JP2016098974A - 流路切換弁 - Google Patents

流路切換弁 Download PDF

Info

Publication number
JP2016098974A
JP2016098974A JP2014238597A JP2014238597A JP2016098974A JP 2016098974 A JP2016098974 A JP 2016098974A JP 2014238597 A JP2014238597 A JP 2014238597A JP 2014238597 A JP2014238597 A JP 2014238597A JP 2016098974 A JP2016098974 A JP 2016098974A
Authority
JP
Japan
Prior art keywords
main valve
port
valve body
flow path
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014238597A
Other languages
English (en)
Other versions
JP6478585B2 (ja
Inventor
木船 仁志
Hitoshi Kibune
仁志 木船
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2014238597A priority Critical patent/JP6478585B2/ja
Publication of JP2016098974A publication Critical patent/JP2016098974A/ja
Application granted granted Critical
Publication of JP6478585B2 publication Critical patent/JP6478585B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Multiple-Way Valves (AREA)
  • Fluid-Driven Valves (AREA)
  • Mechanically-Actuated Valves (AREA)

Abstract

【課題】高圧に耐えられる十分な強度を確保できて耐久性を向上させることができ、流路切換を確実かつ迅速に行うことができるとともに、ヒートポンプ式冷暖房システム等の高温高圧環境下にも組み込むことのできる流路切換弁を提供する。
【解決手段】主弁ハウジング10及び該主弁ハウジング10内に回動可能に配在された主弁体20を備える主弁5と、主弁体20を回動させるための流体圧式のアクチュエータ7とを備え、主弁体20を回転させることにより、流路が切り換えられるようにされ、アクチュエータ7は、主弁ハウジング10の外周に、主弁5に供給される高圧流体が導入される作動室55が設けられた本体部50を有し、作動室55に、主弁体20の回転軸線に垂直な方向に移動可能に受圧移動体60が収容され、受圧移動体60と主弁体20との間に、高圧流体の圧力を利用した受圧移動体60の往復直線運動を主弁体20の正逆両方向の回転運動に変換する運動変換機構58が設けられている。
【選択図】図17

Description

本発明は、弁体を回転させることにより流路の切り換えを行うロータリー式の流路切換弁に係り、特に、ヒートポンプ式冷暖房システム等において流路切換を行うのに好適な流路切換弁に関する。
一般に、ルームエアコン、カーエアコン等のヒートポンプ式冷暖房システムは、圧縮機、室外熱交換器、室内熱交換器、及び膨張弁等に加えて、流路(流れ方向)切換手段としての流路切換弁を備えている。
この流路切換弁を備えたヒートポンプ式冷暖房システムの一例を図22を参照しながら簡単に説明する。図示例のヒートポンプ式冷暖房システム100は、運転モード(冷房運転と暖房運転)の切り換えを流路切換弁(四方切換弁)140で行うようになっており、基本的には、圧縮機110、室外熱交換器120、室内熱交換器130、及び膨張弁160を備え、前記の圧縮機110、室外熱交換器120、室内熱交換器130、及び膨張弁160の四者の間に4つのポート、すなわち、吐出側高圧ポートD、室外側入出ポートC、室内側入出ポートE、及び吸入側低圧ポートSを有する流路切換弁140が配在されている。
前記各機器間は導管(パイプ)等で形成される流路で接続されており、冷房運転モードが選択されたときには、図22において実線矢印で示される如くに、流路切換弁140の吐出側高圧ポートDが室外側入出ポートCに、また、室内側入出ポートEが吸入側低圧ポートSにそれぞれ連通せしめられる。これにより、冷媒が圧縮機110に吸入されるとともに、圧縮機110から高温高圧の冷媒が流路切換弁140を介して室外熱交換器120に導かれ、ここで室外空気と熱交換して凝縮し、高圧の二相冷媒となって膨張弁160に導入される。この膨張弁160により高圧の冷媒が減圧され、減圧された低圧の冷媒は、室内熱交換器130に導入され、ここで室内空気と熱交換(冷房)して蒸発し、室内熱交換器130からは低温低圧の冷媒が流路切換弁140を介して圧縮機110の吸入側に戻される。
それに対し、暖房運転モードが選択されたときには、図22において破線矢印で示される如くに、流路切換弁140の吐出側高圧ポートDが室内側入出ポートEに、また、室外側入出ポートCが吸入側低圧ポートSにそれぞれ連通せしめられ、圧縮機110から高温高圧の冷媒が室内熱交換器130に導かれ、ここで室内空気と熱交換(暖房)して凝縮し、高圧の二相冷媒となって膨張弁160に導入される。この膨張弁160により高圧の冷媒が減圧され、減圧された低圧の冷媒は、室外熱交換器120に導入され、ここで室外空気と熱交換して蒸発し、室外熱交換器120からは低温低圧の冷媒が流路切換弁140を介して圧縮機110の吸入側に戻される。
前記した如くのヒートポンプ式冷暖房システムに組み込まれる四方切換弁として、従来、パイロット弁を備えたロータリー式の四方切換弁が提案されている(例えば特許文献1参照)。この特許文献1に所載の四方切換弁は、円筒状胴体(主弁ハウジング)内を区劃片(回転軸部に片持ち支持された板状主弁体)により2つに区画するとともに、主弁ハウジングの外周部に前記吐出側高圧ポートDと吸入側低圧ポートSとを、また、室外側入出ポートCと室内側入出ポートEとを、それぞれ180°前後離して対向配置させ、板状主弁体を回転させることにより、流路の切り換え、すなわち、吐出側高圧ポートDが室外側入出ポートCに、また、室内側入出ポートEが吸入側低圧ポートSにそれぞれ連通する第1連通状態と、吐出側高圧ポートDが室内側入出ポートEに、また、室外側入出ポートCが吸入側低圧ポートSにそれぞれ連通する第2連通状態とを作り出すようにされ、また、主弁体の回転(流路切換)は、主弁ハウジングの上側に設けられた、システム内の高圧冷媒と低圧冷媒の差圧を利用する流体圧式のアクチュエータ(板状主弁体の回転軸部の延長軸部に片持ち支持された板状体で仕切られた二つ作動室)への高圧冷媒導入・排出をパイロット弁で選択的に行うことによりなされる。
一方、特許文献2には、下水の真空接続管路の開閉を、負圧を利用して作動するシリンダにより行うようにしたロータリー式の真空弁が提案されている。この真空弁は、円筒状の弁箱(主弁ハウジング)内に主弁体が弁軸と偏芯して配置されるとともに、主弁ハウジングの外周部に、汚水の吸込み管に接続される流入口と真空接続管に接続される流出口と流体を通過させるための開口部とが形成され、弁軸の回転操作により主弁体を回転させて真空接続管の流路の開閉を行うようにされ、また、主弁体の回転(すなわち、弁軸の回転)は、主弁ハウジングの上側に対向配置されたシリンダの前記真空接続管に接続された負圧室への負圧の導入によりなされる。
特開2001−82834号公報 特開2002−13665号公報
前記した如くの従来の流路切換弁においては、次のような解決すべき課題がある。
すなわち、特許文献1に所載のロータリー式の流路切換弁では、主弁体を回転(流路切換)させるための流体圧式のアクチュエータは、高圧を受ける部分が主弁体の回転軸部の延長軸部に片持ち支持された、板厚に対して受圧面積の大きな板状体であるので、変形(撓み)等が生じやすく、強度や耐久性に問題があるとともに、流路切換の確実性や迅速性にも欠ける嫌いがある。
また、特許文献2に所載の流路切換弁では、主弁体を回転(流路切換)させるためのアクチュエータは、真空接続管に接続された負圧室と大気に連通する大気室との圧力差によりシリンダ内のピストンを一方向に移動させているので、やはり、流路切換の確実性や迅速性に欠ける嫌いがある。
本発明は、上記事情に鑑みてなされたもので、その目的とするところは、高圧に耐えられる十分な強度を確保できて耐久性を向上させることができ、流路切換を確実かつ迅速に行うことができるとともに、ヒートポンプ式冷暖房システム等の高温高圧環境下にも組み込むことのできる流路切換弁を提供することにある。
前記の目的を達成すべく、本発明に係る流路切換弁は、基本的には、主弁ハウジング及び該主弁ハウジング内に回動可能に配在された主弁体を備える主弁と、前記主弁体を回動させるための流体圧式のアクチュエータとを備え、前記主弁体を回転させることにより、流路が切り換えられるようにされ、前記アクチュエータは、前記主弁ハウジングの外周に、前記主弁に供給される高圧流体が導入される作動室が設けられた本体部を有し、前記作動室に、前記主弁体の回転軸線に垂直な方向に移動可能に受圧移動体が収容され、前記受圧移動体と前記主弁体との間に、前記高圧流体の圧力を利用した前記主弁体の回転軸線に垂直な方向への前記受圧移動体の往復直線運動を前記主弁体の正逆両方向の回転運動に変換する運動変換機構が設けられていることを特徴としている。
前記運動変換機構は、好ましくは、前記受圧移動体に連結固定された駆動アームと、一部が露出するように前記主弁体に内挿され、その露出部が前記駆動アームの腕部に連れ回される棒部材とで構成されている。
前記運動変換機構は、好ましくは、前記受圧移動体に形成された駆動歯と、前記主弁体の外周に形成され、前記駆動歯に噛合する従動歯とで構成されている。
好ましい形態では、前記受圧移動体の両端に、前記作動室の内周面との間を気密的に封止して前記作動室を容積可変の左側部及び右側部と容積不変の中央部とに仕切るピストン型パッキンが装着され、前記本体部に、前記作動室左側部に高圧流体を導入・排出するための左側部ポートが設けられるとともに、前記作動室右側部に高圧流体を導入・排出するための右側部ポートが設けられている。
前記アクチュエータは、好ましくは、前記作動室左側部に前記左側部ポートを介して高圧流体を導入するとともに、前記作動室右側部から前記右側部ポートを介して高圧流体を排出することにより、前記受圧移動体を右方へ移動させて前記主弁体を一方向に回転させる右動行程と、前記作動室右側部に前記右側部ポートを介して高圧流体を導入するとともに、前記作動室左側部から前記左側部ポートを介して高圧流体を排出することにより、前記受圧移動体を左方へ移動させて前記主弁体を他方向に回転させる左動行程とを選択的にとり得るように構成されている。
他の好ましい形態では、前記右動行程と前記左動行程との切り換えを、前記左側部ポートと前記右側部ポート、及び、前記主弁内の高圧部分と低圧部分とに接続された四方パイロット弁により行うようにされている。
他の好ましい形態では、前記作動室中央部は、前記主弁内の高圧部分に常時連通している。
本発明に係る流路切換弁では、主弁内を流通する高圧流体と低圧流体との差圧を利用した流体圧式アクチュエータにより、主弁体を回動させるようにされているので、負圧と大気圧との差圧を利用したものに比べて、流路切換を確実かつ迅速に行うことができ、また、電動モータ等で主弁体を回動させる場合に比べて、コスト削減、消費電力の低減、省エネ化等を図ることができる。
また、主弁体を回動させるアクチュエータは、流体圧により受圧移動体を左右方向(主弁体の回転軸線に垂直な方向)に移動させ、この左右方向の移動を主弁体に伝達して当該主弁体の回転運動に変換する構成なので、従来例のように高圧を受ける部分が主弁体の回転軸部の延長軸部に片持ち支持された、板厚に対して受圧面積の大きな板状体であるものに比べて、高圧を受ける部分(受圧移動体)に、十分な強度を確保でき、耐久性を向上させることができるとともに、十分な強度を確保できることから、受圧面積を大きくすることができ、そのため、流路切換を確実かつ迅速に行うことができる。
また、主弁体を回動させるアクチュエータは、主弁ハウジングの外周に受圧移動体が収容された作動室が設けられた本体部を有し、流体圧により移動する受圧移動体からの左右方向の荷重を主弁体の外周付近に伝達して当該主弁体を回転運動させる構成なので、受圧移動体の左右の圧力差が低いときでも、主弁体の回動に要する必要トルクを容易に得ることができる。
また、本発明の運動変換機構を備えた流体圧式のアクチュエータは、極めてシンプルな構成であるので、コスト的に有利であるとともに、高温高圧環境下で使用する場合の対策(受圧移動体の肉厚を厚くする等)を容易にとることができ、そのため、本発明に係る流路切換弁は、特に、ヒートポンプ式冷暖房システム等の高温高圧環境下に組み込まれる流路切換弁として費用対効果に極めて優れるものとなる。
上記した以外の、課題、構成、及び作用効果は、以下の実施形態により明らかにされる。
(A)は、本発明に係る流路切換弁の第1実施例における一側面図、(B)は、(A)に示される流路切換弁の上面側配置図、(C)は、(A)に示される流路切換弁の右側面図。 図1(B)のA−A矢視線に従って部分的に破断した他側面図。 図1(B)のB−B矢視線に従って部分的に破断した他側面図。 図1(B)のC−C矢視線に従う主弁部分の拡大断面図。 第1実施例の流路切換弁に設けられたシール面離隔機構の構成及び動作説明に供される拡大断面図。 (A)は、第1実施例の流路切換弁において主弁体が第1の回転位置にある状態を示し、(1)は上面側配置図、(2)は(1)のX−X矢視線に従う断面図、(B)は、第1実施例の流路切換弁において主弁体が第2の回転位置にある状態を示し、(1)は上面側配置図、(2)は(1)のX−X矢視線に従う断面図。 (A)は、第1実施例における主弁体の第1層部材が第1の回転位置にある状態を示し、(1)は平面図、(2)は(1)のX−X矢視線に従う断面図、(B)は、第1実施例における主弁体の第1層部材が第2の回転位置にある状態を示し、(1)は平面図、(2)は(1)のX−X矢視線に従う断面図。 (A)は、第1実施例における主弁体の第2層部材が第1の回転位置にある状態を示し、(1)は平面図、(2)は(1)のX−X矢視線に従う断面図、(B)は、第1実施例における主弁体の第2層部材が第2の回転位置にある状態を示し、(1)は平面図、(2)は(1)のX−X矢視線に従う断面図。 (A)は、第1実施例における主弁体の第3層部材が第1の回転位置にある状態を示し、(1)は平面図、(2)は(1)のX−X矢視線に従う断面図、(B)は、第1実施例における主弁体の第3層部材が第2の回転位置にある状態を示し、(1)は平面図、(2)は(1)のX−X矢視線に従う断面図。 (A)は、第1実施例における主弁体の第4層部材が第1の回転位置にある状態を示し、(1)は平面図、(2)は(1)のX−X矢視線に従う断面図、(B)は、第1実施例の主弁体の第4層部材が第2の回転位置にある状態を示し、(1)は平面図、(2)は(1)のX−X矢視線に従う断面図。 第1実施例の主弁体の上半部と下半部をそれぞれ一体物とした例を示し、(A)は第1の回転位置にある状態、(B)は第2の回転位置にある状態をそれぞれ示す断面図。 第1実施例の主弁体の上半部と下半部を一体物とした例を示し、(A)は第1の回転位置にある状態、(B)は第2の回転位置にある状態をそれぞれ示す断面図。 第2実施例の流路切換弁を示し、(A)は主弁体が第1の回転位置にある状態を、(B)は主弁体が第1の回転位置から時計回りに90°回転した第2の回転位置にある状態であり、(1)は上面側配置図、(2)は各状態における連通路構成を示す概略図、(3)は下面側配置図。 (A)は、第2実施例における主弁体が第1の回転位置にある状態の、(1)第1層部材、(2)第2層部材、(3)第3層部材、(4)第4層部材のそれぞれの平面図、(B)は、主弁体が第1の回転位置にある状態における連通路構成を示し、(B)の(1)〜(4)は、(A)の(1)〜(4)のX−X矢視線に従う断面図。 (A)は、第2実施例における主弁体が第2の回転位置にある状態の、(1)第1層部材、(2)第2層部材、(3)第3層部材、(4)第4層部材のそれぞれの平面図、(B)は、主弁体が第2の回転位置にある状態における連通路構成を示し、(B)の(1)の上段側、下段側は、それぞれ(A)の(1)におけるU−U矢視線、V−V矢視線に従う部分断面図、(B)の(2)及び(3)は、(A)の(2)及び(3)のY−Y矢視線に従う断面図、(B)の(4)の上段側、下段側は、それぞれ(A)の(4)におけるJ−J矢視線、K−K矢視線に従う部分断面図。 第3実施例の流路切換弁を示し、(A)は主弁体が第1の回転位置にある状態、(B)は主弁体が第2の回転位置にある状態であり、(1)は上面側配置図、(2)は(1)のX−X矢視線に従う断面図。 本発明に係る流路切換弁の第1実施例におけるアクチュエータ部分(右動行程完了状態)を示す、図1(A)のD−D矢視線に従う主要部分の横断面図。 図17に示される第3層部材の主要部の斜視図。 図17に示されるアクチュエータの他の状態(左動行程完了状態)を示す主要部分の横断面図。 図17に示されるアクチュエータに備えられる四方パイロット弁を示し、(A)は通電OFF時を、(B)は通電ON時をそれぞれ示す拡大断面図。 図17に示されるアクチュエータの他の例を示し、(A)は、右動行程完了状態を示し、(B)は、左動行程完了状態を示す主要部分の横断面図。 ヒートポンプ式冷暖房システムの一例を示す概略構成図。
以下、本発明の実施形態を図面を参照しながら説明する。
図1は、本発明に係る流路切換弁の第1実施例を示し、(A)は一側面図、(B)は上面側配置図、(C)は右側面図である。また、図2、図3、図4は、それぞれ図1(B)のA−A矢視線に従って部分的に破断した他側面図、B−B矢視線に従って部分的に破断した他側面図、C−C矢視線に従う主弁部分の拡大断面図である。
なお、本明細書において、上下、左右、前後等の位置、方向を表わす記述は、説明が煩瑣になるのを避けるために図面に従って便宜上付けたものであり、実際にヒートポンプ式冷暖房システム等に組み込まれた状態での位置、方向を指すとは限らない。
また、各図において、部材間に形成される隙間や部材間の離隔距離等は、発明の理解を容易にするため、また、作図上の便宜を図るため、各構成部材の寸法に比べて大きくあるいは小さく描かれている場合がある。
[主弁の第1実施例]
図示実施例の流路切換弁1は、四方切換弁であり、例えば前述した図22に示されるヒートポンプ式冷暖房システム100における四方切換弁140として用いられるもので、ロータリー式の主弁5と、流体圧式のアクチュエータ7とを備える。
以下においては、まず、主として主弁5について説明し、その後にアクチュエータ7について説明する。
主弁5は、主弁ハウジング10と、この主弁ハウジング10内に回動可能かつ上下動可能に配在された主弁体20とを備える。
主弁ハウジング10は、アルミあるいはステンレス等の金属製とされ、円筒状の胴部10Cと、この胴部10Cの上面開口を気密的に封止するようにかしめ固定され、さらにはんだ付け、ろう付け、溶接等により固定された厚肉円板状の上側弁シート10Aと、胴部10Cの下面開口を閉塞するように前記上側弁シート10Aと同様に前記胴部10Cに固定された厚肉円板状の下側弁シート10Bとを有し、上側弁シート10Aの左右には、管継手からなる第1ポート11、第2ポート12が垂設され、下側弁シート10Bの左右には、管継手からなる第3ポート13、第4ポート14が垂設されている。各ポート11〜14は同一円周上に設けられており、第1ポート11と第3ポート13及び第2ポート12と第4ポート14は平面視同一位置に配在されている。上側弁シート10Aの下面及び下側弁シート10Bの上面は、平坦で滑らかな弁シート面17、17となっている。
本実施例では、図22に示される如くのヒートポンプ式冷暖房システム100に組み込まれた場合において、例えば、第1ポート11は圧縮機吐出側に接続される吐出側高圧ポートDとされ、第2ポート12は室内熱交換器に接続される室内側入出ポートEとされ、第3ポート13は室外熱交換器に接続される室外側入出ポートCとされ、第4ポート14は圧縮機吸入側に接続される吸入側低圧ポートSとされる(図1参照)。
前記主弁ハウジング10における上側弁シート10Aの下面(内面)側中央(主弁ハウジング10の中心線O上)には、主弁体20の上側回転軸部30A(後述)を回転自在に支持する軸受穴15Aが設けられ、また、下側弁シート10Bの上面(内面)側中央にも、主弁体20の下側回転軸部30B(後述)を回転自在に支持する軸受穴15Bが設けられている。
また、胴部10Cの外周(の主弁体20の第3層部材23(後述)の側方部分)には、その内部空間が主弁ハウジング10の内部空間と流体連通するように、アクチュエータ7の本体部50が一体的に設けられている。前記本体部50は、主弁ハウジング10の中心線Oに垂直な方向の中心線Qに沿って主弁ハウジング10の直径よりも横長に形成された、基本的に断面矩形のシリンダ部材から形成されている。なお、パイロット弁80は、流路切換弁1の適宜の位置に配置することができる。
主弁体20は、短円柱状の上半部20Aと下半部20Bとの二分割構成となっている。詳しくは、比較的厚みのある第1層部材21と該第1層部材21の下面側に溶接等により一体的に接合された第2層部材22とで上半部20Aが構成され、厚肉円板状の第3層部材23と該第3層部材23の下面側に溶接等により一体的に接合された比較的厚みのある第4層部材24とで下半部20Bが構成されている。
前記上半部20A(の第2層部材22)と下半部20B(の第3層部材23)との間に、それらを相互に逆方向に付勢する付勢手段としての4本の圧縮コイルばね29が縮装されている(図2参照)。4本の圧縮コイルばね29は、第3層部材23の上面側の同一円周上に等角度間隔で設けられた4個のばね収納穴23h(図9参照)に、その一部を上方に突出させた状態で装填されている。
主弁体20の第1層部材21の上面側及び第4層部材24の下面側の平面視同一位置には、主弁体20の中心線O(主弁ハウジング10と共通)を通る断面矩形の横断溝27、27が形成されている。この横断溝27、27の両端近くには、主弁体20の上半部20Aと下半部20Bとを一体回動可能かつ上下動可能とすべく、図3に示される如くに、2本の貫通穴26が形成されるとともに、この2本の貫通穴26に上下端部が小径とされた棒部材としての段付きの一体回動棒25がそれぞれ挿入されている。一体回動棒25の上下の小径部25aは、上側回転軸部30A及び下側回転軸部30Bの角棒部30b、30dの両端近くに設けられた挿通穴30e、30fに圧入やかしめ固定等されて嵌挿されている。
主弁体20の回転軸部は、図2〜4に示される如くに、主弁体20の本体部分(上半部20A、下半部20B)と一体的に挙動可能な上側回転軸部30Aと下側回転軸部30Bとに分けられ、それらが前記一体回動棒25により接続されている。上側回転軸部30Aは、前記軸受穴15Aに挿入される枢軸部30aと、前記横断溝27に嵌合する、それと長さが略同じで断面矩形の角棒部30bとからなっている。下側回転軸部30Bは、前記軸受穴15Bに挿入される枢軸部30cと、前記横断溝27に嵌合する、それと長さが略同じで断面矩形の角棒部30dとからなっている。角棒部30b、30dの両端近くには、前記挿通穴30e、30fが設けられている。
したがって、上下の回転軸部30A、30Bと左右の一体回動棒25、25は、一体回動可能に井形状ないし矩形状に組まれた枠状体28を構成しており、この枠状体28により、運動変換機構58における受圧移動体60からの荷重が主弁体20(上半部20Aと下半部20B)に偏り無く確実に伝達されるとともに、二分割構成とされた主弁体20(上半部20A、下半部20B)が一体回動棒25に沿って若干摺動可能とされていることにより、その上下動、傾き、位置ずれ等に柔軟に対応できる。なお、前記一体回動棒25は、主弁体20の回転軸線Oに垂直な方向の往復直線運動を主弁体20の正逆両方向の回転運動に変換する運動変換機構58の一部としても利用される(後で詳述)。
流路切換にあたり、主弁体20は、後述するアクチュエータ7により、正逆両方方向に回転せしめられ、図6(A)に示される如くの第1の回転位置と、この第1の回転位置から時計回りに60°回転させた、図6(B)に示される如くの第2の回転位置とを選択的にとり得るようにされている。
主弁体20には、第1の回転位置をとるとき、第1ポート11と第3ポート13とを連通させる第1連通路31及び第2ポート12と第4ポート14とを連通させる第2連通路32とが設けられるとともに、第2の回転位置をとるとき、第1ポート11と第2ポート12とを連通させる第3連通路33及び第3ポート13と第4ポート14とを連通させる第4連通路34とが設けられている。
詳細には、前記第1〜第4連通路31〜34を構成する、第1〜第4層部材21〜24に設けられた各通路部の上面開口又は下面開口は、第1〜第4ポート11〜14と同一円周上に配在されており、また、その口径は各ポート11〜14の口径と略同じとされ、さらに、第1連通路31と第2連通路32は、各ポート11〜14の口径と略同じ通路径となっている。
主弁体上半部20Aの上部を構成する第1層部材21には、図7に示される如くに、180°間隔をあけて2つの直線貫通路部21A、21Bが設けられるとともに、第2層部材22によりその下面開口が閉塞される、平面視波状の横穴21Eにより結ばれた2つの横穴付き通路部21C、21Dが設けられている。横穴付き通路部21Cと21Dは、180°間隔をあけて配在されており、2つ合わせてU字状の比較的容積の大きな連通路(第3連通路33)を形成する。直線貫通路部21A、21Bと横穴付き通路部21C、21Dとの角度間隔は60°とされている。
したがって、主弁体20が第1の回転位置にあるときには、直線貫通路部21A、21Bが第1ポート11、第2ポート12の真下に位置し、主弁体20を第1の回転位置から時計回りに60°回転させると、直線貫通路部21A、21Bの上面開口が上側弁シート10Aにより閉塞されるとともに、横穴付き通路部21C、21Dの上面開口が第1ポート11、第2ポート12の真下に位置する。
主弁体上半部20Aの下部を構成する第2層部材22には、図8に示される如くに、180°間隔をあけて2つの直線貫通路部22A、22Bが設けられている。直線貫通路部22A、22Bは第1層部材21の直線貫通路部21A、21Bの真下に位置している。
主弁体下半部20Bの上部を構成する第3層部材23には、図9に示される如くに、180°間隔をあけて2つの直線貫通路部23A、23Bが設けられている。直線貫通路部23A、23Bは第2層部材22の直線貫通路部22A、22Bの真下に位置している。
主弁体下半部20Bの下部を構成する第4層部材24には、図10に示される如くに、第1層部材21と同様に、180°間隔をあけて2つの直線貫通路部24A、24Bが設けられるとともに、第3層部材23によりその上面開口が閉塞される、平面視波状の横穴24Eにより結ばれた2つの横穴付き通路部24C、24Dが設けられている。直線貫通路部24A、24Bは第3層部材23の直線貫通路部23A、23Bの真下に位置している。横穴付き通路部24Cと24Dは、180°間隔をあけて配在されており、2つ合わせてU字状の比較的容積の大きな連通路(第4連通路34)を形成する。直線貫通路部24A、24Bと横孔付き通路部24C、24Dとの角度間隔は60°とされている。
したがって、主弁体20が第1の回転位置にあるときには、直線貫通路部24A、24Bが第3ポート13、第4ポート14の真上に位置し、主弁体20を第1の回転位置から時計回りに60°回転させると、直線貫通路部24A、24Bの下面開口が下側弁シート10Bにより閉塞されるとともに、横穴付き通路部24C、24Dの下面開口が第3ポート13、第4ポート14の真上に位置する。
第1層部材21と第2層部材22の2つの部材を合わせて連通路(第3連通路33)を形成したため、断面視で視て、横穴付き通路部21C、21Dの間には、横穴21E側に膨出した案内部が、中心線Oに垂直な方向に比較的長く設けられている。この案内部により、流体(冷媒)がU字状に曲がる部分に発生する渦流を防止することができ、また、横穴21Eの口径と各ポート11〜14の口径とがほぼ同じ通路径となるので、流路の体積を一様にすることができるため、主弁5内で流体の膨張や縮小が発生せず、圧力損失を低減できる。仮に、後述する3Dプリンターを用いずに成形品にて主弁体上半部20Aを作成した場合には、前記連通路は、案内部の無い椀型とせざるを得ず、渦流が発生したり、流路の体積を一様にできないため、圧力損失が大きくなる。
前記した各連通路31、32、33、34の両端部には、図4、図5、図7を参照すればよくわかるように、上側弁シート10A、下側弁シート10Bの弁シート面17、17における各ポート11〜14の開口周りに密接する円環状シール面37、37を持つ凸部36が突設されている。隣り合う凸部36、36(のシール面37、37)は連設されて平面視メガネ状を呈するものとなっており、第4層部材24に設けられた凸部36(のシール面37)も同様である。
また、第1連通路31と第2連通路32は、図4に示される如くに、主弁体20の上半部20Aと下半部20Bとに跨がる分割連通路となっているので、シール性を確保するため、次のような方策が講じられている。すなわち、第1連通路31を代表して説明するに、第1連通路31を構成する第2層部材22の直線貫通路部22Aの下部に大径部22cが形成されるとともに、第3層部材23の直線貫通路部23Aの上端に、前記大径部22cに摺動自在に挿入される円筒状部23cが延設され、大径部22cと円筒状部23cとの間にOリング49が介装され、当該Oリング49の脱落を防止するワッシャ49aが大径部22cの端部に溶接にて接合されている。第2連通路32も同様な構成となっている。
上記に加え、本実施例では、主弁体20の第1層部材21と上側弁シート10Aとの間、及び、第4層部材24と下側弁シート10Bとの間に、主弁体20の回転時において、主弁体20側のシール面37、37を上側弁シート10A及び下側弁シート10Bの弁シート面17、17から離れさせるボール式シール面離隔機構45が設けられている。
ボール式シール面離隔機構45は、第1層部材21と上側弁シート10Aとの間に設けられたものが図4、図5に代表例で示されているように、ボール46と、該ボール46を、その一部を上下方向に突出させた状態で、回転自在にかつ移動は実質的に阻止した状態で収容する収容部47と、主弁体20の回転開始前及び回転終了時においては、主弁体20側のシール面37が上側弁シート10Aの弁シート面17から離れないように、前記収容部47から突出する前記ボール46の一部が嵌め込まれ、主弁体20の回転時(流路切換中)においては、ボール46が主弁体20を押し下げながら転がり出るような寸法形状とされた逆円錐状の凹穴48とを備えている。なお、収容部47は、丸穴47aと該丸穴47aに圧入等により固定された、上部が窄まった筒状抜け止め金具47bとで構成されている。
前記ボール46が収容された収容部47は、図7及び図10の(A)の(1)に示される如くに、主弁体20の第1層部材21と第4層部材24の同一円周上にそれぞれ90°間隔をあけて4箇所に設けられており、また、凹穴48は上側弁シート10Aと下側弁シート10Bの同一円周上の、平面視で前記収容部47と同一位置及び該位置から時計回りに60°離れた位置の計8箇所に設けられている。
かかるシール面離隔機構45では、主弁体20の回転開始前及び回転終了時においては、図5(A)に示される如くに、上側弁シート10Aの凹穴48内にボール46の一部が嵌り込んでいる。この嵌り込み量(上側弁シート10Aの弁シート面17からボール46の頂上までの高さ)をhとする。この状態から主弁体20を60°回転させ始めると、収容部47が周方向に移動(回転)し、これに伴ってボール46は、図5(B)に示される如くに、主弁体20(上半部20A)を、上半部20Aと下半部20Bとの間に縮装された圧縮コイルばね29の付勢力に抗して、押し下げながら凹穴48から転がり出る。これによって、主弁体20のシール面37が上側弁シート10Aの弁シート面17から離れる。この際の主弁体20の押し下げ量は前記嵌り込み量hとなる。
なお、主弁体20が60°回転すると、ボール46が次の凹穴48に嵌り込むので、主弁体20(上半部20A)は圧縮コイルばね29の付勢力によって押し上げられ、主弁体20のシール面37が上側弁シート10Aの弁シート面17に押し付けられる。
以上の説明から理解されるように、主弁体20が第1の回転位置をとるとき、第1ポート11と第3ポート13とを連通させる第1連通路31は、直線貫通路部21A、22A、23A、及び24Aで構成される直線状通路となり、また、第2ポート12と第4ポート14とを連通させる第2連通路32は、直線貫通路部21B、22B、23B、及び24Bで構成される直線状通路となる。
それに対し、主弁体20が第2の回転位置をとるとき、第1ポート11と第2ポート12とを連通させる第3連通路33は、主弁体20の上半部20Aに設けられた横穴付き通路部21C及び21Dで構成されるU字状通路となり、また、第3ポート13と第4ポート14とを連通させる第4連通路34は、主弁体20の下半部20Bに設けられた横穴付き通路部24C及び24Dで構成されるU字状通路となる。
上記のように、本実施例の流路切換弁1では、主弁体20を第1の回転位置から時計回りに60°回転させることにより、第1連通路31により連通するポート11−13間及び第2連通路32により連通するポート12−14間から、第3連通路33により連通するポート11−12間及び第4連通路34により連通するポート13−14間への流路の切り換えが行われ、主弁体20を第2の回転位置から反時計回りに60°回転させることにより、第3連通路33により連通するポート11−12間及び第4連通路34により連通するポート13−14間から、第1連通路31により連通するポート11−13間及び第2連通路32により連通するポート12−14間への流路の切り換えが行われる。
本実施例の流路切換弁1を、図22に示される如くのヒートポンプ式冷暖房システムに組み込む際には、前述したように、例えば、第1ポート11は圧縮機吐出側に接続される吐出側高圧ポートD、第2ポート12は室内熱交換器に接続される室内側入出ポートE、第3ポート13は室外熱交換器に接続される室外側入出ポートC、第4ポート14は圧縮機吸入側に接続される吸入側低圧ポートSとされる。
そして、冷房運転を行う場合には、主弁体20に図6(A)に示される如くの第1の回転位置をとらせる。これにより、図6(A)の(2)に白抜き矢印で示される如くに、圧縮機からの高圧冷媒が吐出側高圧ポート11(D)→直線状の第1連通路31→室外側入出ポート13(C)へと流れるとともに、室内熱交換器からの低圧冷媒が室内側入出ポート12(E)→直線状の第2連通路32→吸入側低圧ポート14(S)へと流れる。
一方、暖房運転を行う場合には、主弁体20を第1の回転位置から時計回りに60°回転させて図6(B)に示される如くの第2の回転位置をとらせる。これにより、流路の切り換えが行われ、図6(B)の(2)に白抜き矢印で示される如くに、圧縮機からの高圧冷媒が吐出側高圧ポート11(D)→U字状の第3連通路33→室内側入出ポート12(E)へと流れるとともに、室外側熱交換器からの低圧冷媒が室外側入出ポート13(C)→逆U字状の第4連通路34→吸入側低圧ポート14(S)へと流れる。
このような構成とされた本実施例の流路切換弁1においては、第1連通路31及び第2連通路32は始端から終端までの太さ(通路径)が第1ポート11及び第2ポート12の口径と略同じ直線状の通路とされ、冷媒は第1ポート11、第2ポート12から真下にストレートに流れるので、主弁5(主弁体20)内での圧力損失はほとんど生じない。また、二つの横穴付き通路部21C及び21D、24C及び24Dで構成される第3連通路33及び第4連通路34は、内容積が比較的大きくされているので、圧力損失が軽減され、トータルでは従来の流路切換弁に比べて圧力損失を相当軽減できる。
また、主弁体20が上半部20Aと下半部20Bとの二分割構成とされ、上半部20Aと下半部20Bはそれぞれ独立して上下動できるようにされるとともに、上半部20Aと下半部20Bとの間に圧縮コイルばね29が縮装されているので、そのばね力により、上半部20Aは押し上げられてそのシール面37が上側弁シート10Aの弁シート面17における各ポート11、12周りに押し付けられるとともに、下半部20Bは押し下げられてそのシール面37が下側弁シート10Bの弁シート面17における各ポート13、14周りに押し付けられる。
この場合、主弁体20(上半部20Aと下半部20B)側に凸部36が突設されてその端面が環状シール面37とされていることから、弁シート面17に対接する部分の面積が必要最小限とされ、そのため、対接面圧が高められる。これにより、十分なシール性を確保できて、流体(冷媒)が主弁体20の摺動面から漏れる弁洩れを効果的に抑制できる。
加えて、上側弁シート10A及び下側弁シート10Bは平板状とされるので、弁シート面17を平坦な平滑面とする(容易に面精度を上げる)ことができ、これによっても、従来例のようにシールすべき面に円筒面を含んでいるものに比べて、シール性を格段に向上できる。
さらに、主弁ハウジング10の上側弁シート10A及び下側弁シート10Bに全てのポート11〜14が設けられることから、配管の取り回しが容易となるとともに、配管を含めた実質的な占有スペースを小さくできる。
さらに加えて、本実施例においては、ボール式シール面離隔機構45により、主弁体20の回転時(流路切換中)には、主弁体20の上半部20Aが押し下げられるとともに、下半部20Bが押し上げられ、主弁体20側のシール面37、37が上側弁シート10A及び下側弁シート10Bの弁シート面17、17から離されるようにされているので、摺動摩擦がほとんど生じず、そのため、スティックスリップ等を生じ難くでき、摺動部分の摩耗を大幅に抑制することができ、さらに、摩耗が抑制されることから、シール性が向上して弁洩れを効果的に抑えることができる。
また、従来のスライド式主弁体を有する四方切換弁においては、流路の切換時に高圧配管Dと低圧配管Sとの流路開口面積が急激に変化するため、高圧の冷媒が低圧配管に一気に入り込むことより異音(切換音)が発生する。この異音を防止するために、冷暖房システム側で圧縮機の周波数を徐々に低下させて、高圧配管Dと低圧配管Sとの圧力差による異音が許容できる程度の差圧になるようにしてから流路の切り換えを行う必要があった。本実施例の流路切換弁1においては、ボール式シール面隔離機構45により主弁体を弁シート面から嵌り込み量hの分だけ浮かせてから切り換えるので、切換直後から一定の流路開口面積を確保でき、高圧配管Dと低圧配管Sとの間の流路開口面積が急激に変化することがなく、それゆえ上記の異音の発生を抑制できる。また、嵌り込み量hを適宜変更することにより、流路切換時の圧縮機の周波数の低下度合を従来の四方切換弁を用いた冷暖房システムより小さくすることもできるし、圧縮機の周波数の低下を行うことなく流路を切り換えることもできる。
さらに、本実施例の流路切換弁1は、高圧を受ける主弁体20(上半部20Aと下半部20B)が円柱状とされ、その内部に連通路31〜34が設けられるので、従来例のような変形(撓み)等は生じ難く、十分な強度や耐久性を確保できる。
上記に加え、本実施例の流路切換弁1をヒートポンプ式冷暖房システム等の、高温高圧の冷媒と低温低圧の冷媒が流される環境で使用する場合、各連通路31〜34は主弁体20内で比較的大きく離されて設けられているので、高温高圧の冷媒と低温低圧の冷媒とが近接した状態(薄壁一枚を隔てた状態)で流される従来のものに比べて、主弁ハウジング内での熱交換量を大幅に低減でき、そのため、システムの効率を向上できるという効果も得られる。
次に、上記した第1実施例の主弁体の変形例について説明する。
図11は、第1実施例の主弁体20の上半部20Aと下半部20Bをそれぞれ一体物とした例を示す。すなわち、上記第1実施例では、第1層部材21とこれに接合された第2層部材22とで上半部20Aが、また、第3層部材23とこれに接合された第4層部材24とで下半部20Bが構成されていたが、本例では、3Dプリンター等で上半部20A及び下半部20Bをそれぞれ始めから一体物として作製したものである。他の構成は、上記第1実施例と同じであり、上記第1実施例と略同様な作用効果が得られる。
図12は、第1実施例の主弁体20の上半部20Aと下半部20Bを一体物とした例を示す。すなわち、主弁体20全体(第1〜第4層部材21〜24)を、3Dプリンター等で始めから一体物として作製したものである。この例のものでは、主弁体20を上下方向に付勢する手段を設けることができないので、所要のシール性を確保することは難しくなる。
[主弁の第2実施例]
以下、本発明の第2実施例の流路切換弁2を図13〜15を参照しながら説明する。
本第2実施例の流路切換弁2は、上記第1実施例の主弁体20内に設けられる連通路構成が異なるだけで、他の構成は略同じであるので、第1実施例の流路切換弁1との共通部分は図示を簡略化ないし省略し、以下においては、相違点(連通路構成)のみを重点的に説明する。なお、図13〜図15において、第1実施例の流路切換弁1の各部に対応する部分には共通の符号が付されている。
図13の(A)は主弁体20が第1の回転位置にある状態を示し、(B)は主弁体20が、第1の回転位置から時計回りに90°回転した第2の回転位置にある状態を示しており、(1)は上面側配置図、(2)は各状態における連通路構成を示す概略図、(3)は下面側配置図である。
図14の(A)は、第2実施例における主弁体20が第1の回転位置にある状態の、(1)第1層部材21、(2)第2層部材22、(3)第3層部材23、(4)第4層部材24のそれぞれの平面図、(B)は、主弁体20が第1の回転位置にある状態における連通路構成を示し、(B)の(1)〜(4)は、(A)の(1)〜(4)のX−X矢視線に従う断面図である。
図15(A)は、主弁体20が第2の回転位置にある状態の、(1)第1層部材21、(2)第2層部材22、(3)第3層部材23、(4)第4層部材24のそれぞれの平面図、(B)は、主弁体20が第2の回転位置にある状態における連通路構成を示し、(B)の(1)の上段側、下段側は、それぞれ(A)の(1)におけるU−U矢視線、V−V矢視線に従う部分断面図、(B)の(2)及び(3)は、(A)の(2)及び(3)のY−Y矢視線に従う断面図、(B)の(4)の上段側、下段側は、それぞれ(A)の(4)におけるJ−J矢視線、K−K矢視線に従う部分断面図である。
本実施例の流路切換弁2を、図22に示される如くのヒートポンプ式冷暖房システムに組み込む際には、第1実施例とは異なり、例えば、第1ポート11は圧縮機吐出側に接続される吐出側高圧ポートD、第2ポート12は圧縮機吸入側に接続される吸入側低圧ポートS、第3ポート13は室外熱交換器に接続される室外側入出ポートC、第4ポート14は室内熱交換器に接続される室内側入出ポートEとされる。
そして、本第2実施例の流路切換弁2の主弁体20には、第1の回転位置をとるとき、第1ポート11と第3ポート13とを連通させる第1連通路41及び第4ポート14と第2ポート12とを連通させる第2連通路42とが設けられるとともに、第1の回転位置から時計回りに90°回転した第2の回転位置をとるとき、第1ポート11と第4ポート14とを連通させる第3連通路43及び第3ポート13と第2ポート12とを連通させる第4連通路44とが設けられている。
上記第1〜第4連通路41〜44を形成するために、主弁体20を構成する第1〜第4層部材21〜24には、それぞれ4個ずつ通路部が設けられており、第1層部材21に設けられた4個の通路部の上面開口及び第4層部材24に設けられ4個の通路部の下面開口は、第1〜第4ポート11〜14と同一円周上に配在されており、また、その口径は各ポート11〜14の口径と略同じとされ、さらに、第1連通路41と第2連通路42は、各ポート11〜14の口径と略同じ通路径となっている。
主弁体上半部20Aの上部を構成する第1層部材21には、第1実施例の直線貫通路部21A、21Bと同様に、180°間隔をあけて2つの直線貫通路部41A、41Bが設けられる。また、図15(B)の(1)の上段側及び下段側に示される如くに、一端部が開口し(上面開口41a、41c)、下面側全体が開口した横穴付き通路部41C、41Dが設けられる。横穴付き通路部41C、41Dの上面開口41a、41cは直線貫通路部41A、41Bから90°離れた位置に配在され、また、他端部以外の下面開口は第2層部材22により閉塞され、第2層部材22により閉塞されていない他端部(下面開口41b、41d)は、直線貫通路部41A、41Bの中心を結ぶ直線上に配在されている。
したがって、主弁体20が第1の回転位置にあるときには、直線貫通路部41A、41Bが第1ポート11、第2ポート12の真下に位置し、主弁体20を第1の回転位置から時計回りに90°回転させると、直線貫通路部41A、41Bの上面開口が上側弁シート10Aにより閉塞されるとともに、横穴付き通路部41D、41Cの上面開口が第1ポート11、第2ポート12の真下に位置する。
主弁体上半部20Aの下部を構成する第2層部材22には、前記した第1層部材21の直線貫通路部41A、41Bの中心を結ぶ直線上に所定間隔をあけて4つの直線貫通路部42A、42B、42C、42Dが設けられている。直線貫通路部42A、42Dは、第1層部材21の直線貫通路部41A、41Bの真下に位置している。直線貫通路部42Bは、横穴付き通路部41Cの下面開口41bの真下に位置し、直線貫通路部42Cは、横穴付き通路部41Dの下面開口41dの真下に位置している。
主弁体下半部20Bの上部を構成する第3層部材23には、第2層部材22に設けられた4つの直線貫通路部42A、42B、42C、42Dの真下に、4つの直線貫通路部43A、43B、43C、43Dが設けられている。
主弁体下半部20Bの下部を構成する第4層部材24には、第1実施例の直線貫通路部21A、21Bと同様に、180°間隔をあけて2つの直線貫通路部44A、44Bが設けられる。また、図15(B)の(4)の上段側及び下段側に示される如くに、一端部が開口し(下面開口44a、44c)、上面側全体が開口した横穴付き通路部44C、44Dが設けられる。横穴付き通路部44C、44Dの下面開口44a、44cは直線貫通路部41A、41Bから90°離れた位置に配在され、また、他端部以外の上面開口は第3層部材23により閉塞され、第3層部材23により閉塞されていない他端部(上面開口44b、44d)は、直線貫通路部44A、44Bの中心を結ぶ直線上に配在されている。
したがって、主弁体20が第1の回転位置にあるときには、直線貫通路部44A、44Bが第3ポート13、第4ポート14の真上に位置し、主弁体20を第1の回転位置から時計回りに90°回転させると、直線貫通路部44A、44Bの下面開口が下側弁シート10Bにより閉塞されるとともに、横穴付き通路部44D、44Cの下面開口44c、44aが第3ポート13、第4ポート14の真上に位置する。
以上の説明から理解されるように、主弁体20が第1の回転位置をとるとき、第1ポート11と第3ポート13とを連通させる第1連通路41は、直線貫通路部41A、42A、43A、及び44Aで構成される直線状通路となり、また、第4ポート14と第2ポート12とを連通させる第2連通路42は、直線貫通路部41B、42D、43D、及び44Bで構成される直線状通路となる。
それに対し、主弁体20が第2の回転位置をとるとき、第1ポート11と第4ポート14とを連通させる第3連通路43は、上から順に横穴付き通路部41D→直線貫通路部42C→直線貫通路部43C→横穴付き通路部44Cで構成されるクランク状通路となる。また、第3ポート13と第2ポート12とを連通させる第4連通路44は、下から順に横穴付き通路部44D→直線貫通路部43B→直線貫通路部42B→横穴付き通路部41Cで構成されるクランク状通路となる。
上記のように、本実施例の流路切換弁2では、主弁体20を第1の回転位置から時計回りに90°回転させることにより、第1連通路41により連通するポート11−13間及び第2連通路42により連通するポート14−12間から、第3連通路43により連通するポート11−14間及び第4連通路44により連通するポート13−12間への流路の切り換えが行われ、主弁体20を第2の回転位置から反時計回りに90°回転させることにより、第3連通路43により連通するポート11−14間及び第4連通路44により連通するポート13−12間から、第1連通路41により連通するポート11−13間及び第2連通路42により連通するポート14−12間への流路の切り換えが行われる。
本実施例の流路切換弁2を、図22に示される如くのヒートポンプ式冷暖房システムに組み込んで、冷房運転を行う場合には、主弁体20に図13(A)の(1)に示される如くの第1の回転位置をとらせる。これにより、図13(A)の(2)に白抜き矢印で示される如くに、圧縮機からの高圧冷媒が吐出側高圧ポート11(D)→直線状の第1連通路41→室外側入出ポート13(C)へと流れるとともに、室内熱交換器からの低圧冷媒が室内側入出ポート14(E)→直線状の第2連通路42→吸入側低圧ポート12(S)へと流れる。
一方、暖房運転を行う場合には、主弁体20を第1の回転位置から時計回りに90°回転させて図13(B)の(1)に示される如くの第2の回転位置をとらせる。これにより、流路の切り換えが行われ、図13(B)の(2)に白抜き矢印で示される如くに、圧縮機からの高圧冷媒が吐出側高圧ポート11(D)→クランク状の第3連通路43→室内側入出ポート14(E)へと流れるとともに、室外側熱交換器からの低圧冷媒が室外側入出ポート13(C)→クランク状の第4連通路44→吸入側低圧ポート12(S)へと流れる。
このような構成とされた本実施例の流路切換弁2においても第1実施例とほぼ同様な作用効果が得られる。
[主弁の第3実施例]
図16は、第3実施例の流路切換弁を示し、(A)は主弁体が第1の回転位置にある状態、(B)は主弁体が第2の回転位置にある状態であり、(1)は上面側配置図、(2)は(1)のX−X矢視線に従う断面図である。なお、図16において、第1実施例の流路切換弁1の各部に対応する部分には共通の符号が付されている。
本第3実施例の流路切換弁3は、三方切換弁であり、上記第1実施例の主弁ハウジング10に設けられている第2ポート12が無く、第1層部材21と第2層部材22とが一体化され(U字状の連通路(第3連通路33)を形成する必要がないため)、また、第1実施例における第2連通路32及び第3連通路33を構成する直線貫通路部21B、22B、23B、24Bと横穴付き通路部21C、21D及びそれに付随する部分を削除したものである。
したがって、本第3実施例の流路切換弁3では、主弁体20を第1の回転位置から時計回りに60°回転させることにより、第1連通路31により連通するポート11−13間から第4連通路34により連通するポート13−14間への流路の切り換えが行われ、主弁体20を第2の回転位置から反時計回りに60°回転させることにより、第4連通路34により連通するポート13−14間から、第1連通路31により連通するポート11−13間への流路の切り換えが行われる。
このような構成とされた本実施例の流路切換弁3においても、三方切換弁と四方切換弁との違いはあるが、第1実施例の四方切換弁1とほぼ同様な作用効果が得られる。
なお、本実施例の三方切換弁3を前述したヒートポンプ式冷暖房システムに使用する場合には、当該三方切換弁3を2個使用して四方切換弁として働かせる、あるいは、冷媒又は冷気・暖気供給先の切り換え(例えば、2室のうちの一方に送るか、他方に送るかの切り換え)等に使用する。
[アクチュエータの実施例]
次に、図17〜図20を参照しながら、前記第1実施例の流路切換弁1における主弁体20を回動させるためのアクチュエータ7について説明する。
本実施例1のアクチュエータ7は、前記主弁5内を流通する高圧流体と低圧流体との差圧を利用した流体圧式のもので、前記主弁ハウジング10における胴部10Cの外周に一体的に設けられた本体部50を有する。本体部50は、胴部10C(の主弁体20の第3層部材23の側方部分)から横方向に向けて延設された断面矩形の筒状の胴部51と、この胴部51の左右両開口を気密的に封止するように固着されてかしめ固定された、中央に内側へ向かう凸部52a、52bを持つ断面ハット形状の左端面閉塞部材52A及び右端面閉塞部材52Bと、胴部51の外側面中央に設けられた挿通穴54aを封止するようはんだ付け、ろう付け、溶接等により固定された厚肉円板状の蓋部材54とを備え、その内部に、作動室55が設けられるとともに、この作動室55(の中央部55C(後述))は、側面視長方形の開口55aを介して主弁5内の高圧部分と連通している。また、その開口55aを通して、主弁体20の外周部分の一部が作動室55(の中央部55C)内まで侵入している。
前記作動室55には、本体部50の中心線Qに沿って摺動可能に受圧移動体60が収容され、この受圧移動体60に、運動変換機構58を構成する駆動アーム61がボルト59によって連結固定されている。
詳細には、前記受圧移動体60は、平面視略H形状を有し、その左右両端に、作動室55の内周面との間を気密的に封止して該作動室55を容積可変の左側部55A及び右側部55Bと容積不変の中央部55Cとに気密的に仕切るピストン型パッキン60A、60Bが装着され、この左右一対のピストン型パッキン60A、60Bが連結板60Cにより連結されている。各パッキン60A、60Bは、胴部51と同等の断面形状を有しており、これにより、受圧移動体60は、その回転が阻止された状態で直線的に左右方向に移動(往復直線運動)する。一方、駆動アーム61は、肉厚の基部61Aを有し、該基部61Aに、横方向(連結板60Cに垂直な方向で、主弁5に向かう方向)へ延びてその先端中央にU形係合溝61aを形成する左右一対の腕部61Bが上下一対で(すなわち、合計4本の腕部61Bが)設けられている。本体部50の胴部51に設けられた挿通穴54aを通して駆動アーム61とボルト59とを胴部51内に挿通し、受圧移動体60の連結板60Cの左右方向中央に駆動アーム61の基部61Aをボルト59にて締結することにより、駆動アーム61が受圧移動体60に締結固定される。
受圧移動体60に締結固定された駆動アーム61の腕部61Bは、前記開口55aを通して、主弁ハウジング10内(主弁5内の高圧部分)まで延びている。
ここで、本実施例では、主弁体20の第3層部材23の上下面の外周部分であって貫通穴26を含む部分に、図9及び図18を参照すればよくわかるように、平面視で略扇形の窪みからなる切欠き23dが設けられ、貫通穴26に挿入された一体回動棒25の一部が主弁5内の高圧部分に露出するようになっている。開口55aを通して主弁5内の高圧部分まで延びた駆動アーム61の腕部61Bは、前記切欠き23dを通して一体回動棒25の露出部まで延設されており、駆動アーム61は、その一体回動棒25を連れ回すべく、左右一対の腕部61Bで(かつ、その上下2箇所で)一体回転棒25の露出部を挟むように、そのU形係合溝61a内に一体回動棒25を摺動自在に係合保持する。
なお、図17には、受圧移動体60が最も右側にある状態、すなわち、受圧移動体60の右側移動限界を規定する右端面閉塞部材52Bの凸部52bと接当した状態(右動行程完了状態)が示され、図19には、受圧移動体60が最も左側にある状態、すなわち、受圧移動体60の左側移動限界を規定する左端面閉塞部材52Aの凸部52aと接当した状態(左動行程完了状態)が示されている(後で詳述)。
また、本体部50の左端面閉塞部材52Aの凸部52aに対応する箇所(の主弁5側の側面)には、作動室左側部55Aに高圧流体を導入・排出するための左側部ポート56が設けられるとともに、その右端面閉塞部材52Bの凸部52bに対応する箇所(の主弁5側の側面)には、作動室右側部55Bに高圧流体を導入・排出するための右側部ポート57が設けられている。
次に、アクチュエータ7の本体部50内の動作について説明する(四方パイロット弁80の構成及びそれを用いた動作については後述する)。
図17は、作動室左側部55Aに左側部ポート56を介して高圧流体(高圧冷媒)を導入するとともに、作動室右側部55Bから右側部ポート57を介して高圧流体を排出した状態を示している。この状態では、パッキン60Aより左方の作動室左側部55A内が高圧流体で満たされるとともに、パッキン60Aとパッキン60Bとの間の作動室中央部55C内も、主弁5の高圧部分と連通しているので高圧流体で満たされている。
このような構成のもとで、図17に示される状態において、作動室右側部55Bに右側部ポート57を介して高圧流体を導入するとともに、作動室左側部55Aから左側部ポート56を介して高圧流体を排出すると、作動室左側部55Aより作動室右側部55Bの方が高圧となるので、図19に示される如くに、受圧移動体60が左向きに押されて、受圧移動体60が直線的に左方に摺動し、これに伴って運動変換機構58の駆動アーム61も左方に移動する。その際、駆動アーム61のU形係合溝61aに嵌挿された一体回動棒25によって、主弁体20が周方向に押されることとなり、主弁体20は一方向(ここでは時計回り)に回転する。なお、駆動アーム61も左方に移動して主弁体20が回転する際には、一体回動棒25は、本体部50の中心線Qに垂直な方向に、駆動アーム61のU形係合溝61a内を摺動する。受圧移動体60の左端(パッキン60A)が左端面閉塞部材52Aの凸部52aに接当すると、受圧移動体60の左方への移動が停止し、主弁体20の回転も停止する。以下、この行程を左動行程と称し、図19に示される状態(受圧移動体60が最も左側にある状態)を左動行程完了状態と称する。
それに対し、前記左動行程完了状態において、作動室左側部55Aに左側部ポート56を介して高圧流体を導入するとともに、作動室右側部55Bから右側部ポート57を介して高圧流体を排出すると、作動室右側部55Bより作動室左側部55Aの方が高圧となるので、図17に示される如くに、受圧移動体60が右向きに押されて、受圧移動体60が直線的に右方に摺動し、これに伴って運動変換機構58の駆動アーム61も右方に移動する。その際、駆動アーム61のU形係合溝61aに嵌挿された一体回動棒25によって、主弁体20が周方向に押されることとなり、主弁体20が他方向(ここでは反時計回り)に回転する。受圧移動体60の右端(パッキン60B)が右端面閉塞部材52Bの凸部52bに接当すると、受圧移動体60の右方への移動が停止し、主弁体20の回転も停止する。以下、この行程を右動行程と称し、図17に示される状態(受圧移動体60が最も右側にある状態)を右動行程完了状態と称する。
本実施例では、この回転角度は60°とされ、前述したように主弁体20が流路切換に必要とする回転角度である。
前記右動行程完了状態において受圧移動体60に左動行程をとらせることにより、主弁体20が第1の回転位置から第2の回転位置へと回転して前述した如くの流路切換が行われ、それとは逆に、前記左動行程完了状態において受圧移動体60に右動行程をとらせることにより、主弁体20が第2の回転位置から第1の回転位置へと回転して前述した如くの流路切換が行われる。
本実施例では、前記流路切換、すなわち、左動行程と右動行程との切り換えを、前記左側部ポート56と右側部ポート57、及び、高圧部分である第1ポート11(吐出側高圧ポートD)と低圧部分である第4ポート14(吸入側低圧ポートS)とに接続された電磁式の四方パイロット弁80により行うようにされている(図1(A)参照)。
四方パイロット弁80は、その構造自体はよく知られているもので、図20に示される如くに、通電励磁用のコイル82a、このコイル82aの外周を覆うカバーケース82b、コイル82aの内周側に配在されてボルト82cによりカバーケース82bに固定された吸引子84、この吸引子84に対向配置されたプランジャ85等を備えている。プランジャ85は、コイル82aと吸引子84との間にその右端部が配在された円筒状のガイドパイプ86に摺動自在に嵌挿されており、ガイドパイプ86の右端部は、吸引子84の外周段丘部に溶接等により固定されている。また、吸引子84とプランジャ85との間には、プランジャ85を吸引子84から離れる方向(図では左方)に付勢する圧縮コイルばね87が縮装されている。
ガイドパイプ86の内面には、その内端面が弁座(シート面)92とされ、その右端面(プランジャ85側の面)がプランジャ85の吸引子84から離れる方向の移動を規制するストッパとされる断面がかまぼこ形の弁座ブロック83が固着されている。また、ガイドパイプ86の左端面開口(吸引子84側とは反対側の端面開口)には、取付穴を有する蓋部材81が溶接・ろう付け・かしめ等により気密的に取着されており、蓋部材81とプランジャ85とガイドパイプ86とで囲まれる領域が弁室88となっている。
プランジャ85の吸引子84側とは反対側の端部には、弁体91をその自由端側で厚み方向に摺動可能に保持する板状の弁体ホルダ90がその幅広の基端部96をかしめにより取付固定されている。弁体ホルダ90には、弁体91を弁座92に押し付ける方向(厚み方向)に付勢する板ばね94が取り付けられている。弁体91は弁座92のシート面をプランジャ85の左右方向の移動に伴って摺動するようになっている。
前記弁座92には、左から順にポートa、ポートb、ポートcが設けられており、また、弁体91には、前記ポートaとポートb及びポートbとポートcを選択的に連通させ得る、厚み方向に凹む凹部93が設けられている。弁座ブロック83には、ポートaのみに連通するように細管95aの一端部が、ポートbのみに連通するように細管95bの一端部が、ポートcのみに連通するように細管95cの一端部が、それぞれガイドパイプ86の側壁に設けられた開口を通して気密的に挿着されている。
また、蓋部材81には、弁室88に連通するように細管95dの一端部が取付穴を通して気密的に挿着されている。
細管95aの他端部は、本体部50の左側部ポート56を介して作動室左側部55Aに接続され、細管95bの他端部は、低圧部分である第4ポート14(吸入側低圧ポートS)に接続され、細管95cの他端部は、本体部50の右側部ポート57を介して作動室右側部55Bに接続され、細管95dの他端部は、高圧部分である第1ポート11(吐出側高圧ポートD)に接続され、すなわち、この弁室88は、細管95dを介して高圧部分である吐出側高圧ポートDに常時連通するようになっている。
このような構成とされた四方パイロット弁80においては、コイル82aへの通電OFF時には、図20(A)に示される如くに、プランジャ85は圧縮コイルばね87の付勢力により、その左端が弁座ブロック83に接当する位置まで押されている。この状態では、弁体91がポートaとポートb上に位置し、その凹部93によりポートaとポートbが連通するとともに、ポートcと弁室88とが連通するので、第1ポート11(吐出側高圧ポートD)内の高圧流体が細管95d→弁室88→ポートc→細管95c→右側部ポート57を介して作動室右側部55Bに導入されるとともに、作動室左側部55Aの高圧流体が左側部ポート56→細管95a→ポートa→凹部93→ポートb→細管95b→第4ポート14(吸入側低圧ポートS)へと流れて排出される。
それに対し、コイル82aへの通電をONにすると、図20(B)に示される如くに、プランジャ85は吸引子84の吸引力により、その右端が吸引子84に接当する位置まで引き寄せられる。このときには、弁体91がポートbとポートc上に位置し、その凹部93によりポートbとポートcが連通するとともに、ポートaと弁室88とが連通するので、第1ポート11(吐出側高圧ポートD)内の高圧流体が細管95d→弁室88→ポートa→細管95a→左側部ポート56を介して作動室左側部55Aに導入されるとともに、作動室右側部55Bの高圧流体が右側部ポート57→細管95c→ポートc→凹部93→ポートb→細管95b→第4ポート14(吸入側低圧ポートS)へと流れて排出される。
したがって、コイル82aへの通電をOFFにすると、前記左動行程がとられ、主弁体20が第2の回転位置から第1の回転位置へと回転し、前記した如くの流路切換が行われる一方、コイル82aへの通電をONにすると、前記右動行程がとられ、主弁体20が第1の回転位置から第2の回転位置へと回転し、前記した如くの流路切換が行われる。
このように、本実施例の流路切換弁1においては、電磁式四方パイロット弁80への通電をON/OFFで切り換えることで、主弁5内を流通する高圧流体と低圧流体との差圧を利用して主弁体20を回動させるようにされているので、電動モータ等で主弁体20を回動させる場合に比べて、コスト削減、消費電力の低減、省エネ化等を図ることができる。なお、本実施例のアクチュエータ7よる流路切換は、電動モータ+減速機で行う流路切換より素早く行うことができる。
また、主弁体20を回動させるアクチュエータ7は、流体圧により受圧移動体60を左右方向(主弁体の回転軸線に垂直な方向)に移動させ、この左右方向の移動を主弁体20に伝達して当該主弁体20の回転運動に変換する構成であるので、従来例のように高圧を受ける部分が主弁体の回転軸部の延長軸部に片持ち支持された、板厚に対して受圧面積の大きな板状体であるものに比して、高圧を受ける部分(受圧移動体60)に、十分な強度を確保でき、耐久性を向上させることができるとともに、十分な強度を確保できることから、受圧面積を大きくでき、そのため、流路切換を確実かつ迅速に行うことができる。
また、主弁体20を回動させるアクチュエータ7は、主弁ハウジング10の外周に受圧移動体60が収容された作動室55が設けられた本体部50を有し、流体圧により移動する受圧移動体60からの左右方向の荷重を主弁体20の外周付近に設けられた一体回動棒25(の露出部)に伝達して当該主弁体20を回転運動させる構成なので、受圧移動体60の左右の圧力差が低いときでも、主弁体20の回動に要する必要トルクを容易に得ることができる。
上記に加え、本実施例の運動変換機構58を備えた流体圧式のアクチュエータは、極めてシンプルな構成であるので、コスト的に有利であるとともに、高温高圧環境下で使用する場合の対策(受圧移動体60の肉厚を厚くする等)を容易にとることができ、そのため、本実施例の流路切換弁1は、特に、ヒートポンプ式冷暖房システム等の高温高圧環境下に組み込まれる流路切換弁として費用対効果に極めて優れるものとなる。
[アクチュエータの変形例]
図21は、アクチュエータの変形例を示す。図示例のアクチュエータ8は、基本構成は上記アクチュエータ7と同様に、本体部50、左側部ポート56、右側部ポート57、受圧移動体60、四方パイロット弁80等(符号は共通)を備えているが、本例のアクチュエータ8では、受圧移動体60と主弁体20との間で、高圧流体の圧力を利用した受圧移動体60の往復直線運動を主弁体20の正逆両方向の回転運動に変換する運動変換機構58がラックピニオン式で構成されている。
詳細には、受圧移動体60の連結板60Cの表面(主弁体20側の表面)にラックギアとしての駆動歯62が形成され、主弁体20(の第3層部材23)の外周の一部にピニオンギアとしての従動歯23eが形成され、前記駆動歯62に前記従動歯23eが噛合することで前記運動変換機構58が構成されている。なお、駆動歯62や従動歯23eの長さは、主弁体20が流路切換に必要とする回転角度により決定される。
したがって、本実施例2では、駆動アーム61やその取付工程は不要とされる。そのため、構成が簡素化され、コスト的には有利である。
なお、本発明に係る流路切換弁は、ヒートポンプ式冷暖房システムのみならず、他のシステム、装置、機器類にも組み込めることは勿論である。
また、主弁ハウジング10、主弁体20等の素材としては、アルミやステンレス等が用いられるが、それに限られることはなく、その他の金属、樹脂等の、導入される流体の圧力に耐えられるものであれば、いかなるものであってもよい。
1 流路切換弁
5 主弁
7 アクチュエータ
10 主弁ハウジング
10A 上側弁シート
10B 下側弁シート
11 第1ポート
12 第2ポート
13 第3ポート
14 第4ポート
17 シート面
20 主弁体
20A 上半部
20B 下半部
21 第1層部材
22 第2層部材
23 第3層部材
24 第4層部材
25 一体回動棒(棒部材)
26 貫通穴
27 横断溝
28 枠状体
29 圧縮コイルばね
30A 上側回転軸部
30B 下側回転軸部
31 第1連通路
32 第2連通路
33 第3連通路
34 第4連通路
36 凸部
37 シール面
41 第1連通路
42 第2連通路
43 第3連通路
44 第4連通路
45 ボール式シール面離隔機構
50 本体部
52A 左端面閉塞部材
52B 右端面閉塞部材
55 作動室
55A 作動室左側部
55B 作動室右側部
55C 作動室中央部
56 左側部ポート
57 右側部ポート
58 運動変換機構
60 受圧移動体
60A、60B ピストン型パッキン
60C 連結板
61 駆動アーム
61a U形係合溝
61A 基部
61B 腕部
80 四方パイロット弁
81 蓋部材
83 弁座ブロック
85 プランジャ
88 弁室
90 弁体ホルダ
91 弁体
92 弁座
93 凹部
a、b、c ポート(四方パイロット弁)
95a、95b、95c、95d 細管
D 吐出側高圧ポート
S 吸入側低圧ポート
C 室外側入出ポート
E 室内側入出ポート

Claims (15)

  1. 主弁ハウジング及び該主弁ハウジング内に回動可能に配在された主弁体を備える主弁と、前記主弁体を回動させるための流体圧式のアクチュエータとを備え、前記主弁体を回転させることにより、流路が切り換えられるようにされた流路切換弁であって、
    前記アクチュエータは、前記主弁ハウジングの外周に、前記主弁に供給される高圧流体が導入される作動室が設けられた本体部を有し、前記作動室に、前記主弁体の回転軸線に垂直な方向に移動可能に受圧移動体が収容され、前記受圧移動体と前記主弁体との間に、前記高圧流体の圧力を利用した前記主弁体の回転軸線に垂直な方向への前記受圧移動体の往復直線運動を前記主弁体の正逆両方向の回転運動に変換する運動変換機構が設けられていることを特徴とする流路切換弁。
  2. 前記運動変換機構は、前記受圧移動体に連結固定された駆動アームと、一部が露出するように前記主弁体に内挿され、その露出部が前記駆動アームの腕部に連れ回される棒部材とで構成されていることを特徴とする請求項1に記載の流路切換弁。
  3. 前記運動変換機構は、前記受圧移動体に形成された駆動歯と、前記主弁体の外周に形成され、前記駆動歯に噛合する従動歯とで構成されていることを特徴とする請求項1に記載の流路切換弁。
  4. 前記受圧移動体の両端に、前記作動室の内周面との間を気密的に封止して前記作動室を容積可変の左側部及び右側部と容積不変の中央部とに仕切るピストン型パッキンが装着され、前記本体部に、前記作動室左側部に高圧流体を導入・排出するための左側部ポートが設けられるとともに、前記作動室右側部に高圧流体を導入・排出するための右側部ポートが設けられていることを特徴とする請求項1から3のいずれかに記載の流路切換弁。
  5. 前記アクチュエータは、前記作動室左側部に前記左側部ポートを介して高圧流体を導入するとともに、前記作動室右側部から前記右側部ポートを介して高圧流体を排出することにより、前記受圧移動体を右方へ移動させて前記主弁体を一方向に回転させる右動行程と、前記作動室右側部に前記右側部ポートを介して高圧流体を導入するとともに、前記作動室左側部から前記左側部ポートを介して高圧流体を排出することにより、前記受圧移動体を左方へ移動させて前記主弁体を他方向に回転させる左動行程とを選択的にとり得るように構成されていることを特徴とする請求項4に記載の流路切換弁。
  6. 前記右動行程と前記左動行程との切り換えを、前記左側部ポートと前記右側部ポート、及び、前記主弁内の高圧部分と低圧部分とに接続された四方パイロット弁により行うようにされていることを特徴とする請求項5に記載の流路切換弁。
  7. 前記作動室中央部は、前記主弁内の高圧部分に常時連通していることを特徴とする請求項4から6のいずれかに記載の流路切換弁。
  8. 前記主弁ハウジングは、上側弁シート及び下側弁シートによりその上面開口及び下面開口が気密的に封止された筒状であり、前記上側弁シート及び/又は前記下側弁シートに合計で少なくとも3個のポートが設けられ、前記主弁ハウジング内に回動可能に配在された前記主弁体内に、前記ポート間を選択的に連通するための複数本の連通路が設けられ、前記アクチュエータにより前記主弁体を回転させることにより、連通するポート間が切り換えられるようにされていることを特徴とする請求項1から7のいずれかに記載の流路切換弁。
  9. 前記主弁体内に、少なくとも、前記ポートのうちの一つと他の一つとを連通させ得る少なくとも一つの第1連通路と、前記ポートのうちの一つと別の一つとを連通させ得る少なくとも一つの第2連通路とが設けられ、前記主弁体を一方向に回転させることにより、前記第1連通路により連通するポート間から前記第2連通路により連通するポート間への流路の切り換えが行われ、該流路切換後に前記主弁体を他方向に回転させることにより、前記第2連通路により連通するポート間から前記第1連通路により連通するポート間への流路の切り換えが行われるようにされていることを特徴とする請求項8に記載の流路切換弁。
  10. 前記上側弁シート及び/又は前記下側弁シートに第1、第2、第3及び第4のポートが設けられ、
    前記主弁体に、該主弁体が第1の回転位置をとるとき、前記第1ポートと第3ポートとを連通させる第1連通路及び前記第2ポートと第4ポートとを連通させる第2連通路と、
    前記主弁体が第2の回転位置をとるとき、前記第1ポートと第2ポート又は第4ポートとを連通させる第3連通路及び前記第3ポートと第4ポート又は第2ポートとを連通させる第4連通路とが設けられていることを特徴とする請求項8又は9に記載の流路切換弁。
  11. 前記上側弁シートに第1及び第2ポートが設けられるとともに、前記下側弁シートに第3及び第4ポートが設けられていることを特徴とする請求項10に記載の流路切換弁。
  12. 前記複数本の連通路のうちの少なくとも1本は、全体が直線状の通路で構成されていることを特徴とする請求項8から11のいずれかに記載の流路切換弁。
  13. 前記複数本の連通路のうちの少なくとも1本は、U字状又はクランク状の通路で構成されていることを特徴とする請求項8から12のいずれかに記載の流路切換弁。
  14. 前記連通路の両端部に、前記上側弁シート及び/又は前記下側弁シートにおける前記各ポートの開口周りに密接する環状シール面を持つ凸部が突設されていることを特徴とする請求項8から13のいずれかに記載の流路切換弁。
  15. 前記主弁体は、一体回動可能かつ上下動可能な上半部と下半部との二分割構成とされ、前記上半部と前記下半部との間に、それらを相互に逆方向に付勢する付勢手段が介装されていることを特徴とする請求項8から14のいずれかに記載の流路切換弁。
JP2014238597A 2014-11-26 2014-11-26 流路切換弁 Active JP6478585B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014238597A JP6478585B2 (ja) 2014-11-26 2014-11-26 流路切換弁

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014238597A JP6478585B2 (ja) 2014-11-26 2014-11-26 流路切換弁

Publications (2)

Publication Number Publication Date
JP2016098974A true JP2016098974A (ja) 2016-05-30
JP6478585B2 JP6478585B2 (ja) 2019-03-06

Family

ID=56075725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014238597A Active JP6478585B2 (ja) 2014-11-26 2014-11-26 流路切換弁

Country Status (1)

Country Link
JP (1) JP6478585B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106286899A (zh) * 2016-08-31 2017-01-04 上海交通大学 换热流道尺寸增大的旋转式四通换向阀
CN106286900A (zh) * 2016-08-31 2017-01-04 上海交通大学 用于汽车空调的直筒式四通换向阀密封装置
JP2021001695A (ja) * 2015-12-31 2021-01-07 直之 石北 リリーフ弁及びリリーフ弁の製造方法
CN114522290A (zh) * 2022-02-28 2022-05-24 四川省医学科学院·四川省人民医院 一种高安全性的膀胱冲洗装置
WO2023041003A1 (zh) * 2021-09-16 2023-03-23 浙江三花汽车零部件有限公司 流体控制组件和热管理系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4283171A4 (en) * 2021-01-19 2024-03-06 Mitsubishi Electric Corp AIR CONDITIONING DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58671A (ja) * 1981-06-22 1983-01-05 Kogyo Kaihatsu Kenkyusho 流体分配装置
JPS5814555U (ja) * 1981-07-22 1983-01-29 株式会社日立製作所 四方切換弁
JPH036170U (ja) * 1989-06-08 1991-01-22
JP2000514535A (ja) * 1996-07-04 2000-10-31 ブロムグレン,ラルフ
JP2011241870A (ja) * 2010-05-17 2011-12-01 Saginomiya Seisakusho Inc 流路切換弁

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58671A (ja) * 1981-06-22 1983-01-05 Kogyo Kaihatsu Kenkyusho 流体分配装置
JPS5814555U (ja) * 1981-07-22 1983-01-29 株式会社日立製作所 四方切換弁
JPH036170U (ja) * 1989-06-08 1991-01-22
JP2000514535A (ja) * 1996-07-04 2000-10-31 ブロムグレン,ラルフ
JP2011241870A (ja) * 2010-05-17 2011-12-01 Saginomiya Seisakusho Inc 流路切換弁

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021001695A (ja) * 2015-12-31 2021-01-07 直之 石北 リリーフ弁及びリリーフ弁の製造方法
CN106286899A (zh) * 2016-08-31 2017-01-04 上海交通大学 换热流道尺寸增大的旋转式四通换向阀
CN106286900A (zh) * 2016-08-31 2017-01-04 上海交通大学 用于汽车空调的直筒式四通换向阀密封装置
WO2023041003A1 (zh) * 2021-09-16 2023-03-23 浙江三花汽车零部件有限公司 流体控制组件和热管理系统
CN114522290A (zh) * 2022-02-28 2022-05-24 四川省医学科学院·四川省人民医院 一种高安全性的膀胱冲洗装置
CN114522290B (zh) * 2022-02-28 2023-06-30 四川省医学科学院·四川省人民医院 一种高安全性的膀胱冲洗装置

Also Published As

Publication number Publication date
JP6478585B2 (ja) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6465619B2 (ja) 流路切換弁
JP6478585B2 (ja) 流路切換弁
JP7071757B2 (ja) 六方切換弁
JP6515163B2 (ja) 六方切換弁
CN108869795B (zh) 流路切换阀
CN108869794B (zh) 流路切换阀
JP6461589B2 (ja) 流路切換弁
JP2016191403A (ja) 流路切換弁
JP6478586B2 (ja) 流路切換弁
JP6596052B2 (ja) 流路切換弁
JP6621686B2 (ja) 六方切換弁
JP2019049364A (ja) 流路切換弁
JP6515154B2 (ja) 流路切換弁
JP6523662B2 (ja) 流路切換弁
JP6491861B2 (ja) 流路切換弁
JP2012159101A (ja) 四方切換弁
JP6453040B2 (ja) 流路切換弁
JP6689418B2 (ja) 流路切換弁
JP6585514B2 (ja) 六方切換弁
JP6478780B2 (ja) 流路切換弁
JP2018194022A (ja) 流路切換弁及びその組立方法
JP6678227B2 (ja) 流路切換弁
JP6462336B2 (ja) 流路切換弁
JP6670633B2 (ja) 六方切換弁
JP2020148254A (ja) 流路切換弁

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190205

R150 Certificate of patent or registration of utility model

Ref document number: 6478585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250