JP2016101565A - 水素水の製造方法および水素水製造装置 - Google Patents

水素水の製造方法および水素水製造装置 Download PDF

Info

Publication number
JP2016101565A
JP2016101565A JP2014242065A JP2014242065A JP2016101565A JP 2016101565 A JP2016101565 A JP 2016101565A JP 2014242065 A JP2014242065 A JP 2014242065A JP 2014242065 A JP2014242065 A JP 2014242065A JP 2016101565 A JP2016101565 A JP 2016101565A
Authority
JP
Japan
Prior art keywords
water
hydrogen
hydrogen water
container
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014242065A
Other languages
English (en)
Other versions
JP6596199B2 (ja
JP2016101565A5 (ja
Inventor
豊隆 森
Toyotaka Mori
豊隆 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Irom Co Ltd
Original Assignee
Irom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Irom Co Ltd filed Critical Irom Co Ltd
Priority to JP2014242065A priority Critical patent/JP6596199B2/ja
Publication of JP2016101565A publication Critical patent/JP2016101565A/ja
Publication of JP2016101565A5 publication Critical patent/JP2016101565A5/ja
Application granted granted Critical
Publication of JP6596199B2 publication Critical patent/JP6596199B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 飲料用の水素含有水を精製する方法であって、特に、脱パイロジェンを行ったUF水に水素を溶け込ませ、長期保存を可能とした水素水の製造方法および水素水の製造装置を提供する。【解決手段】 原水を半透膜により逆浸透圧で濾過してRO水を精製するRO水精製工程と、前記RO水をイオン交換樹脂により濾過してイオン交換水を精製するイオン交換水精製工程と、前記イオン交換水を更にUF膜により濾過することでパイロジェンを除去したUF水を精製するUF水精製工程と、前記UF水に水素を添加混成する水素添加工程と、前記水素水を水素の充分添加された状態で飲料として提供するために飲料容器に封入する水素水充填工程と、前記水素水が充填された容器の外部から水素水の殺菌処理を行う殺菌工程とからなる構成である。【選択図】 図1

Description

本発明は、飲料用の水素含有水を精製する方法に関し、特に、脱パイロジェンを行ったUF水に水素を溶け込ませ、長期保存を可能とした飲料用にも利用可能な水素水の製造方法および水素水充填ノズルに関する。
健康に対する意識が飛躍的に高まっている昨今、活性酸素やフリーラジカル(遊離基)が体に与える影響に関する様々な研究結果が報告されており、医療関係者のみならずスポーツ関連を含めた広く一般の人々にまで、活性酸素およびフリーラジカルに関する関心が高まりつつある。
活性酸素は、体内に取り込まれた酸素が化学的に活性(遊離した状態)になったもので、不安定で強い酸化力を示す物質であり、フリーラジカルの一種である。活性酸素やフリーラジカルは、生体内に侵入するウイルス等に対する殺菌・解毒効果を有しており、生体にとって有効に働く反面、過剰になると遺伝子や細胞を損傷する負の働きをすることが解明されてきており、しみ等の原因となるメラニンを増加させ、癌、生活習慣病といった様々な病気や老化の原因を作るとも言われている。
現代人の生活習慣は、この活性酸素やフリーラジカルの過剰化を招いていると言われており、過剰化した活性酸素やフリーラジカルを取り除くために、ビタミンC、ビタミンE等の抗酸化物質をサプリメント等によって摂取することが広く一般的に行われているほか、水素を高濃度に含有させた水(所謂、水素水)を摂取することも行われている。
水素水は、活性酸素やフリーラジカルを還元する抗酸化サプリメントとしても注目を集めている。水素は、活性酸素やフリーラジカルと結びついて細胞の損傷を防ぐ還元力を有しており、また、ビタミンC、ビタミンE等の抗酸化物質と比べて還元力が緩やかであるという特徴を持っている。更に、ビタミンC、ビタミンEはその還元力の強さにより、自らヒドロキシルラジカル等の活性酸素を生成してしまうことがあるが、水素にはそのような負の副作用がないという特徴がある。このため、水素は抗酸化サプリメントに最も適した物質であり、水素を含有した水素水は、様々な形で、サプリメントとして提供されている。
飲料用にも利用可能な水素水を精製するには、水素を水中に溶け込ませるという処理がまず必要であるが、この水素を水に溶け込ませる方法としては、電気分解により水から水素を生成する電気分解法、ナノバブルを生成することによるバブリング法、加圧により水素を溶け込ませる圧力溶解法等が存在する。
例えば、特開2003−175390号では、水道水から得た純粋にNaClを加え、電導率を100μS/cm以上に調整したものを電気分解し、得られた陰極水を取り出し、これを中性にして電解水素溶存水を製造する技術が公開されている。これにより、DNA細胞の損傷を抑制することができる電解水素溶存水を提供することが可能となり、医学、薬学の分野のみならず、食品工業など多くの分野における利用の可能性が示唆されている。
ところが、上記技術を用いた水素溶存水には、水素以外に多くの水素イオンが混在することになるため、酸化還元電位がマイナス側になるという状況が付帯している。これにより、pHの値が高いアルカリ性を示すこととなり、中性であることが望ましい純粋な水素溶存水を提供するという要請に対応することができなかった。
また、特開2009−125654号および特開2010−274181号には、原料水を、水素ガス溶解モジュールの原料水流通部に供給した後、水素ガスを供給して原料水に水素を溶解させ、その後、水素ガス溶解モジュールの原料水流通部から吐出される水素ガスが溶解した原料水を容器に充填して密封し、殺菌処理するという、水素水の製造方法に関する技術が開示されている。これにより、水素濃度のばらつきの少ない、高濃度の飲料用に利用可能な水素含有水の大量生産の可能性が示唆されている。
しかし、上記製造方法に関する技術によれば、飲料用の水素含有水を得ることが可能とはなるが、いわゆる発熱物質(パイロジェン)の除去がなされていないことから、人工透析が必要な腎不全患者などが飲用として使用することが難しく、医療現場における用途が限定されるという問題があった。また、パイロジェンの存在により、水素の混合が抑制されるという問題もあった。さらに、水素水の殺菌処理を容器へ充填前に行うと、殺菌処理段階で溶け込んだ水素が気化して排出され、高濃度を保ったままの水素水を提供することが難しくなるという問題点もあった。
そこで、医療現場においても問題なく活用でき、高濃度で長期保存可能な飲料用として利用できる水素水を提供するための、水素水の製造方法および製造装置に関する技術の開発が望まれていた。
特開2003−175390号 特開2009−125654号 特開2010−274181号
本発明は上記問題を解決するために、飲料用に利用可能な水素含有水を精製する方法であって、特に、脱パイロジェンを行ったUF水に水素を溶け込ませ、長期保存を可能とした水素水の製造方法および製造装置に使用する水素水充填ノズルを提供する。
上記の目的を達成するために本発明に係る水素水の製造方法は、原水を半透膜により逆浸透圧で濾過してRO水(Reverse Osmosis=逆浸透膜濾過水)を精製するRO水精製工程と、前記RO水をイオン交換樹脂により濾過してイオン交換水を精製するイオン交換水精製工程と、前記イオン交換水を更にUF(Ultra Fiteration)膜により濾過することでパイロジェンを除去したUF水を精製するUF水精製工程と、前記UF水に水素を添加混成する水素添加工程と、前記水素水を水素の充分添加された状態で飲料として提供するために飲料容器に封入する際にフィルタに水素が混成する加圧された水を通過させることにより気泡を除去してから飲料の容器に圧入充填する水素水充填工程と、前記水素水が充填された容器の外部から水素水の殺菌処理を行う殺菌工程とからなる構成である。
また、前記水素添加工程は、酸素、窒素等をUF水から除去する不純物脱気工程を経た脱気したUF水に、前記水素の微小な気泡を添加混成する構成である。
また、前記脱気手段は、UF水の流水路に設けた脱気膜により、少なくとも2回真空圧の原理によって不活性ガスである酸素、窒素等の除去を繰り返す構成である。
また、前記水素水充填工程は、真空容器に水素水を圧入しオーバフローさせた後に密封する構成である。
また、前記殺菌工程は、水素水が充填された容器の外部から加熱殺菌を行う構
成である。
更に、前記殺菌工程は、容器の中心部を摂氏85度で30分以上加熱する構成でもある。
また、水素水の製造装置に使用される水素水充填ノズルは、前記水素水を圧縮封入する筒状の筐体と、挿入ノズル部とからなる水素水充填ノズルであって、水素水封入容器内部の空気を吸引除去する吸引機構と、水素水の圧出機構を具備するとともに、ノズル内部の気泡を除去するために水素水充填ノズル内にフィルタを設け、水素水をフィルタを介して圧出する構成である。
また、前記フィルタは、前記水素水充填ノズル内に少なくとも2箇所設けた構成である。
また、精製した水素水を充填封入する水素水用容器は、容器本体と、飲み口とを有する前記水素水を充填封入する水素水用容器であって、容器の外壁をアルミニウムによる4層構造とした構成である。
更に、前記飲み口は、アルミニウムにより構成された構成である。
本発明は、上記詳述した通りの構成であるので、以下のような効果がある。
1.原水を濾過してRO水を精製するRO水精製工程と、RO水を濾過してイオン交換水を精製するイオン交換水精製工程を有するため、水素水を溶け込ませ易い。更に、水素水充填工程の前にUF水精製工程と水素添加工程を行い、充填後に殺菌処理を施すので、水素が気化排出されないため、純度の高い水素溶存水を製造することができる。また、イオン交換水をUF膜により濾過することによりパイロジェンを除去したUF水を精製するUF水精製工程を有するため、人工透析が必要な患者も利用することができ、広く医療現場においても問題なく活用できる水素水を精製できる。また、水素水充填工程では、フィルタに水素水を通過させることにより気泡を除去してから入充填するため、不要な気体を混入させることなく水素水を充填することができる。
2.水素添加工程では、脱気したUF水に、水素の微小な気泡を添加混成するため、より多くの水素を水中に溶け込ませることができる。
3.脱気工程では、2回不活性ガスである酸素、窒素等の除去を繰り返すため、さらに多くの水素が水中に溶け込みやすくなる。
4.真空容器に水素水を圧入しオーバフローさせた後に密封する工程を経るため、さらに不要な気体を混入させることをなくすことができる。
5.殺菌工程を、水素水が充填された容器の外部から処理を行うため、水素が気化して外部に排出されることなく、高濃度のまま水素水を提供できる。
6.殺菌工程では、容器の中心部を摂氏85度で30分以上加熱する処理を行うため、確実に殺菌が施された水素水を提供することができる。
7.水素水充填ノズルは、空気を吸引除去する吸引機構と水素水の圧出機構を具備し、ノズル内に気泡除去のためのフィルタを設けているため、気泡が除去された水素水を圧入充填することができる。
8.水素水充填ノズルは、内部にフィルタを少なくとも2箇所設けた構成であるため、ノズル内部の気泡を除去してより純度の高い水素水を圧入充填することができる。
9.水素水を充填封入する水素水用容器は、外壁をアルミニウムによる4層構造としたため、水素が気化して外部へ排出されることを防止することができる。
10.水素水用容器の飲み口をアルミニウムとしたため、水素の排出を防ぐことができる。
以下、本発明に係る水素水の製造方法および製造装置に使用する水素水充填ノズルを、図面に示す実施例に基づいて詳細に説明する。図1は、水素水の製造工程を示すフロー図であり、図2は、水素水の製造工程の詳細を示すフロー図であり、図3は、水素添加工程のフロー図である。図4は、水素水を充填する機器のフロー図であり、図5は、水素水用容器の正面図である。図6は、充填後の水素濃度の変移を示す図であり、図7は、充填後の酸化還元電位の変移を示す図である。
本発明に係る水素水の製造方法1は、図1に示すように、RO水精製工程10と、イオン交換水精製工程20と、UF水精製工程30と、水素添加工程50と、水素水充填工程60と、殺菌工程80とからなる。
図2に示すように、RO水精製工程10は、RO水精製装置11に送られた原水2をRO膜14(半透膜)により逆浸透圧で濾過してRO水12を精製する工程である。RO(Reverse Osmosis)水とは逆浸透膜濾過水のことであり、水は通すがイオン等の水以外の不純物は透過しないという性質を持つRO膜14(半透膜、逆浸透膜)を原水2が通過することにより、原水が濾過され、膜の孔より大きい非電解物質やイオン等を除去することができ、純度の高い精製水(RO水12)を得ることができる。
RO水精製工程10で使用するRO膜14は、孔の直径が概ね2ナノメートル以下であればよいが、より純度の高い精製水を得るためには、1ナノメートル以下のものとすることが望ましい。
イオン交換水精製工程20では、RO水精製工程10で得られたRO水12を、イオン交換水精製装置21において、さらにイオン交換樹脂24により濾過してイオン交換水22を精製する工程である。
RO水精製装置11で精製されたRO水12は、配管P1を経由してイオン交換水精製装置21に送られる。イオン交換樹脂24によってイオンが除去された脱イオン水(イオン交換水22)を得ることができるため、この工程により、RO水精製工程10で除去しきれなかったイオンを除去することが可能となり、より純度の高い精製水を得ることができる。
イオン交換樹脂24には、強酸性陽イオン交換樹脂・弱酸性陽イオン交換樹脂・強塩基性陰イオン交換樹脂・弱塩基性陰イオン交換樹脂等が存在するが、本発明においては、適宜選択して使用することが可能である。
UF水精製工程30は、UF水精製装置31において、イオン交換水精製工程20で得られたイオン交換水22を、UF膜34により濾過することによりUF水32を精製する工程である。
イオン交換水精製装置21で精製されたイオン交換水22は、配管P2を経由してUF水精製装置30に送られる。UF膜34は、微細な孔を有する膜であるため、RO水精製工程10およびイオン交換水精製工程20で除去することができなかった細菌、ウイルス、およびパイロジェン(発熱物質)をこの工程で除去するものである。この工程により、パイロジェンの除去がなされた純度の高い精製水を得ることができ、人工透析が必要な腎不全患者等が飲用することができるため、医療の現場でも有効に使用することが可能となる。
UF水精製工程30において精製されたUF水32は、配管P3を経由してタンク40へと送られるが、タンク40内に保存される精製された水中に微小な気泡が存在する可能性が考えられる。気泡が存在により、精製水に水素を添加混成する際の障害になる可能性があり、また気泡が水素水を充填する容器にも残存混入する可能性が考えられる。そのため、この気泡を除去する必要があり、本発明では、配管P4にフィルタ44を設け、精製水を加圧してフィルタを通過させることで気泡を除去している。
水素添加工程50は、水素添加装置51において、UF水精製工程30により得られたパイロジェンが除去されたUF水32に水素を添加混成する工程である。
UF水精製装置31で精製され、タンク40に送られたUF水32は、配管P4およびフィルタ44を経由して水素添加装置51に送られる。水素添加工程50は、水素をUF水32に溶け込ませる処理であり、水素を加圧することにより溶け込ませる。超過飽和状態となるまで加圧して溶け込ませることで過飽和の水素水100を得ることができる。このときの水素の加圧添加における圧力は、0.4MPa以上であることが望ましい。また、UF水は、後述の不純物脱気工程により気体の溶け込みが容易になるため、あらかじめ不純物脱気工程を経るのが望ましい。
水素水充填工程60は、水素添加工程50で得られた純度が高い水素水100を、飲料として提供するために、水素充填装置61において水素水用容器160に封入する工程である。
水素添加装置51で水素が添加された水素水100は、配管P5を経由して水素充填装置61に送られる。水素充填装置61の水素水充填ノズル110に、水素水用容器160を設置して水素水100を充填する。
水素水充填工程60は、フィルタリング処理と封入処理からなる。フィルタリング処理は、充填する水素水100の経路(図4に示す、水素水充填ノズル110の入り口部)にフィルタ132を配置し、圧出機構150によって圧力を加えて水素水100をフィルタに通す処理を施すものである。これにより、水素水の経路において気泡が生じても気泡を除去できるので、水素水用容器160内に気泡が混入する事を防ぐことが可能となる。
水素水100の容器への封入処理では、フィルタリングした水素水100を水素水用容器160に封入する。この処理では、吸引機構140によって水素水用容器160内の空気を完全に吸引した後、水素水100を封入する。さらに、水素水100をオーバフローさせた状態で密封処理を施す。これにより、水素水用容器160内に空気を取り込むことを防ぐとともに、水素水100を水素水用容器160に充分一杯に充填し密封することが可能となる。
水素水充填工程60で水素水100が充填された水素水用容器160は、液量確認装置71に運ばれ、適正な液量が封入されているかについての確認が行われる。
殺菌工程80は、殺菌装置81において、水素水100の殺菌処理を行う工程である。
液量確認装置71で液量が確認された水素水用容器160は、殺菌装置81に運ばれる。殺菌工程80は、水素水100の封入密封前と後のいずれでも行うことは可能であるが、本実施例では、水素水100を充填し密封した後、水素水用容器160の外部から、容器を加熱することにより殺菌を行っている。充填前に殺菌処理を施すと、水素水100から水素が放出され、充填する前に水素濃度が低くなるという問題があった。本発明では、殺菌工程80を水素水の充填密封後にしているため、殺菌に当って水素水100から水素が放出されにくくなり、水中の水素が気泡化しても、分圧により水素は水中に再度溶け込むことになり外部に逃げることはない。これにより、水素濃度を製造工程で下げることなく、高濃度のままの水素水100を容器に充填して提供することが可能となった。
なお、上記殺菌処理は、容器の中心部を摂氏85度で30分以上加熱するのが望ましい。更に温度を上げて、滅菌処理を施すことも可能である。
殺菌装置81で殺菌処理が施された水素水用容器160は、冷却装置91に運ばれる。冷却工程90は、冷却装置91において、加熱殺菌した水素水用容器160の冷却を行う工程である。この冷却処理ののち、乾燥処理を施して、一連の製造工程が完了する。
前述した水素添加工程50では、パイロジェンが除去されたUF水32に水素を添加していたが、酸素、窒素等をUF水32から除去する不純物脱気工程(図示せず)を経て脱気したUF水に水素を溶け込ませることも可能である。不純物脱気工程は、UF水32中の溶存気体をUF水32から取り除くものである。UF水32中に酸素や窒素が存在すると、水素を添加しても反応してしまうので水素単位として溶け込ませることは困難となるため、水素の添加に先立って、あらかじめこれら不純物を取り除く必要がある。不純物脱気工程を行うことにより、水素をUF水32中に容易に添加し溶け込ませることが可能となり、また、より多くの水素を溶け込ませることができる。脱気方法には、中空糸膜脱気、真空減圧脱気、加熱沸騰脱気、超音波脱気、遠心脱気等がある。本実施例では中空糸膜脱気を採用しているが、この脱気方法に限定されるものではない。
また、前記不純物脱気工程は、図3に示すように、水素充填装置60中のUF水の流水路に設けた脱気膜により、少なくとも2回真空圧の原理によって不活性ガスである酸素、窒素等の除去を繰り返すのが望ましい。これにより、より純度の高い水を得ることが可能となる。
なお、前記の水素添加工程50において、水素の微小な気泡を添加混成することにより、水素を溶け込ませることも可能である。これにより、より水素を容易に溶け込ませることが可能となる。
水素水充填ノズル110は、水素水100を水素水用容器160に充填する際に使用されるノズルであって、図4に示すように、筐体120と、挿入ノズル部130とからなる構造である。筐体120は、水素水100を圧縮封入する筒状の部材であり、高濃度の水素水100が封入される。また、挿入ノズル部130は、水素水用容器160に水素水100を充填する際に、水素水用容器160の挿入口(飲み口164)に挿入し、水素を充填することに供される部材である。
筐体120には、吸引機構140が設置される。吸引機構140は、挿入ノズル部130を経由して水素水100を封入する水素水用容器160の内部の空気を吸引除去する部材である。これにより、水素水用容器160内部の空気を除去することができ、水素水100の充填をしやすくすると同時に、水素水用容器160内に不要な気泡が残留するのを防止することが可能となる。
また、水素水充填ノズル110には、ノズル内部にフィルタ132が設けられる。圧出機構150から圧力を掛けて放出された水素水100は、このフィルタ132を通過して水素水用容器160へ充填される。水素水100をフィルタ132を介して圧出することにより、水素添加装置51から充填ノズル110の内部に発生した気泡を除去することが可能となり、水素水用容器160内に不要な気泡が混在することを防止することが可能となる。
フィルタ132は、発生した気泡をより確実に除去するため、水素水充填ノズル110の内部に少なくとも2箇所設けるのが望ましい。
水素水用容器160は、図5に示すように、精製した水素水100を充填封入する水素水用の容器である。水素水用容器160は、容器本体162と、飲み口164とを有する。容器本体162は、容器の外壁がアルミニウムによる4層構造となっている。水素は、プラスチック製や塩化ビニール製の容器に封入しても、容易に容器外部へ排出されてしまうため、長期に高濃度の水素水を保存することが困難であった。容器本体162は、この構造とすることにより、水素が容器から排出されにくくなり、長期間において高濃度の水素水を保存提供することが可能となった。
また、水素水用容器160の飲み口164は、アルミニウム製とすることが可能である。これにより、容器外への水素の排出をより抑制することができ、より長期にわたり高濃度の水素水を保存することが可能となる。
本発明の水素水の製造方法により精製された水素水100の濃度の測定結果は、図6に示すとおりである。すなわち本発明により、高濃度の水素水100を精製することができた。また、水素水用容器160に水素水100を充填封入することにより、長期にわたり高濃度の水素水100を保存することが可能である事が確認された。
また、本発明の水素水の製造方法により精製された水素水100の酸化還元電位の値の推移の測定結果は図7に示すとおりである。この結果からも、長期にわたり高濃度の水素水100を保存することが可能である事が確認された。
水素水の製造工程を示すフロー図 水素水の製造工程の詳細を示すフロー図 水素添加工程のフロー図 水素水を充填する機器のフロー図 水素水用容器の正面図 充填後の水素濃度の変移を示す図 充填後の酸化還元電位の変移を示す図
1 水素水の製造方法
2 原水
10 RO水精製工程
11 RO水精製装置
12 RO水
14 RO膜
20 イオン交換水精製工程
21 イオン交換水精製装置
22 イオン交換水
24 イオン交換樹脂
30 UF水精製工程
31 UF水精製装置
32 UF水
34 UF膜
40 タンク
44 フィルタ
50 水素添加工程
51 水素添加装置
60 水素充填工程
61 水素充填装置
71 液量確認装置
80 殺菌工程
81 殺菌装置
90 冷却工程
91 冷却装置
100 水素水
110 水素水充填ノズル
120 筐体
130 挿入ノズル部
132 フィルタ
140 吸引機構
150 圧出機構
160 水素水用容器
162 容器本体
164 飲み口
P1〜P5 配管

Claims (10)

  1. 原水を半透膜により逆浸透圧で濾過してRO水(Reverse Osmosis=逆浸透膜濾過水)を精製するRO水精製工程と、前記RO水をイオン交換樹脂により濾過してイオン交換水を精製するイオン交換水精製工程と、前記イオン交換水を更にUF(Ultra Fiteration)膜により濾過することでパイロジェンを除去したUF水を精製するUF水精製工程と、前記UF水に水素を添加混成する水素添加工程と、前記水素水を水素の充分添加された状態で飲料として提供するために飲料容器に封入する際にフィルタに水素が混成する加圧された水を通過させることにより気泡を除去してから飲料の容器に圧入充填する水素水充填工程と、前記水素水が充填された容器の外部から水素水の殺菌処理を行う殺菌工程とからなる水素水の製造方法。
  2. 前記水素添加工程は、酸素、窒素等をUF水から除去する不純物脱気工程を経た脱気したUF水に、前記水素の微小な気泡を添加混成することを特徴とする請求項1記載の水素水の製造方法。
  3. 前記脱気手段は、UF水の流水路に設けた脱気膜により、少なくとも2回真空圧の原理によって不活性ガスである酸素、窒素等の除去を繰り返すことを特徴とする請求項1記載の水素水の製造方法。
  4. 前記水素水充填工程は、真空容器に水素水を圧入しオーバフローさせた後に密封することを特徴とする請求項1記載の水素水の製造方法。
  5. 前記殺菌工程は、水素水が充填された容器の外部から加熱殺菌を行うことを特徴とする請求項1記載の水素水の製造方法。
  6. 前記殺菌工程は、容器の中心部を摂氏85度で30分以上加熱することを特徴とする請求項5記載の水素水の製造方法。
  7. 前記水素水を圧縮封入する筒状の筐体と、挿入ノズル部とからなる水素水充填ノズルにおいて、
    水素水封入容器内部の空気を吸引除去する吸引機構と、水素水の圧出機構を具備するとともに、ノズル内部の気泡を除去するために水素水充填ノズル内にフィルタを設け、水素水をフィルタを介して圧出することを特徴とする水素水充填ノズル。
  8. 前記フィルタは、前記水素水充填ノズル内に少なくとも2箇所設けたことを特徴とする請求項7記載の水素水充填ノズル。
  9. 容器本体と、飲み口とを有する前記水素水を充填封入する水素水用容器において、
    容器の外壁をアルミニウムによる4層構造としたことを特徴とする請求項1記載の方法により精製した水素水を充填封入する水素水用容器。
  10. 前記飲み口は、アルミニウムにより構成されたことを特徴とする請求項9記載の水素水用容器。
JP2014242065A 2014-11-28 2014-11-28 水素水の製造方法および水素水製造装置 Active JP6596199B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014242065A JP6596199B2 (ja) 2014-11-28 2014-11-28 水素水の製造方法および水素水製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014242065A JP6596199B2 (ja) 2014-11-28 2014-11-28 水素水の製造方法および水素水製造装置

Publications (3)

Publication Number Publication Date
JP2016101565A true JP2016101565A (ja) 2016-06-02
JP2016101565A5 JP2016101565A5 (ja) 2018-01-18
JP6596199B2 JP6596199B2 (ja) 2019-10-23

Family

ID=56088299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014242065A Active JP6596199B2 (ja) 2014-11-28 2014-11-28 水素水の製造方法および水素水製造装置

Country Status (1)

Country Link
JP (1) JP6596199B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107311366A (zh) * 2016-09-30 2017-11-03 福州品行科技发展有限公司 一种富氢水净水机
DE102017208561A1 (de) 2016-05-20 2017-11-23 Denso Corporation Gyrosensor-vorrichtung
WO2017217830A1 (ko) * 2016-06-17 2017-12-21 이성표 항산화 및 미세먼지 축적 억제 기능을 갖는 수소수의 제조 장치 및 방법과 이를 이용하여 제조된 수소수
CN110526468A (zh) * 2019-09-06 2019-12-03 江伟 一种基于高盐废水的工业废水处理系统及其处理方法
CN111498265A (zh) * 2020-05-13 2020-08-07 浙江锦泉环境科技有限公司 一种新型富氢水低压容器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205299A (ja) * 2002-01-15 2003-07-22 Japan Organo Co Ltd 水素溶解水製造装置
JP2003311271A (ja) * 2002-04-18 2003-11-05 Sanyo Electric Co Ltd 水処理装置
JP2006272098A (ja) * 2005-03-28 2006-10-12 Susumu Nakajima 水洗浄用水の製造方法および製造装置
JP2008114185A (ja) * 2006-11-07 2008-05-22 Sato Kogyo Kk ガス溶存水製造装置
JP2008119611A (ja) * 2006-11-13 2008-05-29 Kurita Water Ind Ltd ガス溶解洗浄水の製造装置及び製造方法
WO2008123351A1 (ja) * 2007-03-30 2008-10-16 Kurita Water Industries Ltd. 超純水製造システムの洗浄殺菌方法
JP2009208063A (ja) * 2008-02-04 2009-09-17 Ted:Kk 水素還元水の製造方法
JP2013022567A (ja) * 2011-07-25 2013-02-04 Bio Coke Lab Co Ltd 水素水製造装置及び水素水製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205299A (ja) * 2002-01-15 2003-07-22 Japan Organo Co Ltd 水素溶解水製造装置
JP2003311271A (ja) * 2002-04-18 2003-11-05 Sanyo Electric Co Ltd 水処理装置
JP2006272098A (ja) * 2005-03-28 2006-10-12 Susumu Nakajima 水洗浄用水の製造方法および製造装置
JP2008114185A (ja) * 2006-11-07 2008-05-22 Sato Kogyo Kk ガス溶存水製造装置
JP2008119611A (ja) * 2006-11-13 2008-05-29 Kurita Water Ind Ltd ガス溶解洗浄水の製造装置及び製造方法
WO2008123351A1 (ja) * 2007-03-30 2008-10-16 Kurita Water Industries Ltd. 超純水製造システムの洗浄殺菌方法
JP2009208063A (ja) * 2008-02-04 2009-09-17 Ted:Kk 水素還元水の製造方法
JP2013022567A (ja) * 2011-07-25 2013-02-04 Bio Coke Lab Co Ltd 水素水製造装置及び水素水製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017208561A1 (de) 2016-05-20 2017-11-23 Denso Corporation Gyrosensor-vorrichtung
WO2017217830A1 (ko) * 2016-06-17 2017-12-21 이성표 항산화 및 미세먼지 축적 억제 기능을 갖는 수소수의 제조 장치 및 방법과 이를 이용하여 제조된 수소수
CN107311366A (zh) * 2016-09-30 2017-11-03 福州品行科技发展有限公司 一种富氢水净水机
CN110526468A (zh) * 2019-09-06 2019-12-03 江伟 一种基于高盐废水的工业废水处理系统及其处理方法
CN110526468B (zh) * 2019-09-06 2022-01-21 南京水滴环境工程有限公司 一种基于高盐废水的工业废水处理系统及其处理方法
CN111498265A (zh) * 2020-05-13 2020-08-07 浙江锦泉环境科技有限公司 一种新型富氢水低压容器

Also Published As

Publication number Publication date
JP6596199B2 (ja) 2019-10-23

Similar Documents

Publication Publication Date Title
JP6596199B2 (ja) 水素水の製造方法および水素水製造装置
JP4551964B1 (ja) 飲料用水素含有水を製造する方法
TWI389681B (zh) And a manufacturing apparatus for producing a suitable liquid for a living body containing hydrogen
CN1119291C (zh) 医疗用电解水的制造方法及利用该水作透析液的透析装置
EP2576453B1 (en) Systems and methods for removing hydrogen peroxide from water purification systems
JP6116658B2 (ja) 気体溶解装置及び気体溶解方法
JP6052948B2 (ja) 飲料用水素含有水の製造方法、及びその製造装置
JP2009125654A (ja) 飲料用水素含有水の製造方法
JP5357836B2 (ja) 精製水の製造装置とその使用方法
JP2014161605A (ja) 水素付加装置および腹膜透析装置
WO2014141649A1 (ja) 天然物抽出飲料の製造方法
JP2007252396A (ja) 医療用透析液の製造装置および製造方法
JP5940689B1 (ja) 透析液調製用水の製造装置
JP5840248B2 (ja) 透析液の製造装置
JP2012076076A (ja) 飲料用水素含有水を製造する方法
JP2010131495A (ja) 医療用精製水の製造方法
JP2010132602A (ja) 海洋深層水を基にした生理食塩水及び生理食塩水の製造方法
JP2015208744A (ja) 飲料用水素含有水の製造方法、及びその製造装置
JP5596907B2 (ja) 創傷治療用組成物の製造方法
JP2005281238A (ja) 海水を利用した医療用電解質液およびその製造方法
CN106630236A (zh) 一种纯净水的制备系统
JP6637320B2 (ja) 医薬精製水製造装置および医薬精製水の製造装置の殺菌方法
JP4088788B2 (ja) 飲料水及びその製造方法
CN210885650U (zh) 包含臭氧装置的洗瓶废水循环净化处理设备
CN212315799U (zh) 一种可增加氢含量的纯净水生产设备

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190930

R150 Certificate of patent or registration of utility model

Ref document number: 6596199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250