JP2016090416A - 蓄電池状態監視システム、蓄電池状態監視方法、および蓄電池状態監視プログラム - Google Patents

蓄電池状態監視システム、蓄電池状態監視方法、および蓄電池状態監視プログラム Download PDF

Info

Publication number
JP2016090416A
JP2016090416A JP2014225768A JP2014225768A JP2016090416A JP 2016090416 A JP2016090416 A JP 2016090416A JP 2014225768 A JP2014225768 A JP 2014225768A JP 2014225768 A JP2014225768 A JP 2014225768A JP 2016090416 A JP2016090416 A JP 2016090416A
Authority
JP
Japan
Prior art keywords
storage battery
state
internal resistance
voltage
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014225768A
Other languages
English (en)
Other versions
JP2016090416A5 (ja
JP6471463B2 (ja
Inventor
一郎 向谷
Ichiro Mukaitani
一郎 向谷
剛生 坂本
Takeo Sakamoto
剛生 坂本
良晃 伊東
Yoshiaki Ito
良晃 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014225768A priority Critical patent/JP6471463B2/ja
Priority to US15/524,180 priority patent/US10215813B2/en
Priority to PCT/JP2015/081285 priority patent/WO2016072487A1/ja
Publication of JP2016090416A publication Critical patent/JP2016090416A/ja
Publication of JP2016090416A5 publication Critical patent/JP2016090416A5/ja
Application granted granted Critical
Publication of JP6471463B2 publication Critical patent/JP6471463B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/371Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】蓄電池の状態監視において、初期故障や偶発故障と経時劣化とを識別して監視することで、余寿命の推定の精度をより向上させる。
【解決手段】複数の蓄電池41が直列に接続された組電池を備えた機器に対して、各蓄電池41の状態を監視する蓄電池状態監視システム1であって、各蓄電池41における電流を検出する制御・電源装置50と、各蓄電池41における稼働時間、温度、電圧、および少なくとも2種類以上の周波数における内部抵抗を測定する子機30とを有し、子機30が測定した温度、電圧、内部抵抗、および各蓄電池41の放電時における制御・電源装置50が検出した電流の値の変化分と子機30が測定した電圧の値の変化分との比から得た各蓄電池41の直流抵抗のうち、少なくとも1つ以上の値に基づいて、各蓄電池41における正常ではない状態を、初期故障もしくは偶発故障と、経時劣化とを区別して判定する。
【選択図】図1

Description

本発明は、蓄電池の状態を監視する技術に関し、特に、バックアップ用途・出力変動用途など、蓄電池が常に機器に接続され、蓄電池に通電して状態を監視・推定する蓄電池状態監視システム、蓄電池状態監視方法、および蓄電池状態監視プログラムに適用して有効な技術に関するものである。
常時稼働している必要がある重要な装置やシステムなどでは、例えば停電や瞬断など商用電源からの電力供給が途絶えた場合(もしくは商用電源からの電力を利用しない・できない場合。以下では総称して「非常時等」と記載する場合がある)でも負荷に電力の供給を継続するため、UPS(Uninterruptible Power Supply:無停電電源装置)が用いられる場合がある。UPSは、非常時等において負荷に供給するための電力を蓄積する蓄電池を有しており、1つのUPSに複数の蓄電池を有するものもある。
UPSに用いられる蓄電池は、通常時は充電された状態で動作(放電)せず、非常時等に動作して負荷に電力を供給する。蓄電池は、動作しない状態でも経時劣化し、また、一般的に周囲の温度が高いほど劣化が進むことが知られている。従って、UPSなどの蓄電池を搭載した機器では、動作時に蓄電池が寿命や故障等で正常に動作しないということが生じるのを回避するため、蓄電池の状態を監視するとともに、周囲の温度や使用年数といった劣化に伴う寿命の時期を予測して、蓄電池が現に異常な状態である場合はもちろん、正常な状態であっても予測した寿命の時期が到来する前に新品の蓄電池と交換する方法がとられてきた。
しかしながら、温度と劣化の程度との関係のみに基づく単純な寿命の予測では、予測された寿命の精度はあまり高くないため、安全を考慮した結果、蓄電池の交換時期が実際の寿命よりも相当早い時期になって最後まで有効に使い切れていない場合もあり、経済的にも有効利用の観点からも非効率な状態となっている。
このような課題を解決するための技術として、例えば、特開2005−26153号公報(特許文献1)には、複数の蓄電池からなる組電池の温度Tを検出し、各蓄電池の電圧Eを測定し、各蓄電池の内部抵抗Rを測定し、これら検出結果および測定結果に応じて各蓄電池の寿命を判定することで、温度と寿命の関係にさらに別の要素を加味して蓄電池の寿命切れを判定することができる蓄電池監視システムが記載されている。
また、非特許文献1には、UPSに用いられる鉛蓄電池の状態を監視するため、セル電圧と内部インピーダンスと温度を連続して測定し、内部インピーダンスの測定に際しては、UPSより発生するリップル電流の周波数成分と異なった周波数で測定することで、UPSから発生するノーマルモードノイズの影響を抑えて内部インピーダンスの測定値を安定して得られるようにした蓄電池診断装置が記載されている。
また、本願発明者の発明に係る特許第5403191号公報(特許文献2)には、各蓄電池における電流を検出する制御・電源装置と、各蓄電池における温度、電圧、および少なくとも2種類以上の周波数における内部抵抗を測定する子機とを有し、子機が測定した温度、電圧、内部抵抗、および各蓄電池の放電時における制御・電源装置が検出した電流の値の変化分と子機が測定した電圧の値の変化分との比から得た各蓄電池の直流抵抗のうち、少なくとも1つ以上の値に基づいて各蓄電池の劣化を推定する蓄電池状態監視システムが記載されている。
特開2005−26153号公報 特許第5403191号公報
高橋清、長嶋茂、「ノイズ対応型蓄電池診断装置(BCW)の開発」、FBテクニカルニュースNo.63号(2007.11)、古河電池株式会社、2007年11月、p.32−37
特許文献1や非特許文献1などに記載されたような蓄電池の状態等を監視する装置やシステムを用いることで、温度や電圧、内部抵抗などのパラメータを測定・取得して、各蓄電池の状態や寿命を推定することが可能である。さらに、特許文献2に記載されたようなシステムを用いることで、多数の蓄電池について複数周波数での内部抵抗値なども含む各種パラメータを自動的に取得して、各蓄電池の状態や寿命の予測を高い精度で効率的に行うことが可能である。
一方で、蓄電池において生じ得る故障や障害は、経時劣化によるものに限らず、初期故障や偶発故障も存在する。これに対し、上述したような従来技術では、電圧等の測定数値が正常か異常かに基づいて蓄電池の状態や寿命を予測するものであり、基本的には初期故障や偶発故障などの個体間でのバラツキの多い障害との区別を行なっていない。しかしながら、実際は、初期故障や偶発故障なのか、経時劣化による異常なのかによって、余寿命の推定には大きな誤差が生じ得るところ、これらの判断は熟練者の経験と勘による判断を付加して行っている場合が多い。
そこで本発明の目的は、蓄電池の状態監視において、初期故障や偶発故障と経時劣化とを識別して監視することで、余寿命の推定の精度をより向上させる蓄電池状態監視システム、蓄電池状態監視方法、および蓄電池状態監視プログラムを提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。
本発明の代表的な実施の形態による蓄電池状態監視システムは、複数の蓄電池が直列に接続された組電池を備えた機器に対して、前記各蓄電池の状態を監視する蓄電池状態監視システムであって、前記各蓄電池における電流を検出する電流検出手段と、前記各蓄電池における稼働時間、温度、電圧、および少なくとも2種類以上の周波数における内部抵抗を測定する状態測定手段と、を有するものである。
そして、前記状態測定手段が測定した温度、電圧、内部抵抗、および前記各蓄電池の放電時における前記電流検出手段が検出した電流の値の変化分と前記状態測定手段が測定した電圧の値の変化分との比から得た前記各蓄電池の直流抵抗のうち、少なくとも1つ以上の値に基づいて、前記各蓄電池における正常ではない状態を、初期故障もしくは偶発故障と、経時劣化とを区別して判定する。
また、本発明は、上記のような蓄電池状態監視システムとして機能するよう、コンピュータに処理を実行させる蓄電池状態監視プログラムにも適用することができる。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
すなわち、本発明の代表的な実施の形態によれば、蓄電池の状態監視において、初期故障や偶発故障と経時劣化とを識別して監視することで、余寿命の推定の精度をより向上させることが可能となる。
本発明の一実施の形態である蓄電池状態監視システムの構成例について概要を示した図である。 本発明の一実施の形態における上位監視装置の構成例について概要を示した図である。 本発明の一実施の形態における状態測定装置(子機)の構成例について概要を示した図である。 本発明の一実施の形態における状態測定装置(子機)の測定制御部における処理の流れの例について概要を示したフローチャートである。 本発明の一実施の形態における蓄電池の放電および充電の際の電圧の変化の例について概要を示した図である。 本発明の一実施の形態における指示実行処理の流れの例について概要を示したフローチャートである。 本発明の一実施の形態における上位監視装置の劣化判定部における処理の流れの例について概要を示したフローチャートである。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部には原則として同一の符号を付し、その繰り返しの説明は省略する。
<システム構成>
図1は、本発明の一実施の形態である蓄電池状態監視システムの構成例について概要を示した図である。蓄電池状態監視システム1は、例えば電源装置40などの、直列に接続された複数の蓄電池41からなる組電池を備える機器において、各蓄電池41に通電して各種パラメータを自動で測定もしくは取得することで、各蓄電池41の状態や寿命を推定するシステムである。
この蓄電池状態監視システム1は、1つ以上の電源装置40の各蓄電池41に対して1つずつ固定して設置され、当該蓄電池41についての温度、電圧、内部抵抗などの各種パラメータを測定する状態測定装置30と、状態測定装置30で測定されたデータを収集して蓄電池41の状態や寿命を推定する処理を一元的に行う上位監視装置10とを有する。また、上位監視装置10と各状態測定装置30との間に、各状態測定装置30から送信された測定データを中継して上位監視装置10に送信するデータ中継装置20を有する。
すなわち、本実施の形態では、1つの上位監視装置10に対してM個のデータ中継装置20(以下では「親機」と記載する場合がある)が通信可能に接続され、各データ中継装置20にはN個の状態測定装置30(以下では「子機」と記載する場合がある)が通信可能に接続される3階層の階層構成を有する。なお、上位監視装置10と親機20との間はLAN(Local Area Network)等のネットワーク60を介した有線通信により接続され、親機20と子機30との間は無線通信により接続される。なお、有線/無線通信の規格やプロトコル等は特に限定されず、公知の技術を適宜利用することができる。
これにより、多数の蓄電池41を有する電源装置40等の機器において、外部への配線等を要さずに子機30を蓄電池41に対して設置することができ、設置の際の容易性、柔軟性を向上させて設置の効率化を可能とするとともに、結線間違いや配線の経時劣化等に基づく不具合のリスクを低減させることを可能とする。また、上位監視装置10が多数の子機30と直接通信セッションを持つことで通信負荷が集中することを回避する。
なお、本実施の形態では、親機20は、少なくとも、子機30との間の無線通信と、上位監視装置10との間の有線通信との間で通信プロトコルの変換を行う機能を有するが、その他の機能を有していなくてもよい。このとき、親機20は、各子機30との無線通信を並行的に行ってもよいし、逐次的に行ってもよい。また、蓄電池状態監視システム1の規模等(例えば監視対象の蓄電池41の数等)によっては、親機20を有さず、子機30が直接上位監視装置10と通信する2階層の構成であってもよいし、子機30と親機20(もしくは上位監視装置10)との間の通信も、図1に示すように、無線通信に限らず有線通信であってもよい。
各電源装置40には、電源装置40を利用する装置やシステム等の負荷への電力供給を制御する制御・電源装置(電力制御装置(Power Conditioning System:PCS)または、無停電電源装置(UPS)、もしくは直流電源装置)50が接続されている。制御・電源装置50は、電源装置40による負荷への電力供給を制御するとともに、電源装置40内で直列に設置された蓄電池41を流れる電流値を検出することができる電流検出装置としての役割を有し、電源装置40(蓄電池41)の充放電の有無に係る情報を取得することができる。制御・電源装置50は、例えばネットワーク60に接続されており、上位監視装置10は、ネットワーク60を介して、制御・電源装置50から電源装置40の蓄電池41の電流値や充放電の有無に係る情報などを取得することができる。
なお、本実施の形態では、制御・電源装置50が各蓄電池41の電流値を検出し、上位監視装置10が制御・電源装置50から当該情報を取得可能な構成としているが、これに限らず、例えば、後述する子機30が、温度や電圧等の他のパラメータと同様に各蓄電池41の電流値を測定して上位監視装置10に送信する構成としてもよい。
図2は、上位監視装置10の構成例について概要を示した図である。上位監視装置10は、親機20を介して、各子機30から各蓄電池41について測定された各種パラメータの情報を収集し、収集したデータに基づいて各蓄電池41の状態や寿命を推定して、異常な状態や寿命の到来の有無を監視する。
上位監視装置10は、例えばPC(Personal Computer)やサーバ機器等の情報処理装置によって構成され、図示しないOS(Operating System)やDBMS(DataBase Management System)などのミドルウェア上で動作するソフトウェアプログラムとして実装されるインタフェース部11、監視制御部12、および劣化判定部13などの各部を有する。また、子機30から収集した測定データを蓄積するデータベースである測定履歴14と、蓄電池状態監視システム1の動作に係る各種の設定を保持するファイルやレジストリ等からなる設定情報15とを有する。
インタフェース部11は、ユーザが各種指示を入力するための画面、および蓄電池41の状態監視の結果を表示するための画面を、ユーザに対して提供するユーザインタフェースの機能を有する。図示しないWebサーバプログラムにより、ユーザのクライアント端末上のWebブラウザからアクセスして画面を表示する構成としてもよい。ユーザが入力する各種指示としては、例えば、設定情報15に設定される、上位監視装置10や子機30の動作条件の指定や、ユーザの要求に基づく子機30に対するデータの測定や収集の指示などがある。
監視制御部12は、設定情報15に登録された設定内容、もしくはインタフェース部11を介したユーザからの指示に従って、(親機20を介して)子機30に対して各種パラメータの測定に係る条件の指定や測定の実行を要求する。また、子機30に対して各種パラメータの測定データを送信するよう要求して測定データを収集し、測定履歴14に蓄電池41毎に記録して蓄積する機能を有する。
なお、監視対象の蓄電池41が多数となる場合は、例えば、子機30に対して一斉にデータの測定指示を行うと、多数の子機30が一斉に蓄電池41に対して測定を行うことになる。子機30は、パラメータの測定の際に微小ながらも蓄電池41に対して通電するため、電圧降下が生じることから、多数の子機30が一斉に測定を行うと電源装置40に対して悪影響を及ぼすことも考えられる。また、子機30に対して一斉に測定データの送信要求を行うと、各子機30が一斉に測定データを親機20を介して上位監視装置10に送信する結果、これらの機器に大きな通信負荷がかかってしまうことも考えられる。
従って、本実施の形態では、子機30に対して各種パラメータの測定(特に内部抵抗の測定)や、測定データの送信などの指示を行う際に、子機30を適切な数(例えば全体の30%程度毎)にグルーピングして、各グループ間で、属する子機30による処理のタイミングが重複しないよう、自動または手動によりグループ毎に十分な時間差を設けて指示を行うものとする。
劣化判定部13は、設定情報15に登録された設定内容、もしくはインタフェース部11を介したユーザからの指示に従って、子機30から収集して測定履歴14に記録された温度、電圧、内部抵抗などの各種パラメータの測定値、および制御・電源装置50から取得した電源装置40での放電・充電時の電流値等に基づいて、後述するような手法により蓄電池41の状態や余寿命を推定する。
このとき、初期故障や偶発故障と経時劣化とを切り分けて判定し、これらを総合的に考慮することで、状態や寿命を推定する。すなわち、本実施の形態では、蓄電池41の健全性・余寿命の判定を行う際に、初期故障や偶発故障などの異常/故障の検出(すなわち、劣化が通常より早い蓄電池41)と、経時劣化(すなわち、蓄電池41の寿命)の検出とを切り分けて判定し、これらを総合考慮することで、当該蓄電池41の余寿命(すなわち、当該蓄電池41の交換時期)を推定する。
初期故障や偶発故障などの異常/故障は、一般的に初期に多く発生し、時間の経過とともに発生率は減少する傾向にある。そして、電圧や内部抵抗などの測定パラメータは、ランダムで急激な変化を伴う。これに対し、経時劣化は、直線的にもしくは緩慢に劣化していき、劣化が閾値を超える(もしくは一定以上期間が経過する)と急激に起こる傾向にある。従って、本実施の形態では、初期故障や偶発故障については、測定パラメータについて全体の平均値等からのズレを基準に判定し、経時劣化については、予め保持している特性曲線と現在の状態とを比較することで判定する。
具体的には、本実施の形態では、蓄電池41の温度に基づく判定に加えて、電圧、内部抵抗(主に交流インピーダンスであり、電池のリアクタンスも測定時に含まれるが、以下では総称して「内部抵抗」と記載する)、放電・充電の際の直流抵抗という複数のパラメータに基づいて多面的に劣化を判定する。例えば、温度や電圧については、初期故障や偶発故障などの突発的な障害等によるものも含む異常値管理として、一定間隔(例えば5分)で取得した蓄電池41の温度や電圧の値が、平均値等に基づいて得られる所定の閾値を超えた場合に異常な状態であると判定する。具体的には、例えば、蓄電池41の温度が室温+10℃を超えた場合には軽度の異常と判定し、室温+20℃を超えた場合には直ちに交換が必要な状態であると判定する。また、併せて、温度と寿命との相関関係を示すテーブルや式から経時劣化を判定するようにしてもよい。
また、内部抵抗については、通常時の傾向管理として、例えば、1日1回などの定期的なタイミングや、ユーザからの指示を受けたタイミングで測定し、内部抵抗値の初期値(例えば蓄電池41の設置時に最初に測定した値)からの変化率により特性曲線に基づいて蓄電池41の劣化を推定する。例えば、内部抵抗値が初期値から20%以上増加した場合には軽度の劣化と判定し、初期値から50%以上増加した場合には速やかに(例えば1年以内に)交換が必要と判定し、初期値から100%以上増加した場合には直ちに交換が必要と判定する。蓄電池41の種類等によって内部抵抗の絶対値が異なることから、このように相対値による判定を行う。
なお、本実施の形態では、蓄電池41の様々な劣化モードに対応してより正確な寿命の推定が行えるよう、複数の周波数により内部抵抗を測定し、各周波数での内部抵抗毎に上記のような初期値との相対値による判定を行うものとする。従来の内部抵抗の測定機器では、一般的に1kHz程度の周波数が用いられており、蓄電池41が徐々に劣化する状況については当該周波数で測定した内部抵抗によりある程度判断可能であることが知られている。また、当該周波数については従来広く用いられてきた経緯からリファレンスとなるデータの蓄積も多いため、本実施の形態においても1種類は1kHz程度(例えば350Hz以上2000Hz未満)の周波数を用いるものとする。
一方で、1kHz程度の周波数では、電極反応などの発電要素に係る情報を得るためには周波数が高く、蓄電池の生死を判定することが可能な程度の情報しか得ることができない。従って、より詳細な情報を得るためには、さらに直流や直流に近い低周波での内部抵抗についても測定するのが望ましい。本実施の形態では、直流抵抗成分については、UPSが動作して蓄電池41が放電や充電を開始したタイミングを自動的に検知し、蓄電池が放電もしくは充電している際に各蓄電池に設置した測定装置からの逐次測定された電圧値と電流値(交流での内部抵抗測定時のものと比べて大きい)とから、放電中の電流値と電圧値についてのそれぞれの変化分(傾き)の比の計算により取得するものとする。これについて上記と同様に初期値と比較することにより、蓄電池41の劣化をより正確に判定することができる。
しかしながら、UPS等の機器については通常時は待機しており稼働していないことから、上記のように直流抵抗を測定できるタイミングは限られる。従って、通常時(蓄電池41が放電・充電をしていない状態)は低周波での内部抵抗についても測定するものとする。例えば、実際上支障なく装置を構成することができ、かつ商用電源と干渉しない(50Hzもしくは60Hzの整数倍ではない)100Hz未満程度の周波数を用いる。劣化判定の精度をより向上させるためには、さらに異なる複数の周波数により内部抵抗を測定するのが望ましい。
従って、本実施の形態では、後述するように、内部抵抗の測定周波数は、少なくとも1kHz程度(例えば350Hz以上2000Hz未満)の高周波と100Hz未満(商用電源と干渉しない周波数)の低周波を含み、さらにこれらと異なる周波数として、中間(例えば100Hz以上350Hz未満)の周波数を加えた3種類の周波数により内部抵抗を測定するものとする。
上記をより一般的に記載すると、例えば、200Hz未満の低周波領域と、200Hz以上2000Hz未満の高周波領域から少なくともそれぞれ1つ以上選択した複数の周波数によって内部抵抗を測定することで劣化判定の精度を向上させることが可能である。さらに上記の周波数領域内で異なる他の周波数を加えて測定することで精度をより向上させることも可能である、ということができる。
このように、本実施の形態では、主に上述した3つのタイミングで蓄電池41の劣化を推定する。1つ目は、一定の時間間隔(本実施の形態では5分)のタイミングで継続して測定した温度および電圧の取得データに基づいて、蓄電池41の突発的な障害等を含む異常や寿命を推定する。2つ目は、定期的(本実施の形態では1日1回)もしくはユーザからの指示による任意のタイミングで複数周波数にて測定した内部抵抗の測定値に基づいて、蓄電池41の複数の劣化モードでの劣化傾向を推定する。3つ目は、蓄電池41が放電もしくは充電を行ったタイミングで、放電もしくは充電の際の電圧の測定データと、制御・電源装置50から取得した放電時もしくは充電時の直流電流の値とから算出した直流抵抗に基づいて蓄電池41の劣化傾向をより高い精度で推定する。
なお、内部抵抗や直流抵抗の初期値については、測定履歴14における対象の蓄電池41についての最初の測定データから得てもよいし、蓄電池41毎に別途記録しておくようにしてもよい。
蓄電池41の状態や劣化の推定の結果、寿命が到来している、もしくは寿命の到来が近いため、交換が必要であると判定された場合は、例えば、その旨をインタフェース部11を介して測定データや推定結果などの情報とともにユーザに通知する。
設定情報15には、蓄電池状態監視システム1の動作に係る設定内容として、例えば、子機30の温度や電圧の測定間隔(例えば10〜200msec毎であり、本実施の形態では100msec毎とした)や、上位監視装置10による温度や電圧の測定データの収集間隔(例えば5分毎)、内部抵抗の測定間隔(例えば1日1回)などをユーザや管理者等により設定もしくは変更可能なようにしてもよい。また、後述するように、子機30において電源装置40(蓄電池41)が放電していることを検知するための、電圧降下の閾値や継続サイクル数、放電を検知した際に電圧の測定データをロックする時間範囲の情報、子機30の動作モード(通常モードや省電力モード)などを設定可能なようにしてもよい。
なお、子機30の動作に係る設定を上位監視装置10の設定情報15に保持し、監視制御部12から子機30に対して指定できるようにすることで、多数の子機30に対する個別の作業を不要として、上位監視装置10からの指令によって効率良く子機30の動作条件を指定・変更することが可能となる。
図3は、状態測定装置(子機)30の構成例について概要を示した図である。子機30は、蓄電池41の蓋部等に対して1つずつ固定して設置され、当該蓄電池41についての各種パラメータを測定して記録するとともに、親機20を介した上位監視装置10からの指示に応じて、親機20を介して測定データを上位監視装置10に送信する。蓄電池41に固定して設置することで、各種パラメータを測定するための端子やセンサ等との間の配線の接続を安定させ、測定データのバラつきを低減させることができる。なお、通常は、1個の蓄電池41に対して子機30が1個設置される対応であるが、コストや蓄電池41の電圧などに応じて、直列に設置された複数個の蓄電池41に対してまとめて1個の子機により監視するようにしてもよい。
子機30は、CPU(Central Processing Unit)により実行されるソフトウェアプログラムや回路等として実装される測定制御部31、温度測定部32、電圧測定部33、内部抵抗測定部34、および正弦波発生部35の各部を有する。また、親機20との間で無線通信を行う通信部36と、不揮発性の半導体メモリ等からなる記憶装置である内部メモリ37を有する。また、温度測定部32から配線された温度センサ39が蓄電池41に配置されているとともに、電圧測定部33、内部抵抗測定部34、および正弦波発生部35から配線された端子が蓄電池41の正負の端子にそれぞれ接続されている。なお、子機30が動作するための電力は、蓄電池41から取得するものとする。そのため、子機30では、各部の動作が必要なタイミング以外ではスリープするなどして、不要な電力を消費しないようにする省電力モード等を設けるのが望ましい。
測定制御部31は、子機30における各種パラメータの測定処理や、測定データの記録、送信など、子機30における処理全体を制御する機能を有する。各測定部により、蓄電池41を(例えば100msec毎や1日1回などの間隔で)常時監視して、測定されたデータを内部メモリ37の所定の領域に逐次記録する。このとき、古い測定データを上書きして領域をサイクリックに利用する。また、通信部36による無線通信により親機20と通信を行い、親機20を介した上位監視装置10からの指示に基づいて、親機20経由で上位監視装置10に対して測定データを送信する。なお、内部メモリ37に記録された測定データは、子機30に装着した半導体メモリ等からなる外部メモリ38に複写・移動等して取り出すことができる。また、外部メモリ38を内部メモリ37と同等の記憶領域として使用してもよい。
温度測定部32は、測定制御部31からの指示(例えば100msec毎)に従って、温度センサ39により蓄電池41の温度を測定し、測定データを測定制御部31に出力する。また、電圧測定部33も同様に、測定制御部31からの指示(例えば100msec毎)に従って、蓄電池41の端子間の電圧を測定し、測定データを測定制御部31に出力する。このとき、測定制御部31では、後述するように、電圧の値の降下(もしくは上昇)が一定期間以上継続した場合に蓄電池41が放電(もしくは充電)を行っていると判定し、放電(もしくは充電)の開始前後の一定期間の電圧の測定データについて、内部メモリ37上で他のデータにより上書きされて消失しないようロック(保護)する。
内部抵抗測定部34は、測定制御部31からの指示(例えば1日1回)をトリガとして、蓄電池41の端子間の内部抵抗を測定し、測定データを測定制御部31に出力する。ここでは、正弦波発生部35によって、上述したような複数の周波数の正弦波を発生させ、各周波数での電流(例えば3A以下)を蓄電池41に流す。このときの電流値と、端子間の電圧値との測定データに基づいて、各周波数での内部抵抗を算出する。
上述したように、例えば、200Hz未満の低周波領域と、200Hz以上2000Hz未満の高周波領域から少なくともそれぞれ1つ以上選択した複数の周波数によって内部抵抗を測定することで劣化判定の精度を向上させることができる。また、上記の周波数領域内でさらに異なる他の周波数を加えて測定することで精度をより向上させることができる。本実施の形態では、例えば、少なくとも1kHz程度(例えば350Hz以上2000Hz未満、好ましくは800Hz以上1200Hz未満)の高周波領域と100Hz未満(商用電源と干渉しない周波数)の低周波領域を含み、さらにこれらと異なる周波数として、中周波領域(例えば100Hz以上350Hz未満)の周波数を加えた3種類の周波数により内部抵抗を測定するものとする。
測定周波数による効果を確認するため、従来技術による内部抵抗の測定機器(単独の周波数により測定するもの)を用いた場合と、本実施の形態の状態測定装置30(内部抵抗測定部34が複数の周波数により測定するもの)を用いた場合とで、それぞれ実際に蓄電池の内部抵抗を測定して、その寿命の評価(電池容量の推定)を試みた実験結果の例を以下の表に示す。
Figure 2016090416
表1では、内部抵抗の測定機器として従来品1〜3および開発品1、2を用いて、複数の異なる劣化状態の蓄電池についてそれぞれ内部抵抗を測定した上で電池容量の推定を行い、実際の容量との誤差と、測定に要した時間に基づいて測定精度を評価した結果を示している。
ここで、従来品1〜3は、従来技術による単独の周波数により内部抵抗を測定する測定機器であり、測定周波数がそれぞれ異なる領域(高周波領域(350Hz以上2000Hz未満)、中周波領域(100Hz以上350Hz未満)、低周波領域(100Hz未満))に属するものである。一方、開発品1、2は、本実施の形態の状態測定装置30であって、複数の周波数領域(開発品1は高周波領域(200Hz以上2000Hz未満)と低周波領域(200Hz未満)、開発品2は高周波領域(350Hz以上2000Hz未満)と中周波領域(100Hz以上350Hz未満)と低周波領域(100Hz未満))に属する測定周波数により内部抵抗を測定するものである。
当該実験では、使用する蓄電池として、
・電池A 蓄電池規格UP300−12(12V/100Ah/5HR)の新品
・電池B 電池Aと同等の電池に対して電解液を10%減じたもの
・電池C 電池Aと同等の電池に対して25℃トリクル寿命試験により5年相当経過させた状態のもの
・電池D 電池Aと同等の電池に対して25℃トリクル寿命試験により15年相当経過させた状態のもの
・電池E 電池Cと同等の電池に対して電解液減少分を補液したもの
・電池F 電池Dと同等の電池に対して電解液減少分を補液したもの
の6種類の蓄電池(電池A〜F)を作成した。
表では、上記各蓄電池について、5HR容量および1CA容量を元に、それぞれの状況として、実容量と、従来品1〜3および開発品1、2による内部抵抗の測定値に基づいて得られた容量の推定値について、それぞれ、満充電状態との相対比(%)により示している。
各電池の放電容量の実測値(実容量)については、JIS8704−02に基づいて満充電状態の蓄電池を準備し、これに基づくものとしている。ここで、蓄電池の満充電状態とは、13.38V/10Aの制限電流にて48時間以上充電した状態のことを指す。5HR容量の実測値(実容量)については、充電終了後、開路状態にて25±2℃の雰囲気中で24時間放置し、その後、25±2℃にて放電電流値20Aで放電し、終止電圧10.5Vに到達するまでの放電持続時間から放電容量を求めた。また、1CA容量の実測値(実容量)については、上記の5HRの場合と同様に、満充電後25±2℃の雰囲気中で24時間放置した電池について、放電電流値100Aで放電し、終止電圧9.6Vに到達するまでの放電持続時間から放電容量を求めた。得られた各蓄電池の放電容量の実測値について、それぞれ、新品状態の放電容量に対する相対比を算出している。
また、内部抵抗の測定値に基づく容量の推定に際しては、実験結果の蓄積に基づく知見として従来から得られている内部抵抗と放電容量(もしくは放電持続時間)との関係についての実験式を用いている。具体的には、内部抵抗の測定値と放電容量との関係は一次関数で表されるため、例えば、従来品1〜3(単独の周波数により測定するもの)については、放電容量は、内部抵抗の測定値と初期値とに基づいて、
放電容量=放電容量の初期値×
(1−(内部抵抗の測定値−内部抵抗の初期値)/内部抵抗の初期値)
の式により表される。従って、新品状態の放電容量(放電容量の初期値)に対する相対比は、
相対比=1−(内部抵抗の測定値−内部抵抗の初期値)/内部抵抗の初期値
の式により算出することができる。
なお、開発品1、2のように複数の測定周波数により内部抵抗を測定する場合は、例えば、測定された2種類もしくは3種類の内部抵抗の値に対して所定の重み付けをした加重平均値を用いて上記の式に適用するものとする。例えば、低率放電での測定の場合は、高周波領域の周波数で測定した内部抵抗値に対して、中周波領域の周波数で測定した内部抵抗に比して大きい重み付け値を設定する。また、高率放電での測定の場合は、中周波領域の周波数で測定した内部抵抗値に対して、高周波領域の周波数で測定した内部抵抗に比して大きい重み付け値を設定し、さらに、低周波領域の周波数で測定した内部抵抗値に対して、中周波領域の周波数で測定した内部抵抗値に対して大きい重み付け値を設定する。
表1では、従来品1〜3および開発品1、2のそれぞれについて、各蓄電池の5HR容量と1CA容量につき、内部抵抗の測定値に基づいて求めた容量の推定値(相対比)と実容量(相対比)との間の誤差を求めている。さらに、それぞれの誤差の合計、および内部抵抗の測定に要した時間に基づいて評価点を求めて評価した結果についても示している。
評価結果によれば、従来品1〜3(単独の周波数での内部抵抗の測定)に比べて総じて短時間に、かつ高い精度で電池容量を推定することができることが分かる。また、開発品2(3種類の周波数での内部抵抗の測定)によれば、開発品1(2種類の周波数での内部抵抗の測定)よりもさらに短時間かつ高い精度で電池容量を推定できることが分かる。
<状態測定装置(子機)での処理の流れ>
図4は、状態測定装置(子機)30の測定制御部31における処理の流れの例について概要を示したフローチャートである。子機30が起動して蓄電池41の各種パラメータの測定処理を開始すると、まず、親機20を介して上位監視装置10から指示を受信しているか否かを判定する(S01)。指示を受信している場合は、上位監視装置10から指示された処理を実行する指示実行処理を行う(S02)。ステップS02の指示実行処理については後述するが、ここでは、主に、測定した各種データを上位監視装置10に対して送信する処理を行う。このとき必要に応じて内部抵抗測定部34により蓄電池41の内部抵抗の測定処理も行う。
ステップS01で上位監視装置10からの指示を受信していない場合は、次に、前回の測定サイクルから所定の間隔の時間が経過したか否かを判定する(S03)。ここでの所定の間隔は、子機30が自ら定期的に蓄電池41のパラメータを測定する間隔であり、本実施の形態では例えば100msec間隔である。なお、この間隔の値は、例えば、上位監視装置10から親機20を介して指示された値、もしくは省略時値として子機30に対して予め設定された値を内部メモリ37等に保持しておき、起動時やその他の特定のタイミングでこれを参照するようにしてもよい。
ステップS03で100msec経過していない場合は、ステップS01に戻って処理を繰り返す。ステップS01ではなくステップS03に戻って100msec経過するのを待つようにしてもよい。ステップS03で100msec経過している場合は、温度測定部32により蓄電池41の温度を測定し(S04)、また、電圧測定部33により蓄電池41の端子間の電圧を測定する(S05)。このとき、上位監視装置10からの抵抗測定指令があれば、正弦波発生部35により発生された所定の周波数での電流(例えば3A以下)を蓄電池41に流して電圧を測定する。
その後、対象の蓄電池41の稼働時間を算出する(S06)。ここでは、例えば、前回の測定時点からの経過時間を加算して積算時間として算出して記録する。アレニウス則による換算時間(例えば、ステップS04で測定した温度に基づく)についても同時に記録するようにしてもよい。
温度測定部32、電圧測定部33および内部抵抗測定部34により温度、電圧および内部抵抗の測定が行われ、測定制御部31が測定データを取得すると、現在の状態が測定データを上書きされないようにロックした状態で記録するデータロックモードであるか否かを判定する(S07)。データロックモードではない通常モードの場合は、温度、電圧および内部抵抗の測定データをタイムスタンプと合わせて内部メモリ37に記録する(S08)。このとき、内部メモリ37上にロックされているデータがある場合は、これに対して上書きして消去しないように記録する。
さらに以下で、測定した電圧データを解析して蓄電池41が放電もしくは充電を開始したか否かを判定する処理を行う。電源装置40に利用されている蓄電池41は、通常時は一定の電圧を維持するよう制御されている。一方で、電源装置40が稼働して負荷に対して電力の供給を開始する、すなわち蓄電池41が放電を開始すると、蓄電池41の電圧は急峻に降下するとともに、その後は放電に従って漸次電圧が降下していく(なお、電源装置40が負荷に対する電力の供給を停止し、蓄電池41に対して充電が開始された場合は逆となる)。
図5は、蓄電池41の放電および充電の際の電圧の変化の例について概要を示した図である。ここでは、蓄電池41の単位セルについての放電・充電の場合を例として示しており、通常時の単位セルあたりの電圧(例えば2.23V)が、放電が開始すると約2.1V以下にまで急峻に降下し、その後ほぼ一定の傾きで漸次降下していく状態を示している。従って、本実施の形態では、例えば、1セルあたりで電圧が通常時から100mV以上降下した状態が測定の3サイクル(300msec)継続した場合に放電が開始したものと判断する。
上述したように、放電中は蓄電池41に大きな直流電流が流れるため、このときのパラメータの測定データに基づいて蓄電池41の状態についてより詳細な情報を得ることができる。従って、放電中のデータとして、図示するように、放電を検知したタイミングの前後の一定の時間範囲(電圧が漸次降下してく際の変化分(傾き)を計算することができるだけの時間範囲)の電圧(温度データを含めてもよい)の測定データを、内部メモリ37上で他の測定データにより上書きされたり、削除されたりして消失しないようにロックした状態で記録するものとする(充電時についても同様にロックするようにしてもよい)。
本実施の形態では、例えば、放電を検知したタイミングの1秒前から10分後までのデータをロックするものとする。なお、この時間範囲は、内部メモリ37の容量やデータ送信のための通信負荷、電源装置40の利用条件などに応じて適宜決定することができるが、少なくとも放電もしくは充電の検知から1分以上のデータをロックして保持しておくのが望ましい。
上記の処理を行うため、図4において、まず、電圧データについて測定値が通常時から所定の閾値(本実施の形態では例えば1セルあたり100mV)以上降下(もしくは上昇)しているか否かを判定する(S09)。なお、急峻な電圧降下を検知するために、前回の測定値から上記閾値以上降下しているか否かを合わせて判定するようにしてもよい。
ステップS09で所定の閾値以上電圧が降下していない場合は、ステップS01に戻って測定処理の繰り返しを継続する。ステップS09で電圧が所定の閾値以上降下している場合は、次に、電圧の降下が所定の時間継続しているか否かを判定する(S10)。本実施の形態では、測定の3サイクル(300msec)継続しているか否かを判定する。3サイクル継続していない場合は、ステップS01に戻って測定処理の繰り返しを継続する。一方、3サイクル継続している場合は、測定データをロックするデータロックモードに移行する(S11)。このとき、例えば、過去1秒以内に内部メモリ37に記録した電圧データ(温度データを含めてもよい)については、上書きや削除ができない旨のフラグを設定する等によりロックする。その後、ステップS01に戻って測定処理の繰り返しを継続する。
一方、ステップS07で現在の状態がデータロックモードである場合は、温度、電圧および内部抵抗の測定データを、ロックされている旨のフラグを設定した上でタイムスタンプと合わせて内部メモリ37に記録する(S12)。なお、内部メモリ37は、ロックされたデータ(本実施の形態では10分程度の測定データ)を保持することができる十分な容量を有することが望ましいが、例えば十分な容量を有していないような場合にロックされたデータが飽和して新たに記録することができる領域が存在しなくなった場合は、親機20を介して上位監視装置10に対してエラーや警告を通知するようにしてもよい。
その後、ステップS10で3サイクル継続して電圧の降下を検知(蓄電池41の放電を検知)したタイミング(すなわち、データロックモードに移行したタイミングと等価)から、所定の時間(本実施の形態では10分)が経過したか否かを判定する(S13)。10分経過していない場合は、ステップS01に戻って測定処理の繰り返しを継続する。
一方、10分が経過した場合は、データロックモードから通常モードに移行し(S14)、ステップS01に戻って測定処理の繰り返しを継続する。すなわち、これ以降のサイクルでの測定データについては、ステップS08以降の処理によりロックされていないデータとして内部メモリ37に記録されることになる。なお、データロックモードから通常モードに移行しても、過去にロックされた状態で記録された測定データは、後述するように、親機20を介して上位監視装置10に送信されるまでロックされたままの状態で保持するものとする。
図4に示したように、本実施の形態では、ロック対象の測定データに対してフラグを設定することによりロックしているが、ロックの手法はこれに限るものではない。例えば、ステップS10で3サイクル継続して電圧の降下を検知(蓄電池41の放電を検知)した場合に、当該時刻から1秒前および10分後のタイムスタンプを計算し、それぞれをロックの開始時刻と終了時刻の情報として保持するようにして、測定データが当該時間帯に含まれるか否かでロックの対象であるか否かを判断するようにしてもよい。また、ロックされたデータとロックされていないデータとの内部メモリ37上での記憶領域を分離するようにしてもよい(このとき、過去1秒以内に記録したロックされていないデータについては、ロックされたデータの記憶領域に移動させる等の処理を行う)。
また、図4に示した処理フローでは、ステップS01〜S02における上位監視装置10からの指示に基づく処理と、ステップS03以降の子機30によるパラメータの測定処理とを便宜上シーケンシャルな処理として記載しているが、処理順序はこれに限られない。また、上位監視装置10からの指示の受信や、測定サイクルである100msecの経過などをイベント発生のトリガとして、イベントドリブンな処理として実装するようにしてもよい。
図6は、図4に示した子機30での測定処理におけるステップS02の指示実行処理の流れの例について概要を示したフローチャートである。上位監視装置10からの指示を受信すると、測定制御部31は、まず指示の内容を判定し(S101)、その後、指示内容に応じた処理を実行する。
ステップS101での指示の内容が、電圧および温度の測定データの取得要求である場合は、前回上位監視装置10に送信して以降に内部メモリ37に記録・蓄積された電圧および温度の測定データ(図4のステップS04以降の処理で100msec毎に測定された最新データ)および稼働時間のデータを、親機20を介して上位監視装置10に送信し(S102)、処理を終了する。なお、本実施の形態では、上位監視装置10は、監視制御部12により、当該データの取得要求を設定情報15等に設定された所定の間隔(例えば5分毎など)で、定期的に自動で送信するものとする。送信した測定データは、内部メモリ37から消去するようにしてもよい。消去せずに残す場合は、送信済みの測定データと未送信の測定データとを識別することができるよう、例えば、送信済みの測定データのうち最新のもののタイムスタンプを保持しておくなどする。
ステップS101での指示の内容が、蓄電池41の内部抵抗の測定データの取得要求である場合は、前回の内部抵抗の測定時刻から所定の時間(本実施の形態では例えば1時間)が経過しているか否かを判定する(S103)。なお、本実施の形態では、上位監視装置10は、監視制御部12により、当該データの取得要求を設定情報15等に設定された所定の間隔(例えば1日1回など)で、定期的に自動で送信するものとする。また、これに加えてユーザによる手動での指示に基づいて取得要求を送信することも可能であるものとする。
ステップS103で前回の測定時刻から1時間以上経過していない場合は、内部抵抗の測定処理が短時間で連続的に行われる(例えば、上位監視装置10においてユーザが短時間で連続的に指示を繰り返す)ことにより蓄電池41に余分な負荷がかかることを回避するため、内部抵抗の測定を行わない。このとき、本実施の形態では、前回測定した際の内部抵抗の測定データを内部メモリ37から読み出して測定データとし(S104)、これを送信するものとする(S106)。
一方で、ステップS103で前回の測定時刻から1時間以上経過している場合は、内部抵抗測定部34により蓄電池41の内部抵抗を測定し(S105)、ステップS106に進む。ここでは上述したように、正弦波発生部35により複数の周波数の正弦波を発生させ、各周波数における電流(例えば3A以下)を蓄電池41に流し、このときの電流値と、端子間の電圧値との測定データに基づいて、各周波数での内部抵抗を算出する。本実施の形態では、複数の周波数は、上述したように、少なくとも1kHz程度の高周波と100Hz未満の低周波を含み、これにさらに異なる周波数を加えることが可能である。得られた内部抵抗のデータは内部メモリ37に記録する。
その後、内部抵抗の測定データを親機20を介して上位監視装置10へ送信し(S106)、処理を終了する。なお、ステップS105での内部抵抗の測定に要する時間によっては、例えば、1日1回の内部抵抗の測定の指示に対して、ステップS105での内部抵抗の測定処理を実行するとともに、これとは非同期に、ステップS106で、内部メモリ37に記録された前回の測定結果のデータを(1日遅れで)上位監視装置10に送信するようにしてもよい。
ステップS101での指示の内容が、蓄電池41が放電・充電している際に測定された、ロックされた電圧データ(温度データを含んでいてもよい)の取得要求である場合は、ロックされている電圧(および温度)の測定データを内部メモリ37から取得して、親機20を介して上位監視装置10へ送信する(S107)。
なお、本実施の形態では、上位監視装置10は、ユーザによる手動での指示に基づいてロックされた電圧データの取得要求を送信する。ユーザは、例えば、上位監視装置10上で、制御・電源装置50から得られる情報に基づいて電源装置40が稼動(蓄電池41が放電)したことを把握することができ、その後、例えば障害の復旧等を待ってロックされた電圧データの取得を指示する。蓄電池41が放電している際の直流電流値についても、上位監視装置10は制御・電源装置50から得ることができるため、これらのデータに基づいて劣化判定部13は直流抵抗値を算出することができる。
その後、送信済みのデータについてのロック状態を解除し(S108)、処理を終了する。ロック状態を解除されたデータは、通常のデータとして上書きされ得る状態となる。ロック状態の解除の代わりに当該データを内部メモリ37から消去するようにしてもよい。
なお、上位監視装置10からの指示内容には、上記のようなパラメータの測定や測定データの取得要求の他に、各種設定情報(例えば、一定間隔で測定する温度および電圧の測定間隔や、電圧降下により蓄電池41の放電を検知した場合に電圧の測定データをロックする時間範囲についての情報など)の設定の指示なども含まれる。指定された設定内容は、例えば内部メモリ37に記録され、測定制御部31によって参照される。
また、必要なタイミング以外は各部の回路等がスリープする省電力モードなどの動作モードの指示や、子機30の停止指示を含んでいてもよい。例えば、停止指示を受信した場合は、測定処理を終了して機器を停止する。停止せずにスリープ状態やスタンバイ状態等に移行するようにしてもよい。このとき、上位監視装置10からの復帰指示をトリガとしてスリープ状態やスタンバイ状態から復帰するようにしてもよい。
<上位監視装置での処理の流れ>
図7は、上位監視装置10の劣化判定部13における処理の流れの例について概要を示したフローチャートである。上位監視装置10では、例えば、5分毎などの所定の間隔、もしくは状態測定装置(子機)30から測定データを取得したときや、インタフェース部11を介してユーザから指示を受けたときなどのタイミングで、まず、測定履歴14に蓄積された測定データに基づいて、初期故障/偶発故障が発生しているか否かを粗い判定基準により予備判定する(S201)。これにより、明らかに初期故障/偶発故障に該当しないケースについて以降の詳細な判定が不要となるようにする。
上述したように、初期故障/偶発故障などの突発的な障害については、異常値管理として、例えば、蓄電池41の温度や電圧の値が平均値等から得られる所定の閾値を超えているか否かにより判定する。具体的には、例えば、蓄電池41の温度が室温+10℃を超えた場合には軽度の異常と判定し、室温+20℃を超えた場合には直ちに交換が必要な異常状態であると判定する。
ステップS201で、初期故障/偶発故障があると判定された場合、当該判定が所定回数(例えば、3回)以上連続しているか否かを判定する(S202)。所定回数以上連続していない場合は、処理を終了する。一方、所定回数以上連続している場合は、次に、測定データにおける電圧、温度、および内部抵抗などの値に基づいてより詳細な閾値判定を行い(S203)、初期故障/偶発故障であるか否かを判定する(S204)。初期故障/偶発故障ではないと判定された場合は処理を終了する。
ステップS202において初期故障/偶発故障であると判定された場合は、対象の蓄電池41に初期故障/偶発故障が発生したものとして(S205)、処理を終了する。このとき、例えば、故障の発生をイベントとして記録するとともに、インタフェース部11を介してユーザに通知するようにしてもよい。また、対象の蓄電池41を切り離して縮退運転するよう、制御・電源装置50などに指示を出力するようにしてもよい。
一方、ステップS201で、初期故障/偶発故障がないと判定された場合は、経時劣化の有無の判定と余寿命の推定を行う。ここではまず、測定された電圧データについて、電圧降下(もしくは、電圧降下と電流値に基づいて得られる直流抵抗)が第1の閾値(図中では「閾値#1」と記載)以上であるか否かを判定する(S206)。電圧降下が第1の閾値未満であった場合は処理を終了する。第1の閾値は、後述の第2の閾値に比べて緩い基準により設定されるものとする。これにより、経時劣化の観点で明らかに正常であると思われるケースについて以降の詳細な判定が不要となるようにする。
電圧降下が第1の閾値以上であった場合は、さらに、電圧降下が第2の閾値(図中では「閾値#2」と記載)以上であるか否かを判定する(S207)。なお、第2の閾値は第1の閾値より大きい値であり、これらの値は、蓄電池41の特性曲線から得ることができるが、稼働時間(アレニウス則による換算時間によるものであってもよい)や、設定電圧(平均電圧)、負荷の状態などに応じて適宜設定することができる。
ステップS207で、電圧降下が第2の閾値未満であった場合、すなわち、電圧降下が第1の閾値と第2の閾値との間であった場合は、次に、電圧降下が第1の閾値以上となった回数が所定回数(例えば、3回)以上となったか否かを判定する(S208)。所定回数以上となっていない場合は処理を終了する。所定回数以上となっている場合は、蓄電池41の余寿命を算出する(S209)。ここでは、例えば、上述したような手法により、複数周波数にて測定された内部抵抗などに基づいて電池容量を推測し、余寿命を算出する。このとき、例えば、余寿命に基づいて使用可能期間を算出し、現時点での稼働時間の情報と合わせてインタフェース部11を介して画面表示してユーザに通知するようにしてもよい。
その後、ステップS209で算出された余寿命が所定の閾値(例えば、1年など)以上であるか否かを判定する(S210)。余寿命が閾値以上である場合は、蓄電池41は正常であるとして(S211)、処理を終了する。余寿命が閾値未満である場合は、交換時期が近いものとして、交換予定時期(例えば、1年を目処に設定)をインタフェース部11を介して画面表示してユーザに通知して(S212)、処理を終了する。
一方、ステップS207で、電圧降下が第2の閾値以上でもあった場合は、次に、電圧降下が第2の閾値以上となった回数が所定回数(例えば、3回)以上となったか否かを判定する(S213)。所定回数以上となっていない場合は処理を終了する。所定回数以上となっている場合は、蓄電池41は故障、もしくは寿命(早期寿命含む)に達したものとして(S214)、処理を終了する。このとき、その旨をインタフェース部11を介して画面表示してユーザに通知するようにしてもよい。
以上に説明したように、本発明の一実施の形態である蓄電池状態監視システム1によれば、常に機器に接続された複数の蓄電池41について、温度以外に電圧、内部抵抗、放電・充電の際の直流抵抗を含むパラメータを自動で測定もしくは取得するとともに、内部抵抗については複数周波数にて測定することで、各蓄電池41の状態や寿命を高い精度で推定することが可能となる。このとき、初期故障や偶発故障と経時劣化とを区別して判定し、これらを総合的に考慮することで、蓄電池41の状態や寿命をより精度よく推定することが可能となる。
また、上位監視装置10と親機20、子機30からなる階層構成をとり、親機20と子機30との間は無線通信とすることで、多数の蓄電池41についての各種パラメータの測定を効率的に行うことが可能となる。
このとき、子機30は、上位監視装置10からの設定内容等に従って各種パラメータを測定し、親機20を介して上位監視装置10に送信するとともに、蓄電池41の放電・充電を自動的に検知して、放電・充電の際の電圧の測定データが上書き等により消失しないようロックして保持することで、子機30単位での直流電流による電圧変化が監視可能となり、各蓄電池41の状態や寿命をより確実に、かつ高い精度で推定することが可能となる。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、上記の実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記の実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
例えば、本実施の形態では、子機30により測定されたデータを親機20を介して上位監視装置10に送信し、上位監視装置10において蓄電池41の劣化状況を判定するよう構成としているが、そのような構成に限られない。上位監視装置10の劣化判定部13および子機30の測定制御部31に相当し、これら各部での処理を一連の処理として実行するソフトウェアプログラムを、子機30などの専用装置にCPUを設けた上で直接実行させることで、子機30上で全ての処理が完結するように構成することも可能である。逆に、当該ソフトウェアプログラムを親機20や、他のPCやタブレット端末などの汎用の情報処理端末などに導入して実行させ、子機30では単純な測定のみを行う構成とすることも可能であり、柔軟なシステム構成によって蓄電池41の劣化状況を判定することが可能である。
本発明は、バックアップ用途・出力変動用途など、蓄電池が常に機器に接続され、蓄電池に通電して状態を監視・推定する蓄電池状態監視システム、蓄電池状態監視方法、および蓄電池状態監視プログラムに利用可能である。
1…蓄電池状態監視システム、
10…上位監視装置、11…インタフェース部、12…監視制御部、13…劣化判定部、14…測定履歴、15…設定情報、
20…データ中継装置(親機)、
30…状態測定装置(子機)、31…測定制御部、32…温度測定部、33…電圧測定部、34…内部抵抗測定部、35…正弦波発生部、36…通信部、37…内部メモリ、38…外部メモリ、39…温度センサ、
40…電源装置、41…蓄電池、
50…制御・電源装置、
60…ネットワーク

Claims (14)

  1. 複数の蓄電池が直列に接続された組電池を備えた機器に対して、前記各蓄電池の状態を監視する蓄電池状態監視システムであって、
    前記各蓄電池における電流を検出する電流検出手段と、
    前記各蓄電池における稼働時間、温度、電圧、および少なくとも2種類以上の周波数における内部抵抗を測定する状態測定手段と、を有し、
    前記状態測定手段が測定した温度、電圧、内部抵抗、および前記各蓄電池の放電時における前記電流検出手段が検出した電流の値の変化分と前記状態測定手段が測定した電圧の値の変化分との比から得た前記各蓄電池の直流抵抗のうち、少なくとも1つ以上の値に基づいて、前記各蓄電池における正常ではない状態を、初期故障もしくは偶発故障と、経時劣化とを区別して判定する蓄電池状態監視システム。
  2. 請求項1に記載の蓄電池状態監視システムにおいて、
    前記各蓄電池について得られた温度、電圧、内部抵抗、および直流抵抗の各パラメータのうち、少なくとも1つ以上の値が、各パラメータの平均値から所定の閾値以上乖離した状態が所定の測定回数以上継続した場合に、初期故障もしくは偶発故障であると判定し、初期故障もしくは偶発故障に該当しない場合に、前記各蓄電池について得られた内部抵抗の値に基づいて経時劣化を判定する、蓄電池状態監視システム。
  3. 請求項1または2に記載の蓄電池状態監視システムにおいて、
    前記状態測定手段は、少なくとも、200Hz未満の第1の周波数と、200Hz以上2000Hz未満の第2の周波数とをそれぞれ含む、2種類以上の周波数によって前記蓄電池の内部抵抗を測定する、蓄電池状態監視システム。
  4. 請求項3に記載の蓄電池状態監視システムにおいて、
    前記状態測定手段は、前記第1の周波数を100Hz未満とし、前記第2の周波数を350Hz以上2000Hz未満とし、さらに、100Hz以上350Hz未満の第3の周波数を含む3種類の周波数によって前記蓄電池の内部抵抗を測定する、蓄電池状態監視システム。
  5. 請求項1〜4のいずれか1項に記載の蓄電池状態監視システムにおいて、
    前記状態監視手段からなり、前記蓄電池に直接接続された子機と、
    前記電流検出手段および/または前記状態測定手段により検出もしくは測定されたデータを取得して、取得したデータに基づいて前記各蓄電池の劣化の推定を行う上位監視装置と、を有し、
    前記上位監視装置には、1つ以上の前記子機が通信可能に接続される構成を有する、蓄電池状態監視システム。
  6. 請求項1〜4のいずれか1項に記載の蓄電池状態監視システムにおいて、
    前記状態監視手段からなり、前記蓄電池に直接接続された子機と、
    前記電流検出手段および/または前記状態測定手段により検出もしくは測定されたデータを取得して、取得したデータに基づいて前記各蓄電池の劣化の推定を行う上位監視装置と、
    前記上位監視装置と前記子機との間での通信を中継する親機と、を有し、
    前記上位監視装置には1つ以上の前記親機が通信可能に接続され、前記各親機には、1つ以上の前記子機が通信可能に接続される構成を有する、蓄電池状態監視システム。
  7. 複数の蓄電池が直列に接続された組電池を備えた機器に対して、前記各蓄電池の状態を監視する蓄電池状態監視方法であって、
    前記各蓄電池における電流を検出する電流検出工程と、
    前記各蓄電池における稼働時間、温度、電圧、および少なくとも2種類以上の周波数における内部抵抗を測定する状態測定工程と、
    前記状態測定工程において測定された温度、電圧、内部抵抗、および前記各蓄電池の放電時に前記電流検出工程において検出された電流の値の変化分と前記状態測定工程において測定された電圧の値の変化分との比から得た前記各蓄電池の直流抵抗のうち、少なくとも1つ以上の値に基づいて、前記各蓄電池における正常ではない状態を、初期故障もしくは偶発故障と、経時劣化とを区別して判定する劣化判定工程と、を有する、蓄電池状態監視方法。
  8. 請求項7に記載の蓄電池状態監視方法において、
    前記劣化判定工程では、前記各蓄電池について得られた温度、電圧、内部抵抗、および直流抵抗の各パラメータのうち、少なくとも1つ以上の値が、各パラメータの平均値から所定の閾値以上乖離した状態が所定の測定回数以上継続した場合に、初期故障もしくは偶発故障であると判定し、初期故障もしくは偶発故障に該当しない場合に、前記各蓄電池について得られた内部抵抗の値に基づいて経時劣化を判定する、蓄電池状態監視方法。
  9. 請求項7または8に記載の蓄電池状態監視方法において、
    前記状態測定工程では、少なくとも、200Hz未満の第1の周波数と、200Hz以上2000Hz未満の第2の周波数とをそれぞれ含む、2種類以上の周波数によって前記蓄電池の内部抵抗を測定する、蓄電池状態監視方法。
  10. 請求項9に記載の蓄電池状態監視方法において、
    前記状態測定工程では、前記第1の周波数を100Hz未満とし、前記第2の周波数を350Hz以上2000Hz未満とし、さらに、100Hz以上350Hz未満の第3の周波数を含む3種類の周波数によって前記蓄電池の内部抵抗を測定する、蓄電池状態監視方法。
  11. 複数の蓄電池が直列に接続された組電池を備えた機器に対して、前記各蓄電池の状態を監視する蓄電池状態監視システムとして機能するよう、コンピュータに処理を実行させる蓄電池状態監視プログラムであって、
    前記各蓄電池における電流を検出する電流検出処理と、
    前記各蓄電池における稼働時間、温度、電圧、および少なくとも2種類以上の周波数における内部抵抗を測定する状態測定処理と、
    前記状態測定処理により測定された温度、電圧、内部抵抗、および前記各蓄電池の放電時に前記電流検出処理により検出された電流の値の変化分と前記状態測定処理により測定された電圧の値の変化分との比から得られた前記各蓄電池の直流抵抗のうち、少なくとも1つ以上の値に基づいて、前記各蓄電池における正常ではない状態を、初期故障もしくは偶発故障と、経時劣化とを区別して判定する劣化判定処理を前記コンピュータに実行させる、蓄電池状態監視プログラム。
  12. 請求項11に記載の蓄電池状態監視プログラムにおいて、
    前記劣化判定処理では、前記各蓄電池について得られた温度、電圧、内部抵抗、および直流抵抗の各パラメータのうち、少なくとも1つ以上の値が、各パラメータの平均値から所定の閾値以上乖離した状態が所定の測定回数以上継続した場合に、初期故障もしくは偶発故障であると判定し、初期故障もしくは偶発故障に該当しない場合に、前記各蓄電池について得られた内部抵抗の値に基づいて経時劣化を判定する、蓄電池状態監視プログラム。
  13. 請求項11または12に記載の蓄電池状態監視プログラムにおいて、
    前記状態測定処理では、少なくとも、200Hz未満の第1の周波数と、200Hz以上2000Hz未満の第2の周波数とをそれぞれ含む、2種類以上の周波数によって前記蓄電池の内部抵抗を測定する、蓄電池状態監視プログラム。
  14. 請求項13に記載の蓄電池状態監視プログラムにおいて、
    前記状態測定処理では、前記第1の周波数を100Hz未満とし、前記第2の周波数を350Hz以上2000Hz未満とし、さらに、100Hz以上350Hz未満の第3の周波数を含む3種類の周波数によって前記蓄電池の内部抵抗を測定する、蓄電池状態監視プログラム。
JP2014225768A 2014-11-06 2014-11-06 蓄電池状態監視システム、蓄電池状態監視方法、および蓄電池状態監視プログラム Active JP6471463B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014225768A JP6471463B2 (ja) 2014-11-06 2014-11-06 蓄電池状態監視システム、蓄電池状態監視方法、および蓄電池状態監視プログラム
US15/524,180 US10215813B2 (en) 2014-11-06 2015-11-06 Storage battery state monitoring system, storage battery state monitoring method, and storage battery state monitoring program
PCT/JP2015/081285 WO2016072487A1 (ja) 2014-11-06 2015-11-06 蓄電池状態監視システム、蓄電池状態監視方法、および蓄電池状態監視プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014225768A JP6471463B2 (ja) 2014-11-06 2014-11-06 蓄電池状態監視システム、蓄電池状態監視方法、および蓄電池状態監視プログラム

Publications (3)

Publication Number Publication Date
JP2016090416A true JP2016090416A (ja) 2016-05-23
JP2016090416A5 JP2016090416A5 (ja) 2017-07-27
JP6471463B2 JP6471463B2 (ja) 2019-02-20

Family

ID=55909210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014225768A Active JP6471463B2 (ja) 2014-11-06 2014-11-06 蓄電池状態監視システム、蓄電池状態監視方法、および蓄電池状態監視プログラム

Country Status (3)

Country Link
US (1) US10215813B2 (ja)
JP (1) JP6471463B2 (ja)
WO (1) WO2016072487A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096727A1 (ja) 2016-11-24 2018-05-31 日本電気株式会社 監視システム、サーバ、端末装置、監視方法、及び、プログラム
WO2019188888A1 (ja) * 2018-03-26 2019-10-03 古河電気工業株式会社 蓄電システム、センサモジュール、および蓄電システムの制御方法
WO2019187307A1 (ja) * 2018-03-27 2019-10-03 住友電気工業株式会社 電池監視方法、電池監視装置及び電池監視システム
JP2019213297A (ja) * 2018-05-31 2019-12-12 株式会社Gsユアサ 情報処理方法、情報処理システム、通信デバイス、及びコンピュータプログラム
JP6708318B1 (ja) * 2019-02-27 2020-06-10 株式会社Gsユアサ 蓄電池監視装置及び蓄電池監視方法
JPWO2019021099A1 (ja) * 2017-07-25 2020-08-06 株式会社半導体エネルギー研究所 蓄電システム、電子機器及び車両、並びに推定方法
WO2022044775A1 (ja) * 2020-08-26 2022-03-03 株式会社Gsユアサ 蓄電装置、寿命判断方法
WO2023080465A1 (ko) * 2021-11-02 2023-05-11 주식회사 엘지에너지솔루션 저항 퇴화도에 기초한 배터리 진단 방법 및 이를 적용한 배터리 시스템
CN116154914A (zh) * 2023-03-02 2023-05-23 深圳市南霸科技有限公司 电池充电管理方法和装置
US11959969B2 (en) 2020-05-15 2024-04-16 Lg Energy Solution, Ltd. Apparatus and method for diagnosing battery
US11965936B2 (en) 2019-09-11 2024-04-23 Lg Energy Solution, Ltd. Battery diagnosis apparatus and method

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI540427B (zh) * 2015-07-22 2016-07-01 Hon Hai Prec Ind Co Ltd 電量顯示系統與方法
JP6508094B2 (ja) * 2016-03-10 2019-05-08 トヨタ自動車株式会社 車両用電源システム
KR102046608B1 (ko) * 2016-08-12 2019-11-19 주식회사 엘지화학 배터리 팩을 위한 온도 모니터링 장치 및 방법
KR102035679B1 (ko) * 2016-11-29 2019-10-23 주식회사 엘지화학 배터리 노화상태 산출 방법 및 시스템
KR102253781B1 (ko) * 2017-04-28 2021-05-20 주식회사 엘지화학 방전 제어 장치 및 방법
EP3422531A1 (de) * 2017-06-26 2019-01-02 Siemens Aktiengesellschaft Verfahren zur steuerung eines unterbrechungsfreien stromversorgungssystems sowie zugehöriges stromversorgungssystem
US20190190091A1 (en) * 2017-12-18 2019-06-20 Samsung Electronics Co., Ltd. Method and apparatus estimating a state of battery
JP2019132765A (ja) * 2018-02-01 2019-08-08 株式会社デンソー 電池監視装置
US11467218B2 (en) * 2018-05-07 2022-10-11 Mitsubishi Electric Corporation Battery degradation detection device and battery temperature estimation device
WO2020084817A1 (ja) * 2018-10-26 2020-04-30 住友電気工業株式会社 電池監視システム及び物理量集約方法
CN111289565B (zh) * 2018-12-07 2022-05-17 中南大学 一种基于连续采集的信息无损检测导电材料质量的方法及装置
KR20200107171A (ko) * 2019-03-06 2020-09-16 주식회사 엘지화학 저전압 불량 배터리 셀 검출 장치 및 방법
EP3751299B1 (en) * 2019-06-11 2023-08-09 Volvo Car Corporation Detecting latent faults within a cell of an energy storage system
US11360531B1 (en) * 2019-06-14 2022-06-14 Amazon Technologies, Inc. Redeployment of energy storage units
JP6862010B1 (ja) * 2019-12-17 2021-04-21 東洋システム株式会社 状態出力システム
JP7225153B2 (ja) * 2020-03-13 2023-02-20 株式会社東芝 充放電制御方法、電池搭載機器、管理システム、充放電制御プログラム、管理方法、管理サーバ及び管理プログラム
CN111562511B (zh) * 2020-04-03 2023-03-14 中国电力科学研究院有限公司 一种用于确定退役动力电池的健康状态的方法及系统
US20230152384A1 (en) * 2020-04-24 2023-05-18 CMWTEC technologie GmbH Method and device for testing a battery state in at least one battery
US11460507B2 (en) * 2020-08-07 2022-10-04 Samsara Inc. Methods and systems for monitoring the health of a battery
CN112103586B (zh) * 2020-09-29 2022-07-05 江西云杉智能科技有限公司 新能源汽车电池组的监控方法
DE102021206828A1 (de) 2021-06-30 2023-01-05 Robert Bosch Gesellschaft mit beschränkter Haftung Akkupack
CN114122595B (zh) * 2021-11-02 2023-06-02 国网湖北省电力有限公司宜昌供电公司 变电站直流系统蓄电池模组安装及更换维护方法
CN114137434A (zh) * 2021-12-07 2022-03-04 中国农业银行股份有限公司天津市分行 一种不间断电源设备测试方法、设备及系统
CN115967178B (zh) * 2022-12-07 2023-09-05 贵州大学 一种储能系统运行的监测系统及方法
CN116467938A (zh) * 2023-04-07 2023-07-21 北京众谊越泰科技有限公司 一种基于人工智能的蓄电池故障及使用寿命预测的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021965A (ja) * 1996-06-28 1998-01-23 Nissan Motor Co Ltd 組電池の異常判定装置
JP2011076746A (ja) * 2009-09-29 2011-04-14 Mitsubishi Heavy Ind Ltd 二次電池異常予見システム
WO2013069328A1 (ja) * 2011-11-08 2013-05-16 新神戸電機株式会社 蓄電池状態監視システム
WO2013084353A1 (ja) * 2011-12-09 2013-06-13 日立ビークルエナジー株式会社 電池制御装置
JP2013195129A (ja) * 2012-03-16 2013-09-30 Toshiba Corp 二次電池装置および二次電池装置の異常検出方法
JP2014022282A (ja) * 2012-07-20 2014-02-03 Sharp Corp 二次電池異常検出装置、二次電池、および二次電池異常検出方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4319477B2 (ja) 2003-07-04 2009-08-26 株式会社Nttファシリティーズ 蓄電池監視システム
US7227335B2 (en) 2003-07-22 2007-06-05 Makita Corporation Method and apparatus for diagnosing the condition of a rechargeable battery
JP5088081B2 (ja) * 2007-10-12 2012-12-05 富士通株式会社 電池の測定方法及び電池の製造方法
JP5378099B2 (ja) * 2009-08-07 2013-12-25 三洋電機株式会社 容量維持率判定装置、バッテリシステムおよびそれを備える電動車両
EP2806482B1 (en) * 2009-09-28 2017-06-28 Hitachi, Ltd. Battery system
JP2013085386A (ja) 2011-10-11 2013-05-09 Panasonic Corp 蓄電池制御装置、蓄電池制御方法、電力貯蔵システム及び電気自動車の駆動システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021965A (ja) * 1996-06-28 1998-01-23 Nissan Motor Co Ltd 組電池の異常判定装置
JP2011076746A (ja) * 2009-09-29 2011-04-14 Mitsubishi Heavy Ind Ltd 二次電池異常予見システム
WO2013069328A1 (ja) * 2011-11-08 2013-05-16 新神戸電機株式会社 蓄電池状態監視システム
WO2013084353A1 (ja) * 2011-12-09 2013-06-13 日立ビークルエナジー株式会社 電池制御装置
JP2013195129A (ja) * 2012-03-16 2013-09-30 Toshiba Corp 二次電池装置および二次電池装置の異常検出方法
JP2014022282A (ja) * 2012-07-20 2014-02-03 Sharp Corp 二次電池異常検出装置、二次電池、および二次電池異常検出方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11777324B2 (en) 2016-11-24 2023-10-03 Nec Corporation Monitoring system, server, terminal device, monitoring method, and program
WO2018096727A1 (ja) 2016-11-24 2018-05-31 日本電気株式会社 監視システム、サーバ、端末装置、監視方法、及び、プログラム
JPWO2019021099A1 (ja) * 2017-07-25 2020-08-06 株式会社半導体エネルギー研究所 蓄電システム、電子機器及び車両、並びに推定方法
JPWO2019188888A1 (ja) * 2018-03-26 2021-04-01 古河電気工業株式会社 蓄電システム、センサモジュール、および蓄電システムの制御方法
WO2019188888A1 (ja) * 2018-03-26 2019-10-03 古河電気工業株式会社 蓄電システム、センサモジュール、および蓄電システムの制御方法
JP7189937B2 (ja) 2018-03-26 2022-12-14 古河電気工業株式会社 蓄電システム、センサモジュール、および蓄電システムの制御方法
JP7173127B2 (ja) 2018-03-27 2022-11-16 住友電気工業株式会社 電池監視方法、電池監視装置及び電池監視システム
JPWO2019187307A1 (ja) * 2018-03-27 2021-04-08 住友電気工業株式会社 電池監視方法、電池監視装置及び電池監視システム
WO2019187307A1 (ja) * 2018-03-27 2019-10-03 住友電気工業株式会社 電池監視方法、電池監視装置及び電池監視システム
JP2019213297A (ja) * 2018-05-31 2019-12-12 株式会社Gsユアサ 情報処理方法、情報処理システム、通信デバイス、及びコンピュータプログラム
JP7225570B2 (ja) 2018-05-31 2023-02-21 株式会社Gsユアサ 情報処理方法、情報処理システム、通信デバイス、及びコンピュータプログラム
JP6708318B1 (ja) * 2019-02-27 2020-06-10 株式会社Gsユアサ 蓄電池監視装置及び蓄電池監視方法
US11965936B2 (en) 2019-09-11 2024-04-23 Lg Energy Solution, Ltd. Battery diagnosis apparatus and method
US11959969B2 (en) 2020-05-15 2024-04-16 Lg Energy Solution, Ltd. Apparatus and method for diagnosing battery
WO2022044775A1 (ja) * 2020-08-26 2022-03-03 株式会社Gsユアサ 蓄電装置、寿命判断方法
WO2023080465A1 (ko) * 2021-11-02 2023-05-11 주식회사 엘지에너지솔루션 저항 퇴화도에 기초한 배터리 진단 방법 및 이를 적용한 배터리 시스템
CN116154914B (zh) * 2023-03-02 2023-11-07 深圳市南霸科技有限公司 电池充电管理方法和装置
CN116154914A (zh) * 2023-03-02 2023-05-23 深圳市南霸科技有限公司 电池充电管理方法和装置

Also Published As

Publication number Publication date
US20170350946A1 (en) 2017-12-07
JP6471463B2 (ja) 2019-02-20
US10215813B2 (en) 2019-02-26
WO2016072487A1 (ja) 2016-05-12

Similar Documents

Publication Publication Date Title
JP6471463B2 (ja) 蓄電池状態監視システム、蓄電池状態監視方法、および蓄電池状態監視プログラム
JP5403191B2 (ja) 蓄電池状態監視システム
JP4615439B2 (ja) 二次電池管理装置、二次電池管理方法及びプログラム
EP2939320B1 (en) System and method for monitoring a battery in an uninterruptible power supply
US20160356856A1 (en) Method for ascertaining storage battery state, state-ascertaining system, and computer program
JP2008076295A (ja) 電池寿命予測システム、電池寿命予測方法、通信端末装置、電池寿命予測装置、データ送信プログラム、電池寿命予測プログラム、および、プログラムを格納したコンピュータ読取可能記録媒体
JPWO2014076839A1 (ja) 蓄電池電圧平準化装置および蓄電池状態監視システム
JP2012168734A (ja) エネルギ消費監視システム、方法、及びコンピュータプログラム
JP2019060773A (ja) 蓄電池状態監視システム及び蓄電池状態監視方法
JP2013134550A (ja) It機器と蓄電池の連係制御システムおよび連係制御方法
CN112563592B (zh) 蓄电池管理方法、装置、设备和存储介质
WO2014018220A1 (en) Open circuit voltage checking for a battery system
TWI492482B (zh) 用於準確量測電池容量的主僕式電池管理系統
JP2008268143A (ja) 蓄電池システム
JP2002343444A (ja) 鉛蓄電池の状態監視システム
JP2010067000A (ja) 劣化及び故障電池交換サービスシステム
JP2007271583A (ja) 蓄電池管理装置
JP2007114110A (ja) バッテリ残量予測システムおよびバッテリ残量予測プログラム
JP2006311648A (ja) 遠隔監視システム、遠隔監視方法、情報処理装置および方法、並びにプログラム
JP2013078172A (ja) ディジタル保護制御装置
JP6384824B2 (ja) 蓄電池劣化判定システム
JP5862815B1 (ja) バッテリ寿命検出装置、蓄電装置、バッテリ寿命検出方法及びプログラム
US11791503B2 (en) Method of characterizing and monitoring energy usage of battery powered wirelessly linked devices
KR20220089850A (ko) 에너지 자립형 스마트센서를 위한 배터리 상태 추정 시스템 및 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190107

R151 Written notification of patent or utility model registration

Ref document number: 6471463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250