JP2016142195A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2016142195A
JP2016142195A JP2015019294A JP2015019294A JP2016142195A JP 2016142195 A JP2016142195 A JP 2016142195A JP 2015019294 A JP2015019294 A JP 2015019294A JP 2015019294 A JP2015019294 A JP 2015019294A JP 2016142195 A JP2016142195 A JP 2016142195A
Authority
JP
Japan
Prior art keywords
target
driving force
compressor driving
supercharger
bypass valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015019294A
Other languages
English (en)
Other versions
JP5924716B1 (ja
Inventor
葉狩 秀樹
Hideki Hagari
秀樹 葉狩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015019294A priority Critical patent/JP5924716B1/ja
Priority to US14/820,752 priority patent/US9938912B2/en
Priority to DE102015220744.7A priority patent/DE102015220744A1/de
Priority to CN201510695665.3A priority patent/CN105840325B/zh
Application granted granted Critical
Publication of JP5924716B1 publication Critical patent/JP5924716B1/ja
Publication of JP2016142195A publication Critical patent/JP2016142195A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/04Mechanical drives; Variable-gear-ratio drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0411Volumetric efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • F02M35/10163Supercharged engines having air intakes specially adapted to selectively deliver naturally aspirated fluid or supercharged fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

【課題】データ計測や適合の工数を抑えながら、加速応答特性の操作が容易な、内燃機関の制御装置を提供する。
【解決手段】本発明の内燃機関の制御装置のECU40は、目標トルクに基づいて目標吸入空気量と目標充填効率とを算出し、目標吸入空気量に基づいてスロットルバルブ6の開度を制御し、目標充填効率に基づいて目標スーパーチャージャ下流圧を算出するとともに、スーパーチャージャの上流側の圧力を検出して、目標吸入空気量と目標スーパーチャージャ下流圧とスーパーチャージャ上流圧とに基づいて目標圧縮機駆動力を算出し、目標圧縮機駆動力に基づいて目標バイパスバルブ開度を算出して、スーパーチャージャを迂回するバイパス通路に設けられたバイパスバルブ12の開度を制御する。
【選択図】図2

Description

本発明は内燃機関の制御装置に関し、特に、内燃機関の出力軸からベルトを介して駆動される圧縮機を有する機械式過給機を備えた内燃機関を制御するための内燃機関の制御装置に関する。
従来から、内燃機関(以下、エンジン)の出力を向上させることを目的として、過給機付きのエンジン制御システムが開発されている。過給機の例としては、ターボ式過給機(以下、ターボチャージャ、T/Cとも書く)と、機械式過給機(以下、スーパーチャージャ、S/Cとも書く)とが知られている。
ターボチャージャにおいては、エンジンの排気系に設けられたタービンを排気ガスの持つエネルギーにより高速回転させる。これにより、当該タービンと接続されている吸気系に設けられた圧縮機を駆動させる。
また、スーパーチャージャにおいては、エンジンの吸気系に設けられた圧縮機をエンジンの出力軸からベルトを介して駆動させる。
近年では、複数のターボチャージャを直列又は並列に備えたものや、ターボチャージャとスーパーチャージャの双方を備えたもの、更には、圧縮機を電動モータで直接駆動する電動チャージャも開発されている。
ターボチャージャにおいては、高回転高負荷では必要以上に過給圧が増加してエンジンを破損させる恐れがある。そのため、通常、タービン上流に排気バイパス通路を設けている。また、排気バイパス通路に設けられたウェイストゲートバルブにより、排気路内を流れる排ガスの一部をバイパス通路へと分流させる。こうして、排ガスのタービンへの流入量を調節することにより、過給圧を適正レベルに制御している。
ウェイストゲートバルブによる過給圧の制御方法としては、例えば、特許文献1に記載の内燃機関の制御装置がある。特許文献1では、まず、エンジン出力目標値に基づいて、目標吸入空気流量及び目標充填効率を算出する。次に、目標充填効率と回転速度とに基づいて、目標スロットル上流圧を算出する。さらに、目標吸入空気流量と目標スロットル上流圧とに基づいて、過給機を駆動するために必要な目標圧縮機駆動力を算出する。ここで、排ガス流量は空燃比と吸入空気流量とに基づいて算出されるが、当該排ガス流量と圧縮機駆動力との特性は、ウェイストゲートバルブ制御値にのみ依存される。この関係を用いて、排ガス流量と目標圧縮機駆動力から目標ウェイストゲートバルブ制御値を算出する。
特許文献1に開示された内燃機関の制御装置は、近年主流となっている所謂トルクベース制御との親和性が高い。そのため、特許文献1に開示された内燃機関の制御装置は、加速応答特性の操作、燃費最適ポイントでの運転、更には、ばらつき要素の学習が可能という優れた特長を有している。なお、トルクベース制御とは、運転者や車両側からの駆動力の要求値であるエンジンの出力軸トルクを、エンジン出力目標値として、主なエンジン制御量である空気量、燃料量及び点火時期を決定する制御方法のことである。
一方、スーパーチャージャにおいても、高回転高負荷では必要以上に過給圧が増加してエンジンを破損させる恐れがある。そのため、スーパーチャージャを迂回するバイパス通路を設けている。そうして、このバイパス通路に設けられたバイパスバルブにてスーパーチャージャ下流の空気をスーパーチャージャ上流に戻す。これにより、過給圧を適正レベルに制御する。
また、スーパーチャージャにおける他の方法として、電磁クラッチによりスーパーチャージャをエンジンの出力軸から切り離すことで、過給圧を適正レベルに抑制する方法が知られている。
バイパスバルブによる過給圧の制御方法としては、例えば、特許文献2では、アクセルペダルの踏込み量に応じた出力電圧を発生する負荷センサの出力信号等に基づいてバイパスバルブの目標デューティー比と目標吸入空気量とを算出し、環境補正した目標吸入空気量とエアフローメーターにより検出された吸入空気量により目標デューティー比をフィードバック制御する過給機付内燃機関の吸気制御装置が開示されている。また、特許文献3では、エンジン運転状態に応じた目標過給圧を達成するバイパス空気量を算出し、過給機の下流側圧力と上流側圧力の差に基づいて、バイパス弁の制御量を決定する過給機付エンジンの過給圧制御装置が開示されている。
特許第5420013号公報 特開平4−325717号公報 特許第3366399号公報
しかしながら、特許文献1に開示された制御装置は、ウェイストゲートバルブによる過給圧の制御方法であるため、バイパスバルブによる過給圧の制御方法として適用することはできない。
特許文献2,3はバイパスバルブによる過給圧の制御方法である。しかしながら、特許文献2に開示された制御装置は、目標デューティー比と環境補正した目標吸入空気量の関係が一対一で対応する前提で制御系を構築していると考えられる。特許文献2の制御装置では、スロットル開度やスロットル下流圧との関係を考慮していないため、例えば、環境条件やスロットル弁のばらつき等によりこれらが変化した時の目標デューティー比と環境補正した目標吸入空気量との関係が崩れた場合には、制御性が悪化するという第1の課題があると考えられる。更に、特許文献2の制御装置では、ドライバ以外のトルク要求、例えば、トランスミッション制御やトラクション制御等からのトルクダウン要求時には対応することができないという第2の課題があると考えられる。これらの課題は、特許文献3に開示された制御装置により改善されると考えられる。第1の課題についてはスロットル開度やスロットル下流圧を考慮してバイパス弁の制御量を決定し、第2の課題については通常目標過給圧以外にトラクション制御用の目標過給圧も用いてバイパス弁の制御量を決定しているためである。
しかしながら、特許文献3に開示された制御装置は、バイパス弁(ABV)を通過する流量(ABV通過流量)とABV前後差圧とABV開度の関係に基づいて制御系を構築していると考えられる。しかしながら、近年のス−パーチャージャは、バイパスバルブと一体で構成されているため、バイパスバルブがスーパーチャージャの近傍にある。そのため、スーパーチャージャの回転速度(∝エンジン回転速度)や通過流量に応じて、バイパスバルブ近傍の空気が乱される。それによって、ABVの有効開口面積が変化してしまい、その結果、ABV通過流量とABV前後差圧とABV開度の関係は運転状態に応じて大きく変動してしまう。そのため、ABV通過流量とABV前後差圧とABV開度との関係を算出又は計測し、それを精度良く模擬するには、特許文献3の図5に示されるマップよりも多くのマップが必要になると考えられる。その結果、データ計測や適合の工数が多くなってしまうという課題がある。また、特許文献3には、ばらつきを補正するためにS/C吐出量を学習することが記載されているが、スーパーチャージャのみならず、バイパスバルブにもばらつき要素は存在すると考えらえるため、S/C吐出量の学習だけでは十分に補正できない場合があるという課題もある。
この発明は、かかる課題を解決するためになされたものであり、データ計測や適合の工数を抑えながら、加速応答特性の操作が容易な、内燃機関の制御装置を提供することを目的としている。
本発明は、内燃機関の吸気路に設けられたスロットルバルブと、前記吸気路の前記スロットルバルブの下流側に設けられ、前記内燃機関の出力軸によって駆動される圧縮機を有するスーパーチャージャと、前記スーパーチャージャを迂回するように前記吸気路に接続されたバイパス通路に設けられたバイパスバルブと、前記バイパスバルブの開度であるバイパスバルブ開度を操作することにより前記バイパス通路の流路断面積を変更するバイパスバルブ駆動部と、前記内燃機関の出力目標値である目標トルクに基づいて、前記内燃機関に吸入される吸入空気量の目標値となる目標吸入空気量と前記内燃機関の充填効率の目標値となる目標充填効率とを算出する目標吸入空気量算出部と、前記目標吸入空気量に基づいて前記スロットルバルブの目標開度を算出する目標スロットル開度算出部と、前記スロットルバルブの目標開度に基づいて、前記スロットルバルブの開度を操作することにより前記内燃機関に吸入される空気量である吸入空気量を調整するスロットルバルブ駆動部と、前記目標充填効率に基づいて前記スーパーチャージャの下流側の圧力の目標値となる目標スーパーチャージャ下流圧を算出する目標スーパーチャージャ下流圧算出部と、前記スーパーチャージャの上流側の圧力を検出するスーパーチャージャ上流圧検出部と、前記目標吸入空気量と前記目標スーパーチャージャ下流圧と前記スーパーチャージャ上流圧とに基づいて目標圧縮機駆動力を算出する目標圧縮機駆動力算出部と、前記目標圧縮機駆動力に基づいてバイパスバルブ開度の目標値となる目標バイパスバルブ開度を算出する目標バイパスバルブ開度算出部とを備えた内燃機関の制御装置である。
本発明の内燃機関の制御装置は、目標トルクに基づいて目標吸入空気量と目標充填効率とを算出し、目標吸入空気量に基づいてスロットルバルブの開度を制御し、目標充填効率に基づいて目標スーパーチャージャ下流圧を算出するとともに、スーパーチャージャの上流側の圧力を検出して、目標吸入空気量と目標スーパーチャージャ下流圧とスーパーチャージャ上流圧とに基づいて目標圧縮機駆動力を算出し、目標圧縮機駆動力に基づいて目標バイパスバルブ開度を算出して、スーパーチャージャを迂回するバイパス通路に設けられたバイパスバルブの開度を制御するようにしたので、データ計測や適合の工数を抑えながら、運転者または他の制御装置からのトルク要求を実現でき、加速応答特性の操作を容易に実現することが可能となる。
本発明の実施例に係るエンジンの吸排気系を示す構成図である。 本発明の実施例に係るECUの入出力及びエンジン制御の概要を示すブロック図である。 本発明の実施例に係る圧縮機駆動力の算出処理内容を示す制御ブロック図である。 本発明の実施例に係るスーパーチャージャ下流圧の算出処理内容を示す制御ブロック図である。 本発明の実施例に係る最大及び最小圧縮機駆動力の算出処理内容を示す制御ブロック図である。 本発明の実施例に係る目標バイパスバルブ開度の算出処理内容を示す制御ブロック図である。 本発明の実施例に係るQa−Pcの関係、Qa−Pc″の関係を示すグラフである。
以下、この発明を実施するための実施の形態について、図面を参照して説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る内燃機関の制御装置が適用される、内燃機関(以下、エンジン1)とその吸排気系を示す構成図である。図1において、エンジン1のクランクには、エンジン1の回転角を検出し、当該回転角に応じた電気信号(以下、パルス間周期ΔT)を生成するクランク角センサ25が取り付けられている。また、エンジン1の燃焼室の吸入口と排出口には、それぞれ、吸気路を形成する吸気管2と、排気路を形成する排気管26とが接続されている。
吸気管2の最上流側には、外部から取り込んだ外気を浄化するためのエアクリーナ3が取り付けられている。エアクリーナ3の下流側(エンジン1に近い側)には、吸入空気流量を検出して当該吸入空気流量に応じた電気信号(以下、吸入空気量Qa)を生成するエアフローセンサ(以下、AFS)4と、吸気路内の吸入空気温度を検出して当該吸入空気温度に応じた電気信号(以下、吸入空気温Ta)を生成する吸入空気温センサ(吸気温センサ)5とが、互いに一体又は別体に設けられている。なお、図1では、両センサ4、5が一体に構成された例を示す。
AFS4の下流側には、エンジン1に送られる空気量を調整するための電子制御式のスロットルバルブ6が設けられている。スロットルバルブ6には、スロットルバルブ6のスロットル開度を検出し、当該スロットル開度に応じた電気信号(以下、スロットル開度Th)を生成するスロットル開度センサ7が接続されている。さらに、スロットルバルブ6には、後述するスロットルバルブ目標開度に基づいて、スロットルバルブ6の開度を操作することによりエンジン1に吸入される吸入空気量を調整するスロットルバルブ駆動部(スロットルアクチュエータ)(図示せず)が設けられている。また、スロットルバルブ6の下流側には、スーパーチャージャ11が設けられている。スーパーチャージャ11は、内部に、圧縮機(図示せず)を備えている。圧縮機は、エンジン1の出力軸によりベルトを介して駆動される。スロットルバルブ6の下流かつスーパーチャージャ11の上流には、当該箇所の空気圧を検出して当該空気圧に応じた電気信号(以下、スロットル下流圧Pb1)を生成するスロットル下流圧センサ8と、当該箇所の吸入空気温度を検出して当該吸入空気温度に応じた電気信号(以下、スロットル下流温Tb1)を生成するスロットル下流温センサ9とが互いに一体又は別体に設けられている。なお、図1では、両センサ8、9が一体に構成された例を示す。
また、スロットル下流圧センサ8の下流かつスーパーチャージャ11の上流には、スーパーチャージャ11を迂回するためのバイパス通路10への分岐点が設けられている。バイパス通路10内には、バイパス通路の流路断面積を変更することで通過する空気量を調整するためのバイパスバルブ12が設けられている。バイパスバルブ12には、バイパスバルブ12のバイパスバルブ開度を検出し、当該バイパスバルブ開度に応じた電気信号(以下、バイパスバルブ開度BV)を生成するバイパスバルブ開度センサ13が接続されている。バイパスバルブ12の下流のバイパス通路10は、スーパーチャージャ11の下流で、吸気管2に再接続されている。なお、図1では、図示を省略しているが、バイパスバルブ12に対しては、バイパスバルブ12の開度を操作することによりバイパス通路10の流路断面積を変更するバイパスバルブ駆動手段(バイパスバルブアクチュエータ)が設けられている。
バイパス通路10の当該再接続点の下流側には、インタークーラ(以下、I/Cとも書く)14が設けられている。インタークーラ14は、スーパーチャージャ11に設けられた圧縮機により圧縮された空気を冷却する。インタークーラ14の下流側には、吸気脈動を抑制するためのサージタンク15が設けられている。サージタンク15には、サージタンク15内の空気圧を検出して当該空気圧に応じた電気信号(以下、インマニ圧Pb)を生成するインマニ圧センサ16と、サージタンク15内の吸入空気温度を検出して当該吸入空気温度に応じた電気信号(以下、インマニ温Tb)を生成するインマニ温センサ17とが互いに一体又は別体に設けられている。なお、図1では、両センサ16、17が一体に構成された例を示す。サージタンク15の下流のエンジン1の燃焼室の吸入口には、燃料を噴射するインジェクタ20が設けられている。なお、インジェクタ20は、シリンダ18内に直接燃料を噴射するように設けられてもよい。
シリンダ18の頂部には、エンジン1に吸入された空気とインジェクタ20から噴射された燃料とが混合して生成される可燃混合気に点火する点火プラグ21と、点火プラグ21に火花を飛ばすためのエネルギーを発生させる点火コイル22とが設けられている。また、吸気管2とエンジン1との間には、吸気管2からシリンダ18内に導入される空気量を調節する吸気バルブ23が設けられている。また、排気管26とエンジン1との間には、シリンダ18内から排気管26に排出される空気量を調節する排気バルブ24が設けられている。なお、吸気バルブ23と排気バルブ24には、それぞれのバルブタイミングやバルブリフト量を調整できる機構が設けられていてもよい。
エンジン1の排気管26の下流側には、排気ガスを浄化するための排気ガス浄化触媒28が設けられている。排気ガス浄化触媒28の上流側(エンジン1側)には、燃焼ガス内の燃料又は酸素の割合(以下、空燃比)を検出して、当該空燃比に応じた電気信号(以下、空燃比AF)を生成する空燃比センサ27が設けられている。
次に、本発明の実施の形態1に係る内燃機関の制御装置について、図2を参照しながら説明する。図2は、本発明の実施の形態1に係る内燃機関の制御装置に設けられた、電子制御ユニット(以下、ECU)40の構成およびその入出力を示すブロック図である。ECU40は、マイクロプロセッサと、マイクロプロセッサへの入出力を行うためのインターフェース回路とで構成されている。マイクロプロセッサは、演算処理を実行するCPUと、CPUによって実行されるプログラムと固定値データとを記憶するROMと、データの書き換えが可能なRAMとを有する。ECU40には、図2に示されるように、各センサからの電気信号が入力される。すなわち、具体的には、ECU40には、クランク角センサ25で測定されたエンジンの回転角に応じて出力されるパルス間周期ΔTと、AFS4で測定された吸入空気量Qaと、吸入空気温センサ5で測定された吸入空気温Taと、スロットル開度センサ7で測定されたスロットルバルブ6のスロットル開度Thと、スロットル下流圧センサ8で測定されたスロットル下流圧Pb1と、スロットル下流温センサ9で測定されたスロットル下流温Tb1と、バイパスバルブ開度センサ13で測定されたバイパスバルブ開度BVと、インマニ圧センサ16で測定されたインマニ圧Pbと、インマニ温センサ17で測定されたインマニ温Tbと、空燃比センサ27で測定された空燃比AFとが入力される。
また、ECU40は、上記以外の図示しない各種センサからも電気信号が入力される。この図示しない各種センサには、例えば、アクセル開度APに応じた電気信号を生成するアクセル開度センサ、大気圧Paを計測する大気圧センサ、エンジン1の燃焼制御用のセンサや車両の挙動制御用のセンサ(例えば、車速センサ、水温センサ、ノックセンサ等)が含まれている。更に、他の制御装置、例えば、トランスミッション制御、ブレーキ制御、トラクション制御、オートクルーズ制御等の制御装置から電気信号も入力される。
ECU40には、図2に示されるように、目標トルク算出部41と、目標吸入空気量算出部42と、目標スロットル開度算出部43と、目標圧縮機駆動力算出部44と、実圧縮機駆動力算出部45と、目標バイパスバルブ開度算出部46と、燃料噴射量算出部47と、点火時期算出部48とを備えている。
ECU40では、まず、目標トルク算出部41において、アクセル開度AP、および、エッジ間周期ΔTから算出されたエンジン回転速度Neを含む、各種データより、エンジン出力の目標値である目標トルクTrqが算出される。なお、目標トルクTrqは、他の制御装置からの要求トルクがあれば、そちらを優先して採用する。
次に、目標吸入空気量算出部42において、目標トルクTrqを達成するように、目標トルクTrqに基づいて目標充填効率Ect及び目標吸入空気量Qatが算出される。
次に、目標スロットル開度算出部43において、目標吸入空気量Qatを達成するように、目標吸入空気量Qatに基づいて目標スロットル開度Thtが算出される。こうして、目標スロットル開度Thtに基づいて、スロットルバルブ6が駆動される。ここで、目標スロットル開度算出部43においては、スロットル開度Thが目標スロットル開度Thtとなるようフィードバック補正制御も実施され、更に、吸入空気量Qaが目標吸入空気量Qatとなるよう、目標スロットル開度Thtをフィードバック補正制御するようにしてもよい。このように、目標トルクをエンジンで達成するために吸入空気量等を制御する所謂トルクベース制御が実施されている。
また、ECU40では、目標圧縮機駆動力算出部44において、目標吸入空気量Qat、スロットル下流圧Pb1、および、目標充填効率Ectより算出される目標インマニ圧Pbtに基づいて、目標圧縮機駆動力Pctが算出される。
また、実圧縮機駆動力算出部45において、吸入空気量Qa、スロットル下流圧Pb1、および、インマニ圧Pbに基づいて、実圧縮機駆動力Pcが算出される。
次に、目標バイパスバルブ開度算出部46において、目標圧縮機駆動力Pct、および、実圧縮機駆動力Pcに基づいて、目標バイパスバルブ開度BVtが算出される。こうして、目標バイパスバルブ開度BVtに基づいてバイパスバルブ12が駆動される。ここで、目標バイパスバルブ開度算出部46において、バイパスバルブ開度BVが目標バイパスバルブ開度BVtとなるようフィードバック補正制御も実施されている。
更に、ECU40では、吸入空気量Qa又はインマニ圧Pbに基づいて充填効率Ecが算出される。ここで、吸入空気量Qaおよびインマニ圧Pbは、吸気バルブ23の動作等に起因する吸気脈動の影響により、予め設定されたクランク角度周期で変動している。そのため、例えばその周期より短い1ms毎にA/D変換しておき、その値を、予め設定されたクランク角度周期、例えば、4気筒エンジンなら180degCA毎に、3気筒エンジンなら240degCA毎に平均化処理を行うことで、吸気脈動の影響を低減するようにしてもよい。
続いて、ECU40では、燃料噴射量算出部47において、エンジン回転速度Ne、充填効率Ec、および、排ガスやエンジン出力等を最適となるよう設定された目標空燃比AFtに基づいて、燃料噴射量Qfを算出する。こうして、燃料噴射量Qfに基づいてインジェクタ20が制御される。合わせて、燃料噴射量算出部47において、空燃比AFが目標空燃比AFtに近づくよう、燃料噴射量Qfに対するフィードバック補正制御も実施されている。
更に、ECU40では、点火時期算出部48において、エンジン回転速度Ne、および、充填効率Ecに基づいて、燃費や異常燃焼を考慮して設定された点火時期IGが算出される。こうして、点火時期IGを達成するよう、点火コイル22に通電が行われる。
また、ECU40は、エンジン回転速度Neと充填効率Ecと点火時期IG等に基づいて、エンジン1が発生している実トルクを推定する機能や、その他の各種アクチュエータも必要に応じて制御する機能も有している。
以上のように、ECU40により、エンジン1は制御されている。次に、本発明の実施の形態1に係る、目標圧縮機駆動力算出部44、実圧縮機駆動力算出部45、目標バイパスバルブ開度算出部46について、図3〜図7を参照しながら詳しく説明する。
図3は、目標圧縮機駆動力算出部44および実圧縮機駆動力算出部45における圧縮機駆動力の算出処理の構成を具体的に示す制御ブロック図である。以下、図1、図2とともに、図3を参照しながら、本実施の形態における目標圧縮機駆動力および実圧縮機駆動力の算出処理について具体的に説明する。
まず、圧縮機駆動力について以下に説明する。断熱圧縮仕事に基づいて算出される圧縮機を駆動するために必要な動力(以下、圧縮機駆動力と呼称する)Pc[W]は、下記の(1)式により算出される。ここで、κ:比熱比(空気の場合、1.4)、Qcmp:圧縮機通過流量[g/s]、R:気体定数[kJ/(kg・K)](空気の場合、0.287)、P:圧力[kPa]、T:絶対温度[K]である。但し、P:圧力[kPa]およびT:絶対温度[K]における添え字の1、2は、1:圧縮機入口、2:圧縮機出口をそれぞれ示す。
Figure 2016142195
本実施の形態においては、(1)式における圧縮機通過流量Qcmpと吸入空気流量Qaとは等しい。また、圧縮機入口圧P1すなわちスーパーチャージャ上流圧は、スロットル下流圧Pb1である(以下、スーパーチャージャ上流圧Pb1とも書く)。また、圧縮機入口温T1すなわちスーパーチャージャ上流温は、スロットル下流温Tb1である(以下、スーパーチャージャ上流温Tb1とも書く)。圧縮機出口圧P2すなわちスーパーチャージャ下流圧は、インマニ圧Pbとほぼ等しいが、厳密にはインタークーラ14の圧力損失により予め設定されたオフセットが存在する。そのため、例えば、図4に示すように、ブロックB401に、エンジン回転速度Neの値とI/C圧力損失ΔPb2の値との対応関係が予め定められたルックアップテーブル(マップ)を予め記憶させておく(以下、当該マップを、「I/C圧力損失ΔPb2マップ」と呼称する)。そうして、エンジン回転速度Neを用いて、当該「I/C圧力損失ΔPb2マップ」に従って、I/C圧力損失ΔPb2を算出する。算出したI/C圧力損失ΔPb2を、加算器により、インマニ圧Pbに加算することで、スーパーチャージャ下流圧Pb2を求める。こうして求められた、スーパーチャージャ上流圧Pb1、スーパーチャージャ上流温Tb1、および、スーパーチャージャ下流圧Pb2を用いることで、(1)式は、下記の(2)式のように書くことができる。
Figure 2016142195
ところで、本実施の形態のように、スロットル下流に設けられたスーパーチャージャ11では、スーパーチャージャ上流圧Pb1が常時変化する。また、環境状態によっても、スーパーチャージャ上流圧Pb1およびスーパーチャージャ上流温Tb1が大きく変化する。これらが変化した場合、或るエンジン回転速度において、(2)式に基づいて、圧縮機駆動力Pcを算出すると、吸入空気量Qaに対する圧縮機駆動力Pcの変化量及びそのばらつきが大きく、制御上扱いにくい(例えば、図7(a)に示すようになる。具体的には、吸入空気量Qaの増加に伴い、圧縮機駆動力Pcが増加するが、このとき、エンジン回転速度Neおよびバイパスバルブ開度BVごとに、その増加率(グラフの傾き)は異なる。)。そこで、圧縮機駆動力Pcを標準状態(例えば、Pb10=101.3[kPa]、Tb10=25℃、添え字0は標準状態)に換算するために、圧縮性の影響を考慮した相似則から導出される下記の(3)式により修正して、修正圧縮機駆動力Pc′を算出する。
Figure 2016142195
更に、修正圧縮機駆動力Pc′は断熱過程を仮定して算出したものであるが、実際の圧縮機では等エントロピ過程ではなく、断熱系における不可逆変化であるのでエントロピが増大する方向になる。このような実際の過程と等エントロピ過程の違いを示す指標が断熱効率ηadであり、下記の(4)式で定義される。
Figure 2016142195
ここで、Tb2はスーパーチャージャ下流温である。本実施の形態においては、断熱効率ηadの計測時のみスーパーチャージャ下流に温度センサを取り付けて、エンジン回転速度Ne及びバイパスバルブ開度BVを変化させて、スーパーチャージャ下流温Tb2を計測する。また、計測したスーパーチャージャ下流温Tb2に基づいて断熱効率ηadを算出する。こうして、算出した断熱効率ηadを、エンジン回転速度Neと、バイパスバルブ開度BVに応じて変化するスーパーチャージャ上下流の圧力比(Pb2/Pb1)とを軸とした、3次元ルックアップテーブル(マップ)として予め記憶することで(以下、当該マップを、「断熱効率ηadマップ」と呼称する)、スーパーチャージャ11の断熱効率を算出できるようになる。なお、本実施の形態においては、バイパスバルブ12が開くことによる効率の低下や圧縮空気の循環による温度上昇も断熱効率に含まれるものと考えている。こうして、断熱効率ηadを考慮して、修正圧縮機駆動力Pc′を補正すると下記の(5)式のようになる。
Figure 2016142195
(5)式で示される断熱効率補正後の修正圧縮機駆動力を、以降においては補正後圧縮機駆動力Pc″と呼称し、(3)式及び(5)式より導かれる下記の(6)式を用いて、圧縮機駆動力Pcから補正後圧縮機駆動力Pc″を算出する。
Figure 2016142195
このようにして算出される補正後圧縮機駆動力Pc″を用いると、任意のエンジン回転速度において、吸入空気量Qaに対する補正後圧縮機駆動力Pc″は、例えば、図7(b)のように、バイパスバルブ開度BVごとに一定となり、環境条件や吸入空気量Qaに係らず、バイパスバルブ開度BVと補正後圧縮機駆動力Pc″とが対応するようになる。本実施の形態は、この対応関係に基づいて構成されている。
次に、以上で説明した圧縮機駆動力の算出を実際にECU40で実現する方法について、図3の圧縮機駆動力の算出処理内容を具体的に示す制御ブロック図を参照しながら説明する。まず、実圧縮機駆動力算出部45における実圧縮機駆動力の算出について説明する。まず、図3に示すように、ブロックB301で、スーパーチャージャ上流圧Pb1およびスーパーチャージャ下流圧Pb2に基づいて、スーパーチャージャ上下流の圧力比(Pb2/Pb1)が算出される。このとき、スーパーチャージャ下流圧Pb2は、図4のブロック図を用いて前述したように、インマニ圧PbにI/C圧力損失ΔPb2を加算して算出されたものである。
続くブロックB302では、スーパーチャージャ上下流の圧力比(Pb2/Pb1)と、スーパーチャージャ上流温Tb1と、吸入空気流量Qaとより、(2)式に基づいて、実圧縮機駆動力Pcが算出される。ここで、式(2)における括弧内の指数演算は、ECU40にて演算を実施すると演算量が多くなるため、スーパーチャージャ上下流の圧力比(Pb2/Pb1)ごとに、それを((κ−1)/κ)乗した演算結果を、予めルックアップテーブル(マップ)として設定しておき、スーパーチャージャ上下流の圧力比(Pb2/Pb1)に基づいて本テーブルから算出するようにしてもよい。
次に、ブロックB303では、断熱効率ηadを算出する。これは前述のように、予め計測した結果に基づいて算出した断熱効率ηadを、「断熱効率ηadマップ」として記憶しておき、エンジン回転速度Neとスーパーチャージャ上下流の圧力比(Pb2/Pb1)とに基づいて、当該「断熱効率ηadマップ」から算出する。
続くブロックB304では、実圧縮機駆動力Pc、断熱効率ηad等より(6)式に基づいて補正後実圧縮機駆動力Pc″を算出する。このようにすることで、ECU40において、実圧縮機駆動力算出部45により、実圧縮機駆動力を算出することができる。
次に、目標圧縮機駆動力算出部44による目標圧縮機駆動力の算出について説明する。目標圧縮機駆動力の算出は、前述の実圧縮機駆動力の算出と基本的に同じである。但し、目標圧縮機駆動力の算出は、前述の実圧縮機駆動力の算出に対し、吸入空気流量Qaを目標吸入空気流量Qatに変更し、スーパーチャージャ下流圧Pb2を目標スーパーチャージャ下流圧Pb2tに変更することで実現できる。ここで目標スーパーチャージャ下流圧Pb2tは、図4のブロック図の構成を用いて、目標充填効率Ectに基づいて算出される目標インマニ圧PbtにI/C圧力損失ΔPb2を加算して算出される。また、目標圧縮機駆動力の算出時にスーパーチャージャ上流圧Pb1が急変することを抑制するために、フィルタ後のスーパーチャージャ上流圧Pb1fに変更してもよい。これらを用いて、ブロックB301からB304までの演算を上述と同様に行うことで、目標圧縮機駆動力Pct、および、補正後目標圧縮機駆動力Pct″を算出することができる。
なお、目標充填効率Ectから目標インマニ圧Pbtを算出する方法としては、吸気行程間にシリンダ18がインマニから吸入する新気体積のシリンダ18の排気量に対する比率を示すインマニ基準の体積効率Kvを、エンジン回転速度Neとインマニ圧Pbとの3次元ルックアップテーブル(マップ)として予め記憶しておき、次式(7)に基づいて、目標インマニ圧Pbtが収束するまで繰り返し計算を行えばよい。ここで、添え字0は標準状態を示し、例えば、標準大気圧Pa0=101.3[kPa]、標準外気温Ta0=25℃とする。
Figure 2016142195
図6は、目標バイパスバルブ開度の算出処理内容を具体的に示す制御ブロック図である。以下、図1、図2とともに、図6を参照しながら、本発明の実施の形態1における目標バイパスバルブ開度算出部46による目標バイパスバルブ開度の算出処理について具体的に説明する。
まず、目標バイパスバルブ開度の算出に用いる過給率について以下に説明する。図7(b)を用いて前述した通り、バイパスバルブ開度BVと補正後圧縮機駆動力Pc″とは対応しているが、この関係はエンジン回転速度Neが変化すると、補正後圧縮機駆動力Pc″が取る値の範囲が大きく変化する。そのため、この関係に基づいて補正後目標圧縮機駆動力Pc″から目標バイパスバルブ開度BVtを算出するためには、エンジン回転速度Neを考慮する必要があるので、演算が複雑になる。
そこで、バイパスバルブ開度BVが全閉(0%)時に最も補正後圧縮機駆動力Pc″が大きくなり、バイパスバルブ開度BVが全開(100%)時に最も補正後圧縮機駆動力Pc″が小さくなることを利用し、補正後圧縮機駆動力Pc″が最小補正後圧縮機駆動力Pc″minと最大補正後圧縮機駆動力Pc″maxとのどの位置にあるかを示す指標として、下記の(8)式で表される過給率CRを定義する。すなわち、過給率CRは、「最大補正後圧縮機駆動力Pc″maxと最小補正後圧縮機駆動力Pc″minとの差」に対する「補正後圧縮機駆動力Pc″と最小補正後圧縮機駆動力Pc″minとの差」の比で表される。このように算出される過給率は、エンジン回転速度毎の最大及び最小の補正後圧縮機駆動力で正規化された値となるので、エンジン回転速度に係らず0〜100%の間の値となり、前述のようなエンジン回転速度を考慮する必要がなくなり、制御に用いやすくなる。
Figure 2016142195
より具体的には、エンジン回転速度Ne毎にバイパスバルブ開度BVと補正後圧縮機駆動力Pc″の関係を計測し、エンジン回転速度Ne毎の最小補正後圧縮機駆動力Pc″minと最大補正後圧縮機駆動力Pc″maxを求め、これらに基づいて、エンジン回転速度Neとバイパスバルブ開度BVを軸とした過給率CRのルックアップテーブル(マップ)(以下、「過給率マップ」と呼称する。)を作成することができる。更に、本マップを、エンジン回転速度Neと過給率CRを軸としたバイパスバルブ開度BVのマップに軸変換しておけば、軸変換後のマップ(以下、「エンジン回転速度と過給率CRに対するバイパスバルブ開度BVの関係マップ」または単に「バイパスバルブ開度マップ」と呼称する。)を用いてエンジン回転速度Neと目標過給率CRtから目標バイパスバルブ開度BVtが容易に算出できるようになる。
以上で説明した過給率を用いた目標バイパスバルブ開度の算出を実際にECU40で実現する方法について、図6の目標バイパスバルブ開度の算出処理内容を具体的に示す制御ブロック図を参照しながら説明する。ブロックB601では、最小補正後圧縮機駆動力Pc″min、最大補正後圧縮機駆動力Pc″max、補正後目標圧縮機駆動力Pct″より、(8)式に基づいて、目標過給率CRtが算出される。ここで、最小補正後圧縮機駆動力Pc″min、及び、最大補正後圧縮機駆動力Pc″maxは、図5のブロックB501、B502に示すように、まず、最小補正後圧縮機駆動力および最大補正後圧縮機駆動力をエンジン回転速度Ne毎に予め計測し、エンジン回転速度Neと最小補正後圧縮機駆動力および最大補正後圧縮機駆動力との対応関係をそれぞれのルックアップテーブル(マップ)に予め設定しておき(以下、これらのマップを、それぞれ、「最小補正後圧縮機駆動力Pc″min」および「最大補正後圧縮機駆動力Pc″max」と呼称する)、エンジン回転速度Neに基づいて、これらのルックアップテーブルから最小補正後圧縮機駆動力および最大補正後圧縮機駆動力を算出するようにすればよい。
続いて、ブロックB602において、エンジン回転速度と過給率CRに対するバイパスバルブ開度BVの対応関係を予め記憶したバイパスバルブ開度マップを用いて、エンジン回転速度Neと目標過給率CRtから、目標バイパスバルブ開度BVtを算出する。目標バイパスバルブ開度算出部46では、バイパスバルブ開度BVが目標バイパスバルブ開度BVtとなるようにフィードバック補正制御されているが、スーパーチャージャ等のばらつきにより、補正後目標圧縮機駆動力Pct″と補正後圧縮機駆動力Pc″が一致しない場合があるので、補正後目標圧縮機駆動力Pct″と補正後実圧縮機駆動力Pc″が一致するようにブロックB603において、目標バイパスバルブ開度のフィードバック(F/B)補正制御を実施する。より具体的には、PID制御であるフィードバック制御を行い、補正後目標圧縮機駆動力Pct″と補正後実圧縮機駆動力Pc″の差に基づいて、目標バイパスバルブ開度のフィードバック補正量FB(P)、FB(I)、FB(D)を算出し、これらの補正量を目標バイパスバルブ開度BVtに加算する。ここで、FB(P)は比例項、FB(I)は積分項、FB(D)は微分項である。このように、ブロックB603は、実圧縮機駆動力と目標圧縮機駆動力との差分に基づいて、目標バイパスバルブ開度のフィードバック補正量を算出するフィードバック補正量演算部を構成している。
さらに、ブロックB604は、目標バイパスバルブ開度のフィードバック補正量の積分項FB(I)の値が予め設定された閾値を超えた量を、スーパーチャージャやバイパスバルブの個体差、経年変化などによるばらつき要素に対する影響を少なくするためのバイパスバルブ開度の学習補正量LRNとして算出し、当該学習補正量LRNを目標バイパスバルブ開度BVtに加算する。ここで学習補正量LRNは1つの値でも良いが、より精度良く学習するために、例えば、エンジン回転速度と目標過給率に応じてゾーン分けし、そのゾーン毎に学習値を持つようにしてもよい。このように、ブロックB604は、目標バイパスバルブ開度のフィードバック補正量の定量的なずれ量に対してフィードバック学習量を算出し、フィードバック学習量を目標バイパスバルブ開度に加算して目標バイパスバルブ開度を補正するフィードバック学習量演算部を構成している。
このようにすることで、補正後目標圧縮機駆動力Pct″に基づいて、バイパスバルブ開度BVを制御することができる。なお、ここでは目標バイパスバルブ開度BVtをフィードバック補正制御や学習補正をする例を示したが、これ以外の値、例えば、目標過給率CRtに対してフィードバック補正制御や学習補正をするようにしても、同じく補正後目標圧縮機駆動力Pct″を達成することができる。
以上で示したように、この発明の実施の形態1に係る内燃機関の制御装置によれば、目標トルク算出部41において、運転者のアクセル操作や他の制御装置からのトルク要求値に基づいて目標トルクを算出し、目標吸入空気量算出部42において、目標トルクを達成するための目標充填効率と目標吸入空気量を算出し、目標スロットル開度算出部43において、目標吸入空気流量を達成するように目標スロットル開度を算出してスロットル開度を制御し、目標バイパスバルブ開度算出部46において、目標充填効率に基づく目標インマニ圧と目標吸入空気量を達成するように目標バイパスバルブ開度を算出してバイパスバルブ開度を制御する。これにより、運転者や他の制御装置からのトルク要求を実現することができ、加速応答特性の操作等も容易に実現できる。
また、この発明の実施の形態1に係る内燃機関の制御装置によれば、補正後目標圧縮機駆動力Pct″から算出される目標過給率CRtに基づいてバイパスバルブ開度BVを制御し、目標バイパスバルブ開度BVtを学習補正している。つまり、スーパーチャージャのばらつきに係る補正後目標圧縮機駆動力Pct″とバイパスバルブのばらつきに係る目標バイパスバルブ開度BVtの関係を学習補正しているので、スーパーチャージャとバイパスバルブの双方を含むばらつき要素の学習が可能となる。
なお、この発明の実施の形態1に係る内燃機関の制御装置内で使用する制御マップは、断熱効率ηadマップ、I/C圧力損失ΔPb2マップ、最小補正後圧縮機駆動力Pc″minマップ、最大補正後圧縮機駆動力Pc″maxマップ、エンジン回転速度と過給率CRに対するバイパスバルブ開度BVの関係を設定したバイパスバルブ開度マップであるが、I/C圧力損失ΔPb2マップはインタークーラの、それ以外のマップはスーパーチャージャの単体で実測した結果から設定でき、エンジンに取り付けて実測した結果からも設定できる。このように、インタークーラやスーパーチャージャの単体特性からマップを作成できるので、これらを別の仕様の物に変更した場合においても変更部の単体特性マップを変更するだけで良いし、別のエンジンに流用するような場合においても制御マップ値を流用することができ、その結果、データ計測や適合工数を抑制することが可能となる。
以上のように、本発明の実施の形態1によれば、バイパスバルブを有する機械式過給機付き内燃機関において、加速応答特性の操作、ばらつき要素の学習が可能という優れた特長を有し、更に、データ計測及び適合の工数を抑制することが可能となる。
なお、上記の実施の形態において説明した、目標圧縮機駆動力、最小圧縮機駆動力、最大圧縮機駆動力、および、実圧縮機駆動力については、上述した圧縮性の影響を考慮した相似則に基づいた標準状態への補正とスーパーチャージャの断熱効率による補正との両方の補正で補正した目標圧縮機駆動力、最小圧縮機駆動力、最大圧縮機駆動力、および、実圧縮機駆動力を用いてもよく、あるいは、圧縮性の影響を考慮した相似則に基づいた標準状態への補正とスーパーチャージャの断熱効率による補正のいずれか一方の補正で補正された目標圧縮機駆動力、最小圧縮機駆動力、最大圧縮機駆動力、および、実圧縮機駆動力を用いるようにしてもよい。
1 エンジン(内燃機関)、2 吸気管、3 エアクリーナ、4 エアフローセンサ(AFS)、5 吸入空気温センサ(吸気温センサ)、6 スロットルバルブ、7 スロットル開度センサ、8 スロットル下流圧センサ、9 スロットル下流温センサ、10 バイパス通路、11 スーパーチャージャ、12 バイパスバルブ、13 バイパスバルブ開度センサ、14 インタークーラ、15 サージタンク、16 インマニ圧センサ、17 インマニ温センサ、18 シリンダ、20 インジェクタ、21 点火プラグ、22 点火コイル、23 吸気バルブ、24 排気バルブ、25 クランク角センサ、26 排気管、27 空燃比センサ、28 排気ガス浄化触媒、40 ECU(電子制御ユニット)。

Claims (8)

  1. 内燃機関の吸気路に設けられたスロットルバルブと、
    前記吸気路の前記スロットルバルブの下流側に設けられ、前記内燃機関の出力軸によって駆動される圧縮機を有するスーパーチャージャと、
    前記スーパーチャージャを迂回するように前記吸気路に接続されたバイパス通路に設けられたバイパスバルブと、
    前記バイパスバルブの開度であるバイパスバルブ開度を操作することにより前記バイパス通路の流路断面積を変更するバイパスバルブ駆動部と、
    前記内燃機関の出力目標値である目標トルクに基づいて、前記内燃機関に吸入される吸入空気量の目標値となる目標吸入空気量と前記内燃機関の充填効率の目標値となる目標充填効率とを算出する目標吸入空気量算出部と、
    前記目標吸入空気量に基づいて前記スロットルバルブの目標開度を算出する目標スロットル開度算出部と、
    前記スロットルバルブの目標開度に基づいて、前記スロットルバルブの開度を操作することにより前記内燃機関に吸入される空気量である吸入空気量を調整するスロットルバルブ駆動部と、
    前記目標充填効率に基づいて前記スーパーチャージャの下流側の圧力の目標値となる目標スーパーチャージャ下流圧を算出する目標スーパーチャージャ下流圧算出部と、
    前記スーパーチャージャの上流側の圧力を検出するスーパーチャージャ上流圧検出部と、
    前記目標吸入空気量と前記目標スーパーチャージャ下流圧と前記スーパーチャージャ上流圧とに基づいて目標圧縮機駆動力を算出する目標圧縮機駆動力算出部と、
    前記目標圧縮機駆動力に基づいてバイパスバルブ開度の目標値となる目標バイパスバルブ開度を算出する目標バイパスバルブ開度算出部と
    を備えた内燃機関の制御装置。
  2. 前記目標バイパスバルブ開度算出部は、
    前記内燃機関の回転速度と最小圧縮機駆動力および最大圧縮機駆動力との対応関係を予め設定した圧縮機駆動力マップを有し、当該圧縮機駆動力マップに従って前記内燃機関の回転速度から最小圧縮機駆動力および最大圧縮機駆動力を算出し、
    前記目標圧縮機駆動力、前記最小圧縮機駆動力、及び、前記最大圧縮機駆動力に基づいて、前記目標圧縮機駆動力が前記最小圧縮機駆動力と前記最大圧縮機駆動力との間のどの位置にあるかを示す目標過給率を算出し、
    前記目標過給率と前記バイパスバルブ開度との対応関係を予め設定したバイパスバルブ開度マップを有し、当該バイパスバルブ開度マップに従って前記目標過給率から前記目標バイパスバルブ開度を算出する
    請求項1に記載の内燃機関の制御装置。
  3. 前記目標スーパーチャージャ下流圧算出部は、
    吸気行程間に前記内燃機関のシリンダがインマニから吸入する新気体積の前記シリンダの排気量に対する比率であるインマニ基準の体積効率と、前記目標充填効率と、に基づいて、目標インマニ圧を算出し、
    前記目標インマニ圧に基づいて前記目標スーパーチャージャ下流圧を算出する
    請求項1または2に記載の内燃機関の制御装置。
  4. 前記吸入空気量を検出する吸入空気量検出手段と、
    前記スーパーチャージャ上流圧、前記スーパーチャージャ下流圧および前記吸入空気量に基づいて実圧縮機駆動力を算出する実圧縮機駆動力算出部と、
    前記実圧縮機駆動力と前記目標圧縮機駆動力との差分に基づいて、前記目標バイパスバルブ開度のフィードバック補正量を算出するフィードバック補正量演算部と
    をさらに備えた請求項1から3までのいずれか1項に記載の内燃機関の制御装置。
  5. 前記目標バイパスバルブ開度の前記フィードバック補正量の定量的なずれ量に対してフィードバック学習量を算出し、前記フィードバック学習量を前記目標バイパスバルブ開度に加算して前記目標バイパスバルブ開度を補正するフィードバック学習量演算部
    をさらに備えた請求項4記載の内燃機関の制御装置。
  6. 前記目標圧縮機駆動力は、圧縮性の影響を考慮した相似則に基づいた標準状態への補正と、前記スーパーチャージャの断熱効率による補正の、両方、または、いずれか一方で補正された目標圧縮機駆動力である
    請求項1から5までのいずれか1項に記載の内燃機関の制御装置。
  7. 前記最小圧縮機駆動力及び前記最大圧縮機駆動力は、圧縮性の影響を考慮した相似則に基づいた標準状態への補正と、前記スーパーチャージャの断熱効率による補正の、両方、または、いずれか一方で補正された最小圧縮機駆動力及び最大圧縮機駆動力である
    請求項2から6までのいずれか1項に記載の内燃機関の制御装置。
  8. 前記実圧縮機駆動力は、圧縮性の影響を考慮した相似則に基づいた標準状態への補正と、前記スーパーチャージャの断熱効率による補正の、両方、または、いずれか一方で補正された実圧縮機駆動力である
    請求項4から7までのいずれか1項に記載の内燃機関の制御装置。
JP2015019294A 2015-02-03 2015-02-03 内燃機関の制御装置 Expired - Fee Related JP5924716B1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015019294A JP5924716B1 (ja) 2015-02-03 2015-02-03 内燃機関の制御装置
US14/820,752 US9938912B2 (en) 2015-02-03 2015-08-07 Control device for internal combustion engine
DE102015220744.7A DE102015220744A1 (de) 2015-02-03 2015-10-23 Steuervorrichtung für Verbrennungskraftmaschine
CN201510695665.3A CN105840325B (zh) 2015-02-03 2015-10-23 内燃机的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015019294A JP5924716B1 (ja) 2015-02-03 2015-02-03 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP5924716B1 JP5924716B1 (ja) 2016-05-25
JP2016142195A true JP2016142195A (ja) 2016-08-08

Family

ID=56069552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015019294A Expired - Fee Related JP5924716B1 (ja) 2015-02-03 2015-02-03 内燃機関の制御装置

Country Status (4)

Country Link
US (1) US9938912B2 (ja)
JP (1) JP5924716B1 (ja)
CN (1) CN105840325B (ja)
DE (1) DE102015220744A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5997754B2 (ja) * 2014-11-28 2016-09-28 富士重工業株式会社 エンジンシステムの制御装置
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
JP6435361B2 (ja) * 2017-03-21 2018-12-05 本田技研工業株式会社 内燃機関の制御装置
FR3082887B1 (fr) * 2018-06-21 2020-12-18 Psa Automobiles Sa Procede de determination d’une consigne de puissance d’un compresseur de moteur a combustion interne
JP6941652B2 (ja) * 2019-10-16 2021-09-29 本田技研工業株式会社 過給圧設定装置
CN114046207B (zh) * 2021-09-29 2023-11-14 广西玉柴机器股份有限公司 一种内燃机可控增压器的控制方法及装置
CN114060143B (zh) * 2021-10-12 2022-08-23 上海交通大学 基于旁通阀流通特性的变海拔增压压力稳定性控制方法
KR102627730B1 (ko) * 2022-04-29 2024-01-23 에이치디한국조선해양 주식회사 엔진 압력을 예측하는 엔진 모니터링 장치 및 엔진 압력 예측을 위한 가상 데이터 생성 방법

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639920B2 (ja) * 1985-05-21 1994-05-25 トヨタ自動車株式会社 内燃機関の過給圧制御装置
JPH01187317A (ja) * 1988-01-20 1989-07-26 Fuji Heavy Ind Ltd スーパーチャージャ付内燃機関の吸気制御装置
JPH04325717A (ja) * 1991-04-24 1992-11-16 Toyota Motor Corp 過給機付内燃機関の吸気制御装置
JP3366399B2 (ja) * 1993-09-29 2003-01-14 マツダ株式会社 過給機付エンジンの過給圧制御装置
JPH11117785A (ja) * 1997-10-17 1999-04-27 Nissan Motor Co Ltd 過給機付エンジンの制御装置
US6273076B1 (en) * 1997-12-16 2001-08-14 Servojet Products International Optimized lambda and compression temperature control for compression ignition engines
JP3680637B2 (ja) * 1999-06-11 2005-08-10 日産自動車株式会社 ディーゼルエンジンの排気浄化装置
JP4221137B2 (ja) * 2000-06-16 2009-02-12 三菱自動車工業株式会社 過給機付きエンジン
JP2003227341A (ja) * 2002-01-31 2003-08-15 Robert Bosch Gmbh 排気ガス・ターボチャージャのチャージ圧力の制御方法および装置
US6938420B2 (en) * 2002-08-20 2005-09-06 Nissan Motor Co., Ltd. Supercharger for internal combustion engine
JP3846462B2 (ja) * 2003-07-22 2006-11-15 日産自動車株式会社 電動過給機構のバイパス弁制御装置
JP2006242065A (ja) * 2005-03-02 2006-09-14 Denso Corp 過給機付き内燃機関の制御装置
JP4442704B2 (ja) * 2008-08-26 2010-03-31 トヨタ自動車株式会社 内燃機関の制御装置
WO2012095988A1 (ja) * 2011-01-14 2012-07-19 トヨタ自動車株式会社 過給機付き内燃機関の制御装置
JP5707967B2 (ja) * 2011-01-24 2015-04-30 日産自動車株式会社 内燃機関の過給圧診断装置
JP5382240B2 (ja) * 2011-02-02 2014-01-08 トヨタ自動車株式会社 過給機付き内燃機関の制御装置
US20120198837A1 (en) * 2011-02-09 2012-08-09 Peter Johann Medina Turbocharger control strategy to increase exhaust manifold pressure
JP5472537B2 (ja) * 2011-06-08 2014-04-16 トヨタ自動車株式会社 過給機付き内燃機関の制御装置
JP5516516B2 (ja) * 2011-06-17 2014-06-11 トヨタ自動車株式会社 過給機付き内燃機関の制御装置
JP5420013B2 (ja) * 2012-04-20 2014-02-19 三菱電機株式会社 内燃機関の制御装置およびその制御方法
CN104321516B (zh) * 2012-05-23 2017-06-20 丰田自动车株式会社 带增压器的内燃机的控制装置
JP5972704B2 (ja) * 2012-08-03 2016-08-17 本田技研工業株式会社 ハイブリッド車両の制御装置および制御方法
JP5389238B1 (ja) * 2012-08-29 2014-01-15 三菱電機株式会社 内燃機関のウェイストゲートバルブ制御装置
JP5865942B2 (ja) * 2014-04-16 2016-02-17 三菱電機株式会社 内燃機関のシリンダ吸入空気量推定装置および推定方法

Also Published As

Publication number Publication date
JP5924716B1 (ja) 2016-05-25
US20160222894A1 (en) 2016-08-04
DE102015220744A1 (de) 2016-08-04
US9938912B2 (en) 2018-04-10
CN105840325B (zh) 2019-01-01
CN105840325A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
JP5924716B1 (ja) 内燃機関の制御装置
JP6227086B1 (ja) 過給機付き内燃機関の制御装置及び制御方法
JP5420013B2 (ja) 内燃機関の制御装置およびその制御方法
JP5963927B1 (ja) 過給機付き内燃機関の制御装置及びその制御方法
US7434397B2 (en) Control apparatus for internal combustion engine and control method for the same
JP6208097B2 (ja) 内燃機関の装置
JP5389238B1 (ja) 内燃機関のウェイストゲートバルブ制御装置
WO2013105226A1 (ja) 内燃機関の制御装置
JP5940126B2 (ja) 過給機付き内燃機関の制御装置及び過給機付き内燃機関の制御方法
JP5944037B1 (ja) 過給機付き内燃機関の制御装置
JP5865942B2 (ja) 内燃機関のシリンダ吸入空気量推定装置および推定方法
JP6381728B1 (ja) 内燃機関の制御装置
JP5991405B2 (ja) 内燃機関の制御装置
JP5276693B2 (ja) 内燃機関の制御装置
JP6351784B1 (ja) 内燃機関の制御装置及び内燃機関の制御方法
JP2006125352A (ja) 過給機付き内燃機関の制御装置
JP6497174B2 (ja) 過給機付き内燃機関の制御装置
WO2022264482A1 (ja) 内燃機関の制御装置
JP2006017053A (ja) 過給機付き内燃機関の燃料噴射時期制御装置
US20240229731A1 (en) Control Device for Internal Combustion Engine
JP6311363B2 (ja) 内燃機関の制御装置
WO2020100519A1 (ja) エンジン制御装置及びエンジン制御方法
JP2019108875A (ja) 内燃機関の制御装置
JP2016151254A (ja) 過給機付き内燃機関の制御装置
JP2017110549A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160412

R150 Certificate of patent or registration of utility model

Ref document number: 5924716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees