図である。
 図3Aは運転情報の具体例を示す図である。図3Bは流量情報の具体例を示す図である。図3Cは圧力情報の具体例を示す図である。図3Dは電力情報の具体例を示す図である。図3A、図3B、図3C及び図3Dの横軸は時間を表し、各図の時間軸は同じ時間を表す。図3Aの縦軸は、ポンプ1~4の4基のポンプの運転状況を表す。図3B、図3C及び図3Dの縦軸は、それぞれ流量、圧力及び電力を表す。
 各ポンプの運転状況は、ON又はOFFの2値で表され、ONはポンプの稼働を表し、OFFはポンプの非稼働を表す。図3A~図3Dは、図中の単独運転期間にはポンプ2のみが稼働していることを示している。
 図2の説明に戻る。
 運転期間抽出部105は、運転情報取得部101から運転情報を取得する。運転期間抽出部105は、運転情報が示す各ポンプの運転状況に基づいて、運転情報が示す期間から1つのポンプが単独で運転されている期間(以下、「単独運転期間」という。)を抽出する。運転期間抽出部105は、抽出された単独運転期間と、その単独運転期間に運転されていたポンプと、を示す単独運転情報を運転効率推定部106に出力する。
 運転効率推定部106は、流量情報取得部102、圧力情報取得部103及び電力情報取得部104から、それぞれ流量情報、圧力情報及び電力情報を取得する。また、運転効率推定部106は、運転期間抽出部105から単独運転情報を取得する。運転効率推定部106は、取得された流量情報、圧力情報、電力情報及び単独運転情報に基づいて、各ポンプの運転効率を推定する。
 具体的には、運転効率推定部106は、流量情報、圧力情報及び電力情報のそれぞれから、単独運転期間における情報を抽出する。運転効率推定部106は、抽出された流量情報、圧力情報及び電力情報に基づいて、その単独運転期間に対応するポンプの運転効率を算出する。運転効率は、例えば次の式(1)によって算出される。
Figure JPOXMLDOC01-appb-M000001
 式(1)におけるη(t)は時刻tにおける運転効率を表す。式(1)右辺の分子におけるQ(t)及びH(t)は、それぞれ時刻tにおける流量及び圧力を表し、これらの積は供給された電力の一部がポンプによって変換された水力学的エネルギーである。式(1)右辺の分母は時刻tにおける電力を表す。すなわち、運転効率η(t)は、時刻tにおいて供給された電力が水力学的エネルギーに変換された割合となる。
 運転効率推定部106は、前述した図3A~図3Dに示される単独運転期間における流量情報、圧力情報及び電力情報を用いることによって、ポンプ2の運転効率を算出することができる。このように、各ポンプについての単独運転期間を抽出することによって、ポンプ効率推定装置100は、ポンプごとの運転効率を算出することが可能となる。
 なお、図3A~図3Dに示されるように、単独運転期間において複数の時刻の計測データ(流量、圧力及び電力)が取得される場合、運転効率も複数算出される。この場合、運転効率推定部106は、複数の運転効率の値の代表値を決定し、その代表値を運転効率の推定値とする。例えば、運転効率推定部106は、次の図4のように複数の運転効率における重心の値を求めることにより運転効率の推定値を決定する。
 図4は、複数の運転効率における重心の値を運転効率の推定値として決定する具体例を示す図である。
 図4において縦軸は運転効率の値を表し、横軸は時間を表す。図4にプロットされた点は、単独運転期間における複数の計測データに基づいて算出された、複数の運転効率の値を示す。運転効率の各値は、各時刻における計測データから算出されたものである。図4の例は、運転効率推定部106が、点群の重心における値を運転効率の推定値とすることを示している。点群の重心における運転効率の値は、例えば次の式(2)によって表される。
Figure JPOXMLDOC01-appb-M000002
 なお、運転効率推定部106は、各点の重心における値の他、他の統計値を運転効率の推定値としてもよい。例えば、運転効率推定部106は、各点の平均値を運転効率の推定値としてもよいし、単独運転期間の中間点における値を運転効率の推定値としてもよい。
 図5は、第1の実施形態のポンプ効率推定装置100がポンプの運転効率を推定する流れを示すフローチャートである。
 まず、ポンプ効率推定装置100は、運転情報、流量情報、圧力情報及び電力情報を取得する(ステップS101)。具体的には、運転情報取得部101が運転制御システム9から運転情報を取得し、流量情報取得部102が流量計4から流量情報を取得し、圧力情報取得部103が圧力計5から圧力情報を取得し、電力情報取得部104が電力計8から電力情報を取得する。運転情報取得部101は、取得した運転情報を運転期間抽出部105に出力する。流量情報取得部102、圧力情報取得部103、電力情報取得部104は、それぞれ取得した流量情報、圧力情報及び電力情報を運転効率推定部106に出力する。
 運転期間抽出部105は、運転情報取得部101から出力された運転情報に基づいて、運転情報が示す期間から単独運転期間を抽出する(ステップS102)。運転期間抽出部105は、抽出した単独運転期間を示す情報を運転効率推定部106に出力する。
 運転効率推定部106は、流量情報取得部102、圧力情報取得部103及び電力情報取得部104からそれぞれ出力された、流量情報、圧力情報及び電力情報を取得する。運転効率推定部106は、運転期間抽出部105から出力された単独運転期間を示す情報に基づいて、流量情報、圧力情報及び電力情報のそれぞれから、単独運転期間の計測データを取得する(ステップS103)。
 運転効率推定部106は、取得した単独運転期間の計測データに基づいて、各単独運転期間に運転されたポンプの運転効率を算出する(ステップS104)。ここで算出される運転効率の値は、各単独運転期間において計測データが取得された複数の時刻に対応して、時刻ごとの計測データに基づいて複数算出される。運転効率推定部106は、算出された複数の運転効率の値から代表値を決定する(ステップS105)。運転効率推定部106は、決定された代表値を各ポンプの運転効率の推定値として出力する(ステップS106)。
 このように構成された第1の実施形態のポンプ効率推定装置100は、運転情報から各ポンプが単独で運転された単独運転期間を抽出し、抽出された単独運転期間の計測データに基づいて各ポンプの運転効率を推定する。そのため、ポンプ効率推定装置100は、複数のポンプについてまとめて計測された計測値から個々のポンプの運転効率を推定することができ、設備負担の増大を抑制しつつ個々のポンプの運転効率を推定することが可能となる。
 (第2の実施形態)
 以下、第2の実施形態のポンプ効率推定装置100aについて説明する。第1の実施形態のポンプ効率推定装置100は、運転情報から各ポンプの単独運転期間を抽出することにより、ポンプごとの運転効率を推定した。しかしながら、第1の実施形態における推定方法では、計測データが存在する流量の範囲(以下、「流量範囲」という。)においては運転効率を推定することができるが、流量範囲外では運転効率を推定することができない場合がある。一般に、流量と圧力との間、及び流量と消費電力との間には相関があることが知られており、流量範囲が異なるポンプ同士の運転効率を単純に比較することができない。そのため、第2の実施形態のポンプ効率推定装置100aは、流量範囲の異なるポンプについて運転効率を比較することが可能となるように、あるポンプについて取得された単独運転期間における計測データから流量に対する圧力及び電力を推定する。
 図6は、第2の実施形態のポンプ効率推定装置100aの機能構成を示す機能ブロック図である。
 なお、図6では、図2と同じ符号を付すことによって図2と同様の機能部についての説明を省略する。
 第2の実施形態のポンプ効率推定装置100aは、運転効率推定部106に代えて運転効率推定部106aを備える点、圧力曲線推定部107及び電力曲線推定部108をさらに備える点で第1の実施形態のポンプ効率推定装置100と異なる。
 圧力曲線推定部107は、流量から圧力を推定するためのモデルのパラメータ(以下、「圧力パラメータ」という。)を決定する。具体的には、圧力曲線推定部107は、運転期間抽出部105から各ポンプの単独運転期間を示す情報を取得する。また、圧力曲線推定部107は、流量情報取得部102及び圧力情報取得部103から、それぞれ流量情報及び圧力情報を取得する。圧力曲線推定部107は、流量情報及び圧力情報における単独運転期間の計測データに基づいて、各ポンプの圧力パラメータを決定する。
 電力曲線推定部108は、流量から電力を推定するためのモデルのパラメータ(以下、「電力パラメータ」という。)を決定する。具体的には、電力曲線推定部108は、運転期間抽出部105から各ポンプの単独運転期間を示す情報を取得する。また、電力曲線推定部108は、流量情報取得部102及び電力情報取得部104から、それぞれ流量情報及び電力情報を取得する。電力曲線推定部108は、流量情報及び電力情報における単独運転期間の計測データに基づいて、各ポンプの電力パラメータを決定する。
 ここで、流量と圧力との相関関係は、例えば次の式(3)によって表され、流量と電力との相関関係は、例えば次の式(4)によって表される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 式(3)のα、β及びγが圧力パラメータであり、式(4)のδ、ε、λ及びμが電力パラメータである。圧力曲線推定部107及び電力曲線推定部108は、流量情報、圧力情報及び電力情報における単独運転期間の計測データに基づいて、それぞれ式(3)及び式(4)を最適化する圧力パラメータ及び電力パラメータを推定する。このようなパラメータの最適化は、線形の最適化問題として次の式(5)~(8)のように定式化することができ、最小二乗法などの方法によって求解することができる。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 なお、式(5)~(8)における記号「^」を以下「ハット」と称し、ハット付きの変数は、その変数が推定値であることを意味するものとする。また、以下ではハット付きの記号を明細書中では「^記号」と記載する。
 圧力曲線推定部107及び電力曲線推定部108は、上記の最適化問題を解くことによって、それぞれ圧力パラメータ及び電力パラメータを決定する。圧力曲線推定部107及び電力曲線推定部108は、それぞれ決定した圧力パラメータ及び電力パラメータを運転効率推定部106aに出力する。
 運転効率推定部106aは、圧力曲線推定部107及び電力曲線推定部108からそれぞれ出力される圧力パラメータ及び電力パラメータを取得する。運転効率推定部106aは、取得した圧力パラメータ及び電力パラメータに基づいて、任意の流量に対する各ポンプの運転効率を示す運転効率推定モデルを構築する。運転効率推定部106aは、構築した運転効率推定モデルに基づいて各ポンプの運転効率を推定する。式(3)及び式(4)を用いた場合、運転効率推定モデルは次の式(9)のように表される。
Figure JPOXMLDOC01-appb-M000009
 図7A~図7Cは、第2の実施形態において運転効率を推定する方法の具体例を示す図である。
 図7Aは、あるポンプの単独運転期間における圧力情報を示す図である。図7Bは、当該ポンプの単独運転期間における電力情報を示す図である。図7Cは、当該ポンプの単独運転期間における圧力情報及び電力情報に基づいて推定された、運転効率推定モデルを示す図である。このように、任意の流量範囲で取得される圧力情報及び電力情報に基づいて、任意の流量に対する運転効率を示す運転効率推定モデルが構築されることによって、第2の実施形態のポンプ効率推定装置100aは、異なる流量範囲のポンプ同士で運転効率を比較することを可能にする。
 図8は、第2の実施形態のポンプ効率推定装置100aがポンプの運転効率を推定する流れを示すフローチャートである。
 なお、図8では、図5と同じ符号を付すことによって図5と同様の処理についての説明を省略する。
 圧力曲線推定部107は、運転期間抽出部105から各ポンプの単独運転期間を示す情報を取得する。また、圧力曲線推定部107は、流量情報取得部102及び圧力情報取得部103から、それぞれ流量情報及び圧力情報を取得する。圧力曲線推定部107は、流量情報及び圧力情報における単独運転期間の計測データに基づいて、各ポンプの圧力パラメータを決定する(ステップS201)。圧力曲線推定部107は、決定した各ポンプの圧力パラメータを運転効率推定部106aに出力する。
 電力曲線推定部108は、運転期間抽出部105から各ポンプの単独運転期間を示す情報を取得する。また、電力曲線推定部108は、流量情報取得部102及び電力情報取得部104から、それぞれ流量情報及び電力情報を取得する。電力曲線推定部108は、流量情報及び電力情報における単独運転期間の計測データに基づいて、各ポンプの電力パラメータを決定する(ステップS202)。電力曲線推定部108は、決定した各ポンプの電力パラメータを運転効率推定部106aに出力する。
 運転効率推定部106aは、圧力曲線推定部107及び電力曲線推定部108からそれぞれ出力される圧力パラメータ及び電力パラメータを取得する。運転効率推定部106aは、取得した圧力パラメータ及び電力パラメータに基づいて、任意の流量に対する各ポンプの運転効率を示す運転効率推定モデルを構築する(ステップS203)。運転効率推定部106aは、構築した運転効率推定モデルに基づいて各ポンプの運転効率を推定する。
 このように構成された第2の実施形態のポンプ効率推定装置100aは、各ポンプの単独運転期間における計測データに基づいて、ポンプの任意の流量範囲における圧力及び電力を表すモデルを得るための圧力パラメータ及び電力パラメータをポンプごとに決定し、決定された圧力パラメータ及び電力パラメータを用いて、各ポンプの任意の流量範囲における運転効率を推定する運転効率推定モデルを構築する。この運転効率推定モデルの構築により、ポンプ効率推定装置100aは、流量範囲の異なるポンプについて運転効率を比較することを可能にする。
 (第3の実施形態)
 以下、第3の実施形態のポンプ効率推定装置100bについて説明する。第2の実施形態のポンプ効率推定装置100aは、ある流量範囲について取得された計測データに基づいて、任意の流量範囲における運転効率を推定する運転効率推定モデルを構築することによって、流量範囲の異なるポンプについて運転効率を比較することを可能にした。しかしながら、第2の実施形態における推定方法では、各ポンプについて単独運転期間の計測データが十分に得られない場合、運転効率推定モデルの圧力パラメータ及び電力パラメータを決定できない可能性がある。そのため、第3の実施形態のポンプ効率推定装置100bは、複数のポンプが同時に運転された状況で取得された計測データに基づいて、圧力パラメータ及び電力パラメータを決定することを可能にする。
 図9は、第3の実施形態のポンプ効率推定装置100bの機能構成を示す機能ブロック図である。
 なお、図9では、図6と同じ符号を付すことによって図6と同様の機能部についての説明を省略する。
 第3の実施形態のポンプ効率推定装置100bは、運転期間抽出部105を備えない点、圧力曲線推定部107に代えて圧力曲線推定部107bを備える点、電力曲線推定部108に代えて電力曲線推定部108bを備える点で第2の実施形態のポンプ効率推定装置100aと異なる。
 圧力曲線推定部107bは、運転情報取得部101から運転情報を取得する。運転情報は、時刻tにおける各ポンプの運転情報d(t)(iは各ポンプの識別番号)と表せば、次の式(10)のように表すことができる。
Figure JPOXMLDOC01-appb-M000010
 このとき、圧力パラメータを求めるための最適化問題は次の式(11)~(14)のように定式化できる。以下、識別番号iで表されるポンプをポンプiと記載する。
Figure JPOXMLDOC01-appb-M000011
 Subject to
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 式(12)及び(13)における^q(t)は、ポンプiにおいて時刻tに計測された流量の推定値を表す。また、式(13)及び(14)におけるα、β及びγは、ポンプiの圧力パラメータを表す。また、圧力は輸送路のいずれの地点においても一定であることから、^q(t)は圧力H(t)を用いて式(13)のように表される。
 電力曲線推定部108bは、運転情報取得部101から運転情報を取得する。圧力パラメータと同様に、電力パラメータを求めるための最適化問題は次の式(15)~(17)のように定式化できる。
Figure JPOXMLDOC01-appb-M000015
 Subject to
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 上記のように定式化された式(12)~式(14)の最適化問題は、非線形最適化問題となるため、圧力曲線推定部107b及び電力曲線推定部108bは、遺伝的アルゴリズム(Genetic Algorithm)や焼きなまし法(Simulated Annealing)、粒子群最適化(Particle Swarm Optimization)などのメタヒューリスティックな手法を用いて上記の最適化問題を解くことにより、それぞれ圧力パラメータ及び電力パラメータを推定する。圧力曲線推定部107b及び電力曲線推定部108bは、上記推定によりそれぞれ決定した各ポンプの圧力パラメータ及び電力パラメータを運転効率推定部106aに出力する。
 なお、非線形最適化問題の定式化の方法では解の公式を用いているため、最適化問題の評価中に複素数が現れる場合がある。上記の定式化では、制約条件によって複素数の発生を抑制しているが、この複素数の発生を抑止する手法には他の手法が用いられてもよい。例えば、評価関数において複素数が出現した時点で評価関数の値を無限大にするなどの手法が考えられる。その場合、上述した最適化問題は次の式(18)~(23)のように定式化することができる。
Figure JPOXMLDOC01-appb-M000018
 Subject to
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
 Subject to
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
 このように構成された第3の実施形態のポンプ効率推定装置100bは、複数のポンプが同時に運転された状況で取得された計測データに基づいて定式化される非線形最適化問題を解くことで、圧力パラメータ及び電力パラメータを決定する。圧力パラメータ及び電力パラメータを非線形最適化問題として解くことで決定することにより、ポンプ効率推定装置100bは、各ポンプについて単独運転期間の計測データが十分に得られない場合であっても、運転効率推定モデルの圧力パラメータ及び電力パラメータを決定することが可能となる。
(第4の実施形態)
 以下、第4の実施形態のポンプ効率推定装置100cについて説明する。第3の実施形態のポンプ効率推定装置100bは、複数のポンプが同時に運転された状況で取得された計測データに基づいて定式化される非線形最適化問題を解くことで、圧力パラメータ及び電力パラメータを決定した。しかしながら、第3の実施形態におけるパラメータの決定方法では、最適化問題において推定すべきパラメータの数が多いため、可同定性が低下したり、最適解が得られない場合があった。そのため、第4の実施形態のポンプ効率推定装置100cは、まず計測データの近似直線を決定し、決定された近似直線のパラメータをもとに、ポンプの特性を考慮して外挿することで圧力パラメータ及び電力パラメータを決定する。
 図10は、第4の実施形態のポンプ効率推定装置100cの機能構成を示す機能ブロック図である。
 なお、図10では、図9と同じ符号を付すことによって図9と同様の機能部についての説明を省略する。
 第4の実施形態のポンプ効率推定装置100cは、圧力曲線推定部107bに代えて圧力曲線推定部107cを備える点、電力曲線推定部108bに代えて電力曲線推定部108cを備える点、直線近似部109をさらに備える点で第3の実施形態のポンプ効率推定装置100bと異なる。以下、圧力パラメータ及び電力パラメータのそれぞれについて、各パラメータの決定における各機能部の構成について説明する。
[圧力パラメータの決定]
 直線近似部109は、運転情報取得部101から運転情報を取得する。また、直線近似部109は、流量情報取得部102及び圧力情報取得部103から、それぞれ流量情報及び圧力情報を取得する。直線近似部109は、取得した運転情報、流量情報及び圧力情報に基づいて、各ポンプにおける流量によって圧力を表す近似直線を決定する。狭い流量範囲について計測データが取得される場合、圧力H(t)を示す近似直線は次の式(24)のように表される。
Figure JPOXMLDOC01-appb-M000024
 この場合、式(24)によって示される近似直線のパラメータa及びbは、次の式(25)~(27)のように定式化される最適化問題を解くことにより決定することができる。
Figure JPOXMLDOC01-appb-M000025
 Subject to
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
 上記のように定式化される最適化問題は、線形最適化問題となるため、最小二乗法などの手法を用いて解くことができる。直線近似部109は、上記の最適化問題を解くことにより決定した近似直線のパラメータを圧力曲線推定部107cに出力する。
 圧力曲線推定部107cは、直線近似部109によって決定された近似直線のパラメータに基づいて、各ポンプの圧力パラメータを決定する。具体的には、圧力曲線推定部107cは、次の式(28)~(30)で表される前提条件を連立方程式として解くことによって、圧力パラメータを決定する。
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
 図11は、推定される圧力曲線が満たすべき前提条件を説明する図である。
 図11の横軸は流量を表し、縦軸は圧力を表す。図11の点群20は、圧力曲線を求める対象となるポンプについて取得された計測データがプロットされた点の集合を表す。ここでは、点群20に示される計測データに対応する単独運転しているポンプを仮にポンプAと記載する。また、点群21は、ポンプA単独ではなく、複数台のポンプが運転する計測データがプロットされた点の集合を表す。
 また、図11におけるHは、計測された全圧力情報のうちの圧力の最大値を表す。同様に、Hは、計測された全圧力情報のうちの圧力の最小値を表す。図11の例の場合、Hは点群21に属し、Hは点群20に属している。
 このとき、直線近似部109は、式(25)~(27)で定式化された最適化問題を解くことにより、点群20の近似直線を表すパラメータ(図中のa及びb)を決定する。このパラメータの決定により、図11の近似直線22が得られる。
 圧力曲線推定部107cは、直線近似部109により決定された近似直線のパラメータa及びbを用いて式(28)~(30)を連立方程式として解くことにより、圧力曲線23を表す圧力パラメータを決定する。
 式(28)におけるHini_maxは締切圧を表す。締切圧とは、全てのポンプが送水を行わない場合、換言すれば全てのポンプを締め切った場合の圧力のことである。すなわち、Hini_maxは、Q=0のときの圧力であり、式(28)はこの締切圧がポンプ効率によらず劣化しないという前提条件を表している。
 式(29)及び(30)におけるQは、決定される圧力曲線23上の点であり、圧力がHのときの流量を表す。同様に、Qは、決定される圧力曲線23上の点であり、圧力がHのときの流量を表す。つまり、QからQまでの範囲が計測データが取得されたタイミングにおける流量範囲を表す。すなわち、式(29)は、流量範囲の中心(図中のg)における圧力曲線23の接線24の傾きが近似直線22の傾きと同じであるという仮定を表している。また、式(30)は、圧力曲線23が、流量範囲の最大値において近似直線22上の点を通るという前提条件を表している。
 また、圧力曲線推定部107cは、上記の3つの前提条件を次の式(31)~(33)ように設定することによって圧力パラメータを決定してもよい。
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000033
 図12は、推定される圧力曲線が満たすべき前提条件を説明する図である。
 図11に示された前提条件と、図12が示す前提条件との違いは、式(29)が式(32)に置き換えられた点である。そして、式(33)は、圧力曲線23が、流量範囲の最大値において近似直線22上の点を通るという前提条件を表しているのに対して、式(32)は、圧力曲線23が、流量範囲の最小値において近似直線22上の点を通るという前提条件を表している。
 このように、圧力曲線推定部107cは、直線近似部109によって決定された近似直線のパラメータに基づいて、式(28)~(30)又は式(31)~(33)によって表される前提条件を連立方程式として解くことによって、圧力曲線が上記の前提条件を満たすように圧力パラメータを決定する。
[電力パラメータの決定]
 直線近似部109は、運転情報取得部101から運転情報を取得する。また、直線近似部109は、流量情報取得部102及び電力情報取得部104から、それぞれ流量情報及び電力情報を取得する。直線近似部109は、取得した運転情報、流量情報及び電力情報に基づいて、各ポンプにおける流量によって電力を表す近似直線を決定する。狭い流量範囲について計測データが取得される場合、電力P(t)を示す近似直線は次の式(34)のように表される。
Figure JPOXMLDOC01-appb-M000034
 この場合、式(34)によって示される近似直線のパラメータc及びeは、次の式(35)~(37)のように定式化される最適化問題を解くことにより決定することができる。この最適化問題を解くにあたり、ポンプごとの流量q(t)には、圧力パラメータの決定により式(27)によって得られる流量の推定値を用いる。
Figure JPOXMLDOC01-appb-M000035
 Subject to
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037
 上記のように定式化される最適化問題は、線形最適化問題となるため、最小二乗法などの手法を用いて解くことができる。直線近似部109は、上記の最適化問題を解くことにより決定した近似直線のパラメータを電力曲線推定部108cに出力する。
 電力曲線推定部108cは、直線近似部109によって決定された近似直線のパラメータに基づいて、各ポンプの電力パラメータを決定する。具体的には、電力曲線推定部108cは、次の式(38)~(41)で表される前提条件を連立方程式として解くことによって、電力パラメータを決定する。
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000041
 図13は、推定される電力曲線が満たすべき前提条件を説明する図である。
 図13の横軸は流量を表し、縦軸は電力を表す。図13の点群30は、電力曲線を求める対象となるポンプAについて取得された計測データがプロットされた点の集合を表す。また、点群31-1及び点群31-2は、ポンプAについて異なるタイミングで取得された計測データがプロットされた点の集合を表す。以下、説明を簡単にするために、特に区別しない限り点群31-1及び点群31-2を点群31と記載する。
 また、図13におけるPは、点群30に含まれる点が示す電力の最大値を表す。同様に、Pは、点群30に含まれる点が示す電力の最小値を表す。
 このとき、直線近似部109は、式(35)~(37)で定式化された最適化問題を解くことにより、点群30の近似直線を表すパラメータ(図中のc及びe)を決定する。このパラメータの決定により、図13の近似直線32が得られる。
 電力曲線推定部108cは、直線近似部109により決定された近似直線のパラメータc及びeを用いて式(38)~(41)を連立方程式として解くことにより、電力曲線33を表す電力パラメータを決定する。
 式(38)におけるPini_maxはQ=0のときの電力であり、式(38)は流量がゼロのときの電力は変化しないという前提条件を表している。
 式(39)~(41)におけるQは、決定される電力曲線33上の点であり、電力がPのときの流量を表す。同様に、Qは、決定される電力曲線33上の点であり、圧力がPのときの流量を表す。つまり、QからQまでの範囲が、計測データが取得されたタイミングにおける流量範囲を表す。すなわち、式(39)は、電力曲線33が、流量範囲の最小値において近似直線32上の点を通るという前提条件を表している。同様に、式(40)は、電力曲線33が、流量範囲の最大値において近似直線32上の点を通るという前提条件を表している。また、式(41)は、流量範囲の中心(図中のg)における電力曲線33の接線34の傾きが近似直線32の傾きと同じであるという前提条件を表している。
 このように、電力曲線推定部108cは、直線近似部109によって決定された近似直線のパラメータに基づいて、式(38)~(41)によって表される前提条件を連立方程式として解くことによって、電力曲線が上記の前提条件を満たすように電力パラメータを決定する。
 このように構成された第4の実施形態のポンプ効率推定装置100cは、ある流量範囲について取得された計測データを直線で近似することによって、圧力パラメータ及び電力パラメータの決定を線形最適化問題に定式化することができる。そのため、第4の実施形態のポンプ効率推定装置100cは、圧力パラメータ及び電力パラメータの決定をより精度良く行うことが可能となる。
 (第5の実施形態)
 以下、第5の実施形態のポンプ効率推定装置100dについて説明する。上述した第2~第4の実施形態のポンプ効率推定装置では、運転効率を推定するための圧力パラメータ及び電力パラメータの決定を最適化問題として定式化している。最適化問題を解くことにより運転効率を推定する場合、決定すべきパラメータの可同定性が重要となる。そして、上述した最適化問題の可同定性に本質的に影響を与えるのはポンプの運転情報である。
 例えば、ポンプiの運転状態(稼働又は非稼働)を示す運転情報d(t)が常にゼロであった場合、ポンプiのパラメータを決定することができない。また、d(t)が常にはゼロでない場合であっても、d(t)が取り得る運転状態のパターンが限られている場合にはパラメータを決定することができない。なお、このような場合、仮にパラメータを決定することができたとしても、そのパラメータの信頼性は低いものとなる。
 図14は、運転状態のパターンが限られている場合の例を示す図である。
 図14は、3台のポンプの運転状態を示すd(t)が{1、1、0}又は{1、1、1}の2パターンの値しかとらない場合を示している。図14における全体流量は、各ポンプの流量の総和を表し、全体消費電力は、各ポンプの消費電力の総和を表す。この場合、ポンプ3については稼働及び非稼働の切り替わりが運転情報に含まれるため、パラメータの推定が可能である。しかしながら、ポンプ1及びポンプ2については、稼働及び非稼働の切り替わりが運転情報に含まれないため、パラメータを推定することができない。
 そこで、本実施形態では、運転効率の推定をより精度良く行うための指標としてカバー率を定義する。カバー率は、運転情報が、取り得るパターンをどの程度網羅しているかを示す値である。そして、ポンプ効率推定装置100dは、運転情報がより高いカバー率を示す期間において取得された計測データを用いて最適化問題を解くことにより、より精度良く運転効率の推定を行うことを可能とする。
 図15は、第5の実施形態のポンプ効率推定装置100dの機能構成を示す機能ブロック図である。
 なお、図15では、図10と同じ符号を付すことにより、図10と同様の機能部についての説明を省略する。
 第5の実施形態のポンプ効率推定装置100dは、カバー率向上部110をさらに備える点で第4の実施形態のポンプ効率推定装置100cと異なる。
 カバー率向上部110は、運転情報取得部101から運転情報を取得する。カバー率向上部110は、取得した運転情報のカバー率を向上させるカバー率向上処理を行うことによって、カバー率が向上された運転情報を生成する。カバー率向上部110は、生成した運転情報を圧力曲線推定部107c及び電力曲線推定部108cに出力する。
 以下、カバー率向上部110が行うカバー率向上処理の詳細について説明する。
[カバー率向上処理]
 カバー率Rは、例えば次の式(42)のように定義される。
Figure JPOXMLDOC01-appb-M000042
 式(42)の分母として、考えられるパターンの数から減算される1は、全てのポンプが非稼働である場合を表す。例えば、図14の例の場合、考えられるパターンの数は、2=8であり、d(t)に含まれるパターンの数は2である。よって、この場合カバー率R=2/(8-1)≒0.29となる。
 カバー率向上部110は、運転情報からカバー率を低くする要因となっているポンプの運転情報を間引くことによって、運転情報のカバー率を向上させる。例えば、カバー率向上処理前における4台のポンプの運転情報d(t)が次の式(43)で表される場合について説明する。
Figure JPOXMLDOC01-appb-M000043
 式(43)右辺の列は各ポンプに対応し、行は各ポンプの運転状態のパターンに対応する。ここでは、式(43)右辺の列に対応するポンプを、左の列から順にポンプ1、ポンプ2、ポンプ3及びポンプ4と記載する。この場合、ポンプ4台でのカバー率は、5/(2-1)≒0.33となる。
 この場合、例えば、カバー率向上部110は、稼働状況の変化が少ないポンプ1及びポンプ2について運転情報を間引く。具体的には、カバー率向上部110は、式(43)右辺の行列からポンプ1又はポンプ2の稼働を示す行を間引く。その結果、運転情報は、次の式(44)のようになる。
Figure JPOXMLDOC01-appb-M000044
 その結果、式(44)で表される運転情報のカバー率は、2/(2-1)≒0.67となり、カバー率が向上される。
 図16は、間引きの対象となるポンプを変化させた場合のカバー率を示す図である。
 図16は、式(43)で表される運転情報に対して、間引きの対象となるポンプの組み合わせを変えてカバー率向上処理を行った結果を示す。図16の間引きパターンは、間引きの対象となるポンプの組み合わせを表す。間引きパターンに「×」が記載されたポンプが間引きの対象となるポンプである。対象ポンプ台数は、カバー率向上処理後の運転情報でパラメータの推定が可能となるポンプの台数を表す。図16から、間引きの対象となるポンプが多くなるほど、カバー率が向上することが分かる。なお、図16において、対象ポンプ台数が1台の場合にカバー率をゼロとしているのは、式(43)で表される運転情報において、ポンプ1、ポンプ2及びポンプ3の全てが稼働しない運転状態を示すパターンがないことを表している。
 このように構成された第5の実施形態のポンプ効率推定装置100dでは、カバー率向上部110によってカバー率が向上された運転情報が圧力曲線推定部107c及び電力曲線推定部108cに出力される。圧力曲線推定部107c及び電力曲線推定部108cが、カバー率向上部110から出力された運転情報に基づいて最適化問題を解くことで、ポンプ効率推定装置100dは、運転効率の推定をより精度よく行うことが可能となる。
(第6の実施形態)
 図17は、第6の実施形態のポンプ効率推定装置100eの機能構成を示す機能ブロック図である。
 なお、図17では、図15と同じ符号を付すことにより、図15と同様の機能部についての説明を省略する。
 第6の実施形態のポンプ効率推定装置100eは、表示部111、記憶部112及び表示制御部113をさらに備える点で第5の実施形態のポンプ効率推定装置100dと異なる。
 表示部111は、CRT(Cathode Ray Tube)ディスプレイや液晶ディスプレイ、有機EL(Electro-Luminescence)ディスプレイ等の表示装置を用いて構成される。又は、表示部111は、これらの表示装置を自装置に接続するインターフェースとして構成されてもよい。
 記憶部112は、磁気ハードディスク装置や半導体記憶装置などの記憶装置を用いて構成される。記憶部112は、運転効率推定部106aにより出力された各ポンプの運転効率の推定結果を示す情報(以下、「運転効率情報」という。)を、運転効率が推定されたタイミングに対応づけて記憶する。
 表示制御部113は、記憶部112から運転効率情報を取得し、表示部111に表示させる。例えば、表示制御部113は、運転効率情報に基づいて各ポンプの運転効率を示す曲線(以下、「効率曲線」という。)を一覧表示させる。表示制御部113は、例えば、次の図18~20に示す3つの態様で効率曲線を表示する。
 図18は、運転効率情報の第1の表示態様の具体例を示す図である。
 運転効率情報の第1の表示態様は、各ポンプの運転効率を任意の流量について比較可能にする態様である。第1の表示態様では、表示制御部113は、例えばユーザによって指定された任意の流量に対して各ポンプの運転効率を算出し、算出した運転効率の値を効率曲線に対応づけて表示部111に表示させる。
 図19は、運転効率情報の第2の表示態様の具体例を示す図である。
 運転効率情報の第2の表示態様は、各ポンプの運転効率を運転効率の最大値で比較可能にする態様である。第2の表示態様では、表示制御部113は、各ポンプの運転効率の最大値を算出し、算出した運転効率の最大値を効率曲線に対応づけて表示部111に表示させる。
 図20は、運転効率情報の第3の表示態様の具体例を示す図である。
 運転効率情報の第3の表示態様は、任意のポンプの運転効率について時系列の変化を表示する態様である。第3の表示態様では、表示制御部113は、例えばユーザによって指定されたポンプについて、過去の所定期間ごとに推定された効率曲線を時系列に表示部111に表示させる。
 このように構成された第6の実施形態のポンプ効率推定装置100eは、推定された各ポンプの運転効率の推定結果を、ポンプ間、又は任意のポンプの推定タイミング間で比較可能な態様で表示する。ポンプ効率推定装置100eがこのような機能を備えることにより、各ポンプの運転効率の変化が可視化され、ユーザは、ポンプのメンテナンスや更新などの運用計画をより柔軟に行うことが可能となる。
 以下、上記のポンプ効率推定装置の変形例について説明する。
 上記のポンプ効率推定装置は、計測データから不要なデータを除去した上で、運転効率の推定を行うように構成されてもよい。例えば、ポンプ効率推定装置は、次の第1の方法又は第2の方法により、不要データの除去を行ってもよい。
 図21は、不要データを削除する第1の方法を示す図である。
 第1の方法は、計測データから、ポンプの起動時や停止時に計測される過渡的なデータを除去する方法である。この場合、ポンプ効率推定装置は、例えば図21のように、ポンプの起動時又は停止時を含む所定期間のデータを計測データから削除する。
 第2の方法は、計測データから、外れ値を除去する方法である。外れ値とは、センサの異常や通信のビットエラーなどによって、本来計測されるべき値と異なって取得された計測データである。このような外れ値を除去する方法として、計測データの中央値Qmed及び中央値絶対偏差Qmadを用いる方法がある。中央値Qmed及び中央値絶対偏差Qmadは、次の式(45)及び(46)で表される。
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000046
 式(46)におけるcは修正係数を表し、正規分布を仮定した場合、c=1/0.6745である。このような、中央値Qmed及び中央値絶対偏差Qmadを用いれば、式(47)に示されるように計測データから不要データを除去することができる。
Figure JPOXMLDOC01-appb-M000047
 式(47)においてκは調整パラメータを表し、通常2~3の値に設定される。
 上記の第1の方法又は第2の方法により、計測データから不要データを削除することにより、ポンプ効率推定装置は、運転効率の推定をより精度よく行うことが可能となる。
 以上説明した少なくともひとつの実施形態によれば、1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する流体輸送装置と、前記流体輸送装置ごとの稼働又は停止の状態を時系列に示す運転情報を取得する運転情報取得部と、前記運転情報に基づいて、前記複数の流体輸送装置のそれぞれが単独で稼働している単独運転期間を抽出する期間抽出部と、前記複数の流体輸送装置の消費電力の総量を計測し、前記消費電力の総量を時系列に示す電力情報を取得する消費電力計測部と、前記流体の圧力を計測し、前記圧力を時系列に示す圧力情報を取得する圧力計測部と、前記合流点における前記流体の流量を計測し、前記流量を時系列に示す流量情報を取得する流量取得部と、前記単独運転期間における前記電力情報、前記圧力情報及び前記流量情報に基づいて、前記単独運転期間に稼働した前記流体輸送装置の運転効率を推定する推定部とを持つことにより、設備負担の増大を抑制しつつ個々のポンプの運転効率を推定することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (15)

  1.  1点で合流する複数の輸送路ごとに設置され、前記輸送路を流れる流体を輸送する流体輸送装置と、
     前記流体輸送装置ごとの稼働又は停止の状態を時系列に示す運転情報を取得する運転情報取得部と、
     前記運転情報に基づいて、前記流体輸送装置のそれぞれが単独で稼働している単独運転期間を抽出する運転期間抽出部と、
     前記流体輸送装置の消費電力の総量を計測し、前記消費電力の総量を時系列に示す電力情報を取得する電力計測部と、
     前記流体の圧力を計測し、前記圧力を時系列に示す圧力情報を取得する圧力計測部と、
     前記合流点における前記流体の流量を計測し、前記流量を時系列に示す流量情報を取得する流量計測部と、
     前記単独運転期間における前記電力情報、前記圧力情報及び前記流量情報に基づいて、前記単独運転期間に稼働した前記流体輸送装置の運転効率を推定する運転効率推定部と、を備える運転効率推定システム。
  2.  前記単独運転期間における前記流量情報及び前記圧力情報に基づいて、前記単独運転期間に稼働した前記流体輸送装置における流量と圧力との関係を示す圧力曲線を推定する圧力曲線推定部と、
     前記単独運転期間における前記流量情報及び前記電力情報に基づいて、前記単独運転期間に稼働した前記流体輸送装置における流量と電力との関係を示す電力曲線を推定する電力曲線推定部と、
    をさらに備え、
     前記運転効率推定部は、前記圧力曲線及び前記電力曲線に基づいて、前記単独運転期間に稼働した前記流体輸送装置の任意の流量に対する運転効率を推定する、
    請求項1に記載の運転効率推定システム。
  3.  1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する流体輸送装置と、
     前記流体輸送装置ごとの稼働又は非稼働の状態を時系列に示す運転情報を取得する運転情報取得部と、
     前記流体輸送装置の消費電力の総量を計測し、前記消費電力の総量を時系列に示す電力情報を取得する電力計測部と、
     前記流体の圧力を計測し、前記圧力を時系列に示す圧力情報を取得する圧力計測部と、
     前記合流点における前記流体の流量を計測し、前記流量を時系列に示す流量情報を取得する流量計測部と、
     前記運転情報、前記流量情報及び前記圧力情報に基づいて、前記流体輸送装置ごとの流量と圧力との関係を示す圧力曲線を推定する圧力曲線推定部と、
     前記運転情報、前記流量情報及び前記電力情報に基づいて、前記流体輸送装置ごとの流量と電力との関係を示す電力曲線を推定する電力曲線推定部と、
     前記圧力曲線及び前記電力曲線に基づいて、前記流体輸送装置ごとの運転効率を推定する運転効率推定部と、
    を備える運転効率推定システム。
  4.  前記圧力曲線推定部は、非線形最適化問題を解くことで前記圧力曲線を表すパラメータを推定し、
     前記電力曲線推定部は、非線形最適化問題を解くことで前記電力曲線を表すパラメータを推定する、
    請求項3に記載の運転効率推定システム。
  5.  前記圧力曲線推定部は、前記流量情報及び前記圧力情報が示す計測値を直線で近似し、前記流体輸送装置の締切圧は一定であることを条件の1つとして前記圧力曲線を表すパラメータを連立方程式の解として推定し、
     前記電力曲線推定部は、前記流量情報及び前記電力情報が示す計測値を直線で近似し、流量がゼロのときの電力は変化しないことを条件の1つとして前記電力曲線を表すパラメータを連立方程式の解として推定する、
    請求項3に記載の運転効率推定システム。
  6.  前記運転情報取得部によって取得された前記運転情報から非稼働の流体輸送装置の運転情報を削除することで、削除後の運転情報に含まれる各流体輸送装置の状態の組み合わせの数が、取り得る状態の組み合わせの数に占める割合を高めるカバー率向上処理を行うカバー率向上部をさらに備え、
     前記圧力曲線推定部は、前記カバー率向上処理が行われた前記運転情報、前記流量情報及び前記圧力情報に基づいて前記圧力曲線を推定し、
     前記電力曲線推定部は、前記カバー率向上処理が行われた前記運転情報、前記流量情報及び前記電力情報に基づいて前記電力曲線を推定する、
    請求項3に記載の運転効率推定システム。
  7.  前記運転効率の推定に関する処理が行われる前に、前記流量計測部によって取得された前記流量情報と、前記圧力計測部によって取得された前記圧力情報と、前記電力計測部によって取得された前記電力情報から、運転効率の推定精度を低下させる可能性のある情報を除去する除去部をさらに備える、
    請求項1に記載の運転効率推定システム。
  8.  前記運転効率の推定結果を表示する表示部と、
     前記推定結果を、前記流体輸送装置間で比較可能な態様で前記表示部に表示させる表示制御部と、
    をさらに備える、
    請求項1に記載の運転効率推定システム。
  9.  前記表示制御部は、前記流体輸送装置のうち選択された少なくとも1つの流体輸送装置について、前記推定結果を時系列で比較可能な態様で前記表示部に表示させる、
    請求項8に記載の運転効率推定システム。
  10.  1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する流体輸送装置ごとの稼働又は停止の状態を時系列に示す運転情報に基づいて、前記流体輸送装置のそれぞれが単独で稼働している単独運転期間を抽出する運転期間抽出ステップと、
     前記流体輸送装置の消費電力の総量を時系列に示す電力情報、前記流体の圧力を時系列に示す圧力情報、及び前記合流点における前記流体の流量を時系列に示す流量情報の前記単独運転期間の情報に基づいて、前記単独運転期間に稼働した前記流体輸送装置の運転効率を推定する運転効率推定ステップと、
    を有する運転効率推定方法。
  11.  1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する流体輸送装置ごとの稼働又は非稼働の状態を時系列に示す運転情報と、前記合流点における前記流体の流量を時系列に示す流量情報と、前記流体の圧力を時系列に示す圧力情報と、に基づいて前記流体輸送装置ごとの流量と圧力との関係を示す圧力曲線を推定する圧力曲線推定ステップと、
     前記運転情報と、前記流量情報と、前記流体輸送装置の消費電力の総量を時系列に示す電力情報と、に基づいて前記流体輸送装置ごとの流量と電力との関係を示す電力曲線を推定する電力曲線推定ステップと、
     前記圧力曲線及び前記電力曲線に基づいて、前記流体輸送装置ごとの運転効率を推定する運転効率推定ステップと、
    を有する運転効率推定方法。
  12.  1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する流体輸送装置について、前記流体輸送装置ごとの稼働又は停止の状態を時系列に示す運転情報に基づいて、前記流体輸送装置のそれぞれが単独で稼働している単独運転期間を抽出する運転期間抽出部と、
     前記流体輸送装置の消費電力の総量を時系列に示す電力情報と、前記流体の圧力を時系列に示す圧力情報と、前記流体の総流量を時系列に示す流量情報と、の前記単独運転期間における情報に基づいて、前記単独運転期間に稼働した前記流体輸送装置の運転効率を推定する運転効率推定部と、
    を備える運転効率推定装置。
  13.  1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する流体輸送装置について、前記流体輸送装置ごとの稼働又は停止の状態を時系列に示す運転情報に基づいて、前記流体輸送装置のそれぞれが単独で稼働している単独運転期間を抽出する運転期間抽出ステップと、
     前記流体輸送装置の消費電力の総量を時系列に示す電力情報と、前記流体の圧力を時系列に示す圧力情報と、前記流体の総流量を時系列に示す流量情報と、の前記単独運転期間における情報に基づいて、前記単独運転期間に稼働した前記流体輸送装置の運転効率を推定する運転効率推定ステップと、
    をコンピュータに実行させるためのコンピュータプログラムを記憶した非一時的記憶媒体。
  14.  1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する流体輸送装置ごとの稼働又は非稼働の状態を時系列に示す運転情報と、前記流体の圧力を時系列に示す圧力情報と、前記合流点における前記流体の流量を時系列に示す流量情報と、に基づいて前記流体輸送装置ごとの流量と圧力との関係を示す圧力曲線を推定する圧力曲線推定部と、
     前記運転情報と、前記流量情報と、前記流体輸送装置の消費電力の総量を時系列に示す電力情報と、に基づいて前記流体輸送装置ごとの流量と電力との関係を示す電力曲線を推定する電力曲線推定部と、
     前記圧力曲線及び前記電力曲線に基づいて、前記流体輸送装置ごとの運転効率を推定する運転効率推定部と、
    を備える運転効率推定装置。
  15.  1点で合流する複数の輸送路ごとに設置され前記輸送路を流れる流体を輸送する流体輸送装置ごとの稼働又は非稼働の状態を時系列に示す運転情報と、前記流体の圧力を時系列に示す圧力情報と、前記合流点における前記流体の流量を時系列に示す流量情報と、に基づいて前記流体輸送装置ごとの流量と圧力との関係を示す圧力曲線を推定する圧力曲線推定ステップと、
     前記運転情報と、前記流量情報と、前記流体輸送装置の消費電力の総量を時系列に示す電力情報と、に基づいて前記流体輸送装置ごとの流量と電力との関係を示す電力曲線を推定する電力曲線推定ステップと、
     前記圧力曲線及び前記電力曲線に基づいて、前記流体輸送装置ごとの運転効率を推定する運転効率推定ステップと、
    をコンピュータに実行させるためのコンピュータプログラムを記憶した非一時的記憶媒体。
PCT/JP2016/054934 2015-02-25 2016-02-19 運転効率推定システム、運転効率推定方法、運転効率推定装置及び非一時的記憶媒体 WO2016136636A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201706913QA SG11201706913QA (en) 2015-02-25 2016-02-19 Operation efficiency estimation system, operation efficiency estimation method, operation efficiency estimation device, and non-transitory storage medium
CN201680011612.8A CN107532599B (zh) 2015-02-25 2016-02-19 运转效率推断系统、运转效率推断方法、运转效率推断装置以及非易失性存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-035679 2015-02-25
JP2015035679A JP6290119B2 (ja) 2015-02-25 2015-02-25 運転効率推定システム、運転効率推定方法、運転効率推定装置及びコンピュータプログラム

Publications (1)

Publication Number Publication Date
WO2016136636A1 true WO2016136636A1 (ja) 2016-09-01

Family

ID=56788727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054934 WO2016136636A1 (ja) 2015-02-25 2016-02-19 運転効率推定システム、運転効率推定方法、運転効率推定装置及び非一時的記憶媒体

Country Status (4)

Country Link
JP (1) JP6290119B2 (ja)
CN (1) CN107532599B (ja)
SG (1) SG11201706913QA (ja)
WO (1) WO2016136636A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020002907A (ja) * 2018-06-29 2020-01-09 株式会社川本製作所 給水装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7150445B2 (ja) * 2018-02-16 2022-10-11 株式会社東芝 運転効率推定システム及び運転効率推定方法
JP7286360B2 (ja) * 2019-03-19 2023-06-05 株式会社東芝 電力算出装置、電力算出方法及びコンピュータプログラム
CN110469893B (zh) * 2019-08-26 2021-02-09 中国计量大学 一种基于比例压力调节的循环泵自适应控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207546A (ja) * 2011-03-29 2012-10-25 Hitachi Ltd ポンプ消費電力特性モデル作成装置、ポンプ消費電力特性モデル作成方法、ポンプ消費電力特性モデル作成プログラム、およびこのプログラムを記録した記録媒体
JP2013096311A (ja) * 2011-11-01 2013-05-20 Hitachi Ltd ポンプ制御システム
JP2013227975A (ja) * 2012-04-26 2013-11-07 Schneider Toshiba Inverter Europe Sas 遠心ポンプを認識及び制御する方法並びにシステム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124089A (en) * 1981-01-26 1982-08-02 Hitachi Ltd Pump operation control method
KR20100071344A (ko) * 2008-12-19 2010-06-29 재단법인 포항산업과학연구원 뉴럴 네트워크와 역전파 알고리즘에 의한 펌프 유량 예측 장치 및 방법
JP2010216288A (ja) * 2009-03-13 2010-09-30 Sayama Seisakusho:Kk 並列ポンプの解列制御方法と並列ポンプの解列制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207546A (ja) * 2011-03-29 2012-10-25 Hitachi Ltd ポンプ消費電力特性モデル作成装置、ポンプ消費電力特性モデル作成方法、ポンプ消費電力特性モデル作成プログラム、およびこのプログラムを記録した記録媒体
JP2013096311A (ja) * 2011-11-01 2013-05-20 Hitachi Ltd ポンプ制御システム
JP2013227975A (ja) * 2012-04-26 2013-11-07 Schneider Toshiba Inverter Europe Sas 遠心ポンプを認識及び制御する方法並びにシステム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020002907A (ja) * 2018-06-29 2020-01-09 株式会社川本製作所 給水装置

Also Published As

Publication number Publication date
JP2016156345A (ja) 2016-09-01
JP6290119B2 (ja) 2018-03-07
CN107532599A (zh) 2018-01-02
SG11201706913QA (en) 2017-10-30
CN107532599B (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
WO2016136636A1 (ja) 運転効率推定システム、運転効率推定方法、運転効率推定装置及び非一時的記憶媒体
JP2008154418A (ja) 配電系統の状態推定装置、状態推定方法及びそのプログラム
CN107748956B (zh) 一种配电网典型接线非整数分段可靠性的评估方法
KR101030701B1 (ko) 전력 계통 전압 안정도 감시 시스템, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 매체
JP5989754B2 (ja) 予測装置
Albuquerque et al. Evaluation of the PMUs measurement channels availability for observability analysis
US20230420938A1 (en) Load forecasting for electrical equipment using machine learning
Alvarez et al. Novel methodology for selecting representative operating points for the TNEP
CN102013051A (zh) 一种供电可靠性成本/效益精益化分析与优化方法
JP2013227826A (ja) 配水運用制御装置
KR20150059313A (ko) 송전 한계를 고려한 자동 발전 제어 방법
JP2011239488A (ja) 分散電源出力推定システム、総需要電力推定システム、電力警報システム、分散電源出力推定装置、総需要電力推定装置、電力記録装置、および電力警報装置
Correia et al. Sizing of a pumped storage power plant in S. Miguel, Azores, using stochastic optimization
JP6622012B2 (ja) 運転支援装置、運転支援方法及びコンピュータプログラム
US11316345B2 (en) Predictive voltage stability of a power system post-contingency
JP4664842B2 (ja) エネルギープラントの最適運用システムと方法、およびプログラム
Baran et al. State estimation for real time monitoring of distribution feeders
WO2017163934A1 (ja) 電力制御システム、制御装置、制御方法およびコンピュータプログラム
JP2019145166A (ja) 投資支援装置、投資支援方法及びコンピュータプログラム
Brinkmann et al. An observability index for distribution networks using information entropy
Pau et al. Optimal placement of sectionalizing switches for radial distribution grids
Birkner et al. Integrated smart grid concept-experience in a german distribution grid
Abou El-Ela et al. Optimal placement of phasor measurement units for power system observability using ant Colony optimization algorithm
JP7463075B2 (ja) 末端圧力制御支援装置、末端圧力制御支援方法及びコンピュータプログラム
JP7067895B2 (ja) 末端圧力制御支援装置、末端圧力制御支援方法及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11201706913Q

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 16755382

Country of ref document: EP

Kind code of ref document: A1