JP2016120807A - ハイブリッド車両の制御装置 - Google Patents
ハイブリッド車両の制御装置 Download PDFInfo
- Publication number
- JP2016120807A JP2016120807A JP2014261393A JP2014261393A JP2016120807A JP 2016120807 A JP2016120807 A JP 2016120807A JP 2014261393 A JP2014261393 A JP 2014261393A JP 2014261393 A JP2014261393 A JP 2014261393A JP 2016120807 A JP2016120807 A JP 2016120807A
- Authority
- JP
- Japan
- Prior art keywords
- control
- motor
- engine
- vehicle
- electric motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Hybrid Electric Vehicles (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
【課題】走行中にReady-OFFされたとき、NV(騒音,振動)が抑制される制御と退避走行の距離を伸ばす制御とを適切に実行できるハイブリッド車両の制御装置を提供する。
【解決手段】閾値Va以上の高車速側でReady-OFFに切り替えられたときには、自動変速機がニュートラル状態に制御する第2制御が実行されることで、車両が停止する過渡期に変速されることもなくなり退避走行の距離を伸ばすことができる。また、前記閾値Va未満の低車速側でReady-OFFに切り替えられた場合には、第1電動機MG1によるエンジンのエンジン回転速度Neの引き下げと、自動変速機を動力伝達状態としつつ第2電動機MG2による反力相殺とを行う第1制御が実行されることでNVが抑制される。
【選択図】図4
【解決手段】閾値Va以上の高車速側でReady-OFFに切り替えられたときには、自動変速機がニュートラル状態に制御する第2制御が実行されることで、車両が停止する過渡期に変速されることもなくなり退避走行の距離を伸ばすことができる。また、前記閾値Va未満の低車速側でReady-OFFに切り替えられた場合には、第1電動機MG1によるエンジンのエンジン回転速度Neの引き下げと、自動変速機を動力伝達状態としつつ第2電動機MG2による反力相殺とを行う第1制御が実行されることでNVが抑制される。
【選択図】図4
Description
本発明は、ハイブリッド車両の制御装置に係り、特に、変速機を備えたハイブリッド車両の制御に関するものである。
エンジンに連結された第1ギヤと、第1電動機に連結された第2ギヤと、第2電動機に連結された第3ギヤとを含んで構成される差動機構として機能する遊星歯車装置を備えたハイブリッド車両が知られている。特許文献1の車両がその一例である。特許文献1には、走行中のエンジン停止に際して、エンジン停止過渡の振動によるNV(騒音、振動)が抑制されるように、第1電動機によるエンジン回転速度の引き下げと、第2電動機による反力相殺(反力キャンセル)とを行うことが記載されている。例えば走行中に何らかの原因で第1電動機および第2電動機のモータトルク制御により走行用の駆動力を発生させられなくなったとき(以下、Ready-OFF)、エンジンを停止させる過渡期に上記制御を実行することが考えられる。また、エンジンと駆動輪との間に変速機が設けられている場合には、走行中にReady-OFFとなった際に、変速機をニュートラル状態に切り替えて退避走行の距離を伸ばす制御も考えられる。
ところで、前記走行中にReady-OFFとなったときに実行される、上記NVを抑制する制御と、上記退避走行の距離を伸ばす制御とを両立させようとすると、互いに干渉しあって車両の走行に不具合を生じさせる可能性があった。例えば、Ready-OFF後に上記NVを抑制する制御を精度よく実行するには、出力側のトルクを用いるため、変速機においてはギヤ段を形成する(動力伝達状態にする)必要があるが、この状態から第2制御が実行されると、変速機がニュートラル状態に切り替わるため、第1制御を精度よく実行できなくなる不具合が生じてしまう。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、走行中にReady-OFFされたとき、NVが抑制される制御と退避走行の距離を伸ばす制御とを適切に実行できるハイブリッド車両の制御装置を提供することにある。
上記目的を達成するための、第1発明の要旨とするところは、(a) エンジンに連結された第1ギヤと、第1電動機に連結された第2ギヤと、第2電動機に連結された第3ギヤとを含んで構成される遊星歯車装置を備え、前記第2電動機と駆動輪との間の動力伝達経路に変速機が設けられているハイブリッド車両において、走行中に前記第1電動機および前記第2電動機のモータトルク制御により走行用の駆動力を発生させられなくなると、前記第1電動機による前記エンジンのエンジン回転速度の引き下げと、前記変速機を動力伝達状態としつつ前記第2電動機による反力相殺とを行う第1制御を実行するハイブリッド車両の制御装置であって、(b)前記変速機が第2変速段から第1変速段へダウンシフトされる車速以下の予め設定されている所定車速以上で走行中に、前記第1電動機および前記第2電動機のモータトルク制御により走行用の駆動力を発生させられなくなった場合には、前記変速機をニュートラル状態にする第2制御を実行することを特徴とする。
このようにすれば、前記変速機が第2変速段から第1変速段へダウンシフトされる車速以下の予め設定されている所定車速以上の高車速側で走行中に、第1電動機および第2電動機のモータトルク制御により走行用の駆動力を発生させられなくなった場合には、変速機をニュートラル状態に制御する第2制御が実行されることで、車両が停止する過渡期に変速されることもなくなり退避走行の距離を伸ばすことができる。また、前記所定車速未満の低車速側で走行中に、第1電動機および第2電動機のモータトルク制御により走行用の駆動力を発生させられなくなった場合には、第1電動機による前記エンジンのエンジン回転速度の引き下げと、変速機を動力伝達状態としつつ第2電動機による反力相殺とを行う第1制御が実行されることでNVが抑制される。
ここで、好適には、前記第1電動機および前記第2電動機のモータトルク制御により走行用の駆動力を発生させられなくなった場合であっても、前記第1制御が実行できる程度に第1電動機、第2電動機、およびこれらを制御する電子制御装置に電力が供給されるものとする。
以下、本発明の実施例を図面を参照しつつ詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。
図1は、本発明が適用されるハイブリッド車両10(以下、車両10という)の概略構成を説明する図であると共に、車両10の各部を制御する為に設けられた制御系統の要部を説明するブロック線図である。図1において、車両10は、走行用の駆動力源としてのエンジン12と、第1電動機MG1と、エンジン12から出力される動力を第1電動機MG1及び出力軸14へ分配するための差動機構として機能する遊星歯車装置16と、出力軸14に連結されている第2電動機MG2と、遊星歯車装置16および第2電動機MG2と後輪22との間に設けられている自動変速機18(本発明の変速機)と、ディファレンシャル装置(終減速機)20と、左右の後輪22とを、備えて構成されている。このように構成された車両10では、エンジン12の動力や第2電動機MG2の動力が出力軸14へ伝達され、さらに自動変速機18、ディファレンシャル装置20等を順次介して一対の後輪22(駆動輪)に伝達される。
遊星歯車装置16は、サンギヤS、ピニオンギヤP、そのピニオンギヤPを自転及び公転可能に支持するキャリヤCA、ピニオンギヤPを介してサンギヤSと噛み合うリングギヤRを回転要素(回転部材)として備える公知のシングルピニオン型の遊星歯車装置から構成されている。この遊星歯車装置16においては、キャリヤCAはエンジン12に連結され、サンギヤSは第1電動機MG1に連結され、リングギヤRは出力軸14および第2電動機MG2に連結されている。なお、キャリヤCAが本発明の第1ギヤに対応し、サンギヤSが本発明の第2ギヤに対応し、リングギヤRが本発明の第3ギヤに対応している。
これより、サンギヤS、キャリヤCA、リングギヤRは、それぞれ相互に相対回転可能となることから、エンジン12の出力が第1電動機MG1及び出力軸14に分配されると共に、第1電動機MG1に分配されたエンジン12の動力で第1電動機MG1が発電され、その発電された電気エネルギが図示しないインバータを介して図示しない蓄電装置に蓄電されたりその電気エネルギで第2電動機MG2が回転駆動されるので、遊星歯車装置16は、エンジン12の所定回転に拘わらず出力軸14の回転が連続的に変化させられる電気的な無段変速機として機能する。つまり、遊星歯車装置16は、差動用電動機として機能する第1電動機MG1の運転状態が制御されることにより、その遊星歯車装置16の差動状態が制御される電気式差動部(電気式無段変速機)として機能する。これにより、例えば燃費が最もよいエンジン12の動作点(例えばエンジン回転速度NeとエンジントルクTeとで定められるエンジン12の運転点、以下、エンジン動作点という)に沿って、エンジン12を作動させることができる。この種のハイブリッド車両10は、機械分配式或いはスプリットタイプと称される。
第1電動機MG1及び第2電動機MG2は、電気エネルギから機械的な駆動力を発生させる発動機としての機能及び機械的な駆動力から電気エネルギを発生させる発電機としての機能のうち少なくとも一方を備えた例えば同期電動機であって、好適には、発動機又は発電機として選択的に作動させられるモータジェネレータである。例えば、第1電動機MG1はエンジン12の反力を受け持つ為のジェネレータ(発電)機能及び運転停止中のエンジン12を回転駆動するモータ(電動機)機能を少なくとも備え、第2電動機MG2は走行用の駆動力源として駆動力を出力する走行用電動機として機能する為の電動機機能及び後輪22側からの逆駆動力から回生により電気エネルギを発生させる発電機能を少なくとも備える。
自動変速機18は、複数個の遊星歯車装置、および、それら複数個の遊星歯車装置を構成する回転要素同士を連結するクラッチCや所定の回転要素の回転停止させるブレーキBを備えて構成されている。そして、クラッチCおよびブレーキBの係合状態が切り替えられることで、自動変速機18内の各回転要素の連結状態が変更されることにより複数の変速段が成立させられる。なお、前記クラッチCおよびブレーキBは、例えば油圧アクチュエータによって係合制御される多板式の摩擦係合装置で構成され、それぞれ係合、開放状態が切り換えられるとともに、係合、開放時の過渡油圧などが制御される。また、クラッチCやブレーキBの数や配置位置は、変速機の構造に応じて適宜変更される。
ディファレンシャル装置20は、よく知られた傘歯車式の差動機構であり、走行状態に応じて後輪22に接続された左右の車軸26に差回転を付与するものである。なお、ディファレンシャル装置20の具体的な構成および作動については公知であるため、その説明を省略する。
また、車両10には、例えばエンジン12、第1電動機MG1、第2電動機MG2、自動変速機18等を制御する車両10の制御装置としての電子制御装置40(制御装置)が備えられている。この電子制御装置40は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置40は、エンジン12、第1電動機MG1、第2電動機MG2などに関するハイブリッド駆動制御、自動変速機18の自動変速制御等を実行するようになっており、必要に応じてエンジン12の出力制御用、自動変速機18の変速制御用等に分けて構成される。
電子制御装置40には、エンジン回転速度センサ42により検出されたエンジン12の回転速度であるエンジン回転速度Neを表す信号、車速センサ46により検出された自動変速機18の出力軸の回転速度Noutに対応する車速Vを表す信号、レゾルバ等の第1電動機回転速度センサ48により検出された第1電動機MG1の回転速度である第1電動機回転速度Nmg1を表す信号、レゾルバ等の第2電動機回転速度センサ50により検出された第2電動機MG2の回転速度である第2電動機回転速度Nmg2を表す信号、アクセル開度センサ52により検出された運転者による車両10に対する加速要求量(ドライバ要求量)としてのアクセルペダルの操作量であるアクセル開度Accを表す信号、スロットル弁開度センサ54により検出された電子スロットル弁の開度であるスロットル弁開度θthを表す信号、ブレーキスイッチ56により検出された常用ブレーキであるフットブレーキの作動中(踏込操作中)を示すフットブレーキペダルの操作(ブレーキオン)Bonを表す信号、バッテリセンサ58により検出された蓄電装置のバッテリ温度THbatやバッテリ入出力電流(バッテリ充放電電流)Ibatやバッテリ電圧Vbatを表す信号などが、それぞれ供給される。また、上記バッテリ温度THbat、バッテリ入出力電流Ibat、バッテリ電圧Vbatに基づいて充電容量SOC(充電残量)が算出されて電子制御装置40に供給される。
また、電子制御装置40からは、例えばエンジン12の出力制御の為のエンジン出力制御指令信号Seや第1電動機MG1及び第2電動機MG2の駆動制御の為のインバータへのモータ制御指令信号などのハイブリッド制御指令信号Sm、自動変速機18の変速制御のための変速制御指令信号Stなどが、それぞれ出力される。
次に電子制御装置40の制御機能について説明する。電子制御装置40は、変速制御部70を機能的に備えている。変速制御手段70は、例えば車速Vとアクセル開度Accとを変数として予め記憶されたアップシフト線およびダウンシフト線を有する変速線図(図2参照)から、実際の車速Vおよびアクセル開度Accに基づいて車両の走行状態が前記アップシフト線またはダウンシフト線を跨いだか否かを判定する。そして、アップシフト線またはダウンシフト線を跨いだ場合には、変速制御部70は、自動変速機18の変速すべき変速段が成立するように自動変速機18の変速制御を実行する。
また、電子制御装置40に機能的に備えられるハイブリッド制御部72は、例えばエンジン12を停止し専ら第2電動機MG2を駆動源とするモータ走行モード、エンジン12の動力に対する反力を第1電動機MG1の発電により受け持つことで出力軸14にエンジン直達トルクを伝達すると共に第1電動機MG1の発電電力により第2電動機MG2を駆動することで出力軸14にトルクを伝達して走行するエンジン走行モード(定常走行モード)、このエンジン走行モードにおいて蓄電装置からの電力を用いた第2電動機MG2の駆動力を更に付加して走行するアシスト走行モード(加速走行モード)等を、走行状態に応じて選択的に成立させる。
ハイブリッド制御手段72は、エンジン8を効率のよい作動域で作動させる一方で、エンジン12と第2電動機MG2との駆動力の配分や第1電動機MG1の発電による反力を最適になるように変化させて差動部11の電気的な無段変速機としての変速比γ0を制御する。例えば、そのときの走行車速Vにおいて、運転者の出力要求量としてのアクセル開度Accや車速Vから車両の目標(要求)出力を算出し、その車両の目標出力と充電要求値から必要なトータル目標出力を算出し、そのトータル目標出力が得られるように伝達損失、補機負荷、自動変速機18の変速段、第2電動機MG2のアシストトルク等を考慮して目標エンジン出力を算出し、その目標エンジン出力が得られるエンジン回転速度NeとエンジントルクTeとなるようにエンジン12を制御するとともに第1電動機MG1の発電量を制御する。
例えば、ハイブリッド制御部72は、その制御を動力性能や燃費向上などのために自動変速部18の変速段を考慮して実行する。このようなハイブリッド制御では、エンジン12を効率のよい作動域で作動させるために定まるエンジン回転速度Neと車速Vおよび自動変速部18の変速段で定まる出力軸14の回転速度とを整合させるために、遊星歯車装置16が電気的な無段変速機として機能させられる。
ところで、走行中において、運転者の操作や車両10に備えられている異常検出装置等によってフェールが検出されたりすると、第1電動機MG1および第2電動機MG2のモータトルク制御により運転者の所望する走行用の駆動力を発生させられなくなる所謂Ready-OFFに切り替えられることが考えられる。このとき、車両10を停止させ、エンジン12が駆動していた場合にはエンジン12を停止させるが、エンジン12を成り行きで停止させた場合、エンジン回転速度Neが低下する過渡期に発生する振動によって、遊星歯車装置16を構成する歯車等の衝突によるガタ打ちが発生する可能性がある。これを防止するため、自動変速機18の変速段を維持した状態で、エンジン停止の過渡期に第1電動機MG1からガタ打ちを防止する押し付けトルクを出力することで、ガタ打ちを抑制することができる。また、第1電動機MG1から押し付けトルクが出力されると、出力軸14に押し付けトルクによる反力トルクが伝達されるが、第2電動機MG2からこの反力トルクを相殺するトルクを出力する(反力相殺、反力キャンセル)ことで、後輪22へのトルク伝達が防止される。このとき、自動変速機18の変速段が維持されて自動変速機18が動力伝達状態とされることで、上記制御中に第2電動機MG2の回転がふらつくこともなくなり、制御性が確保される。
一方、走行中にReady-OFFに切り替えられたとき、何らかの異常が発生した可能性が高いことから、車両停止中の退避走行の距離を確保する必要がある。このときに自動変速機18が変速段を形成していると、第2電動機MG2の逆起電力による減速トルクが発生し、惰性走行による退避走行距離が短くなる。従って、自動変速機18の摩擦係合装置(クラッチC、ブレーキB)を開放してニュートラル状態に切り替えることで、減速トルクを遮断して退避走行距離を伸ばすことが考えられる。
上述したReady-OFF切替後に考えられる2つの制御は、自動変速機18の動力伝達状態が異なっており、これらの制御を同時に行うことは不可能であるため、これらの制御を切り替える条件を適切に設定する必要がある。そこで、電子制御装置40は、上記2つの制御を、後述するように車速Vに応じて適切に切り替える。以下、電子制御装置40による走行中にReady-OFF状態になったときの制御について説明する。
図1に戻り、ハイブリッド制御部72は、走行中のReady-OFF切替後のエンジン停止過渡期に発生する振動によるガタ打ちを防止する制御機能を機能的に有している。具体的には、ハイブリッド制御部72は、エンジン駆動を伴う走行中にReady-OFFに切り替えられると、第1電動機MG1にエンジン回転速度Neを引き下げる方向のトルク(押し付けトルク)を出力する指令を出力する。このように制御されることで、遊星歯車装置16の歯車間で押し付け力が発生し、エンジン回転速度Neの引き下げ過渡期に発生する遊星歯車装置16でのガタ打ちが防止される。これと並行して、ハイブリッド制御部72は、第1電動機MG1の押し付けトルクによる反力トルクが後輪22側に伝達されないように、第2電動機MG2から反力トルクを相殺するトルクを出力する(反力相殺、反力キャンセル)指令を出力する。また、ハイブリッド制御部72は、変速制御部70に対して自動変速機18を構成する摩擦係合装置(クラッチC、ブレーキB)の係合状態を維持する、すなわち自動変速機18の変速段を維持して動力伝達状態とする指令を出力する。このように、自動変速機18が動力伝達状態とされることで、第2電動機MG2の回転速度Nmg2のふらつきが抑制されて制御性が向上する。上記第1電動機MG1によるエンジン回転速度Neの引き下げと、自動変速機18を動力伝達状態としつつ第2電動機MG2による反力相殺とを行う制御を、本明細書において第1制御と定義する。
また、変速制御部70は、Ready-OFF切替後の退避走行距離を伸ばすため、Ready-OFF切替後に自動変速機18の係合中の摩擦係合装置を開放して、自動変速機18をニュートラル状態(動力伝達遮断状態)とする制御機能を機能的に有している。自動変速機18がニュートラル状態に制御されると、減速トルクが伝達されなくなるため退避走行距離が長くなる。上記自動変速機18をニュートラル状態に制御して退避走行距離を伸ばす制御を、本明細書において第2制御と定義する。
Ready-OFF判定部74は、走行中にReady-OFFに切り替えられるか否かを判定する。Ready-OFF判定部74は、例えば走行中にReady-OFFに切り替えるためのパワースイッチを、運転者が予め設定されている時間(例えば3秒)だけ押し続けた場合にReady-OFFに切り替えられるものと判定する。また、Ready-OFF判定部74は、例えばハイブリッド車両10の走行中にフェールが検出されるなどして、Ready-OFFに切り替える条件が成立した場合にReady-OFFに切り替えられるものと判定する。
Ready-OFF判定部74によってReady-OFFに切り替えられるものと判定されると、Ready-OFF切替後に前記第1制御および第2制御の何れを実行するべきかを判定する切替判定部76が実行される。切替判定部76は、車速Vが予め設定されている閾値Vaよりも高いか否か判定する。ここで、前記閾値Vaは、第2変速段から第1変速段へのダウンシフト線のうち最も最低車速V21であって、さらにその値から予め設定されているヒスHを引いた値に設定されている。なお、閾値Vaが、本発明の第2変速段から第1変速段へダウンシフトされる車速以下の予め設定されている所定車速に対応している。
図2に自動変速機18の変速線図を示す。図2において横軸が車速V(或いは自動変速機18の出力軸回転速度Nout)を示しており、縦軸がアクセル開度Accを示している。また、実線が各変速段のアップシフト線を示し、破線が各変速段のダウンシフト線を示している。図2において、最も低速側に位置している破線が、第2変速段から第1変速段(最低速段)へのダウンシフト線に対応している。この第2変速段から第1変速段へのダウンシフト線において低アクセル開度領域の車速V21がダウンシフト線の最低車速V21となっており、この車速V21に対して予め設定されているヒスHだけさらに減算された車速Vが閾値Vaに設定されている。
切替判定部76は、車速Vが閾値Vaよりも高いか否かを判定する。そして、車速Vが閾値Vaよりも高い場合には、Ready-OFFに切り替えられた際に前記第2制御を実行する指令を出力する。一方、車速Vが閾値Vaよりも低い場合には、Ready-OFFに切り替えられた際に前記第1制御を実行する指令を出力する。このように、切替判定部76は、車速Vに応じてReady-OFF切替後の制御を、第1制御および第2制御の何れに切り替えるべきかを判定する。
上記のように第1制御および第2制御が閾値Vaを境界にして切り替えられることで得られる効果について説明する。車速Vが閾値Va未満では、第1制御が実行される。すなわち、第1電動機MG1によるガタ打ちを抑制する制御が実行される。ここで、閾値Vaは低車速であるため、閾値Va未満の領域で自動変速機18をニュートラル状態に制御する第2制御を実行しても、退避走行距離は殆ど変わらない。従って、このような場合には、自動変速機18をニュートラルとした場合と略変わらない退避走行距離が得られ、且つ、第1制御を実行することでガタ打ちが抑制される。
一方、車速Vが閾値Vaよりも高車速である場合には、第2制御が実行される。車速Vが閾値Vaよりも高車速である場合には、Ready-OFFに切り替えられた際に自動変速機18の摩擦係合装置が開放されるニュートラル状態に切り替えられることで、減速トルクが発生することもなく退避走行距離が長くなる。
図3は、図2の変速線図において第2変速段から第1変速段へのダウンシフト線のみを示したものである。この変速線図において、例えば車速Vxで第1制御が実行される場合を考える。この場合、車速Vがさらに低下し、破線で示すダウンシフト線を跨ぐと、Ready-OFF状態であっても自動変速機18が変速してしまう可能性がある。このとき、第1制御実行中に自動変速機18のダウンシフトが開始されることとなり、出力軸14と後輪22との間の動力伝達経路が一時的に遮断されることで第1制御が正常に実行されない可能性がある。そこで、第1制御と第2制御との切替を閾値Vaに設定することで、第1制御中にダウンシフト線を跨ぐことがなくなる、すなわち第1制御中にダウンシフトされることがなくなるため、第1制御が正常に実行される。
また、第1制御と第2制御とを切り替える車速Vの閾値として、車速V21からヒスHを減算した閾値Vaを適用したが、この閾値Vaよりも低い図3に示すような車速Vbで切り替えたい場合には、その車速Vbを閾値に設定することもできる。このような場合には、閾値Vaよりも低い閾値Vbで自動変速機18がニュートラル状態とされるが、少なくとも第1制御中に自動変速機18が変速されることはないため、例えば第1制御中に自動変速機18が変速されるなどの不具合は防止される。
図4は、電子制御装置40の制御作動の要部、すなわちエンジン駆動を伴う走行中にReady-OFFされたとき、ガタ打ちを抑制する制御と退避走行距離を伸ばす制御とを適切に切り替えることで、制御中の不具合を防止する制御作動を説明するためのフローチャートである。このフローチャートは、走行中において繰り返し実行される。
先ず、Ready-OFF判定部74に対応するステップS1(以下、ステップを省略する)において、走行中にReady-OFFに切り替えられるか否かが判定される。Ready-OFFに切り替えられる場合にはS2に進み、Ready-OFFに切り替えられない場合にはS5に進む。切替判定部76に対応するS2では、車速Vが予め設定されている所定値Vbよりも高いか否かが判定される。車速Vが所定値Vbよりも高い場合にはS4に進み、車速Vが所定値Vbよりも低い場合にはS3に進む。
切替判定部76に対応するS3では、車速Vが、第2変速段から第1変速段へのダウンシフト線のうち最低車速にヒスHを減算した閾値Vaよりも高いか否かが判定される。車速Vが閾値Vaよりも高い場合にはS4に進み、車速Vが閾値Vaよりも低い場合には、S7に進み、第1電動機MG1からエンジン回転速度Neを引き下げる方向の押し付けトルクが出力されるとともに、第1電動機MG1から押し付けトルクを出力することで発生する反力トルクを相殺するトルクを第2電動機MG2から出力する前記第1制御が実行される。これより、エンジン回転速度Neの引き下げ過渡期に発生するガタ打ちが防止されるとともに、反力トルクによる駆動力変動も抑制される。ここで、S7(第1制御)が実行されると、それ以降にS4を通っても第2制御は実行されない。例えば降坂路を走行中では、第1制御実行中に車速Vが上昇して、第2制御を実行する車速領域に入ることがある。このときに第2制御に切り替えられると、自動変速機18がニュートラル状態となり第1制御が精度よく実行されなくなる。そこで、第1制御が実行されると、第2制御が実行されないことで、第1制御の制御精度が確保される。
変速制御部70に対応するS4では、自動変速機18の摩擦係合装置(クラッチC、ブレーキB)が開放され、自動変速機18がニュートラル状態に制御(第2制御)される。従って、退避走行の距離が長くなる。ここで、S4(第2制御)が実行されると、それ以降にS7を通っても第1制御は実行されない。第2制御を実行中に車速Vが低下すると第1制御を実行する車速領域に入る。このときに第1制御に切り替えられると、自動変速機18が動力伝達状態に切り替わるため、退避走行距離が所望する距離よりも短くなり、自動変速機18が動力伝達状態に切り替わることによる急減速も発生する可能性がある。そこで、第2制御が実行されると、第1制御が実行されないことで、退避走行距離が確保され、第1制御への切替に起因する急減速も防止される。
また、第1制御および第2制御の何れかの実行中において、それ以降は自動変速機18の変速制御は実行されない。例えば、第1制御の実行中に第1変速段から第2変速段へのアップシフト線を跨いで第2変速段への変速制御が実行されると、自動変速機18のトルク伝達容量が変化することから、第1制御の精度が悪くなる。また、第2制御の実行中に第2変速段から第1変速段へのダウンシフト線を跨いで第1変速段への変速制御が実行されると、自動変速機18が動力伝達状態に切り替わるため、退避走行距離が短くなり、急減速が発生する可能性が生じる。そこで、第1制御および第2制御の何れかの実行中は、自動変速機18の変速制御を実行しないことで、上記不具合を防止することができる。
ステップS1に戻り、Ready-OFFに切り替えられない場合にはS5に進む。変速制御部70に対応するS5では、自動変速機18において摩擦係合装置(クラッチC、ブレーキB)の開放制御が実行中であるか否かが判定される。摩擦係合装置の開放制御が実行中であった場合にはS6に進み、開放制御が実行中でない場合には、本ルーチンは終了させられる。変速制御部70に対応するS6では、自動変速機18の摩擦係合装置の開放制御を終了させる指令が出力され、本ルーチンは終了させられる。
上述のように、本実施例によれば、閾値Va以上の高車速側でReady-OFFに切り替えられた場合には、自動変速機18がニュートラル状態に制御する第2制御が実行されることで、車両が停止する過渡期に変速されることもなくなり退避走行の距離を伸ばすことができる。また、前記閾値Va未満の低車速側でReady-OFFに切り替えられた場合には、第1電動機MG1によるエンジン回転速度Neを引き下げる方向の押し付けトルクを出力しつつ、自動変速機18を動力伝達状態として第2電動機MG2による反力相殺とを行う第1制御が実行されることでNVが抑制される。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
例えば、前述の実施例のハイブリッド車両10は、差動機構として機能する遊星歯車装置16のキャリヤCAにエンジン12が連結され、サンギヤSに第1電動機MG1が連結され、リングギヤRに第2電動機および自動変速機18が連結されていたが、遊星歯車装置の連結構成は必ずしもこれに限定されない。また、本発明は、ハイブリッド車両10に限定されるものではなく、エンジンと駆動輪との間に変速機を備えたハイブリッド車両であれば、本発明を適宜適用することができる。
また、前述の実施例では、第1制御と第2制御とを切り替える車速Vの閾値として、ダウンシフト線の最低車速V21からヒスHを減算した閾値Vaが設定されているが、必ずしもヒスHを設定する必要はなく、最低車速V21を閾値に設定しても構わない。また、車速Vbについては必ずしも設定する必要はなく、適宜省略して実施しても構わない。
また、前述の実施例では、遊星歯車装置16と後輪22との間に、摩擦係合装置を備えて構成される有段式の自動変速機18が設けられているが、変速機は必ずしもこれに限定されない。本発明は、例えば無段式の変速機であっても適用可能であり、ニュートラル状態に切替可能な変速機であれば適宜適用することができる。
なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10:ハイブリッド車両
12:エンジン
16:遊星歯車装置
18:自動変速機(変速機)
22:後輪(駆動輪)
40:電子制御装置(制御装置)
CA:キャリヤ(第1ギヤ)
S:サンギヤ(第2ギヤ)
R:リングギヤ(第3ギヤ)
MG1:第1電動機
MG2:第2電動機
12:エンジン
16:遊星歯車装置
18:自動変速機(変速機)
22:後輪(駆動輪)
40:電子制御装置(制御装置)
CA:キャリヤ(第1ギヤ)
S:サンギヤ(第2ギヤ)
R:リングギヤ(第3ギヤ)
MG1:第1電動機
MG2:第2電動機
Claims (1)
- エンジンに連結された第1ギヤと、第1電動機に連結された第2ギヤと、第2電動機に連結された第3ギヤとを含んで構成される遊星歯車装置を備え、前記第2電動機と駆動輪との間の動力伝達経路に変速機が設けられているハイブリッド車両において、走行中に前記第1電動機および前記第2電動機のモータトルク制御により走行用の駆動力を発生させられなくなると、前記第1電動機による前記エンジンのエンジン回転速度の引き下げと、前記変速機を動力伝達状態としつつ前記第2電動機による反力相殺とを行う第1制御を実行するハイブリッド車両の制御装置であって、
前記変速機が第2変速段から第1変速段へダウンシフトされる車速以下の予め設定されている所定車速以上で走行中に、前記第1電動機および前記第2電動機のモータトルク制御により走行用の駆動力を発生させられなった場合には、前記変速機をニュートラル状態にする第2制御を実行する
ことを特徴とするハイブリッド車両の制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014261393A JP2016120807A (ja) | 2014-12-24 | 2014-12-24 | ハイブリッド車両の制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014261393A JP2016120807A (ja) | 2014-12-24 | 2014-12-24 | ハイブリッド車両の制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016120807A true JP2016120807A (ja) | 2016-07-07 |
Family
ID=56327022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014261393A Pending JP2016120807A (ja) | 2014-12-24 | 2014-12-24 | ハイブリッド車両の制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016120807A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019127169A (ja) * | 2018-01-25 | 2019-08-01 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
JP2020502462A (ja) * | 2016-12-16 | 2020-01-23 | 上海納▲鉄▼福▲伝▼▲動▼系統有限公司 | 2段変速装置、電気自動車用の主駆動系及び副駆動系 |
-
2014
- 2014-12-24 JP JP2014261393A patent/JP2016120807A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020502462A (ja) * | 2016-12-16 | 2020-01-23 | 上海納▲鉄▼福▲伝▼▲動▼系統有限公司 | 2段変速装置、電気自動車用の主駆動系及び副駆動系 |
JP2019127169A (ja) * | 2018-01-25 | 2019-08-01 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
JP7003686B2 (ja) | 2018-01-25 | 2022-01-20 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6384464B2 (ja) | 動力伝達装置の制御装置 | |
US20140148986A1 (en) | Control system and control method for hybrid vehicle | |
JP5648984B2 (ja) | ハイブリッド車両 | |
JPWO2010058470A1 (ja) | 車両用動力伝達装置の制御装置 | |
CN110450774B (zh) | 车辆的变速控制装置 | |
JP2008254725A (ja) | ハイブリッド車両のエンジン始動制御装置 | |
JP2016055759A (ja) | ハイブリッド車両の制御装置 | |
JP5696729B2 (ja) | 車両の制御装置 | |
JP2019081467A (ja) | ハイブリッド車両 | |
JP2014151908A (ja) | ハイブリッド車両の制御装置 | |
JP6414025B2 (ja) | ハイブリッド車両の駆動力制御装置 | |
JP2006062608A (ja) | 車両の減速度制御装置 | |
JP2019166936A (ja) | 電動車両のトルク制御方法及びトルク制御装置 | |
JP6098395B2 (ja) | ハイブリッド車両の制御装置 | |
JP2007120586A (ja) | 車両用自動変速機の制御装置 | |
JP2013095316A (ja) | ハイブリッド車両用動力伝達装置の制御装置 | |
JP5578089B2 (ja) | ハイブリッド自動車およびその制御方法 | |
JP5842661B2 (ja) | 車両用動力伝達装置 | |
JP2016120807A (ja) | ハイブリッド車両の制御装置 | |
JP6098405B2 (ja) | ハイブリッド車両の制御装置 | |
JP2012086763A (ja) | 車両用動力伝達装置の制御装置 | |
JP6589757B2 (ja) | ハイブリッド車両の走行モード切換制御装置 | |
JP2020114709A (ja) | ハイブリッド車の制御装置 | |
CN112092799A (zh) | 混合动力车辆的控制装置 | |
JP2010247772A (ja) | ハイブリッド自動車 |