JP2016154322A - 同期タイミング制御装置、同期タイミング制御方法、及び受信機 - Google Patents

同期タイミング制御装置、同期タイミング制御方法、及び受信機 Download PDF

Info

Publication number
JP2016154322A
JP2016154322A JP2015205165A JP2015205165A JP2016154322A JP 2016154322 A JP2016154322 A JP 2016154322A JP 2015205165 A JP2015205165 A JP 2015205165A JP 2015205165 A JP2015205165 A JP 2015205165A JP 2016154322 A JP2016154322 A JP 2016154322A
Authority
JP
Japan
Prior art keywords
signal
symbol
sampling
timing control
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015205165A
Other languages
English (en)
Other versions
JP6422421B2 (ja
Inventor
勝崇 今尾
Katsumune Imao
勝崇 今尾
克也 南畑
Katsuya Minamibata
克也 南畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to CN201610082308.4A priority Critical patent/CN105897367B/zh
Priority to DE102016201991.0A priority patent/DE102016201991B4/de
Publication of JP2016154322A publication Critical patent/JP2016154322A/ja
Application granted granted Critical
Publication of JP6422421B2 publication Critical patent/JP6422421B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0079Receiver details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0096Network synchronisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

【課題】サンプリング時間間隔が受信信号のシンボル時間長に非同期であっても、シンボル境界位置を正確なタイミングで検出し続けることができる装置及び方法を提供する。
【解決手段】同期タイミング制御方法は、ガード信号間隔に最も近いシンボル時間長候補をシンボル時間長(Sk)として選択するステップと、シンボル時間長(Sk)とサンプリング時間間隔(F)とから1シンボル当たりのサンプリング数(H)として第1の値(α=n)を求めるステップと、シンボル時間長(Sk)とサンプリング時間間隔(F)とから求められた個数のシンボル(C=0,1,…)の各々について、1シンボル当たりのサンプリング数を第1の値に設定し、前記求められた個数のシンボルの直後のシンボル(C=N−1)についてのサンプリング数を、第1の値よりも少ない第2の値(α=n−1)に設定する設定ステップとを有する。
【選択図】図11

Description

本発明は、複数のシンボルで構成される受信信号におけるシンボル境界位置を正確なタイミングで検出し続けることができる装置及び方法に関する。
直交周波数分割多重(OFDM)は、電波干渉に強く、高速移動などに伴う伝送路環境の激しい変動に強い変調方式であり、デジタルテレビ放送及びデジタルラジオ放送などの様々な規格に適用されている。OFDM信号の復調処理では、周波数毎の信号解析を行うために、高速フーリエ変換(FFT)を用いて時間領域の信号が周波数領域の信号に変換される。その際、FFTを行うための信号処理単位である各シンボルについてのシンボル境界位置とシンボル時間長とを正確に検出する必要がある。
図1は、複数のシンボルからなる受信信号RとしてのOFDM信号、その遅延信号D、及びガード信号としてのガードインターバル(GI)の相関値(相関信号)Lを示す図である。OFDM信号のシンボルは、変調されたデータ信号である有効シンボル(Data)と、有効シンボルの一部(後部区間)をコピーして生成されたGIとから構成される。図1に示されるように、遅延信号DのGIと受信信号Rの有効シンボルの後部区間とは同一波形であるので、これらは互いに強い相関を有している。このため、受信信号Rとそれを有効シンボル時間長だけ遅延させた遅延信号Dとの相関値Lのピーク位置を検出することにより、シンボル境界位置(ガード信号開始時間位置)X0を得ることができる。また、相関値Lの隣り合うピーク位置の間隔である相関ピーク間隔を計算することにより、シンボル時間長(隣り合うガード信号開始時間位置の間隔)W0を得ることができる。
一般に、デジタル放送信号のGI長及び有効シンボル時間長は、放送局及び受信チャンネルなどの組合せに応じて一意に決定される。よって、受信機における電源投入時、再起動時、及びチャンネル切換え時など、受信信号のGI長及び有効シンボル時間長が不明である場合又はこれらが変化する可能性のある場合にのみ、シンボル境界位置X0とシンボル時間長W0とを取得すれば十分である。
図2は、受信機のサンプリング点(番号0,1,…,n−1)(nは正の整数である。)が、受信信号RとしてのOFDM信号のシンボル時間長W0に同期している場合における、検出されたシンボル開始時間位置(番号0のサンプリング点の位置)Xsと検出されたシンボル時間長(隣り合う番号0のサンプリング点の位置の時間間隔)Wsの検出結果の例を示す図である。ここで、受信機のサンプリング点が受信信号Rのシンボル時間長W0に同期している場合とは、受信信号Rのシンボル時間長W0が、受信機のシステムクロックに基づくサンプリング時間間隔(サンプリング周期)の整数倍である場合である。図2に示されるように、GIの相関値から取得されたシンボル時間長W0が、nサンプル(番号0,1,…,n−1のサンプリング)で検出されたシンボル時間長Wsに等しい場合には、nサンプル毎にシンボル境界位置X0が現れるものとみなして、FFT及びその後段における復調信号の処理を行うことができる。
特許文献1は、OFDM信号を受信し、その受信したOFDM信号に含まれる同期信号の検出に同期した周期でカウンタのカウント動作を行うと共に、OFDM信号として伝送される同期信号の検出に失敗した場合には、過去に同期信号を受信して検出した際のカウンタのカウント値に到達したとき、同期信号を発生させる方法、を開示している。
また、図3は、受信機のサンプリング点(番号0,1,…,n−1)が、受信信号RとしてのOFDM信号のシンボル時間長W0に非同期である場合における、検出されたシンボル開始時間位置Xsと検出されたシンボル時間長Wsの検出結果の例を示す図である。ここで、受信機のサンプリング点が受信信号Rのシンボル時間長W0に非同期である場合とは、受信信号Rのシンボル時間長W0が、受信機のシステムクロックに基づくサンプリング時間間隔(サンプリング周期)の整数倍ではない場合である。図3に示されるように、GIの相関値から取得されたシンボル時間長W0がnサンプル(番号0,1,…,n−1のサンプリング)で検出されたシンボル時間長Wsに等しくない場合には、時間経過に伴い、シンボル境界位置X0と、検出されたシンボル開始時間位置Xs(番号0のサンプリング点)との間の時間ズレγが増加し、検出されたシンボル開始時間位置XsがGIから外れて(図3の最も右側のシンボルにおけるXs)、FFT及びその後段における復調信号の処理を実行することができなくなる。
特開2001−285247号公報(段落0010〜0013、図8)
以上に説明したように、受信機のサンプリング時間間隔が受信信号のシンボル時間長に非同期である場合には、シンボル境界位置と、検出されたシンボル開始時間位置との間の時間ズレが時間経過に伴って増加する。したがって、受信信号におけるシンボル境界位置を検出することができず、復調信号の処理を実行することができない状況が発生するという課題がある。
そこで、本発明は、上記従来技術の課題を解決するためになされたものであり、受信機のサンプリング時間間隔が受信信号のシンボル時間長に非同期であっても、受信信号におけるシンボル境界位置を正確なタイミングで検出し続けることができる装置及び方法を提供することを目的とする。
本発明に係る同期タイミング制御装置は、ガード信号とデータ信号とからなるシンボルを信号処理単位とし、複数のシンボルからなる信号を受信し、前記複数のシンボルの各々について周期的にサンプリングを行う装置における、同期タイミング制御装置であって、前記複数のシンボルの内の、時間的に隣り合うシンボルのガード信号間の時間間隔であるガード信号間隔を検出するガード信号検出部と、予め定められた1つ以上のシンボル時間長の集合であるシンボル時間長候補を保持している第1の記憶部と、1シンボル当たりのサンプリング数を設定するサンプリング数設定部と、を備え、前記サンプリング数設定部は、前記第1の記憶部に保持されている前記シンボル時間長候補の中から前記ガード信号間隔に最も近いシンボル時間長候補をシンボル時間長として選択する処理と、前記シンボル時間長と前記サンプリングを行う装置のサンプリング時間間隔とから、1シンボル当たりのサンプリング数として第1の値を求める処理と、前記シンボル時間長と前記サンプリング時間間隔とから求められた個数のシンボルの各々について、1シンボル当たりの前記サンプリング数を前記第1の値に設定し、前記求められた個数のシンボルの次のシンボルについての前記サンプリング数を、前記第1の値よりも少ない第2の値に設定する処理と、を行うことを特徴としている。
本発明に係る同期タイミング制御方法は、ガード信号とデータ信号とからなるシンボルを信号処理単位とし、複数のシンボルからなる信号を受信し、前記複数のシンボルの各々について周期的にサンプリングを行う装置における、同期タイミング制御方法であって、前記複数のシンボルの内の、時間的に隣り合うシンボルのガード信号間の時間間隔であるガード信号間隔を検出するステップと、1シンボル当たりのサンプリング数を設定する設定ステップとを有している。前記設定ステップは、前記サンプリングを行う装置に保持されている、予め定められた1つ以上のシンボル時間長の集合であるシンボル時間長候補の中から前記ガード信号間隔に最も近いシンボル時間長候補をシンボル時間長として選択するステップと、前記シンボル時間長と前記サンプリングを行う装置のサンプリング時間間隔とから、1シンボル当たりのサンプリング数として第1の値を求めるステップと、前記シンボル時間長と前記サンプリング時間間隔とから求められた個数のシンボルの各々について、1シンボル当たりの前記サンプリング数を前記第1の値に設定し、前記求められた個数のシンボルの次のシンボルについての前記サンプリング数を、前記第1の値よりも少ない第2の値に設定するステップと、を有することを特徴としている。
本発明においては、シンボル時間長とサンプリング時間間隔との関係に応じて1シンボル当たりのサンプリング数を設定し、シンボル時間長とサンプリング時間間隔との関係に応じて決められた個数のシンボルが受信される毎に前記1シンボル当たりのサンプリング数を一時的に減らして、シンボル時間長とサンプリング点との間の時間ズレを減らすことができる。このため、本発明によれば、シンボル境界位置を正確なタイミングで検出し続けることができるという効果がある。
複数のシンボルからなる受信信号、その遅延信号、及びGIの相関値を示す図である。 受信機のサンプリング点が受信信号のシンボル時間長に同期している場合における、検出されたシンボル開始時間位置と検出されたシンボル時間長の検出結果の例を示す図である。 受信機のサンプリング点が受信信号のシンボル時間長に非同期である場合における、検出されたシンボル開始時間位置と検出されたシンボル時間長の検出結果の例を示す図である。 本発明の実施の形態1に係る同期タイミング制御装置(実施の形態1に係る同期タイミング制御方法が適用される装置)の構成例を示すブロック図である。 図4の相関演算部の構成例を示すブロック図である。 図4の相関演算部の他の構成例を示すブロック図である。 図4の相関演算部から出力される相関値の一例を示す図である。 図4のガード信号検出部の構成例を示すブロック図である。 図4のガード信号検出部の他の構成例を示すブロック図である。 図4のサンプリング数設定部の構成例を示すブロック図である。 図4のサンプリング数設定部の動作例を示す図である。 図4の計数部の動作例を示す図である。 図4の計数部の他の動作例を示す図である。 本発明の実施の形態2に係る同期タイミング制御装置(実施の形態2に係る同期タイミング制御方法が適用される装置)における相関演算部の構成例を示すブロック図である。 実施の形態2に係る同期タイミング制御装置(実施の形態2に係る同期タイミング制御方法が適用される装置)における相関演算部の他の構成例を示すブロック図である。 本発明の実施の形態3に係る受信機の構成例を示すブロック図である。 実施の形態1から3の変形例に係る同期タイミング制御装置のハードウェア構成図である。
実施の形態1.
図4は、本発明の実施の形態1に係る同期タイミング制御装置(実施の形態1に係る同期タイミング制御方法が適用される装置)1の構成例を示すブロック図である。同期タイミング制御装置1は、例えば、OFDM信号を受信する受信機の一部を構成することができる。受信機は、例えば、デジタル放送受信装置及びデジタルラジオ受信装置などである。図4に示されるように、同期タイミング制御装置1は、受信信号Rを入力信号として受信し、この受信信号Rに信号処理を行なって周波数解析結果信号Yを出力するように構成されている。受信信号Rは、例えば、受信機を構成する直交復調器(後述する図16に示される)から出力される複素ベースバンド信号である。周波数解析結果信号Yは、FFT又は離散フーリエ変換(DFT)などにより変換された周波数領域の信号群である。図4に示されるように、同期タイミング制御装置1は、相関演算部10と、ガード信号検出部20と、シンボル時間長候補保持部(第1の記憶部)30と、サンプリング時間間隔保持部(第2の記憶部)40と、サンプリング数設定部50と、計数部60と、周波数解析部70とを備えている。なお、同期タイミング制御装置1は、各構成10,20,30,40,50,60,及び70の全体の動作を制御する制御部を備えてもよい。
図4において、相関演算部10は、受信信号Rと、この受信信号Rを遅延させることによって得られた遅延信号Dとの時間相関演算を行い、この演算の結果を、相関信号(相関値)Lとして出力する。
図5は、図4の相関演算部10の構成例を示すブロック図である。図5に示されるように、相関演算部10は、遅延部101と、有効シンボル時間長を記憶するシンボル変数保持部(記憶部)102と、演算部103とを備えている。遅延部101は、受信信号Rを受け取り、この受信信号Rに対し時間遅延処理を行う。この時間遅延処理による受信信号Rの時間遅延量は、シンボル変数保持部102から出力される有効シンボル時間長に基づいて、決定される。この時間遅延量は、受信機が受信可能なr種類(rは正の整数である。)の信号に対応する有効シンボル時間長が、時分割で順に選択される。例えば、受信機が受信可能な信号の種類がモード1、モード2、モード3、及びモード4の4種類であり、これら4種類のモードに対応する有効シンボル時間長がそれぞれV1、V2、V3、及びV4である場合を説明する。この場合には、遅延部101は、時間遅延量としてV1、V2、V3、及びV4の値を順次選択し、時間遅延処理を行い、その結果が遅延信号D(すなわち、有効シンボル時間長がV1、V2、V3、及びV4の各々における遅延信号D)として、順次出力される。演算部103は、受信信号Rと遅延信号Dとの相関を計算し、その計算の結果を、時間遅延量としてのV1、V2、V3、及びV4の各々についての、相関信号Lとして出力する。例えば、演算部103は、次式(1)のような演算を行う。
L=R×D 式(1)
ここで、Dは、遅延信号Dの複素共役信号である。
図6は、図4の相関演算部10の他の構成例を示すブロック図である。図6において、図5に示される構成要素と同一又は対応する構成要素には、図5に示される符号と同じ符号を付す。図6の構成例は、演算部103の出力の時間平均を算出する平均化部104が備えられている点、及び、シンボル変数保持部102aが、平均化部104に、モード1、モード2、モード3、及びモード4にそれぞれ対応するシンボル時間長S1,S2,S3,S4を供給する点において、図5の構成例と相違する。図5の場合と同様に、図6の演算部103は、受信信号Rと遅延信号Dとの相関を計算し、その計算の結果を、時間遅延量としてのV1、V2、V3、及びV4の各々についての、相関信号Lとして出力する。平均化部104が時間平均を算出する周期は、シンボル変数保持部102aから出力されるシンボル時間長に応じて制御される。平均化部104が受信するシンボル時間長も、受信機が受信可能なr種類の信号に対応するシンボル時間長であり、時分割で順に選択される。例えば、受信機が受信可能な信号の種類がモード1、モード2、モード3、及びモード4の4種類であり、これら4種類のモードに対応するシンボル時間長がそれぞれS1,S2,S3,S4である場合を説明する。この場合には、平均化部104は、複数のシンボル時間長S1についての複数の相関信号Lを用いて時間平均化処理を行い、複数のシンボル時間長S2についての複数の相関信号Lを用いて時間平均化処理を行い、複数のシンボル時間長S3についての複数の相関信号Lを用いて時間平均化処理を行い、複数のシンボル時間長S4についての複数の相関信号Lを用いて時間平均化処理を行う。このような手法をとることで得られた平均化された相関信号Laにおいては、熱雑音の影響が低減される。
図4において、ガード信号検出部20は、相関信号L(図6においては、La)の大きさに基づいて、ガード信号としてのGIが挿入されている時間位置の間隔であるガード信号間隔(隣り合うガード信号開始時間位置の間隔)を計算し、この計算によって得られた時間間隔をガード信号間隔Wを示す信号として出力する。このとき、ガード信号検出部20は、GIが挿入されている時間位置としてのガード信号開始時間位置を特定し、当該時間位置をガード信号開始時間位置Xを示す信号として出力する。
図7は、図4の相関演算部10から出力される相関信号(相関値)Lの一例を示す図である。図7には、ガード信号開始時間位置Xの例と、隣り合うガード信号開始時間位置の時間間隔であるガード信号間隔Wの例が示されている。
図8は、図4のガード信号検出部20の構成例を示すブロック図である。図8に示されるように、ガード信号検出部20は、ピーク検出部201と、ピーク間隔検出部202とを備えている。ピーク検出部201は、相関信号Lを受け取り、相関信号Lの電力又は振幅レベルのピークを検出する。ガード信号検出部20は、ピークを検出したときのピーク時間位置を確定し、そのピーク時間位置の値を、ガード信号開始時間位置Xを示す信号として出力すると共に、同じ値Xをピーク間隔検出部202へ与える。ピーク間隔検出部202は、入力されたガード信号開始時間位置Xを値X1として保持した後、直後に入力されるガード信号開始時間位置Xを値X2として保持する。そして、ピーク間隔検出部202は、値X2から値X1を減算して得られた値(X2−X1)を、ガード信号間隔Wを示す信号として出力する。なお、図8のガード信号検出部20は、演算量削減のため、ガード信号間隔Wを示す信号とガード信号開始時間位置Xを示す信号が出力された時点で、その動作を停止してもよい。
図9は、ガード信号検出部20の他の構成例を示すブロック図である。図9において、図8に示される構成要素と同一又は対応する構成要素には、図8に示される符号と同じ符号を付す。図9の構成例は、図8のガード信号間隔Wを示す信号とガード信号開始時間位置Xを示す信号が、その出力前に出力保護部203へ入力されている点において、図8の構成例と相違する。相関信号Lのピーク時間間隔は、理想的には、毎回の検出値が等しくなる。また、ピーク時間位置は、理想的には、直前の検出値にピーク時間間隔を加算した値となる。しかし、熱雑音などの影響を受けると、これらの検出値に揺らぎが生じる場合がある。図9に示される出力保護部203は、検出されたガード信号間隔の値の平均値(例えば、検出された複数のガード信号間隔の値の平均値)を算出することによって得られた値をガード信号間隔Wとし、検出されたガード信号開始時間位置の値の平均値を算出することによって得られた値をガード信号開始時間位置Xとし、ガード信号間隔Wを示す信号とガード信号開始時間位置Xを示す信号を出力することで、熱雑音の影響を低減する機能を持つ。なお、図9のガード信号検出部20は、演算量削減のため、ガード信号間隔Wを示す信号とガード信号開始時間位置Xを示す信号が出力された時点で、その動作を停止してもよい。
図4において、シンボル時間長候補保持部(第1の記憶部)30は、予め定められた1つ以上のシンボル時間長の集合であるシンボル時間長候補として、受信機が受信可能なr種類の信号の各々に対応するシンボル時間長S1,S2,…,Srを保持する。例えば、受信機が受信可能な信号の種類がモード1、モード2、モード3、及びモード4の4種類であり、これら4種類のモードに対応するシンボル時間長候補がS1,S2,S3,S4である場合、シンボル時間長候補保持部30は、シンボル時間長候補としてS1,S2,S3,及びS4の値を保持する。また、図4におけるサンプリング時間間隔保持部(第2の記憶部)40は、受信信号のサンプリング時間間隔Fを保持する。
図4において、サンプリング数設定部50は、ガード信号検出部20から出力された信号に基づくガード信号間隔Wを、r種類のシンボル時間長候補S1,S2,…,Srと比較し、両者の値が最も近い場合のシンボル時間長Skに対応するサンプリング数(カウンタ設定値に対応する)を計算する。ここで、kは、1以上r以下の整数である。また、サンプリング数設定部50は、選択されたシンボル時間長候補Skとサンプリング時間間隔Fとの関係に応じて決定される所定周期に基づいて、サンプリング数(カウンタ設定値)を変化させることができる。そして、サンプリング数設定部50は、このようにして制御されたサンプリング数(カウンタ設定値)Hを示す信号をサンプリング数設定信号(カウンタ設定信号)として出力する。
図10は、図4のサンプリング数設定部50の構成例を示すブロック図である。図10に示されるように、サンプリング数設定部50は、比較部501と、除算部502と、フラグ生成部503と、出力制御部504とを備えている。比較部501は、ガード信号間隔Wを受け取り、このガード信号間隔Wを受信機が受信可能なr種類の信号に対応するシンボル時間長候補S1,S2,…,Srの各々と比較する。そして、比較部501は、ガード信号間隔Wに最も近いシンボル時間長候補Skをシンボル時間長として出力する。この比較では、差分演算を行うのが最も簡易であり、比較部501は、差分が最も小さい場合のシンボル時間長を、シンボル時間長Skとして出力する。
次に、除算部502は、比較部501からシンボル時間長Skを受け取り、式(2)に示す計算式から、値α及び値βを算出する。
Sk=α×F+β 式(2)
ここで、αは、シンボル時間長Skをサンプリング時間間隔Fで除算した結果得られる商(正の整数)であり、βは、剰余(0≦β<F)である。
図11は、図10のサンプリング数設定部50の動作例を示す図である。図11の例の場合、1シンボル目(C=0)のシンボルと2シンボル目(C=1)のシンボルとの境界は、端数を許容して表記すると((n−1)+b)回目のサンプリング点である。ここで、nは正の整数であり、bは、0≦b<Fを満たす最大値である。これを、除算部502の出力と対応させると、α=n、β=bとなる。より具体的には、シンボル時間長Skが101.85msであり、サンプリング時間間隔Fが2msである場合には、1シンボル目(C=0)のシンボルについての式(2)は、
「101.85=α×2+β」となる。
この式を用いて、1シンボル目(C=0)のシンボルについてのα及びβの値を計算すれば、H=α=n=50、β=b=1.85となる。すなわち、1シンボル目(C=0)のシンボルについてのサンプリング点は50回であり、端数は1.85msである。
図11における2シンボル目(C=1)以降においては、剰余βは、1シンボルの前部の剰余β1と後部の剰余β2に分かれている。したがって、式(2)は、以下の式(3)に変形される。
Sk=α×F+(β1+β2) 式(3)
ここで、αは、シンボル時間長Skをサンプリング時間間隔Fで除算した結果得られる商(正の整数)であり、(β1+β2)=βであり、剰余(0≦(β1+β2)<F)である。
2シンボル目(C=1)のシンボルにおいては、n=0のサンプリング点がシンボル開始時間位置から0.15ms(=2ms−1.85ms)後であるため、β1=0.15である。したがって、式(3)は
「101.85=α×2+(0.15+β2)」となる。
この式を用いて、2シンボル目のシンボルについてのα及びβ2の値を計算すれば、α=n=50、β2=1.70となる。すなわち、2シンボル目のシンボルについてのサンプリング点は50回であり、端数は1.70msである。
同様に、3シンボル目(C=2)のシンボルにおいては、n=0のサンプリング点がシンボル開始時間位置から0.30ms(=2ms−1.70ms)後であるため、β1=0.30である。したがって、式(3)は
「101.85=α×2+(0.30+β2)」となる。
この式を用いて、3シンボル目のシンボルについてのα及びβ2の値を計算すれば、α=n=50、β2=1.55となる。すなわち、3シンボル目のシンボルについてのサンプリング点は50回であり、端数は1.55msである。
同様に、4シンボル目(C=3)のシンボルにおいては、n=0のサンプリング点がシンボル開始時間位置から0.45ms(=2ms−1.55ms)後であるため、β1=0.45である。したがって、式(3)は
「101.85=α×2+(0.45+β2)」となる。
この式を用いて、4シンボル目のシンボルについてのα及びβ2の値を計算すれば、α=n=50、β2=1.40となる。すなわち、4シンボル目のシンボルについてのサンプリング点は50回であり、端数は1.40msである。
5シンボル目以降も同様に処理を行い、13シンボル目のシンボルにおいては、n=0のサンプリング点がシンボル開始時間位置から1.80ms後であるため、β1=1.80である。したがって、式(3)は
「101.85=α×2+(1.80+β2)」となる。
この式を用いて、13シンボル目のシンボルについてのα及びβ2の値を計算すれば、α=n=50、β2=0.05となる。すなわち、13シンボル目のシンボルについてのサンプリング点は50回であり、端数は0.05msである。
以上のように、uシンボル目(uは、1≦u≦Nを満たす整数であり、Nは正の整数である。)のシンボルにおいては、n=0のサンプリング点がシンボル開始時間位置から(2−(0.15×u))ms後であり、式(3)は、一般化された次式(4)になる。
101.85=α×2+(0.15×(u−1)+β2) 式(4)
そして、次の14シンボル目のシンボルにおいては、0.15×(u−1)=1.95となるので、仮に、H=α=n=50とすると番号(n−1)のサンプリング点が、15シンボル目のシンボルのシンボル開始時間位置よりも後の時点になる。そこで、
(2−(0.15×u))<0の場合には、H=α=n(第1の値)の代わりに、H=α=n−1(第1の値よりも小さい第2の値)を採用して、α=49回とする。式(4)は
「101.85=49×2+(1.95+β2)」となる。
この式を用いて、14シンボル目のシンボルについてのβ2の値を計算すれば、β2=1.90となる。すなわち、14シンボル目のシンボルについてのサンプリング点は49回であり、端数は1.90msである。これは、図11におけるA点の場合に相当する。
以上のように、端数bの値は、シンボルが更新される毎に、サンプリング時間間隔Fから1つ前のシンボルについての端数を減算した値ずつ小さくなる性質を有する。また、1シンボル内のサンプリング点の数は、(F−b)が非負である間は一定の値(第1の値n)となる。
その後、再び先述と同じ考え方を用いて、15シンボル目のシンボルでは、サンプリング点は50回、端数が1.75msとなり、16シンボル目のシンボルでは、サンプリング点は50回、端数が1.6msとなる。以上のことを一般化すると、1シンボル内のサンプリング点の数を第1の値(H=α=n)を、式(5)に示す周期で一時的に第2の値(H=α=n−1)に変更することとなる。
[F/[F−(Sk mod F)]]以上となる整数の内の最小の整数 式(5)
ここで、(Sk mod F)は、シンボル時間長Skをサンプリング時間間隔Fで除算したときの剰余である。
除算部502の計算結果βは、フラグ生成部503に入力される。フラグ生成部503は、周期信号であるフラグ信号Qを出力する。フラグ信号Qは、例えば、(F−b)が非負である間は“0”、(F−b)が負である間は“1”である。一方、除算部502の計算結果αは、出力制御部504に入力される。出力制御部504は、式(6)と式(7)に示す計算結果をカウンタ設定Hの信号として出力する。
出力制御部504は、Q=0の場合には、次式(6)を用いてHを算出する。
(Hの値)={(Sk/F)以下となる整数の内の最大の整数} 式(6)
出力制御部504は、Q=1の場合には、次式(7)を用いてHを算出する。
(Hの値)={(Sk/F)以下となる整数の内の最大の整数}−1 式(7)
サンプリング数設定部50は、演算量削減のため、ガード信号間隔Wが出力される前は動作を停止し、ガード信号間隔Wが出力された時点で動作を開始してもよい。
図4において、計数部60は、ガード信号開始時間位置Xを基準とし、カウンタ設定Hを周期としてカウントを行い、当該周期を有するシンボル検出信号Pを出力する。
図12は、図4の計数部60の動作例を示す図である。また、図13は、図4の計数部60の他の動作例を示す図である。図12に示されるように、シンボル検出信号Pは、ガード信号開始時間位置Xを起点としてカウントを開始し、カウンタ設定Hを周期としてマーク信号を出力するような信号である。また、図13に示されるように、シンボル検出信号Pは、ガード信号開始時間位置Xから一定時間δだけ遅延させた位置を起点としてカウントを開始し、カウンタ設定信号Hを周期としてマーク信号を出力するような信号であってもよい。この場合、遅延させる一定時間は、GIの時間長以内であることが望ましい。計数部60は、演算量削減のため、ガード信号間隔Wが出力される前は動作を停止し、ガード信号開始時間位置Xが出力された時点で動作を開始してもよい。
図4において、周波数解析部70は、シンボル検出信号Pがマークとなる時間位置を基点として所定時間区間内の受信信号Rを切り出し、FFTやDFTなどを用いて受信信号Rを周波数領域の信号に変換する。変換された結果は、周波数解析結果信号Yとして出力される。
実施の形態1に係る同期タイミング制御方法は、ガード信号(GI)とデータ信号(Data)とからなるシンボルを信号処理単位とし、複数のシンボルからなる信号Rを受信し、これらの複数のシンボルの各々について周期的にサンプリングを行う装置における、同期タイミング制御方法である。この方法は、前記複数のシンボルの内の、時間的に隣り合うシンボルのガード信号(GI)間の時間間隔であるガード信号間隔Wを検出するステップと、1シンボル当たりのサンプリング数を設定する設定ステップとを有している。この設定ステップでは、サンプリング数設定部50が、シンボル時間長候補保持部(第1の記憶部)30に保持されている前記シンボル時間長候補S1〜Srの中から前記ガード信号間隔Wに最も近いシンボル時間長候補をシンボル時間長Skとして選択する。次に、サンプリング数設定部50は、前記シンボル時間長Skとサンプリング時間間隔Fとから、1シンボル当たりのサンプリング数Hとして第1の値(α=n)を求める。次に、サンプリング数設定部50は、シンボル時間長Skとサンプリング時間間隔Fとから求められた個数のシンボル(C=0,1,…)の各々について、1シンボル当たりのサンプリング数を第1の値(α=n)に設定し、前記求められた個数のシンボルの次のシンボル(C=N−1)についてのサンプリング数を、第1の値(α=n)よりも少ない第2の値(α=n−1)に設定する。
以上に説明したように、実施の形態1に係る同期タイミング制御装置及び同期タイミング制御方法を用いることで、シンボル時間長Skの推定、及びシンボル時間長Skとサンプリング時間間隔Fの関係に応じて決定される所定周期(14シンボル毎)に基づいて、カウンタ設定Hの値を変化(1だけ少ない値にする)させることが可能となる。また、ガード信号開始時間位置Xを初期値とし、カウンタ設定Hの値を周期としてシンボル検出信号Pを出力することで、受信機のサンプリング周波数(サンプリング時間間隔F)がシンボル時間長に対して非同期であることに起因する時間同期タイミングの時間ズレ(図3におけるγ)の制御を行うことができる。このため、シンボル境界位置を正確なタイミングで検出し続けることが可能となる。
実施の形態2.
図14は、本発明の実施の形態2に係る同期タイミング制御装置(同期タイミング制御方法が適用される装置)における、相関演算部10aの具体的な動作例を示すブロック図である。図14において、図5に示される構成要素と同一又は対応する構成要素には、図5に示される符号と同じ符号を付す。図14に示されるように、相関演算部10aは、複数の処理部105を有し、複数の処理部105の各々が、遅延部101と演算部103とを有している。受信信号Rは、複数の処理部105の各々に並列に入力され、複数の相関演算を並行に実行することができる。相関演算部10aは、図4に示される相関演算部10として適用可能である。したがって、実施の形態2の説明に際しては、図4をも参照する。
図14に示されるように、相関演算部10aでは、受信信号Rがまず複数の遅延部101に入力され、各遅延部101で時間遅延処理が行われる。時間遅延量は、シンボル変数保持部102から各遅延部101に出力される有効シンボル時間長により制御され、1つの遅延部101に対し、受信機が受信可能なr種類(rは正の整数)の信号に対応する有効シンボル時間長のうちの1つが選択的に供給される。
例えば、受信機が受信可能な信号の種類がモード1、モード2、モード3、及びモード4の4種類であり、各々に対応する有効シンボル時間長がV1、V2、V3、及びV4である場合、1番目(図14における複数の処理部105の手前側に描かれているものを1番目とし、2番目以降が奥側に向けて順に並ぶ)の遅延部101における時間遅延量としてV1が選択され、2番目の遅延部101における時間遅延量としてV2が選択され、3番目の遅延部101における時間遅延量としてV3が選択され、4番目の遅延部101における時間遅延量としてV4が選択されて、時間遅延処理が行われ、その結果が遅延信号として各演算部103に出力される。
複数の演算部103の各々は、受信信号Rと遅延信号Dの相関を計算し、その結果を相関信号Lとして出力する。例えば、演算部103では、上述の式(1)のような演算を行う。
また、図15は、実施の形態2に係る同期タイミング制御装置(同期タイミング制御方法が適用される装置)における、相関演算部10bの他の具体的な動作例を示すブロック図である。図15において、図6に示される構成要素と同一又は対応する構成要素には、図6に示される符号と同じ符号を付す。図15に示されるように、相関演算部10bは、複数の処理部106を有し、複数の処理部106の各々が、遅延部101と演算部103と平均化部104とを有している。受信信号Rは、複数の処理部106の各々に並列に入力され、複数の相関演算を並行して実行することができる。相関演算部10bは、図4に示される相関演算部10として適用可能である。
図15に示されるように、相関演算部10bでは、受信信号Rがまず複数の遅延部101に入力され、それぞれの遅延部101で時間遅延処理が行われる。時間遅延量は、シンボル変数保持部102aから各遅延部101に出力される有効シンボル時間長により制御され、1つの遅延部101に対し、受信機が受信可能なr種類の信号に対応する有効シンボル時間長のうちの1つが選択的に供給される。
例えば、受信機が受信可能な信号の種類がモード1、モード2、モード3、及びモード4の4種類であり、各々に対応する有効シンボル時間長がV1、V2、V3、及びV4である場合、1番目の遅延部101における時間遅延量としてV1が選択され、2番目の遅延部101における時間遅延量としてV2が選択され、3番目の遅延部101における時間遅延量としてV3が選択され、4番目の遅延部101における時間遅延量としてV4が選択されて、時間遅延処理が行われ、その結果が遅延信号として各演算部103に出力される。
図15の演算部103の各々は、受信信号Rと遅延信号Dとの相関を計算し、その計算の結果を、時間遅延量としてのV1、V2、V3、及びV4の各々についての、相関信号Lとして各平均化部104に出力する。各平均化部104が時間平均を算出する周期は、シンボル変数保持部102aから出力されるシンボル時間長に応じて制御される。各平均化部104が受信するシンボル時間長も、受信機が受信可能なr種類の信号に対応するシンボル時間長であり、時分割で順に選択される。例えば、受信機が受信可能な信号の種類がモード1、モード2、モード3、及びモード4の4種類であり、これら4種類のモードに対応するシンボル時間長がそれぞれS1,S2,S3,S4である場合を説明する。この場合には、1番目(図15における複数の処理部106の手前側に描かれているものを1番目とし、2番目以降が奥側に向けて順に並ぶ)の平均化部104は、複数のシンボル時間長S1についての複数シンボル分の相関信号Lを用いて時間平均化処理を行い、2番目の平均化部104は、複数のシンボル時間長S2についての複数シンボル分の相関信号Lを用いて時間平均化処理を行い、3番目の平均化部104は、複数のシンボル時間長S3についての複数シンボル分の相関信号Lを用いて時間平均化処理を行い、4番目の平均化部104は、複数のシンボル時間長S4についての複数シンボル分の相関信号Lを用いて時間平均化処理を行う。このような手法をとることで得られた平均化された相関信号Laにおいては、熱雑音の影響が低減される。
以上に説明したように、実施の形態2に係る同期タイミング制御装置及び同期タイミング制御方法を用いることで、シンボル時間長Skの推定、及びシンボル時間長Skとサンプリング時間間隔Fの関係に応じて決定される所定周期(上記実施の形態1の例では、14シンボル毎)に基づいて、カウンタ設定Hの値を変化(1だけ少ない値にする)させることが可能となる。また、ガード信号開始時間位置Xを初期値とし、カウンタ設定Hの値を周期としてシンボル検出信号Pを出力することで、サンプリングを行う装置(受信機)のサンプリング周波数(サンプリング時間間隔F)がシンボル時間長に対して非同期であることに起因する時間同期タイミングの時間ズレ(図3におけるγ)が過大にならないように、制御を行うことができる。このため、シンボル境界位置を正確なタイミングで検出し続けることが可能となる。また、複数の処理部105,106を用いて相関演算を行うので、ガード開始位置の検出に要する処理時間の短縮を図ることができる。
実施の形態3.
図16は、本発明の実施の形態3に係る受信機80の構成を概略的に示すブロック図である。実施の形態3に係る受信機は、例えば、地上デジタル放送の受信機である。図16に示されるように、実施の形態3に係る受信機は、アンテナで受信された信号を中間周波数信号に変換するチューナ81と、チューナ81から出力される中間周波数信号であるアナログ信号をデジタル信号に変換するアナログデジタル(AD)変換器82と、基準周波数信号を生成する局部発振器83と、この基準周波数信号を用いてAD変換器82から出力されるデジタル信号をベースバンドのデジタル信号(ベースバンド信号)に変換する直交復調器84とを有する。これらの構成81〜84は、受信部とも言う。また、実施の形態3に係る受信機は、直交復調器84で変換されたベースバンド信号に等化処理を施す等化器85と、等化器85によって等化処理を施された信号(すなわち、等化結果)に対して誤り訂正処理を行う誤り訂正部86とを有する。実施の形態3に係る受信機は、OFDM伝送方式が採用されている地上デジタル放送方式の受信機に適用可能である。地上デジタル放送方式としては、日本のISDB−T(Integrated Services Digital Broadcasting - Terrestrial)、及び、欧州のDVB−T(Digital Video Broadcasting - Terrestrial)及びDVB−T2等がある。ただし、実施の形態3に係る受信機80は、OFDM信号を受信することができる装置であれば、テレビ、映像記録装置、パーソナルコンピュータなどのような各種の装置に適用可能である。
実施の形態3に係る受信機80においては、実施の形態1及び2又はそれらの変形例の同期タイミング制御装置を、例えば、等化器85内の構成85aとして備えることができる。また、変形例の同期タイミング制御装置は、直交復調器84と等化器85との間に配置することも可能である。ガード信号開始時間位置を初期値とし、カウンタ設定信号の値を周期としてシンボル検出信号を出力することで、受信機のサンプリング周波数がシンボル時間長に対して非同期であることに起因する時間同期タイミングずれの制御が行えるため、シンボル境界位置を正確なタイミングで検出し続けることが可能となる。そのため、同期タイミング制御装置の後段における処理の中断を回避することができる。
変形例.
図17は、実施の形態1及び2の変形例に係る同期タイミング制御装置(図4)のハードウェア構成図である。図17に示される同期タイミング制御装置は、ソフトウェアとしてのプログラムを格納する記憶装置としてのメモリ91と、メモリ91に格納されたプログラムを実行する情報処理部としてのプロセッサ92とを有する。図17は、実施の形態1から3に係る同期タイミング制御装置の構造の具体例を示している。図17に示される装置の動作は、実施の形態1から3に係る同期タイミング制御装置の動作と同じである。
図17に示される装置が、実施の形態1及び2に係る同期タイミング制御装置を実現する場合には、図4に示される同期タイミング制御装置の各構成10,20,50,60,70は、プロセッサ92がメモリ91に記憶されたプログラムを実行することにより、実現される。なお、同期タイミング制御装置の各構成を実現するために、プロセッサ92とメモリ91と用いる場合を例示したが、同期タイミング制御装置の各構成の一部をプロセッサ92とメモリ91で実現し、他の部分をハードウェア回路で実現してもよい。図17に示される同期タイミング制御装置によって、実施の形態1及び2で説明した同期タイミング制御装置及び同期タイミング制御方法を実現することができる。
上述の実施の形態1から3及び変形例の内容は、本発明の一例を示したものであり、本発明はこれらに限られるものではない。
1 同期タイミング制御装置、 10,10a,10b 相関演算部、 20 ガード信号検出部、 30 シンボル時間長候補保持部(第1の記憶部)、 40 サンプリング時間間隔保持部(第2の記憶部)、 50 サンプリング数設定部、 60 計数部、 70 周波数解析部、 101 遅延部、 102,102a シンボル変数保持部(記憶部)、 103 演算部、 104 平均化部、 201 ピーク検出部、 202 ピーク間隔検出部、 203 出力保護部、 501 比較部、 502 除算部、 503 フラグ生成部、 504 出力制御部。

Claims (12)

  1. ガード信号とデータ信号とからなるシンボルを信号処理単位とし、複数のシンボルからなる信号を受信し、前記複数のシンボルの各々について周期的にサンプリングを行う装置における、同期タイミング制御装置であって、
    前記複数のシンボルの内の、時間的に隣り合うシンボルのガード信号間の時間間隔であるガード信号間隔を検出するガード信号検出部と、
    予め定められた1つ以上のシンボル時間長の集合であるシンボル時間長候補を保持している第1の記憶部と、
    1シンボル当たりのサンプリング数を設定するサンプリング数設定部と、
    を備え、
    前記サンプリング数設定部は、
    前記第1の記憶部に保持されている前記シンボル時間長候補の中から前記ガード信号間隔に最も近いシンボル時間長候補をシンボル時間長として選択する処理と、
    前記シンボル時間長と前記サンプリングを行う装置のサンプリング時間間隔とから、1シンボル当たりのサンプリング数として第1の値を求める処理と、
    前記シンボル時間長と前記サンプリング時間間隔とから求められた個数のシンボルの各々について、1シンボル当たりの前記サンプリング数を前記第1の値に設定し、前記求められた個数のシンボルの次のシンボルについての前記サンプリング数を、前記第1の値よりも少ない第2の値に設定する処理と、を行う
    ことを特徴とする同期タイミング制御装置。
  2. 前記求められた個数に1個を加算した個数は、
    Fを前記サンプリング時間間隔とし、
    Skを前記シンボル時間長とし、
    (Sk mod F)を、前記シンボル時間長Skを前記サンプリング時間間隔Fで除算したときの剰余であるとしたときに、
    [F/[F−(Sk mod F)]]以上となる整数の内の最小の整数である
    ことを特徴とする請求項1に記載の同期タイミング制御装置。
  3. 前記第2の値は、前記第1の値から1を減算した値であることを特徴とする請求項1又は2に記載の同期タイミング制御装置。
  4. 前記サンプリング時間間隔を保持している第2の記憶部をさらに有することを特徴とする請求項1から3のいずれか1項に記載の同期タイミング制御装置。
  5. 前記サンプリング数として設定されている値に等しい回数をカウントする毎にシンボル検出信号を出力する計数部をさらに備え、
    前記ガード信号検出部は、前記複数のシンボルのガード信号の各々の開始位置を示すガード信号開始時間位置を検出し、
    前記計数部は、前記ガード信号開始時間位置に基づく時間位置から、前記サンプリング数として設定されている値に等しい回数の前記カウントを開始する
    ことを特徴とする請求項1から4のいずれか1項に記載の同期タイミング制御装置。
  6. 前記受信された信号と、前記受信された信号を遅延させた遅延信号との時間相関を計算して相関信号を出力する相関演算部をさらに備え、
    前記ガード信号検出部は、前記相関信号のピーク位置に基づいて、前記ガード信号開始時間位置及び前記ガード信号間隔を検出する
    ことを特徴とする請求項5に記載の同期タイミング制御装置。
  7. 前記ガード信号検出部は、前記ガード信号間隔と前記ガード信号開始時間位置とを検出した後に、動作を停止することを特徴とする請求項5又は6に記載の同期タイミング制御装置。
  8. 前記サンプリング数設定部は、前記ガード信号間隔と前記ガード信号開始時間位置が出力された時点で動作を開始することを特徴とする請求項5から7のいずれか1項に記載の同期タイミング制御装置。
  9. 前記計数部は、前記ガード信号間隔と前記ガード信号開始時間位置が出力された時点で動作を開始することを特徴とする請求項5から8のいずれか1項に記載の同期タイミング制御装置。
  10. 前記相関演算部は、複数の処理部を有し、
    前記複数の処理部は、受信された信号と前記受信された信号を遅延させた遅延信号との時間相関を計算して相関信号を出力する処理を並行して実行する
    ことを特徴とする請求項6に記載の同期タイミング制御装置。
  11. ガード信号とデータ信号とからなるシンボルを信号処理単位とし、複数のシンボルからなる信号を受信し、前記複数のシンボルの各々について周期的にサンプリングを行う装置における、同期タイミング制御方法であって、
    前記複数のシンボルの内の、時間的に隣り合うシンボルのガード信号間の時間間隔であるガード信号間隔を検出するステップと、
    1シンボル当たりのサンプリング数を設定する設定ステップと、
    を有し、
    前記設定ステップは、
    前記サンプリングを行う装置に保持されている、予め定められた1つ以上のシンボル時間長の集合であるシンボル時間長候補の中から前記ガード信号間隔に最も近いシンボル時間長候補をシンボル時間長として選択するステップと、
    前記シンボル時間長と前記サンプリングを行う装置のサンプリング時間間隔とから、1シンボル当たりのサンプリング数として第1の値を求めるステップと、
    前記シンボル時間長と前記サンプリング時間間隔とから求められた個数のシンボルの各々について、1シンボル当たりの前記サンプリング数を前記第1の値に設定し、前記求められた個数のシンボルの次のシンボルについての前記サンプリング数を、前記第1の値よりも少ない第2の値に設定するステップと、
    を有することを特徴とする同期タイミング制御方法。
  12. 受信信号をベースバンド信号に変換する受信部と、
    前記変換された前記ベースバンド信号に対して処理を行う装置と、
    を有し、
    前記処理を行う装置は、請求項1から10のいずれか1項に記載の同期タイミング制御装置から構成される
    ことを特徴とする受信機。
JP2015205165A 2015-02-12 2015-10-19 同期タイミング制御装置、同期タイミング制御方法、及び受信機 Active JP6422421B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610082308.4A CN105897367B (zh) 2015-02-12 2016-02-05 同步定时控制装置、同步定时控制方法和接收机
DE102016201991.0A DE102016201991B4 (de) 2015-02-12 2016-02-10 Synchronisationszeit-Steuervorrichtung, Synchronisationszeit-Steuerverfahren und Empfänger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015025231 2015-02-12
JP2015025231 2015-02-12

Publications (2)

Publication Number Publication Date
JP2016154322A true JP2016154322A (ja) 2016-08-25
JP6422421B2 JP6422421B2 (ja) 2018-11-14

Family

ID=56761303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015205165A Active JP6422421B2 (ja) 2015-02-12 2015-10-19 同期タイミング制御装置、同期タイミング制御方法、及び受信機

Country Status (2)

Country Link
JP (1) JP6422421B2 (ja)
CN (1) CN105897367B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033686A1 (en) * 2021-08-30 2023-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Random access message timing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156745A (ja) * 1999-09-14 2001-06-08 Sony Corp 復調装置及び復調方法
JP2009194785A (ja) * 2008-02-18 2009-08-27 Hitachi Kokusai Electric Inc Ofdm受信装置及びofdm中継装置
JP2010135900A (ja) * 2008-12-02 2010-06-17 Sharp Corp Ofdm復調装置、ofdm復調方法、ofdm復調プログラム、および、コンピュータ読み取り可能な記録媒体
US7957259B1 (en) * 2006-08-22 2011-06-07 Marvell International Ltd. Mode detection for DVB receiver

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2774961B2 (ja) * 1996-03-29 1998-07-09 株式会社次世代デジタルテレビジョン放送システム研究所 Ofdm復調装置
JP4406998B2 (ja) * 2000-03-31 2010-02-03 ソニー株式会社 同期獲得方法及び無線通信装置
JP2004214962A (ja) * 2002-12-27 2004-07-29 Sony Corp Ofdm復調装置
EP1469647B1 (en) * 2003-04-17 2007-01-10 Mitsubishi Electric Information Technology Centre Europe B.V. OFDM symbol synchronisation
CN102123129B (zh) * 2005-08-26 2012-11-28 松下电器产业株式会社 无线发送装置和无线发送方法
CN101635699B (zh) * 2009-08-24 2012-12-26 清华大学 数字调频广播的ofdm系统发送传输方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156745A (ja) * 1999-09-14 2001-06-08 Sony Corp 復調装置及び復調方法
US7957259B1 (en) * 2006-08-22 2011-06-07 Marvell International Ltd. Mode detection for DVB receiver
JP2009194785A (ja) * 2008-02-18 2009-08-27 Hitachi Kokusai Electric Inc Ofdm受信装置及びofdm中継装置
JP2010135900A (ja) * 2008-12-02 2010-06-17 Sharp Corp Ofdm復調装置、ofdm復調方法、ofdm復調プログラム、および、コンピュータ読み取り可能な記録媒体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033686A1 (en) * 2021-08-30 2023-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Random access message timing

Also Published As

Publication number Publication date
CN105897367B (zh) 2018-05-29
CN105897367A (zh) 2016-08-24
JP6422421B2 (ja) 2018-11-14

Similar Documents

Publication Publication Date Title
JP4263119B2 (ja) Ofdmシステムでの初期周波数の同期方法および装置
JP3398636B2 (ja) 直交周波数分割多重方式受信機の初期周波数同期装置及びその方法
JP4125715B2 (ja) Ofdmシステムでの初期周波数の同期方法及び装置
JP6118616B2 (ja) 受信機および同期補正方法
US8149962B2 (en) Estimating frequency shift
JP4488605B2 (ja) Ofdm信号の伝送方法、送信装置及び受信装置
JP2005102169A (ja) Ofdm受信装置およびofdm受信方法
JP6422421B2 (ja) 同期タイミング制御装置、同期タイミング制御方法、及び受信機
JP2010062865A (ja) 復調装置
US7583770B2 (en) Multiplex signal error correction method and device
US9160591B2 (en) Signal processing method and associated device, and method for determining whether spectrum of multicarrier signal is reversed
EP2770685B1 (en) Ofdm packets time synchronisation
US8581570B2 (en) Frequency error detection apparatus
WO2007055008A1 (ja) 受信装置、誤差検出回路及び受信方法
JP3945623B2 (ja) 周波数同期方法及びこれを用いたofdm受信装置
JP2005102121A (ja) 受信装置
JP5984583B2 (ja) 周波数誤差検出装置、周波数誤差検出方法及び受信装置
JP4362142B2 (ja) 遅延プロファイル生成器
KR100313860B1 (ko) Ofdm 전송 방식에서 미세 주파수 복원장치 및 그 방법
JP5658637B2 (ja) 周波数誤差検出装置及びプログラム
JP2006108763A (ja) Ofdm受信装置、ofdm受信制御プログラムおよびofdm受信方法
JP2006108764A (ja) Ofdm受信装置、ofdm受信制御プログラムおよびofdm受信方法
JP2000358011A (ja) 受信装置
JP5550976B2 (ja) 受信装置
TW202007104A (zh) 接收器及相關的訊號處理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181016

R150 Certificate of patent or registration of utility model

Ref document number: 6422421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250