JP2016142403A - 建設機械の油圧制御装置 - Google Patents

建設機械の油圧制御装置 Download PDF

Info

Publication number
JP2016142403A
JP2016142403A JP2015021281A JP2015021281A JP2016142403A JP 2016142403 A JP2016142403 A JP 2016142403A JP 2015021281 A JP2015021281 A JP 2015021281A JP 2015021281 A JP2015021281 A JP 2015021281A JP 2016142403 A JP2016142403 A JP 2016142403A
Authority
JP
Japan
Prior art keywords
pressure
hydraulic
engine
accumulator
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015021281A
Other languages
English (en)
Other versions
JP6492712B2 (ja
Inventor
健吾 前田
Kengo Maeda
健吾 前田
秀和 岡
Hidekazu Oka
秀和 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Construction Machinery Co Ltd
Original Assignee
Kobelco Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Construction Machinery Co Ltd filed Critical Kobelco Construction Machinery Co Ltd
Priority to JP2015021281A priority Critical patent/JP6492712B2/ja
Publication of JP2016142403A publication Critical patent/JP2016142403A/ja
Application granted granted Critical
Publication of JP6492712B2 publication Critical patent/JP6492712B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

【課題】より効果的に燃費性能の向上を図ることができる建設機械の油圧制御装置を提供する。
【解決手段】油圧制御装置11は、エンジン12に接続された回生モータ23と、回生通路R2を通じて回生モータ23に接続されたアキュムレータ22と、回生通路R2に設けられた放圧用切換弁25と、を備えている。放圧用切換弁25は、アキュムレータ22から回生モータ23に作動油が供給されるのを許容する回生位置とアキュムレータ22から回生モータ23への作動油の供給を停止する停止位置との間で切換可能なスプール25aと、供給通路R6、R7に接続されたパイロットポート25bと、パイロットポート25bに対する供給圧が予め設定された供給圧閾値未満である場合にスプール25aが停止位置に切り換わる一方、供給圧が供給圧閾値以上である場合にスプール25aが回生位置に切り換わるように当該スプール25aを付勢するばね25cと、を有する。
【選択図】図1

Description

本発明は、油圧ショベル等の建設機械に設けられた油圧制御装置に関するものである。
従来から、過給機を有するエンジンと、エンジンにより駆動される油圧ポンプと、油圧ポンプから供給される作動油により作動する油圧アクチュエータと、を備えた建設機械が知られている。
前記建設機械において、エンジンの出力は、油圧ポンプの負荷に応じて制御される。具体的に、油圧アクチュエータの作動に伴い油圧ポンプの負荷が増加すると、エンジンが過給機を用いてターボ駆動することにより、当該エンジンの出力が増加する。
ここで、油圧ポンプの負荷が低い負荷から高い負荷に急激に上昇すると、エンジンの排気量が少ない状況から過給圧を上昇しなければならないため、当該エンジンの出力の立ち上がりに時間がかかる。
この場合、油圧ポンプの負荷がエンジンの出力を上回ってエンジンの回転数が低下するため、これを補うために燃料噴射量が増加して燃費性能が低下するという問題がある。
そこで、例えば、特許文献1に記載のエンジン制御装置は、油圧ポンプの負荷が急激に上昇した場合に電動機を用いてエンジンをアシストする。
具体的に、前記エンジン制御装置は、油圧アクチュエータを操作するための操作装置と、操作装置の操作量に関する信号を出力する操作量検出器と、エンジンの過給圧を検出する過給圧検出器と、キャパシタと、エンジンの回転軸に接続された電動機と、電動機の駆動を制御するコントローラと、を備えている。
コントローラは、操作量検出器からの信号に基づいて操作装置の操作量を算出し、この操作量により油圧ポンプの負荷が増加して当該油圧ポンプの負荷がエンジンの出力トルクを超えるかどうかを判定する(以下、第1判定という)。
この第1判定において、油圧ポンプの負荷がエンジンの出力トルクを超えると判定されると、コントローラは、過給圧検出器によって検出される過給圧が所定圧以下かどうかを判定する(以下、第2判定という)。
この第2判定において、過給圧が所定圧以下であると判定されると、コントローラは、キャパシタの充電量が電動機を所定時間駆動可能な充電量であるかどうかを判定する(以下、第3判定という)。
この第3判定において、キャパシタの充電量が十分な充電量であると判定されると、コントローラは、電動機を所定時間駆動することができる電力をキャパシタから電動機に供給するための指令を出力する。
特開2009−13632号公報
しかしながら、特許文献1に記載のエンジン制御装置は、前記第1判定〜第3判定及びこれらの判定に必要な演算を行った後に発電機を駆動するため、エンジンの出力の上昇に依然として時間を要し、燃費性能の向上に十分に図ることができない。
本発明の目的は、より効果的に燃費性能の向上を図ることができる建設機械の油圧制御装置を提供することにある。
上記課題を解決するために、本発明は、建設機械の油圧制御装置であって、過給機を有するエンジンと、前記エンジンにより駆動される油圧ポンプと、前記油圧ポンプからの作動油の供給により作動する油圧アクチュエータと、前記エンジンの出力軸に接続された回生モータと、前記回生モータに対して回生通路を通じて接続されたアキュムレータと、前記回生通路に設けられた放圧用切換弁と、を備え、前記放圧用切換弁は、前記アキュムレータに蓄えられた作動油が前記回生モータに供給されるのを許容する回生位置と前記アキュムレータから前記回生モータへの作動油の供給を停止する停止位置との間で切換可能なスプールと、前記油圧ポンプから前記油圧アクチュエータに作動油を供給するための供給通路に接続されたパイロットポートと、前記パイロットポートに加えられる作動油の供給圧が予め設定された供給圧閾値未満である場合に前記スプールが前記停止位置に切り換わる一方、前記供給圧が前記供給圧閾値以上である場合に前記スプールが前記回生位置に切り換わるように当該スプールを付勢する付勢手段と、を有する、建設機械の油圧制御装置を提供する。
本発明によれば、アキュムレータに蓄えられた作動油により回生モータを駆動することによりエンジンをアシストして当該エンジンの出力を上げることができる。
さらに、放圧用切換弁のスプールを停止位置から回生位置に切り換えるためのパイロット圧として、油圧ポンプから油圧アクチュエータに供給される作動油の圧力を利用しているため、供給圧の増加、つまり、油圧ポンプの負荷の増加に応じて即座にスプールを切り換えてエンジンの出力を上げることができる。
したがって、本発明によれば、エンジンの出力を上げるための時間を短縮することによって、より効果的に燃費性能の向上を図ることができる。
ここで、エンジンをアシストするために必要な条件が整っていない場合、放圧用切換弁のスプールが回生位置に切り換えられてもエンジンの出力を十分に上げることができない。
そこで、前記建設機械の油圧制御装置において、前記アキュムレータから前記回生モータへの作動油の供給を規制すべき条件として予め設定された規制条件が成立したか否かを判定するとともに、前記規制条件が成立したと判定された場合に前記スプールが前記回生位置に切り換わるのを規制する規制手段をさらに備えていることが好ましい。
この態様によれば、エンジンをアシストするために必要な条件が整っていない状況においてスプールが回生位置に切り換えられるのを規制することができる。
具体的に、前記建設機械の油圧制御装置において、前記アキュムレータに蓄えられた作動油の圧力を検出する蓄圧検出器をさらに備え、前記規制手段は、前記蓄圧検出器により検出された作動油の圧力が予め設定された蓄圧閾値を下回る場合に前記規制条件が成立したと判定する構成とすることができる。
この態様によれば、アキュムレータに十分な圧力の作動油が蓄えられていない場合にスプールが回生位置に切り換えられるのを規制することにより、エンジンの出力を上げることができる圧力の作動油がアキュムレータに蓄えられた状況でスプールを回生位置に切り換えることができる。
なお、前記態様において『蓄圧閾値』は、油圧ポンプから油圧アクチュエータへの供給圧が供給圧閾値以上となった状況においてエンジンの出力を上げるためにアキュムレータに要求される圧力に基づいて設定された値である。
ここで、油圧ポンプから油圧アクチュエータへの供給圧が供給圧閾値以上となった状況であってもエンジンの出力が十分に高い場合には、アキュムレータによりエンジンの出力を上げる必要はない。
そこで、前記建設機械の油圧制御装置において、前記エンジンの出力を検出するエンジン出力検出器をさらに備え、前記規制手段は、前記エンジン出力検出器により検出された前記エンジンの出力が予め設定された出力閾値を超える場合に前記規制条件が成立したと判定することが好ましい。
この態様によれば、アキュムレータによるエンジンのアシストが不要な状況において当該アキュムレータに蓄えられた作動油を温存し、この作動油の持つエネルギーをエンジンのアシストが必要な状況で有効に活用することができるので、省エネを図ることができる。
なお、前記態様において『出力閾値』は、油圧ポンプから油圧アクチュエータへ供給される作動油の供給圧が供給圧閾値以上となった状況においてエンジンに要求される出力に基づいて設定された値である。
ここで、アキュムレータに蓄えられた作動油によるエンジンのアシストが実行されると、エンジンの過給圧が徐々に上昇することも相俟ってエンジンの出力は上昇する。この状況においてエンジンの出力が出力閾値を超えることを理由にスプールを停止位置に切り換えると、次回の蓄圧時におけるアキュムレータの空き容量を十分に確保することができない場合がある。
そこで、前記建設機械の油圧制御装置において、前記規制手段は、前記規制条件が非成立と判定された後、前記蓄圧検出器により検出された作動油の圧力が前記蓄圧閾値以上である場合、前記エンジンの出力が前記出力閾値を超える場合であっても前記スプールの規制が解除された状態を維持することが好ましい。
この態様によれば、本来エンジンのアシストが不要な状況(エンジンの出力が出力閾値を超える状況)であっても敢えてアキュムレータに蓄えられた作動油によるエンジンのアシストを継続することにより、次回の蓄圧時におけるアキュムレータの空き容量を確保することができる。
したがって、次回の蓄圧時に作動油をアキュムレータに蓄えずに廃棄する場合と比較して省エネを図ることができる。
ここで、前記油圧アクチュエータは、第1動作と前記第1動作と異なる方向に駆動する第2動作とを実行可能であり、前記回生通路は、前記第1動作の実行中に前記油圧アクチュエータから導出される作動油が前記アキュムレータに導かれるように前記油圧アクチュエータに接続されている場合、油圧アクチュエータの第1動作時にアキュムレータに作動油を蓄えることができる。
このように油圧アクチュエータの特定の動作時にアキュムレータを蓄圧する場合、アキュムレータに対する蓄圧よりもアキュムレータによるエンジンのアシストを優先すると、エンジンのアシストを実行すべきときにアキュムレータに蓄えられた作動油の圧力が不足するおそれがある。
そこで、前記油圧制御装置は、前記油圧アクチュエータが第1動作を実行していることを検出する動作検出器をさらに備え、前記規制手段は、前記動作検出器により前記油圧アクチュエータの第1動作が検出された場合に前記規制条件が成立したと判定することが好ましい。
この態様によれば、第1動作が実行されている状況、つまり、アキュムレータの蓄圧が可能な状況において、エンジンのアシストよりもアキュムレータに対する蓄圧を優先することにより、アキュムレータに蓄えられた作動油の圧力不足を抑制することができる。
ここで、回生モータは、固定容量式のものでもよいが、この場合、非回生時にエンジンとともに回転する回生モータの吸収トルクによって生じる動力のロスが大きい。
そこで、前記建設機械の油圧制御装置において、前記回生モータは、当該回生モータの容量を調整可能であり、前記油圧制御装置は、前記規制条件が成立すると判定された場合に前記回生モータの容量を最小に調整するとともに、前記規制条件が非成立であると判定された場合に前記回生モータの容量を最小よりも大きく調整する容量調整手段をさらに備えていることが好ましい。
この態様によれば、非回生時における回生モータの吸収トルクを最小限に抑えて動力のロスを低減することができる。
本発明によれば、より効果的に燃費性能の向上を図ることができる。
本発明の実施形態に係る油圧ショベルの全体構成を示す側面図である。 図1の油圧ショベルに設けられた油圧制御装置を示す回路図である。 図2のコントローラにより実行される処理を示すフローチャートである。 図3の回生終了判断処理の内容を示すフローチャートである。
以下添付図面を参照しながら、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を具体化した例であって、本発明の技術的範囲を限定する性格のものではない。
図1を参照して、本発明の実施形態の一例としての油圧ショベル1は、クローラ2aを有する下部走行体2と、下部走行体2上に旋回可能に設けられた上部旋回体3と、上部旋回体3に取り付けられたアタッチメント4と、を備えている。
アタッチメント4は、上部旋回体3に対して上げ下げ可能に取り付けられた基端部を有するブーム5と、ブーム5の先端部に対して回転可能に取り付けられた基端部を有するアーム6と、アーム6の先端部に対して回転可能に取り付けられたバケット7と、を備えている。
さらに、アタッチメント4は、上部旋回体3に対してブーム5を上げ下げ駆動するブームシリンダ8と、ブーム5に対してアーム6を回転駆動するアームシリンダ9と、アーム6に対してバケット7を回転駆動するバケットシリンダ10と、を備えている。
また、油圧ショベル1は、当該油圧ショベル1に設けられた油圧アクチュエータの駆動を制御する、図2に示す油圧制御装置11を備えている。なお、図2では、油圧アクチュエータの一例としてブームシリンダ8及びアームシリンダ9を示している。
図2を参照して、油圧制御装置11は、エンジン12と、エンジン12により駆動される第1油圧ポンプ13及び第2油圧ポンプ14と、第1油圧ポンプ13からの作動油の供給により作動するブームシリンダ8と、第2油圧ポンプ14からの作動油の供給により作動するアームシリンダ9と、第1油圧ポンプ13とブームシリンダ8との間に設けられた第1制御弁15と、第2油圧ポンプ14とアームシリンダ9との間に設けられた第2制御弁16と、第1制御弁15を操作する第1操作手段17と、第2制御弁16を操作する第2操作手段18と、第1アンロード弁19と、第2アンロード弁20と、を備えている。
エンジン12は、過給機(図示省略)を有し、当該過給機による過給圧は、過給圧検出器(エンジン出力検出器)D1によって検出される。
第1油圧ポンプ13及び第2油圧ポンプ14は、可変容量式のポンプである。
第1制御弁15は、ブームシリンダ8に対する作動油の給排を制御する。具体的に、第1制御弁15は、中立位置(図の中央位置)と、第1油圧ポンプ13からの作動油をブームシリンダ8のヘッド側室に導くためのブーム上げ位置(図の左位置)と、第1油圧ポンプ13から作動油をブームシリンダ8のロッド側室に導くためのブーム下げ位置(図の右位置)と、の間で切換可能である。第1制御弁15は、中立位置に付勢されており、第1操作手段17の操作に応じて中立位置からブーム上げ位置又はブーム下げ位置に切り換えられる。
第1操作手段17は、操作レバーと、操作レバーによって操作されるリモコン弁と、を有している。リモコン弁は、後述するパイロットポンプ33からのパイロット一次圧を利用して操作レバーの操作量に応じたパイロット圧を第1制御弁15のパイロットポートに出力する。リモコン弁から出力されるブーム下げのためのパイロット圧は、圧力検出器(動作検出器)D2により検出され、リモコン弁から出力されるブーム上げのためのパイロット圧は、圧力検出器D3により検出される。
第1アンロード弁19は、第1油圧ポンプ13と第1制御弁15との間の第1供給通路R6から分岐してタンクに接続された通路に設けられ、第1供給通路R6をタンクに開放するアンロード位置と第1供給通路R6をタンクから遮断する遮断位置との間で切換可能である。また、第1アンロード弁19は、通常アンロード位置に付勢されており、第1操作手段17の操作に応じて後述するコントローラ34によって遮断位置に切り換えられる。
第2制御弁16は、アームシリンダ9に対する作動油の給排を制御する。具体的に、第2制御弁16は、中立位置(図の中央位置)と、第2油圧ポンプ14からの作動油をアームシリンダ9のヘッド側室に導くためのアーム引き位置(図の左位置)と、第2油圧ポンプ14からの作動油をアームシリンダ9のロッド側室に導くためのアーム押し位置(図の右位置)と、の間で切換可能である。第2制御弁16は、中立位置に付勢されており、第2操作手段18の操作に応じて中立位置からアーム押し位置又はアーム引き位置に切り換えられる。
第2操作手段18は、操作レバーと、操作レバーによって操作されるリモコン弁と、を有している。リモコン弁は、後述するパイロットポンプ33からのパイロット一次圧を利用して操作レバーの操作量に応じたパイロット圧を第2制御弁16のパイロットポートに出力する。リモコン弁から出力されるアーム押しのためのパイロット圧は、圧力検出器D4により検出され、リモコン弁から出力されるアーム引きのためのパイロット圧は、圧力検出器D5により検出される。
第2アンロード弁20は、第2油圧ポンプ14と第2制御弁16とを間の第2供給通路R7から分岐してタンクに接続された通路に設けられ、第2供給通路R7をタンクに開放するアンロード位置と第2供給通路R7をタンクから遮断する遮断位置との間で切換可能である。また、第2アンロード弁20は、通常アンロード位置に付勢されており、第2操作手段18の操作に応じて後述するコントローラ34によって遮断位置に切り換えられる。
油圧制御装置11は、第1制御弁15とブームシリンダ8のヘッド側室とを接続するヘッド側通路R1に設けられたロック弁21を有する。ロック弁21は、第1制御弁15が中立位置に切り換えられている状態において、ブーム5の自重によりブームシリンダ8が縮小する、つまり、ブーム5が下がるのを防止するためのものである。
ここで、ヘッド側通路R1におけるロック弁21の第1制御弁15側の位置には、当該ヘッド側通路R1から分岐する回生通路R2及び排出通路R3が接続されている。回生通路R2は、ブーム下げ動作(第1動作の一例)時にブームシリンダ8のヘッド側室から導出される作動油をエンジンの動力に回生するための通路である。また、排出通路R3は、ブーム下げ動作時に回生し切れない作動油をタンクに排出するための通路である。なお、第1制御弁15のブーム下げ位置は、ヘッド側通路R1をブロックするように構成されている。
油圧制御装置11は、回生通路R2にそれぞれ設けられたアキュムレータ22、回生モータ23、蓄圧用切換弁24、及び放圧用切換弁25と、排出通路R3に設けられた排出用切換弁28と、を備えている。
排出用切換弁28は、ヘッド側通路R1から排出通路R3を通じてタンクへ向かう作動油の流れを許容する排出位置(図の右位置)と、排出通路R3を通じた作動油の流れを規制する非排出位置(図の左位置)と、の間で切換可能な電磁弁である。排出用切換弁28は、通常非排出位置に付勢され、後述するコントローラ34からの指令に応じて排出位置に切り換えられる。また、排出通路R3の排出用切換弁28の下流側には背圧弁29が設けられ、排出通路R3の排出用切換弁28と背圧弁29との間の位置と、第1制御弁15とブームシリンダ8のロッド側室との間の通路と、を接続する再生通路にはチェック弁30が設けられている。これにより、ブーム下げ動作時に排出用切換弁28が排出位置に切り換えられた状態において、背圧弁29によって排出用切換弁28の下流側に背圧が生じることにより再生通路を通じてブームシリンダ8のロッド側室に作動油を補給することができる。
アキュムレータ22は、ブーム下げ動作時にブームシリンダ8から導出される作動油を蓄える。アキュムレータ22に蓄えられた作動油の圧力は、蓄圧検出器D6によって検出される。
回生モータ23は、エンジン12の出力軸に接続されているとともに回生通路R2を通じてアキュムレータ22に接続されている。回生モータ23は、回生通路R2においてアキュムレータ22よりもヘッド側通路R1から離れた位置(タンク側の位置)に設けられている。また、回生モータ23は、レギュレータ23aによって当該回生モータ23の容量を調整可能である。
蓄圧用切換弁24は、回生通路R2においてアキュムレータ22よりもヘッド側通路R1に近い位置に設けられた電磁弁である。また、蓄圧用切換弁24は、ヘッド側通路R1からアキュムレータ22に対する作動油の流れを許容する蓄圧位置(図の右位置)と、ヘッド側通路R1からアキュムレータ22に対する作動油の流れを停止する非蓄圧位置(図の左位置)と、の間で切換可能である。蓄圧用切換弁24は、通常非蓄圧位置に付勢されており、後述するコントローラ34からの指令に応じて蓄圧位置に切り換えられる。なお、蓄圧用切換弁24の上流側(ヘッド側通路R1側)の圧力は、圧力検出器D7により検出される。
放圧用切換弁25は、回生通路R2においてアキュムレータ22と回生モータ23との間に設けられている。
なお、回生通路R2の回生モータ23の下流側には背圧弁27が設けられている。また、回生通路R2の回生モータ23と背圧弁27との間の位置と、回生モータ23と放圧用切換弁25との間の位置と、を接続するバイパス通路にはチェック弁26が設けられている。これにより、放圧用切換弁25が停止位置に切り換えられた状態において回生通路R2の回生モータ23の下流側に背圧が生じることによりバイパス通路を通じて回生モータ23の吸引ポートに作動油を補給することができる。
また、放圧用切換弁25は、スプール25aと、スプール25aを切り換えるための第1パイロットポート25bと、スプール25aを付勢するばね(付勢手段)25cと、を備えている。
スプール25aは、アキュムレータ22に蓄えられた作動油が回生モータ23に供給されるのを許容する回生位置(図の上位置)とアキュムレータ22から回生モータ23への作動油の供給を停止する停止位置(図の下位置)との間で切換可能である。
第1パイロットポート25bは、第1油圧ポンプ13からブームシリンダ8に作動油を供給するための第1供給通路R6(第1油圧ポンプ13と第1制御弁15との間の通路)から分岐する第1パイロット通路R4に接続されている。また、第1パイロットポート25bは、第2油圧ポンプ14からアームシリンダ9に作動油を供給するための第2供給通路R7(第2油圧ポンプ14と第2制御弁16との間の通路)から分岐する第2パイロット通路R5に接続されている。パイロット通路R4には、第1供給通路R6からパイロットポート25bに向かう作動油の流れを許容する一方、その逆向きの流れを規制するチェック弁36が設けられている。パイロット通路R5には、第2供給通路R7からパイロットポート25bに向かう流れを許容する一方、その逆向きの流れを規制するチェック弁37が設けられている。また、両パイロット通路R4、R5は、チェック弁36、37の下流側の位置で互いに合流し、合流した通路が第1パイロットポート25bに接続されている。したがって、両供給通路R6、R7内の圧力のうちの高い圧力が第1パイロットポート25bに伝達される。さらに、第1パイロットポート25bは、絞り35を通じてタンクに接続されている。これにより、供給通路R6、R7から第1パイロットポート25bに作動油が導かれたときに背圧(パイロット圧)を立てることができるとともに、両供給通路R6、R7内の圧力が減少することに応じて第1パイロットポート25bに与えられるパイロット圧を徐々に低下させることができる。
ばね25cは、第1パイロットポート25bに加えられる作動油の供給圧が予め設定された供給圧閾値未満である場合にスプール25aが停止位置に切り換わる一方、供給圧が供給圧閾値以上である場合にスプール25aが回生位置に切り換わるように当該スプール25aを付勢する。つまり、スプール25aは、第1パイロットポート25bに対する供給圧が供給圧閾値未満である場合に停止位置に付勢され、供給圧が供給圧閾値以上となるとばね25cの付勢力に抗して回生位置に切り換えられる。
このように、放圧用切換弁25のスプール25aを停止位置から回生位置に切り換えるためのパイロット圧として、油圧ポンプ13、14からシリンダ8、9に供給される作動油の圧力を利用することができる。そして、放圧用切換弁25のスプール25aが回生位置に切り換えられると、アキュムレータ22に蓄えられた作動油により回生モータ23を駆動することによりエンジン12をアシストしてエンジン12の出力を上げることができる。
ここで、エンジン12をアシストするのに必要な条件が整っていない場合、放圧用切換弁25のスプール25aが回生位置に切り換えられてもエンジン12の出力を十分に上げることができない。
そこで、油圧制御装置11は、アキュムレータ22から回生モータ23への作動油の供給を規制すべき条件として予め設定された規制条件が成立したか否かを判定するとともに、規制条件が成立したと判定された場合にスプール25aが回生位置に切り換わるのを規制する規制手段を備えている。
具体的に、規制手段は、蓄圧検出器D6により検出された作動油の圧力が予め設定された蓄圧閾値を下回る場合に前記規制条件が成立したと判定する。蓄圧閾値は、油圧ポンプ13、14からシリンダ8、9への供給圧が前記供給圧閾値以上となった状況においてエンジン12の出力を上げるためにアキュムレータ22に要求される圧力に基づいて設定された値である。
また、規制手段は、過給圧検出器D1により検出されたエンジン12の過給圧が予め設定された過給圧閾値(出力閾値)を超える場合に前記規制条件が成立したと判定する。なお、過給圧閾値は、油圧ポンプ13、14からシリンダ8、9へ供給される作動油の供給圧が供給圧閾値以上となった状況においてエンジン12に要求される出力に基づいて設定された値である。
さらに、規制手段は、圧力センサD2によりブーム下げ動作(第1動作)が検出された場合に前記規制条件が成立したと判定する。
以下、規制手段の具体的構成について説明する。
規制手段は、放圧用切換弁25のばね室と同じ側に設けられた第2パイロットポート25dと、第2パイロットポート25dに作動油を供給するためのパイロットポンプ33と、パイロットポンプ33から第2パイロットポート25dへのパイロット圧を調整する放圧用電磁弁31と、放圧用電磁弁31の作動を制御するコントローラ34と、を備えている。
第2パイロットポート25dは、パイロットポンプ33からパイロット圧を受けたときに停止位置に切り換えられる方向の力をスプール25aに与えるように放圧用切換弁25に設けられている。
放圧用電磁弁31は、第2パイロットポート25dをタンクに開放する非付勢位置と、第2パイロットポート25dに対してパイロット圧の供給を許容する付勢位置と、の間で切換可能である。また、放圧用電磁弁31は、通常非付勢位置に付勢されており、コントローラ34からの電気指令により付勢位置に切り換えられる。放圧用電磁弁31が付勢位置に切り換えられて第2パイロットポート25dにパイロット圧が与えられることにより、放圧用切換弁25のスプール25aの回生位置への切り換えが規制される。
コントローラ34は、蓄圧検出器D6により検出されたアキュムレータ22の圧力が蓄圧閾値を下回る場合、過給圧検出器D1により検出された過給圧が過給圧閾値を超える場合、及び圧力センサD2によりブーム下げ動作が検出された場合に、放圧用電磁弁31を付勢位置に切り換えるための電気指令を出力する。したがって、これらの場合に、油圧ポンプ13、14からシリンダ8、9への供給圧が前記供給圧閾値以上となっても放圧用切換弁25のスプール25aが回生位置に保持される。
なお、コントローラ34は、ブーム下げ動作時にアキュムレータ22の蓄圧が実行されるように蓄圧用切換弁24、放圧用切換弁25、及び排出用切換弁28を制御する。
具体的に、コントローラ34は、圧力検出器D2によりブーム下げ操作が検出されると、放圧用電磁弁31に電気指令を出力することにより放圧用切換弁25のスプール25aを停止位置に切り換える(保持する)。この状態において蓄圧用切換弁24は、非蓄圧位置に付勢されており、コントローラ34は、蓄圧検出器D6及び圧力検出器D7の検出結果に基づいて蓄圧可能であるか否かを判定する。具体的には、圧力検出器D7により検出された蓄圧用切換弁24の上流側(ヘッド側通路R1側)の圧力が蓄圧検出器D6により検出されたアキュムレータ22内の圧力よりも高い場合に蓄圧可能であると判定される。蓄圧可能であると判定されると、コントローラ34は、蓄圧位置に切り換えるための電気指令を蓄圧用切換弁24に出力し、ブームシリンダ8から導出される残りの作動油が存在する場合には当該残りの作動油を流すための電気指令を排出用切換弁28に出力する。一方、蓄圧不能であると判定されると、コントローラ34は、排出位置に切り換えるための電気指令を排出用切換弁28に出力する。
ここで、回生モータ23は、非回生時(放圧用切換弁25のスプール25aが停止位置に切り換えられた状態)においてもエンジン12とともに回転する。そのため、非回生時における回生モータ23の吸収トルクが大きいと動力のロスが大きくなってしまう。
そこで、油圧制御装置11は、規制条件が成立すると判定された場合に回生モータ23の容量(傾転)を最小に調整するとともに、規制条件が非成立であると判定された場合に回生モータ23の容量を最小よりも大きく調整する容量調整手段をさらに備えている。
具体的に、容量調整手段は、回生モータ23の容量を調整するためのレギュレータ23aと、レギュレータ23aに対してパイロット圧を供給するためのパイロットポンプ33と、パイロットポンプ33からレギュレータ23aへのパイロット圧を調整する調整用電磁弁32と、コントローラ34と、を備えている。
レギュレータ23aは、パイロット圧が供給されることにより回生モータ23の容量を調整する方向に作動する作動部を有している。
調整用電磁弁32は、レギュレータ23aのパイロットポート(図示せず)をタンクに開放する非調整位置と、レギュレータ23aのパイロットポートに対してパイロット圧の供給を許容する調整位置と、の間で切換可能である。また、調整用電磁弁32は、通常非調整位置に付勢されており、コントローラ34は、当該コントローラ34からの電気指令に応じたパイロット圧が出力されるように調整用電磁弁32の開口面積を制御する。調整用電磁弁32が非調整位置に切り換えられることにより回生モータ23は最小の容量に調整される。
以下、図3を参照して、コントローラ34により実行される処理について説明する。
まず、圧力検出器D2〜D5によって両操作手段17、18の少なくとも一方におけるレバー操作が行われているか否かが判定される(ステップS1)。
ここで、レバー操作が行われていないと判定されると、放圧用電磁弁31に電気指令を出力せず(ソレノイドを非励磁とし)、回生モータ23の容量(傾転)を最小に設定する(ステップS2)。これにより、両シリンダ8、9が作動しておらず両供給通路R6、R7内が低圧の状況(アンロード弁19、20がアンロード位置に切り換えられた状況)において放圧用電磁弁31によるスプール25aの切り換えの規制を解除することができ、さらに、回生が行われない状況においてエンジン12とともに回転する回生モータ23による駆動ロスを最小限に抑えることができる。なお、本実施形態では、ステップS1でNOと判定されたときにスプール25aの切り換えの規制を解除しているが、ステップS1でNOと判定された場合に規制条件が成立したものとしてスプール25aの切り換えを規制してもよい。
一方、ステップS1においてレバー操作が行われたと判定されると、圧力検出器D2によりブーム下げ操作が行われていないか否かが判定される(ステップS3)。
ここで、ブーム下げ操作が行われていると判定されると(規制条件が成立したと判定されると)、放圧用電磁弁31に電気指令を出力し(ソレノイドを励磁し)、回生モータ23の容量(傾転)を最小に設定する(ステップS4)。これにより、ブーム下げ動作の実行中にスプール25aの回生位置への切り換えを規制してアキュムレータ22の蓄圧を行うことができるとともに、エンジン12とともに回転する回生モータ23による駆動ロスを最小限に抑えることができる。
一方、ステップS3においてブーム下げ操作が行われていないと判定されると、蓄圧検出器D6により検出されたアキュムレータ22の圧力が蓄圧閾値P1以上であるか否かが判定される(ステップS5)。
ここで、アキュムレータ22の圧力が蓄圧閾値P1未満であると判定されると(規制条件が成立したと判定されると)、放圧用電磁弁31に電気指令を出力し(ソレノイドを励磁し)、回生モータ23の容量(傾転)を最小に設定する(ステップS4)。これにより、エンジン12をアシストするのに十分な圧力の作動油がアキュムレータ22に蓄えられていない場合にスプール25aが回生位置に切り換えられるのを規制することができるとともに、エンジン12とともに回転する回生モータ23による駆動ロスを最小限に抑えることができる。
一方、ステップS5においてアキュムレータ22の圧力が蓄圧閾値P1以上であると判定されると、過給圧検出器D1により検出されたエンジン12の過給圧が過給圧閾値P2以下であるか否かが判定される(ステップS6)。
ここで、エンジン12の過給圧が過給圧閾値P2を超えると判定されると(規制条件が成立したと判定されると)、放圧用電磁弁31に電気指令を出力し(ソレノイドを励磁し)、回生モータ23の容量(傾転)を最小に設定する(ステップS4)。これにより、アキュムレータ22によるエンジン12のアシストが不要な状況において当該アキュムレータ22に蓄えられた作動油を温存することができるとともに、エンジン12とともに回転する回生モータ23による駆動ロスを最小限に抑えることができる。
一方、ステップS6においてエンジン12の過給圧が過給圧閾値P2以下であると判定されると、放圧用電磁弁31に電気指令を出力せず(ソレノイドを非励磁とし)、回生モータ23の容量(傾転)を最大に設定する(ステップS7)。これにより、エンジン12の出力が比較的に低い状況で、かつ、エンジン12のアシストに十分な圧力の作動油がアキュムレータ22に蓄えられた状況において、スプール25aの回生位置への切り換えの規制を解除することができる。そのため、供給通路R6、R7の少なくとも一方の圧力が供給圧閾値以上となった場合に、スプール25aが回生位置に切り換えられてアキュムレータ22によるエンジン12のアシストが自動的に開始される。ここで、回生モータ23の傾転が最大に設定されているため、アキュムレータ22の作動油を用いて効率よくエンジン12をアシストすることができる。
そして、ステップS2及びステップS4が実行された場合には回生が実行されていないと判断し、両ステップS2、S4の後に当該処理はリターンする。一方、ステップS7が実行された場合には回生が実行されていると判断し、ステップS7の後に回生の終了条件が成立したか否かを判断する回生終了判断処理Tが開始される。
図4を参照して、回生終了判断処理Tが開始されると、両操作手段17、18におけるレバー操作が行われているか否かが判定される(ステップT1)。
ここで、レバー操作が行われていないと判定されると、放圧用電磁弁31に電気指令を出力せず(ソレノイドを非励磁とし)、回生モータ23の容量(傾転)を最小に設定する(ステップT2)。これにより、両シリンダ8、9が作動しておらず両供給通路R6、R7内が低圧の状況(アンロード弁19、20がアンロード位置に切り換えられた状況)において放圧用電磁弁31によるスプール25aの切り換えの規制を解除してアキュムレータ22によるエンジン12のアシストを終了することができる。また、エンジン12とともに回転する回生モータ23による駆動ロスを最小限に抑えることができる。
一方、ステップT1においてレバー操作が行われていると判定されると、圧力検出器D2によりブーム下げ操作が行われていないか否かが判定される(ステップT3)。
ここで、ブーム下げ操作が行われていると判定されると、放圧用電磁弁31に電気指令を出力し(ソレノイドを励磁し)、回生モータ23の容量(傾転)を最小に設定する(ステップT4)。これにより、ブーム下げ動作の実行の開始に伴いアキュムレータ22によるエンジン12のアシストを終了してアキュムレータ22の蓄圧を開始することができるとともに、エンジン12とともに回転する回生モータ23による駆動ロスを最小限に抑えることができる。
一方、ステップT3においてブーム下げ操作が行われていないと判定されると、蓄圧検出器D6により検出されたアキュムレータ22の圧力が蓄圧閾値P1以上であるか否かが判定される(ステップT5)。
ここで、アキュムレータ22の圧力が蓄圧閾値P1未満であると判定されると、放圧用電磁弁31に電気指令を出力し(ソレノイドを励磁し)、回生モータ23の容量(傾転)を最小に設定する(ステップT4)。これにより、アキュムレータ22の圧力がエンジン12をアシストするのに不十分な圧力まで低下したときにアキュムレータ22によるエンジン12のアシストを停止することができるとともに、エンジン12とともに回転する回生モータ23による駆動ロスを最小限に抑えることができる。
一方、ステップT5においてアキュムレータ22の圧力が蓄圧閾値P1以上であると判定されると、放圧用電磁弁31に電気指令を出力せず(ソレノイドを非励磁とし)、回生モータ23の容量(傾転)を最大に設定する(ステップT6)。これにより、エンジン12のアシストに十分な圧力の作動油がアキュムレータ22に蓄えられた状況において、エンジン12の出力が出力閾値を超える場合であっても、供給通路R6、R7の少なくとも一方の圧力が供給圧閾値以上であることを条件として回生を継続することができる。
そして、ステップT2、T4のようにアキュムレータ22によるエンジン12のアシストを終了した場合、当該処理は、図3のステップS1にリターンする一方、ステップT6のようにアキュムレータ22によるエンジン12のアシストが継続された場合、回生終了判断処理Tが繰り返し実行される。
以上説明したように、アキュムレータ22に蓄えられた作動油により回生モータ23を駆動することによりエンジン12をアシストして当該エンジン12の出力を上げることができる。
さらに、放圧用切換弁25のスプール25aを停止位置から回生位置に切り換えるためのパイロット圧として、油圧ポンプ13、14からシリンダ8、9に供給される作動油の圧力を利用しているため、供給圧の増加、つまり、油圧ポンプ13、14の負荷の増加に応じて即座にスプール25aを切り換えてエンジン12の出力を上げることができる。
したがって、エンジン12の出力を上げるための時間を短縮することによって、より効果的に燃費性能の向上を図ることができる。
また、前記実施形態によれば、以下の効果を奏することができる。
前記実施形態では、エンジン12をアシストするために必要な条件が整っていない状況(規制条件が成立すると判定された場合)においてスプールが回生位置に切り換えられるのを規制することができる。
具体的に、蓄圧検出器D6により検出された圧力が蓄圧閾値を下回る場合(ステップS5でNOの場合)に、スプール25aが回生位置に切り換わるのを規制する(ステップS4)。これにより、アキュムレータ22に十分な圧力の作動油が蓄えられていない場合にスプール25aが回生位置に切り換えられるのを規制することにより、エンジン12の出力を上げることができる圧力の作動油がアキュムレータ22に蓄えられた状況でスプール25aを回生位置に切り換えることができる。
また、エンジン12の過給圧が過給圧閾値を超える場合(ステップS6でNOの場合)にスプール25aが回生位置に切り換わるのを規制する(ステップS4)。これにより、アキュムレータ22によるエンジン12のアシストが不要な状況において当該アキュムレータ22に蓄えられた作動油を温存し、この作動油の持つエネルギーをエンジン12のアシストが必要な状況で有効に活用することができるので、省エネを図ることができる。
一方、前記実施形態では、規制条件が非成立と判定された後(ステップS6の後)において蓄圧検出器D6により検出された作動油の圧力が蓄圧閾値以上である場合(ステップT5でYESの場合)、過給圧が過給圧閾値P2を超える場合であってもスプール25aの規制が解除された状態を維持する(ステップT6)。これにより、本来エンジン12のアシストが不要な状況(過給圧が過給圧閾値を超える状況)であっても敢えてアキュムレータ22に蓄えられた作動油によるエンジン12のアシストを継続することにより、次回の蓄圧時におけるアキュムレータ22の空き容量を確保することができる。
例えば、ブーム下げ、アーム引き、及びバケットによる掘削が行われた後、ブーム上げ、アーム押し、及びバケットによる排土が行われる一連の掘削サイクルにおいては、ブーム下げ時にアキュムレータ22に対する蓄圧が行われる一方、ブーム上げ時に第1油圧ポンプ13の負荷が上昇する。このような場合に、1回の掘削サイクル内で、アキュムレータ22に蓄えられた作動油を使い切る(蓄圧閾値を下回るまでアキュムレータ22に蓄えられた作動油を使い切る)ことにより、次の掘削サイクルの実行時において有効に蓄圧を行うことができる。
したがって、次回の蓄圧時(次の掘削サイクルの実行時)に作動油をアキュムレータ22に蓄えずに廃棄する場合と比較して省エネを図ることができる。
前記実施形態によれば、ブーム下げ動作が実行されている状況、つまり、アキュムレータ22の蓄圧が可能な状況において、エンジン12のアシストよりもアキュムレータ22に対する蓄圧を優先する(ステップS5でNOの場合にステップS7よりもステップS4を優先的に実行する)ことにより、アキュムレータ22に蓄えられた作動油の圧力不足を抑制することができる。
前記実施形態によれば、規制条件が成立すると判定された場合(ステップS3、S5、S6のそれぞれでNOの場合)に回生モータ23の容量を最小に調整することにより、非回生時における回生モータ23の吸収トルクを最小限に抑えて動力のロスを低減することができる。
なお、本発明は、前記実施形態に限定されるものではなく、例えば、以下の態様を採用することもできる。
エンジン出力検出器として過給圧検出器D1を例示したが、エンジン出力検出器はこれに限定されない。例えば、エンジン出力検出器として、燃料噴射量を検出する手段を用いることもできる。具体的に、油圧ポンプ13、14からシリンダ8、9に供給される作動油の圧力が供給圧閾値以上である状況(シリンダ8、9の負荷が高い状況)において、シリンダ8、9の負荷に応じてエンジン12に要求される出力を得るための燃料噴射量が定まるため、この燃料噴射量に基づいて噴射量閾値(出力閾値)を設定することができる。そして、コントローラ34は、検出された燃料噴射量が予め設定された噴射量閾値を超える場合に規制条件が成立したと判定することができる。
第1油圧ポンプ13と第1制御弁15との間の第1供給通路R6を供給通路の一例として説明したが、供給通路は、第1制御弁15とブームシリンダ8との間の通路であってもよい。ただし、この通路は、第1制御弁15が切り換えられることによりブームシリンダ8から作動油が排出される排出通路としても機能するため、排出通路として機能するときに当該通路と第1パイロットポート25bとを遮断するための手段を別途設ける必要がある。
第2供給通路R7についても同様である。
第2パイロットポート25d、パイロットポンプ33、放圧用電磁弁31、及びコントローラ34により構成された規制手段を例示したが、規制手段は、これに限定されない。例えば、第2パイロットポート25dに代えてソレノイドを設けることにより、当該ソレノイド及びコントローラ34によって規制手段を構成することもできる。
レギュレータ23a、パイロットポンプ33、調整用電磁弁、及びコントローラ34により構成された容量調整手段を例示したが、容量調整手段は、これに限定されない。例えば、パイロットポートを有する前記レギュレータ23aに代えてソレノイドを有するレギュレータを採用することにより、当該レギュレータ及びコントローラ34によって容量調整手段を構成することもできる。
建設機械は、油圧ショベルに限定されず、クレーン及び解体機でもよく、油圧式に限定されずハイブリッド式のものでもよい。
D1 過給圧検出器
D2 圧力検出器(動作検出器の一例)
D6 蓄圧検出器
P1 蓄圧閾値
P2 過給圧閾値
R2 回生通路
R6、R7 供給通路
1 油圧ショベル(建設機械の一例)
8 ブームシリンダ(油圧アクチュエータの一例)
9 アームシリンダ(油圧アクチュエータの一例)
11 油圧制御装置
12 エンジン
13 第1油圧ポンプ
14 第2油圧ポンプ
22 アキュムレータ
23 回生モータ
23a レギュレータ(容量調整手段の一例)
25 放圧用切換弁
25a スプール
25b 第1パイロットポート
25d 第2パイロットポート(規制手段の一例)
31 放圧用電磁弁(規制手段の一例)
32 調整用電磁弁(容量調整手段の一例)
33 パイロットポンプ(規制手段及び容量調整手段の一例)
34 コントローラ(規制手段及び容量調整手段の一例)

Claims (7)

  1. 建設機械の油圧制御装置であって、
    過給機を有するエンジンと、
    前記エンジンにより駆動される油圧ポンプと、
    前記油圧ポンプからの作動油の供給により作動する油圧アクチュエータと、
    前記エンジンの出力軸に接続された回生モータと、
    前記回生モータに対して回生通路を通じて接続されたアキュムレータと、
    前記回生通路に設けられた放圧用切換弁と、を備え、
    前記放圧用切換弁は、前記アキュムレータに蓄えられた作動油が前記回生モータに供給されるのを許容する回生位置と前記アキュムレータから前記回生モータへの作動油の供給を停止する停止位置との間で切換可能なスプールと、前記油圧ポンプから前記油圧アクチュエータに作動油を供給するための供給通路に接続されたパイロットポートと、前記パイロットポートに加えられる作動油の供給圧が予め設定された供給圧閾値未満である場合に前記スプールが前記停止位置に切り換わる一方、前記供給圧が前記供給圧閾値以上である場合に前記スプールが前記回生位置に切り換わるように当該スプールを付勢する付勢手段と、を有する、建設機械の油圧制御装置。
  2. 請求項1に記載の建設機械の油圧制御装置であって、
    前記アキュムレータから前記回生モータへの作動油の供給を規制すべき条件として予め設定された規制条件が成立したか否かを判定するとともに、前記規制条件が成立したと判定された場合に前記スプールが前記回生位置に切り換わるのを規制する規制手段をさらに備えている。
  3. 請求項2に記載の建設機械の油圧制御装置であって、
    前記アキュムレータに蓄えられた作動油の圧力を検出する蓄圧検出器をさらに備え、
    前記規制手段は、前記蓄圧検出器により検出された作動油の圧力が予め設定された蓄圧閾値を下回る場合に前記規制条件が成立したと判定する。
  4. 請求項3に記載の建設機械の油圧制御装置であって、
    前記エンジンの出力を検出するエンジン出力検出器をさらに備え、
    前記規制手段は、前記エンジン出力検出器により検出された前記エンジンの出力が予め設定された出力閾値を超える場合に前記規制条件が成立したと判定する。
  5. 請求項4に記載の建設機械の油圧制御装置であって、
    前記規制手段は、前記規制条件が非成立と判定された後、前記蓄圧検出器により検出された作動油の圧力が前記蓄圧閾値以上である場合、前記エンジンの出力が前記出力閾値を超える場合であっても前記スプールの規制が解除された状態を維持する。
  6. 請求項2〜5の何れか1項に記載の建設機械の油圧制御装置であって、
    前記油圧アクチュエータは、第1動作と前記第1動作と異なる方向に駆動する第2動作とを実行可能であり、
    前記回生通路は、前記第1動作の実行中に前記油圧アクチュエータから導出される作動油が前記アキュムレータに導かれるように前記油圧アクチュエータに接続され、
    前記油圧制御装置は、前記油圧アクチュエータが第1動作を実行していることを検出する動作検出器をさらに備え、
    前記規制手段は、前記動作検出器により前記油圧アクチュエータの第1動作が検出された場合に前記規制条件が成立したと判定する。
  7. 請求項2〜6の何れか1項に記載の建設機械の油圧制御装置であって、
    前記回生モータは、当該回生モータの容量を調整可能であり、
    前記油圧制御装置は、前記規制条件が成立すると判定された場合に前記回生モータの容量を最小に調整するとともに、前記規制条件が非成立であると判定された場合に前記回生モータの容量を最小よりも大きく調整する容量調整手段をさらに備えている。
JP2015021281A 2015-02-05 2015-02-05 建設機械の油圧制御装置 Active JP6492712B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015021281A JP6492712B2 (ja) 2015-02-05 2015-02-05 建設機械の油圧制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015021281A JP6492712B2 (ja) 2015-02-05 2015-02-05 建設機械の油圧制御装置

Publications (2)

Publication Number Publication Date
JP2016142403A true JP2016142403A (ja) 2016-08-08
JP6492712B2 JP6492712B2 (ja) 2019-04-03

Family

ID=56570132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015021281A Active JP6492712B2 (ja) 2015-02-05 2015-02-05 建設機械の油圧制御装置

Country Status (1)

Country Link
JP (1) JP6492712B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106759623A (zh) * 2017-02-22 2017-05-31 常熟华威履带有限公司 一种液压挖掘机用液压控制装置
WO2019054365A1 (ja) * 2017-09-15 2019-03-21 川崎重工業株式会社 建設機械の油圧駆動システム
JP2020085194A (ja) * 2018-11-29 2020-06-04 日立建機株式会社 建設機械
JP2020133785A (ja) * 2019-02-21 2020-08-31 株式会社スギノマシン 水圧シリンダ駆動機構およびその制御方法
CN114508512A (zh) * 2022-02-23 2022-05-17 农业农村部南京农业机械化研究所 一种驱动底盘的节能液压系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028233A (ja) * 2002-06-26 2004-01-29 Komatsu Ltd 圧油エネルギー回収回生装置
US20060185355A1 (en) * 2005-02-18 2006-08-24 Raszga Calin L Hydraulic gravitational load energy recuperation
JP2009013632A (ja) * 2007-07-03 2009-01-22 Hitachi Constr Mach Co Ltd 建設機械のエンジン制御装置
JP2010242444A (ja) * 2009-04-09 2010-10-28 Sumitomo Heavy Ind Ltd ハイブリッド型建設機械
JP2014505211A (ja) * 2010-12-15 2014-02-27 キャタピラー インコーポレイテッド エネルギー回収手段を備える油圧制御系
US20140325972A1 (en) * 2013-05-03 2014-11-06 Caterpillar Inc. Hydraulic Hybrid Boom System Hydraulic Transformer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028233A (ja) * 2002-06-26 2004-01-29 Komatsu Ltd 圧油エネルギー回収回生装置
US20060185355A1 (en) * 2005-02-18 2006-08-24 Raszga Calin L Hydraulic gravitational load energy recuperation
JP2009013632A (ja) * 2007-07-03 2009-01-22 Hitachi Constr Mach Co Ltd 建設機械のエンジン制御装置
JP2010242444A (ja) * 2009-04-09 2010-10-28 Sumitomo Heavy Ind Ltd ハイブリッド型建設機械
JP2014505211A (ja) * 2010-12-15 2014-02-27 キャタピラー インコーポレイテッド エネルギー回収手段を備える油圧制御系
US20140325972A1 (en) * 2013-05-03 2014-11-06 Caterpillar Inc. Hydraulic Hybrid Boom System Hydraulic Transformer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106759623A (zh) * 2017-02-22 2017-05-31 常熟华威履带有限公司 一种液压挖掘机用液压控制装置
CN106759623B (zh) * 2017-02-22 2023-03-28 索特传动设备有限公司 一种液压挖掘机用液压控制装置
WO2019054365A1 (ja) * 2017-09-15 2019-03-21 川崎重工業株式会社 建設機械の油圧駆動システム
JP2019052702A (ja) * 2017-09-15 2019-04-04 川崎重工業株式会社 建設機械の油圧駆動システム
CN111094665A (zh) * 2017-09-15 2020-05-01 川崎重工业株式会社 建筑机械的油压驱动系统
GB2581069A (en) * 2017-09-15 2020-08-05 Kawasaki Heavy Ind Ltd Hydraulic drive system for construction machine
GB2581069B (en) * 2017-09-15 2022-03-23 Kawasaki Heavy Ind Ltd Hydraulic drive system of construction machine
JP2020085194A (ja) * 2018-11-29 2020-06-04 日立建機株式会社 建設機械
JP2020133785A (ja) * 2019-02-21 2020-08-31 株式会社スギノマシン 水圧シリンダ駆動機構およびその制御方法
JP7166192B2 (ja) 2019-02-21 2022-11-07 株式会社スギノマシン 水圧シリンダ駆動機構およびその制御方法
CN114508512A (zh) * 2022-02-23 2022-05-17 农业农村部南京农业机械化研究所 一种驱动底盘的节能液压系统

Also Published As

Publication number Publication date
JP6492712B2 (ja) 2019-04-03

Similar Documents

Publication Publication Date Title
JP5130353B2 (ja) 建設機械の旋回駆動制御システム
KR101992510B1 (ko) 건설 기계
JP6090781B2 (ja) エンジンアシスト装置および作業機械
JP5548113B2 (ja) 作業機械の駆動制御方法
JP6492712B2 (ja) 建設機械の油圧制御装置
JP6205339B2 (ja) 油圧駆動装置
JP5860053B2 (ja) 建設機械の油圧駆動装置
KR101834589B1 (ko) 선회체를 갖는 건설 기계
JP5378061B2 (ja) ハイブリッド建設機械の制御装置
EP2940315B1 (en) Hydraulic control device and construction machine with same
KR102062193B1 (ko) 작업 기계의 압유 에너지 회생 장치
JP2011085198A (ja) 作業機械の油圧システム
JP6177913B2 (ja) ショベル及びショベルの制御方法
JP2010078035A (ja) 作業機械の油圧シリンダ制御回路
WO2014027583A1 (ja) ハイブリッド建設機械の制御システム
JP5530728B2 (ja) 油圧制御装置及びこれを備えた油圧式作業機械
US20160002887A1 (en) Construction machine
JP2009275771A (ja) 流体圧アクチュエータ制御回路
JP2015222099A (ja) 油圧回生装置及びこれを備えた建設機械
JP6147153B2 (ja) 動力制御装置及びこれを備えた建設機械
JP2011226491A (ja) 油圧ショベルの旋回油圧回路
JP2012036665A (ja) 油圧ショベルの油圧回路
JP6292037B2 (ja) 建設機械
JP6037725B2 (ja) ハイブリッド建設機械の制御装置
JP6009388B2 (ja) 作業機械

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6492712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150