JP2016073015A - 電力供給装置及び画像形成装置 - Google Patents

電力供給装置及び画像形成装置 Download PDF

Info

Publication number
JP2016073015A
JP2016073015A JP2014197108A JP2014197108A JP2016073015A JP 2016073015 A JP2016073015 A JP 2016073015A JP 2014197108 A JP2014197108 A JP 2014197108A JP 2014197108 A JP2014197108 A JP 2014197108A JP 2016073015 A JP2016073015 A JP 2016073015A
Authority
JP
Japan
Prior art keywords
relay
sequence
power supply
supply device
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014197108A
Other languages
English (en)
Other versions
JP2016073015A5 (ja
Inventor
祐也 西田
Yuya Nishida
祐也 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014197108A priority Critical patent/JP2016073015A/ja
Priority to US14/863,776 priority patent/US9519253B2/en
Publication of JP2016073015A publication Critical patent/JP2016073015A/ja
Publication of JP2016073015A5 publication Critical patent/JP2016073015A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5004Power supply control, e.g. power-saving mode, automatic power turn-off
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/257Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M5/2573Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Fixing For Electrophotography (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)

Abstract

【課題】1つのリレーの接点にアークが発生する頻度を低減させて、リレーの寿命を延ばす電力供給装置及び画像形成装置を提供する。
【解決手段】リレーRL1と、リレーRL2と、リレーRL1及びリレーRL2を非導通状態から導通状態に制御する起動シーケンスと、リレーRL1及びリレーRL2を導通状態から非導通状態に制御する停止シーケンスを実行する制御部と、制御部により実行された起動シーケンス及び停止シーケンスに関する情報を記憶する不揮発性メモリと、を備える。制御部は、電力供給装置が起動又は停止される際に、不揮発性メモリに記憶された情報に基づいて、起動シーケンス又は停止シーケンスを切り替えるS4003、S4004、S4104。
【選択図】図4

Description

本発明は、電力供給装置及び画像形成装置に関し、特に、電子写真複写機、電子写真プリンタ等の画像形成装置に搭載される定着装置の制御に利用することで好適な、電力供給装置に関する。
画像形成装置に用いる定着装置内部の加熱装置に電力を供給する電力供給装置において、加熱装置への電力の供給を遮断する電磁継電器(以下、リレーという)が広く用いられている。このような電力供給装置では、例えば特許文献1のように、交流電源のライブとニュートラルの双方の電源ラインにリレーを設ける安全回路が広く知られている。
特開2012−042573号公報
しかし、交流電源の電源ラインにリレーを設ける安全回路では、リレーが導通するたびに負荷への突入電流が流れ、リレーの接点にアークが発生する。従来の制御では、1つのリレーについてアークが発生する頻度が多くなってしまうため、リレー及び電源供給装置の長寿命化に対する対応が必要となっている。
本発明は、このような状況のもとでなされたもので、リレーの接点にアークが発生する頻度を低減させて、リレーの寿命を延ばすことを目的とする。
上述した課題を解決するために、本発明は、以下の構成を備える。
(1)負荷に電力を供給する電力供給装置であって、交流電源のライブラインに接続された少なくとも一つの第一のリレーと、前記交流電源のニュートラルラインに接続された少なくとも一つの第二のリレーと、前記第一のリレー及び前記第二のリレーを非導通状態から導通状態に制御する起動シーケンスと、前記第一のリレー及び前記第二のリレーを導通状態から非導通状態に制御する停止シーケンスを実行する制御手段と、前記制御手段により実行された前記起動シーケンス及び前記停止シーケンスに関する情報を記憶する記憶手段と、を備え、前記制御手段は、前記電力供給装置が起動又は停止される際に、前記記憶手段に記憶された前記情報に基づいて、前記起動シーケンス又は前記停止シーケンスを切り替えることを特徴とする電力供給装置。
(2)負荷に電力を供給する電力供給装置であって、交流電源のライブラインに接続された少なくとも一つの第一のリレーと、前記交流電源のニュートラルラインに接続された少なくとも一つの第二のリレーと、前記第一のリレー及び前記第二のリレーを非導通状態から導通状態に制御する起動シーケンスを実行する制御手段と、前記制御手段により実行された前記起動シーケンスに関する情報を記憶する記憶手段と、を備え、前記制御手段は、前記電力供給装置が起動される際に、前記記憶手段に記憶された前記情報に基づいて、前記起動シーケンスを切り替えることを特徴とする電力供給装置。
(3)負荷に電力を供給する電力供給装置であって、交流電源のライブラインに接続された少なくとも一つの第一のリレーと、前記交流電源のニュートラルラインに接続された少なくとも一つの第二のリレーと、前記第一のリレー及び前記第二のリレーを導通状態から非導通状態に制御する停止シーケンスを実行する制御手段と、前記制御手段により実行された前記停止シーケンスに関する情報を記憶する記憶手段と、を備え、前記制御手段は、前記電力供給装置が停止される際に、前記記憶手段に記憶された前記情報に基づいて、前記停止シーケンスを切り替えることを特徴とする電力供給装置。
(4)記録紙に画像を形成する画像形成手段と、前記画像形成手段により記録紙上に形成された画像を定着する定着手段と、前記定着手段に電力を供給する前記(1)乃至(3)のいずれか1項に記載の電力供給装置と、を備えることを特徴とする画像形成装置。
(5)記録紙に画像を形成する画像形成手段と、前記画像形成手段により記録紙上に形成された画像を定着する定着手段と、前記定着手段に電力を供給する前記(1)に記載の電力供給装置と、を備え、前記制御手段は、前記画像形成手段により画像形成を行うプリント状態への移行を待機しているスタンバイ状態よりも消費電力が低いスリープ状態から前記スタンバイ状態へ移行する際に前記起動シーケンスを実行し、前記スタンバイ状態から前記スリープ状態へ移行する際に前記停止シーケンスを実行することを特徴とする画像形成装置。
(6)記録紙に画像を形成する画像形成手段と、前記画像形成手段により記録紙上に形成された画像を定着する定着手段と、前記定着手段に電力を供給する前記(2)に記載の電力供給装置と、を備え、前記制御手段は、前記画像形成手段により画像形成を行うプリント状態への移行を待機しているスタンバイ状態よりも消費電力が低いスリープ状態から前記スタンバイ状態へ移行する際に前記起動シーケンスを実行することを特徴とする画像形成装置。
(7)記録紙に画像を形成する画像形成手段と、前記画像形成手段により記録紙上に形成された画像を定着する定着手段と、前記定着手段に電力を供給する前記(3)に記載の電力供給装置と、を備え、前記制御手段は、前記画像形成手段により画像形成を行うプリント状態への移行を待機しているスタンバイ状態から前記スタンバイ状態よりも消費電力が低いスリープ状態へ移行する際に前記停止シーケンスを実行することを特徴とする画像形成装置。
本発明によれば、1つのリレーの接点にアークが発生する頻度を低減させて、リレーの寿命を延ばすことができる。
実施例1、2の画像形成装置の概略図 実施例1の電力供給装置の回路図 実施例1の電力供給装置のリレー制御シーケンスの説明図 実施例1の電力供給装置のリレー制御を示すフローチャート 実施例2の電力供給装置の回路図 実施例2の電力供給装置のリレー制御シーケンスの説明図 実施例2の電力供給装置のリレー制御を示すフローチャート
[画像形成装置]
図1は、電子写真方式を用いた画像形成装置10の断面図である。給紙カセット11に積載された記録材である記録紙Pは、ピックアップローラ12によって1枚だけ給紙カセット11から給紙される。給紙された記録紙Pは、給紙ローラ13によってレジストレーションローラ(以下、単にレジストローラという)14に向けて搬送される。記録紙Pは、レジストローラ14によって所定のタイミングでプロセスカートリッジ15へ搬送される。プロセスカートリッジ15は、帯電手段である帯電ローラ16、現像手段である現像ローラ17、クリーニング手段であるクリーナ18、及び電子写真感光体である感光ドラム19を有し、一体的に構成されている。プロセスカートリッジ15は、公知である電子写真プロセスの一連の処理によって記録紙上に未定着のトナー像を形成する。
感光ドラム19は帯電ローラ16によって表面を一様に帯電された後、像露光手段であるスキャナユニット21により画像信号に基づいた像露光が行われる。スキャナユニット21内のレーザダイオード22から出射されるレーザ光は、回転する回転多面鏡23及び反射ミラー24を経て主走査方向に走査される。尚、主走査方向とは、回転多面鏡23の回転によってレーザ光が感光ドラム19上を走査する方向であり、感光ドラム19の回転軸方向でもある。また、レーザ光は、感光ドラム19の回転により副走査方向に走査され、感光ドラム19の表面上に二次元の静電潜像が形成される。尚、副走査方向とは、主走査方向に直交する方向であり、感光ドラム19の回転方向でもある。
感光ドラム19上に形成された静電潜像は、現像ローラ17によってトナー像として可視化される。感光ドラム19上のトナー像は、転写ローラ20によってレジストローラ14から搬送されてきた記録紙P上に転写される。続いて、トナー像が転写された記録紙Pは、定着装置100に搬送されると定着装置100内部の加熱部及び加圧部によって加熱加圧処理され、記録紙P上の未定着のトナー像が記録紙Pに定着される。記録紙Pは更に中間排紙ローラ26、排紙ローラ27によって画像形成装置10の外に排出され、一連のプリント動作を終える。モータ30は、定着装置100を含む各ユニットに駆動力を与えている。
[定着装置]
定着装置100は、後述する交流電源201から供給される電力の位相制御における基準(以下、ゼロクロスという)に基づき、位相制御、波数制御、又は位相制御波形を含む複数周期で制御する制御方法によって、電力制御が行われている。画像形成装置10は、電力供給装置200を備えている。商用電源等である交流電源201は、電力供給装置200と接続されている。
[電力供給装置]
図2は実施例1の電力供給装置200を示す回路図である。電力供給装置200は、定着装置100内部の加熱装置として用いられる抵抗発熱体(以下、ヒータという)RH1を含む画像形成装置10の不図示の電装部に電力の供給を行っている。本実施例では、ヒータRH1が負荷装置に相当する。交流電源201は、伝送ラインであるライブ(LIVE)ラインとニュートラル(NEUTRAL)ライン間に交流電圧を出力し、電力供給装置200に交流電圧を供給している。電力供給装置200の電源部205は、交流電源201から供給されている交流電圧をブリッジダイオードBD1で全波整流し、コンデンサC3で平滑している。コンデンサC3で平滑された低い側の電位をDCL、高い側の電位をDCHとする。コンバータ300は絶縁型DC/DCコンバータであり、一次側のコンデンサC3に充電された電圧から、二次側に所定の直流電圧V1を出力している。コンバータ300は、一次側と二次側を絶縁する不図示のトランスを有し、トランスは一次巻線、二次巻線及び補助巻線を有している。コンバータ300は、不図示の補助巻線から供給される補助巻線電圧V2を一次側に出力している。
(リレー)
交流電源201のライブライン及びニュートラルラインの双方には、リレーがそれぞれ接続されている。詳細には、交流電源201のライブラインには第一のリレーであるリレーRL1が接続され、交流電源201のニュートラルラインには第二のリレーであるリレーRL2が接続されている。電力供給装置200は、リレーRL1及びリレーRL2のリレー制御手段として、リレーRL1及びリレーRL2の駆動回路であるトランジスタQ1及びトランジスタQ2を備えている。トランジスタQ1は、ベース端子に後述する制御部1が接続され、コレクタ端子にリレーRL1が接続され、エミッタ端子が接地されている。トランジスタQ2は、ベース端子に後述する制御部1が接続され、コレクタ端子にリレーRL2が接続され、エミッタ端子が接地されている。
また、電力供給装置200は、駆動回路の制御を行う演算制御手段である制御部1を備えている。制御部1は、CPU1a、ROM1b、RAM1c、不揮発性メモリ1dを有している。CPU1aは、ROM1bに記憶された各種プログラムに従って、RAM1cを作業領域として使用しながら、電力供給装置200の各部を制御する。また、CPU1aは、電源が切断された後も情報を保持できる記憶手段である不揮発性メモリ1dに種々の情報を記憶できる構成となっている。
制御部1がハイレベルのQ1駆動信号を出力すると、トランジスタQ1のベース端子に電流が流れ、トランジスタQ1が導通状態となる。トランジスタQ1が導通状態となるとコンバータ300から供給される二次側電源の電圧である直流電圧V1がリレーRL1の二次側コイルに印加され電流が流れる。リレーRL1の二次側コイルに電流が流れると、リレーRL1の一次側接点が導通状態となる。また、制御部1がローレベルのQ1駆動信号を出力すると、トランジスタQ1のベース端子に電流が流れなくなり、トランジスタQ1が非導通状態となる。トランジスタQ1が非導通状態となると直流電圧V1がリレーRL1の二次側コイルに印加されず電流が流れなくなる。リレーRL1の二次側コイルに電流が流れなくなると、リレーRL1の一次側接点が非導通状態となる。リレーRL2についても同様に、制御部1が出力するQ2駆動信号によりトランジスタQ2を制御することで、リレーRL2が制御される。
制御部1は、後述するリレーRL1及びリレーRL2の制御シーケンスについて、どの制御シーケンスを実行したかの履歴を不揮発性メモリ1dに記憶する。また、制御部1は、どの制御シーケンスを選択するかを決定する選択手段としても機能する。更に、制御部1は、後述する双方向サイリスタQ3を制御する電力制御手段としても機能し、図1の画像形成装置10の制御も行う。制御部1によるリレー制御の詳細は、後述する。
交流電源201の伝送ライン間に、リレーRL1及びリレーRL2を介してアクロス・ザ・ラインコンデンサ(以下、Xコンデンサという)C1が接続されている。このようにXコンデンサC1を接続することで、画像形成装置10への電力供給が停止された状態(以下、電源非導通時という)で、リレーRL1及びリレーRL2を非導通状態にしてXコンデンサC1への経路を遮断することができる。また、画像形成装置10による画像形成動作(プリント動作)等を行わないため、スリープ状態でも、リレーRL1及びリレーRL2を非導通状態にしてXコンデンサC1への経路を遮断することができる。ここで、スリープ状態とは、プリント状態やスリープ状態に比較して消費電力が低い低消費電力状態である。このようにXコンデンサC1への経路を遮断することにより、XコンデンサC1の消費電力を削減することができる。
(電流検知回路)
リレーRL1及びリレーRL2との伝送ライン間に流れる電流を検知する状態検知手段であるカレントトランスCT1及び電流検知回路203は、交流電源201からヒータRH1に流れる電流を検知する電流検知手段である。カレントトランスCT1と電流検知回路203の動作について説明する。カレントトランスCT1は一次側の巻線に流れる電流に応じた電流が二次側の巻線に発生する。電流検知回路203は、カレントトランスCT1の二次側の巻線に発生した電流を検知することにより電流検知を行い、制御部1へ検知した電流値を出力する。後述するように、本実施例では、カレントトランスCT1及び電流検知回路203は、リレーRL1及びリレーRL2の故障検知手段としても機能する。
(ゼロクロス検知回路)
ゼロクロス検知回路204は交流電源201のゼロクロス検知手段である。ゼロクロス検知回路204の動作について説明する。交流電源201から供給されるニュートラルラインの電位がライブラインの電位より低い場合、抵抗R10を介してゼロクロス検知回路204にライブラインからニュートラルライン方向に電流が流れる。抵抗R10から供給された電流が、ダイオードD1を介してフォトカプラPC1の一次側ダイオードに流れる。フォトカプラPC1の一次側ダイオードに流れた電流は抵抗R9を介してニュートラルラインに流れる。
フォトカプラPC1の一次側ダイオードに電流が流れると、フォトカプラPC1の二次側トランジスタは導通状態となる。抵抗R12はフォトカプラPC1の誤動作防止抵抗である。フォトカプラPC1の二次側トランジスタが導通状態となると、ゼロクロス信号(図中、Zerox信号と記す)の電圧はローレベルとなる。ここで、ゼロクロス信号の電圧は、抵抗R8とフォトカプラPC1の二次側トランジスタのコレクタ端子との接続点における電位であり、ゼロクロス信号は制御部1に出力される。制御部1は入力されているゼロクロス信号がハイレベルからローレベルに変化する立ち下りエッジを検知する。
ニュートラルラインの電位がライブラインの電位より高い場合、抵抗R9、抵抗R11、抵抗R10を介してニュートラルラインからライブラインの方向に電流が流れる。このため、フォトカプラPC1の一次側ダイオードには電流が流れない状態となる。フォトカプラPC1の一次側ダイオードに電流が流れない状態となると、フォトカプラPC1の二次側トランジスタは非導通状態となる。フォトカプラPC1の二次側トランジスタが非導通状態となると、ゼロクロス信号は抵抗R8を介して直流電圧V1にプルアップされているため、ハイレベルとなる。制御部1は、ゼロクロス信号がローレベルからハイレベルに変化する立ち上がりエッジを検知する。
(ヒータへの電力供給)
双方向サイリスタ(以下、トライアックという)Q3は、ヒータRH1への電力供給手段である。トライアックQ3の駆動方法について説明する。抵抗R3、R4はトライアックQ3を駆動するための抵抗で、フォトトライアックカプラSSR1は一次・二次間の沿面距離を確保するための素子である。トランジスタQ4は、ベース端子に制御部1が接続され、コレクタ端子にフォトトライアックカプラSSR1の二次側ダイオードのカソード端子が接続され、エミッタ端子は接地されている。
制御部1がQ4駆動信号をハイレベルにすることで、抵抗R5を介してトランジスタQ4のベース端子に電流が流れ、トランジスタQ4が導通状態となる。トランジスタQ4が導通状態となると直流電圧V1から抵抗R2を介してフォトトライアックカプラSSR1の二次側ダイオードに電流が流れ、フォトトライアックカプラSSR1の一次側トライアックが導通状態となる。抵抗R6はトランジスタQ4のベース−エミッタ間の抵抗である。フォトトライアックカプラSSR1の一次側トライアックが導通状態になると、トライアックQ3が導通状態となり、電力供給装置200からヒータRH1へ電力が供給される。
また、制御部1がQ4駆動信号をローレベルにすることで、トランジスタQ4のベース端子に電流が流れなくなり、トランジスタQ4が非導通状態となる。トランジスタQ4が非導通状態となるとフォトトライアックカプラSSR1の二次側ダイオードに電流が流れず、フォトトライアックカプラSSR1の一次側トライアックが非導通状態となる。フォトトライアックカプラSSR1の一次側トライアックが非導通状態となると、トライアックQ3が非導通状態となり、電力供給装置200からヒータRH1への電力供給が遮断される。コイルL1はヒータRH1への伝送経路のノーマルノイズを抑制するための素子である。
(スリープ状態)
次に、プリント動作等を行わない低消費電力状態であるスリープ状態について説明する。画像形成装置10がスリープ状態となっているとき、リレーRL1及びリレーRL2は非導通状態である。リレーRL1及びリレーRL2が非導通状態であるため、ゼロクロス検知回路204の一次側やXコンデンサC1に流れる電流は遮断され、電力供給装置200の消費電力を抑えることができる。スリープ状態では、フォトカプラPC1の二次側トランジスタが常に非導通状態となるため、ゼロクロス信号は常にハイレベルとなる。
(スタンバイ状態)
プリント動作等をすぐに行うことができるスタンバイ状態の回路動作について説明する。制御部1は、ユーザからのプリント要求があると、リレーRL1及びリレーRL2を導通状態とする。このスタンバイ状態では、ゼロクロス検知回路204やXコンデンサC1に電力が供給されるため、電力供給装置200の消費電力は大きくなる。
(プリント状態)
プリント動作を行うプリント状態の回路動作について説明する。制御部1は、ユーザからのプリント要求に応じて、プリント状態への移行を待機しているスタンバイ状態からプリント状態に移行する。なお、リレーRL1及びリレーRL2は導通状態である。このため、フォトカプラPC1は供給される交流電圧に応じて導通/非導通を繰り返しており、ゼロクロス検知回路204から出力されるゼロクロス信号は、ハイレベル/ローレベルを繰り返している。プリント状態において制御部1がトライアックQ3を制御することで、ヒータRH1へ供給する電力の制御を行い、プリント動作が行われる。
ここで、制御部1によるトライアックQ3の制御について説明する。制御部1は、ヒータRH1の温度、ヒータRH1に流れる電流量、交流電源201のゼロクロスに基づき、トライアックQ3を用いて、ヒータRH1に供給する電力を制御している。ここで、ヒータRH1の温度は、サーミスタTH1によって検知される。ヒータRH1に流れる電流量は、電流検知回路203によって検知される。交流電源201のゼロクロスは、ゼロクロス検知回路204によって検知される。
サーミスタTH1によって検知されるヒータRH1の温度は、サーミスタTH1と抵抗R7との分圧がTH信号として制御部1に入力されている。制御部1の内部処理では、サーミスタTH1の検知温度とヒータRH1の設定温度及びヒータRH1に流れる電流量に基づき、例えばPI制御により、ヒータRH1に供給されるべき電力デューティが算出される。更に、制御部1は、供給されるべき電力デューティを位相角(位相制御)、波数(波数制御)等の制御レベルに換算し、換算した制御条件によりトライアックQ3を制御している。
[リレーの制御シーケンス]
本実施例の制御部1によるリレーRL1及びリレーRL2の制御シーケンスを選択する処理(以下、選択処理という)について説明する。制御部1は、起動シーケンスと停止シーケンスの両方を合わせたリレー制御シーケンスを実行することが可能である。ここで、起動シーケンスは、スリープ状態からスタンバイ状態に移行する際に、リレーの制御を行うシーケンスである。また、停止シーケンスは、スタンバイ状態からスリープ状態に移行する際に、リレーの制御を行うシーケンスである。本実施例のリレー制御シーケンスには、第一リレー制御シーケンスと第二リレー制御シーケンスの2つのシーケンスがあり、制御部1は2つのリレー制御シーケンスを実行することが可能である。
第一リレー制御シーケンスは、第一起動シーケンス及び第一停止シーケンスにより構成されている。第一起動シーケンスは、リレーRL1の故障検知を行うとともに、リレーRL2を導通状態にした後にリレーRL1を導通状態にする。第一停止シーケンスは、リレーRL1の故障検知を行うとともに、リレーRL1を非導通状態にした後にリレーRL2を非導通状態にする。
第二リレー制御シーケンスは、第二起動シーケンス及び第二停止シーケンスにより構成されている。第二起動シーケンスは、リレーRL2の故障検知を行うとともに、リレーRL1を導通状態にした後にリレーRL2を導通状態にする。第二停止シーケンスは、リレーRL2の故障検知を行うとともに、リレーRL2を非導通状態にした後にリレーRL1を非導通状態にする。ただし、第一リレー制御シーケンスが第一起動シーケンスと第二停止シーケンスを行い、第二リレー制御シーケンスが第二起動シーケンスと第一停止シーケンスを行う構成としてもよい。ただし、本実施例の組み合わせで行うことにより、リレーの接点にアークが発生した後に、そのリレーの故障を検知できるため、より安全性が高まる。
尚、非導通状態のままで導通状態にならないリレーのオープン故障については通常の動作で故障を検知することができ、導通状態のままで非導通状態にならないショート故障は故障検知動作を行わなければ故障を検知することができない。また、画像形成装置の安全性にも関わるため、本実施例では、リレーのショート故障を検知する方法について説明し、以下、故障とはリレーのショート故障を意味することとする。
制御部1は、実行したリレー制御シーケンスを記憶する不揮発性メモリ1dを有している。制御部1は、不揮発性メモリ1dに記憶された情報に基づいて、直近に実行したリレー制御シーケンスが第二リレー制御シーケンスの場合は第一リレー制御シーケンスを選択する。一方、直近に実行したリレー制御シーケンスが第一リレー制御シーケンスの場合は第二リレー制御シーケンスを選択する。
(第一リレー制御シーケンス)
図3は本実施例のリレー制御シーケンスの説明図である。図3(A)に第一リレー制御シーケンスを、図3(B)に第二リレー制御シーケンスを示す。また、図3(A)、図3(B)ともに、(a)にはそれぞれの起動シーケンスを、(b)にはそれぞれの停止シーケンスを示す。図3には、図2で説明した回路図で、リレー制御シーケンスにかかわる主要な構成のみを図示している。
(第一起動シーケンス)
第一リレー制御シーケンスの第一起動シーケンスについて説明する。図3(A)(a)の3−1−0はスリープ状態であり、リレーRL1、リレーRL2及びトライアックQ3は非導通状態である。制御部1は、スタンバイ状態への移行要求があると第一起動シーケンスを行う。制御部1がQ2駆動信号をハイレベルとすることで、リレーRL2を導通状態にし、図3(A)(a)の3−1−1のリレーRL1の故障検知を行うための状態にする。制御部1がQ4駆動信号をハイレベルとすることで、トライアックQ3を導通状態にし、図3(A)(a)の3−1−2の状態となる。
3−1−2の状態で、ヒータRH1への伝送ラインに流れる電流量を電流検知回路203で検知することによってリレーRL1の故障の有無を検知する。具体的には、リレーRL1が故障している場合は、図3(A)(a)の3−1−2の破線矢印で示す電流経路が形成されるため、カレントトランスCT1に電流が流れる。制御部1は、3−1−2の状態で電流検知回路203により電流が流れていることを検知した場合は、リレーRL1が故障している(故障有り)と判断する。その後、制御部1がQ4駆動信号をローレベルとすることで、トライアックQ3を非導通状態にしたのち、Q2駆動信号をローレベルとすることで、リレーRL2を非導通状態にして図3(A)(b)の3−1−8の状態となる。
また、図3(A)(a)の3−1−2の状態で、電流検知回路203により電流が流れていないことを検知した場合は、制御部1はリレーRL1が故障していない(故障無し)と判断する。制御部1は、Q4駆動信号をローレベルとすることで、トライアックQ3を非導通状態にしたのち、Q1駆動信号をハイレベルとすることでリレーRL1を導通状態にして、図3(A)(a)の3−1−3のスタンバイ状態になる。このときXコンデンサC1への突入電流が流れ、リレーRL1の接点にアークが発生し、リレーRL1の接点にストレスが加わる。これ以降、制御部1は、ユーザからのプリント要求を受信すると、スタンバイ状態からプリント状態に移行して、プリント動作を行う。
(第一停止シーケンス)
第一リレー制御シーケンスの第一停止シーケンスについて説明する。図3(A)(b)の3−1−4はスタンバイ状態であり、制御部1は、スリープ状態への移行要求があると第一停止シーケンスを行う。制御部1がQ1駆動信号をローレベルとすることでリレーRL1を非導通状態にし、図3(A)(b)の3−1−5のリレーRL1の故障検知を行うための状態にする。このとき、リレーRL1の接点にはアークが発生する。次に制御部1がQ4駆動信号をハイレベルとすることでトライアックQ3を導通状態にし、図3(A)(b)の3−1−6の状態となる。この状態で再びリレーRL1の故障検知を行う。
電流検知回路203で検知した電流量に基づきリレーRL1が故障していると判断すると、制御部1が全ての駆動信号をローレベルとする。なお、リレーRL1が故障している場合には、破線に示す経路で電流が流れることとなる。制御部1が全てのトランジスタの駆動信号をローレベルとすることで、トライアックQ3とリレーRL1及びリレーRL2を非導通状態にし、図3(A)(b)の3−1−8の状態となる。また、リレーRL1が故障していないと判断すると、制御部1がQ4駆動信号をローレベルとすることで、トライアックQ3を非導通状態にし、図3(A)(b)の3−1−7の状態になる。その後、制御部1はリレーRL2を非導通状態にして、図3(A)(b)の3−1−8の状態となる。
(第二リレー制御シーケンス)
同様にして第二リレー制御シーケンスについて説明する。第二リレー制御シーケンスでは、図3(B)(a)の3−2−0のスリープ状態において、スタンバイ状態への移行要求があると、制御部1は図3(B)(a)の3−2−1乃至3−2−3の第二起動シーケンスを行う。なお、図3(B)(a)の3−2−3で、リレーRL2の接点にはアークが発生する。また、図3(B)(b)の3−2−4のスタンバイ状態において、スリープ状態への移行要求があると、制御部1は図3(B)(b)の3−2−5乃至3−2−8の第二停止シーケンスを行う。なお、図3(B)(b)の3−2−5で、リレーRL2の接点にはアークが発生する。
また第一リレー制御シーケンスでは、リレーRL1の故障検知を行ったのに対し、第二リレー制御シーケンスでは、リレーRL2の故障検知を行う。リレーRL2の故障検知方法とリレーRL2が故障していると判断した場合の処理は、第一リレー制御シーケンスと同様のため説明を省略する。なお、リレーRL2が故障している場合には、図3(B)(a)の3−2−2や図3(B)(b)の3−2−6に破線矢印で示すような経路で電流が流れる。更に、図3(B)(a)の3−2−3に示すように、第二リレー制御シーケンスでは、XコンデンサC1への突入電流でリレーRL2の接点にアークが発生し、リレーRL2の接点にストレスが加わる。このように、リレーの故障検知を行う際には、制御部1は、故障検知を行う方のリレーを非導通状態としておき、故障検知を行わない方のリレーを導通状態としておく。また、起動シーケンスでは、全てのリレーの中で最後に導通状態としたリレー(故障検知を行った方のリレー)の接点にはアークが発生する。更に、停止シーケンスでは、全てのリレーの中で最初に非導通状態としたリレー(故障検知を行った方のリレー)の接点にはアークが発生する。
[リレー制御処理]
図4は制御部1による本実施例のリレー制御シーケンスのフローチャートである。不図示の電源スイッチ等が押下されて電源がオンし初期動作が実行された後、制御部1はステップ(以下、Sとする)4001以下の処理を開始する。S4001で制御部1は、画像形成装置10をスリープ状態とする。S4002で制御部1は、ユーザからプリント要求等を受信したことによるスタンバイ状態への移行の要求(以下、スタンバイ移行要求という)があるか否かを判断する。S4002で制御部1は、スタンバイ移行要求がないと判断した場合には、S4001の処理に戻る。即ち、この間、画像形成装置10のスリープ状態が継続される。S4002で制御部1は、スタンバイ移行要求があったと判断した場合、S4003の処理に進む。
S4003で制御部1は、不揮発性メモリ1dに記憶されている情報に基づいて、直近(例えば、前回)実行したリレー制御シーケンスが第一リレー制御シーケンスであったか否かを判断する。S4003で制御部1は、前回実行したリレー制御シーケンスが第一リレー制御シーケンスであったと判断した場合は、S4104の処理に進む。一方、S4003で制御部1は、前回実行したリレー制御シーケンスが第一リレー制御シーケンスではなかった、即ち前回実行したリレー制御シーケンスが第二リレー制御シーケンスであったと判断した場合は、S4004の処理に進む。
S4004で制御部1は、第一リレー制御シーケンスを実行する。このように、本実施例では、前回実行したリレー制御シーケンスが、リレーRL2の故障検知を行う第二リレー制御シーケンスであった場合には、リレー制御シーケンスをリレーRL1の故障検知を行う第一リレー制御シーケンスに切り替える。制御部1は、第一リレー制御シーケンスの第一起動シーケンスを実行し、リレーRL1が故障しているか否かを判断する。S4004で制御部1は、リレーRL1が故障していると判断した場合は、S4013の処理に進む。S4013で制御部1は、不図示の表示用ディスプレイや不図示の接続されている外部機器(例えば、パーソナルコンピュータ(PC))のディスプレイ上に、リレーRL1が故障している旨(故障状態)を報知し、S4010の処理に進む。一方、S4004で制御部1は、リレーRL1は故障していないと判断した場合は、S4005の処理に進む。
S4104で制御部1は、第二リレー制御シーケンスを実行する。このように、本実施例では、前回実行したリレー制御シーケンスが、リレーRL1の故障検知を行う第一リレー制御シーケンスであった場合には、リレー制御シーケンスをリレーRL2の故障検知を行う第二リレー制御シーケンスに切り替える。制御部1は、第二リレー制御シーケンスの第二起動シーケンスを実行し、リレーRL2が故障しているか否かを判断する。S4104で制御部1は、リレーRL2が故障していると判断した場合は、S4013の処理に進む。一方、S4104で制御部1は、リレーRL2は故障していないと判断した場合は、S4005の処理に進む。
S4005で制御部1は、現在制御部1が実行しているリレー制御シーケンスの情報を不揮発性メモリ1dに記憶する。S4006で制御部1は、画像形成装置10をスリープ状態からスタンバイ状態に移行させる(図3(A)(a)3−1−3、図3(B)(a)3−2−3)。画像形成装置10がスタンバイ状態に移行すると、ユーザからのプリント要求が発生した場合、スタンバイ状態から更にプリント状態に移行して、制御部1はプリント動作を行う。
S4007で制御部1は、スタンバイ状態からスリープ状態に移行する要求(以下、スリープ移行要求という)を受信したか否かを判断する。S4007で制御部1は、スリープ移行要求を受信したと判断した場合は、S4008の処理に進む。S4007で制御部1は、スリープ移行要求を受信していないと判断した場合には、S4006の処理に戻り、画像形成装置10のスタンバイ状態を継続する。
S4008で制御部1は、S4005で記憶した不揮発性メモリ1dの情報を参照することにより、現在実行しているリレー制御シーケンスが、第一リレー制御シーケンスであるか否かを判断する。S4008で制御部1は、現在実行しているリレー制御シーケンスが第一リレー制御シーケンスであると判断した場合は、S4009の処理に進む。一方、S4008で制御部1は、現在実行しているリレー制御シーケンスが第一リレー制御シーケンスではない、即ち、第二リレー制御シーケンスであると判断した場合は、S4109の処理に進む。
S4009で制御部1は、第一リレー制御シーケンスの第一停止シーケンスを実行し、リレーRL1が故障しているか否かを判断する。S4009で制御部1は、リレーRL1が故障していると判断した場合は、S4013の処理に進む。一方、S4009で制御部1は、リレーRL1は故障していないと判断した場合は、S4010の処理に進む。S4109で制御部1は、第二リレー制御シーケンスの第二停止シーケンスを実行し、リレーRL2が故障しているか否かを判断する。S4109で制御部1は、リレーRL2が故障していると判断した場合は、S4013の処理に進む。一方、S4109で制御部1は、リレーRL2は故障していないと判断した場合は、S4010の処理に進む。
S4010で制御部1は、画像形成装置10を停止させるように指示する要求(以下、停止要求という)があるか否かを判断する。S4010で制御部1は、リレーの故障やユーザの操作により画像形成装置10の停止要求があると判断した場合は、S4011の処理に進む。S4010で制御部1は、画像形成装置10の停止要求がないと判断した場合は、S4001の処理に戻る、即ち、画像形成装置10をスタンバイ状態からスリープ状態に移行させる。S4011で制御部1は、画像形成装置10を停止させて処理を終了し、画像形成装置10の電源はオフ状態となる。
このように、本実施例では、不揮発性メモリ1dに前回実行したリレー制御シーケンスを記憶しておき、前回実行したリレー制御シーケンスと異なるリレー制御シーケンスを実行する構成とする。このように、制御部1は、リレー制御シーケンスを実行する際に、リレーの開閉順を選択的に切り替えるように制御する。なお、本実施例では、起動シーケンスが終了したタイミングのみで、不揮発性メモリ1dにリレー制御シーケンスの情報を記憶している(図4 S4005)。しかし、起動シーケンスが終了したタイミングで、不揮発性メモリ1dにどの起動シーケンスが実行されたかの情報を記憶し、停止シーケンスが終了したタイミングで不揮発性メモリ1dにどの停止シーケンスが実行されたかの情報を、別途記憶してもよい。そして、起動シーケンス、停止シーケンスの各々で不揮発性メモリ1dに記憶された情報に基づき、記憶された起動シーケンス又は記憶された停止シーケンスとは異なる起動シーケンス又は停止シーケンスを実行するようにしてもよい。
[リレーの故障検知の他の実施例]
本実施例では、電流検知回路203を用いてヒータRH1への電流検知を行うことでリレーの故障検知を行っているが、ヒータRH1の伝送ライン間に印加される電圧の有無を検知することによってリレーの故障検知を行うこともできる。例えば、電圧検知トランスやゼロクロス検知回路204やその他の電圧を検知する手段によってリレーの故障検知を行うことができる。例えばゼロクロス検知回路204を用いる場合、電流検知の場合と同様に、リレーRL1とリレーRL2の何れか一方を導通状態にし、もう一方のリレーの故障検知をゼロクロス検知回路204から出力されるゼロクロス信号によるゼロクロス検知によって行う。故障検知を行わない側のリレーを導通状態とし、トライアックQ3を導通状態としたとき、故障検知を行う側のリレーが正常な場合はヒータRH1の伝送ライン間に電圧が印加されない。そのため、抵抗R10に電流が流れずゼロクロス信号がハイレベルのままである。
一方、故障検知を行う側のリレーが故障していた場合には、ヒータRH1の伝送ライン間に交流電圧が印加される。そのため、ニュートラルラインの電位がライブラインの電位より低くなったときに、抵抗R10に電流が流れゼロクロス信号がローレベルとなる。リレーが故障していた場合には、ゼロクロス信号はハイレベルとローレベルを繰り返すため、制御部1は少なくとも交流電圧の半周期以上の時間、ゼロクロス信号を監視する。制御部1は、ゼロクロス検知回路204から入力されたゼロクロス信号がハイレベルからローレベルに変化する信号の立ち下りエッジを検知する。このように、制御部1は、ゼロクロス信号の立ち下がりエッジを検知することで、リレーの故障を判断することができる。
また、本実施例では、リレー制御シーケンスで起動シーケンスと停止シーケンスを行うとともにリレーRL1又はリレーRL2の故障検知を実行することについて説明した。しかし、リレーの故障検知を実行しない起動シーケンス及び停止シーケンスとしても、同様の効果を得ることができる。この場合、制御部1は、図4のS4004、S4104、S4009、S4109ではトライアックQ3を非導通状態とし、リレーRL1やリレーRL2の故障検知の判断は行わず、それぞれの起動シーケンス又は停止シーケンスのみを実行する。このような構成でも、立ち上げ毎又は停止毎に選択的にリレーの開閉順を切り替えることができる。これにより、リレーの接点に発生するアークによるストレスを分散できるため、リレーの故障検知を行う場合と同様の効果が期待できる。同様に、故障検知を起動シーケンス及び停止シーケンスのいずれか片方だけ行う場合若しくは、故障検知を起動時又は停止時だけ行うようにしても、リレーの開閉順を選択的に切り替える制御を行わない場合に比べてリレーの接点にかかるストレスを分散できる。
本実施例の電力供給装置200では、第一リレー制御シーケンスと第二リレー制御シーケンスを交互に行うため、接点にアークが発生するリレーも交互に切り替わる。そのため、1つのリレーの接点にアークが発生する頻度が減り、リレー接点にかかるストレスを低減することができ、リレーの寿命を延ばすことができる。
尚、本実施例では、不揮発性メモリ1dに記憶された情報に基づいて直近に実行したリレー制御シーケンスの内容を確認している。そして、直近に実行したリレー制御シーケンスに基づいて、第一のリレーと第二のリレーに対する接続又は開閉順番を交互に制御する構成としている。しかし、上述した不揮発性メモリ1dに記憶される情報は、直近に実行したリレー制御シーケンスのみに限定されるものではなく、所定の範囲における履歴内容に基づいて制御する構成としても同様の効果が得られる。即ち、過去に実行した複数回のリレー制御シーケンスに基づいて、これから実行するリレー制御シーケンスを決定する構成としてもよい。更に、不揮発性メモリ1dに記憶された情報に基づき第一のリレーと第二のリレーに対する接続又は開閉順序を、必ずしも交互にすることに限定されるものではない。例えば、履歴記憶手段に記憶された所定の範囲における履歴内容から画像形成装置10の稼働状況を判断し、第一のリレーと第二のリレーに対する接続又は開閉順序を、所定回数毎(例えば、3回ずつ等)に交互に制御する場合でも同様の効果が得られる。
本実施例の電力供給装置200では、第一リレー制御シーケンスでリレーRL1の故障検知を行い、第二リレー制御シーケンスでリレーRL2の故障検知を行う。このため、画像形成装置10がスリープ状態からスタンバイ状態に移行する際又はスタンバイ状態からスリープ状態に移行する際に、故障検知を行うリレーは1つになる。そのため、リレーRL1とリレーRL2の両方の故障検知を一度に行う方法と比べて、リレーの故障検知に要する時間も短縮できる。また、リレーRL1とリレーRL2の両方の故障検知を一度に行う方法と比べて、リレーの駆動回数を減らすことができ、リレーの故障検知がリレーの寿命に与える影響を低減できる。
以上、本実施例によれば、1つのリレーの接点にアークが発生する頻度を低減させて、リレーの寿命を延ばすことができる。
[電源供給装置]
図5は実施例2の電力供給装置500の説明図を示している。実施例1と同様の構成については同一符号を付けて説明を省略する。交流電源201の伝送ラインの一方であるライブラインにリレーRL1(第一のリレー)とリレーRL3(第三のリレー)が直列に接続されている。1つのラインに2つのリレーを直列に接続することによって、一方のリレーが融着等した場合でも、他方のリレーによってオン/オフすることができる。また、電流を流し続けることで、リレーの融着を解消することができる場合もある。本実施例では、このように直列に接続された2つのリレーの起動又は停止シーケンスについて説明する。ここで、トランジスタQ5はリレーRL3の駆動回路であり、制御部1により制御を行う。
なお、トランジスタQ5は、ベース端子に制御部1が接続され、コレクタ端子にリレーRL3が接続され、エミッタ端子が接地されている。制御部1は、トランジスタQ5のベース端子にハイレベル又はローレベルのQ5駆動信号を出力することにより、トランジスタQ5の導通又は非導通を制御する。なお、リレーRL3は、ニュートラルライン側のリレーRL2に直列に接続する構成としてもよい。
[ゼロクロス検知回路]
交流電源201のゼロクロス検知手段として用いるゼロクロス検知回路206について説明する。ゼロクロス検知回路206は、交流電源201の交流電圧のゼロクロス点を検知する。本実施例では、ゼロクロス検知回路206が後述する第一のリレー及び第二のリレーとの伝送ライン間の電位差を検知する状態検知手段としての機能も果たしている。交流電源201から供給されるニュートラルラインの電位がライブラインの電位より高い場合、抵抗R15を介してゼロクロス検知回路206に電流が流れる。抵抗R15から供給された電流が、ゼロクロス検知回路206のトランジスタQ7のベース端子に流れると、トランジスタQ7が導通状態となる。なお、トランジスタQ7は、ベース端子に抵抗R15が接続され、コレクタ端子にフォトカプラPC2の一次側ダイオードのアノード端子が接続され、エミッタ端子にフォトカプラPC2の一次側ダイオードのカソード端子が接続されている。
抵抗R13及びコンデンサC4はトランジスタQ7の動作タイミングの調整に用いている。トランジスタQ7が導通状態となると、フォトカプラPC2の一次側ダイオードのアノード端子に印加される電圧が低下し、フォトカプラPC2の二次側トランジスタは非導通状態となる。フォトカプラPC2の二次側トランジスタが非導通状態となると、直流電圧V1によって、プルアップ抵抗R16を介して、ゼロクロス信号の電圧が上昇し、ゼロクロス信号はハイレベルとなり、制御部1はゼロクロス信号の立ち上がりエッジを検知する。
また、ニュートラルラインの電位がライブラインの電位より低い場合、抵抗R15には電流が流れないため、トランジスタQ7は非導通状態となる。トランジスタQ7が非導通状態となると、フォトカプラPC2の一次側ダイオードには、不図示の補助巻線から供給される補助巻線電圧V2からプルアップ抵抗R14を介して電流が流れるため、フォトカプラPC2の二次側トランジスタは導通状態となる。フォトカプラPC2の二次側トランジスタが導通状態となると、ゼロクロス信号はローレベルとなり、制御部1はゼロクロス信号の立ち下りエッジを検知する。
[リレー制御シーケンス]
本実施例の制御部1によるリレー制御シーケンス選択処理について説明する。制御部1は、起動シーケンスと、停止シーケンスの両方を合わせた、リレー制御シーケンスを実行する。ここで、起動シーケンスは、スリープ状態からスタンバイ状態に移行する際に、リレーの制御を行う。停止シーケンスは、スタンバイ状態からスリープ状態に移行する際に、リレーの制御を行う。本実施例のリレー制御シーケンスは、第三リレー制御シーケンス、第四リレー制御シーケンス及び第五リレー制御シーケンスの3つである。第三リレー制御シーケンスは、第三起動シーケンスと第三停止シーケンスで構成されている。第三起動シーケンスは、リレーRL1の故障検知を行うとともに、リレーRL2及びリレーRL3を導通状態にした後、リレーRL1を導通状態にする。第三停止シーケンスは、リレーRL1の故障検知を行うとともに、リレーRL1を非導通状態にした後リレーRL2及びリレーRL3を非導通状態にする。
第四リレー制御シーケンスは、第四起動シーケンスと第四停止シーケンスで構成されている。第四起動シーケンスは、リレーRL2の故障検知を行うとともに、リレーRL1及びリレーRL3を導通状態にした後、リレーRL2を導通状態にする。第四停止シーケンスは、リレーRL2の故障検知を行うとともに、リレーRL2を非導通状態にした後、リレーRL1及びリレーRL3を非導通状態にする。第五リレー制御シーケンスは、第五起動シーケンスと第五停止シーケンスで構成されている。第五起動シーケンスは、リレーRL3の故障検知を行うとともに、リレーRL1及びリレーRL2を導通状態にした後、リレーRL3を導通状態にする。第五停止シーケンスは、リレーRL3の故障検知を行うとともに、リレーRL3を非導通状態にした後、リレーRL1及びリレーRL2を非導通状態にする。ただし、各起動シーケンスと停止シーケンスの組み合わせは、どの組み合わせで制御を行う場合でも実施例1で説明したように同等の効果を得ることができる。
電力供給装置500の制御部1は、不揮発性メモリ1dに記憶された情報に基づき、直近に実行したリレー制御シーケンスが第五リレー制御シーケンスだった場合は第三リレー制御シーケンスを選択する。また制御部1は、不揮発性メモリ1dに記憶された情報に基づき、直近に実行したリレー制御シーケンスが第三リレー制御シーケンスだった場合は第四リレー制御シーケンスを選択する。更に制御部1は、不揮発性メモリ1dに記憶された情報に基づき、直近に実行したリレー制御シーケンスが第四リレー制御シーケンスだった場合は第五リレー制御シーケンスを選択する。
[リレー制御処理]
図6は本実施例のリレー制御シーケンスの説明図である。図6(A)は第三リレー制御シーケンスを、図6(B)は第四リレー制御シーケンスを、図6(C)は第五リレー制御シーケンスを示す。また、図6(A)〜図6(C)では、(a)にはそれぞれの起動シーケンスを、(b)にはそれぞれの停止シーケンスを示す。図6には、図5で説明した回路図で、リレー制御シーケンスにかかわる主要な構成のみを図示している。
(第三リレー制御シーケンス)
(第三起動シーケンス)
図6(A)(a)は、第三リレー制御シーケンスの第三起動シーケンスを示す図である。図6(A)(a)の6−1−0はスリープ状態であり、リレーRL1、リレーRL2、リレーRL3及びトライアックQ3は非導通状態である。制御部1は、スタンバイ状態への移行要求があると第三起動シーケンスを行う。制御部1がQ5駆動信号をハイレベルとすることで、リレーRL3を導通状態にし、図6(A)(a)の6−1−1のリレーRL1の故障検知を行うための状態にする。
次に制御部1がQ4駆動信号をハイレベルとすることで、トライアックQ3を導通状態にし、図6(A)(a)の6−1−2の状態となる。このときにゼロクロス検知回路206から出力されるゼロクロス信号に基づいて、制御部1はリレーRL1の故障の有無を判断する。具体的には、リレーRL1が故障している場合は、図6(A)(a)の6−1−2の破線矢印で示す電流経路で電流が流れる。制御部1は、電流経路が形成されたゼロクロス検知回路206の出力状態により、リレーRL1が故障している(故障有り)と判断する。リレーRL1が故障している場合には、制御部1がQ1、Q2、Q4、Q5駆動信号を全てローレベルとすることで、全てのリレーとトライアックQ3を非導通状態にして図6(A)(b)の6−1−8の状態となる。
また、制御部1は、リレーRL1が故障していない(故障無し)と判断した場合には、Q4駆動信号をローレベルとすることでトライアックQ3を非導通状態にする。その後Q2駆動信号をハイレベルとすることで、リレーRL2を導通状態にしたのち、Q1駆動信号をハイレベルとすることで、リレーRL1を導通状態にして、図6(A)(a)の6−1−3のスタンバイ状態になる。このときXコンデンサC1への突入電流が流れてリレーRL1の接点にアークが発生し、リレーRL1の接点にストレスが加わる。これ以降、ユーザからのプリント要求が発生したらプリント状態に移行しプリント動作を行う。
(第三停止シーケンス)
次に第三リレー制御シーケンスの第三停止シーケンスについて説明する。図6(A)(b)の6−1−4はスタンバイ状態であり、スリープ状態への移行要求があると、第三停止シーケンスを行う。制御部1がQ1駆動信号をローレベルとすることで、リレーRL1を非導通状態にし、図6(A)(b)の6−1−5の状態にする。このとき、リレーRL1の接点にはアークが発生する。その後、制御部1がQ2駆動信号をローレベルとすることでリレーRL2を非導通状態にし、図6(A)(b)の6−1−6のリレーRL1の故障検知を行うための状態にする。次に制御部1がQ4駆動信号をハイレベルとすることでトライアックQ3を導通状態にし、図6(A)(b)の6−1−7の状態となる。この状態で再びリレーRL1の故障検知を行う。なお、リレーRL1が故障している場合には、図6(A)(b)の6−1−7の破線で示す電流経路で電流が流れる。
制御部1は、リレーRL1が故障していると判断すると、Q1、Q2、Q4、Q5駆動信号を全てローレベルとすることで、トライアックQ3と全てのリレーを非導通状態にして図6(A)(b)の6−1−8の状態となる。また、リレーRL1が故障していないと判断した場合には、Q4駆動信号をローレベルとすることで、トライアックQ3を非導通状態にする。その後Q5駆動信号をローレベルとすることで、リレーRL3を非導通状態にして図6(A)(b)の6−1−8の状態となりスリープ状態に移行する。
(第四リレー制御シーケンス)
次に第四リレー制御シーケンスについて説明する。第四リレー制御シーケンスでは図6(B)(a)の6−2−0に示すスリープ状態において、スタンバイ状態への移行要求があると、図6(B)(a)の6−2−1乃至6−2−3の第四起動シーケンスを行う。なお、リレーRL2の故障検知を行う際には、図6(B)(a)の6−2−1に示すように、Q1駆動信号によりリレーRL1を、Q5駆動信号によりリレーRL3を、それぞれ導通状態とする。また、リレーRL2が故障しているとき、図6(B)(a)の6−2−2に破線で示すような電流経路で電流が流れる。なお、リレーRL2が故障している場合には、トライアックQ3を非導通状態としたままでも、図に示すような電流経路が形成される。リレーRL2が故障していないとき、図6(B)(a)の6−2−3に示すように、制御部1はQ2駆動信号によりリレーRL2を導通状態とする。このとき、リレーRL2の接点にはアークが発生する。
また、図6(B)(b)の6−2−4に示すスタンバイ状態において、スリープ状態への移行要求があると、制御部1は図6(B)(b)の6−2−5乃至6−2−6の第四停止シーケンスを行う。なお、リレーRL2の故障検知を行う際には、図6(B)(b)の6−2−5に示すように、Q2駆動信号によりリレーRL2を非導通状態とする。このとき、リレーRL2の接点にはアークが発生する。また、リレーRL2が故障しているとき、図6(B)(b)の6−2−5の破線矢印で示す電流経路で電流が流れる。なお、リレーRL2が故障している場合には、トライアックQ3を非導通状態としたままでも、図に示すような電流経路が形成される。このように、第四リレー制御シーケンスでは、ゼロクロス検知回路206を用いてリレーRL2の故障検知を行う。
リレーRL2が故障していると判断した場合の処理は、第三リレー制御シーケンスと同様のため説明を省略する。更に、図6(B)(a)の6−2−3に示すように、第四リレー制御シーケンスでは、XコンデンサC1への突入電流でリレーRL2の接点にアークが発生し、リレーRL2の接点にストレスが加わる。また、本実施例の第四リレー制御シーケンスでは、リレーRL1及びリレーRL3を導通状態にした状態でリレーRL2の故障検知を行っているが、これはリレーの起動シーケンスも兼ねているためである。図6(B)(a)の6−2−2や図6(B)(b)の6−2−5に示すように、破線で示す電流経路にリレーRL1及びリレーRL3が含まれないため、リレーRL1及びリレーRL3を非導通状態にした状態でリレーRL2の故障検知を行ってもよい。なお、トライアックQ3は全過程において非導通状態となっている。
(第五リレー制御シーケンス)
第五リレー制御シーケンスについて説明する。第五リレー制御シーケンスで図6(C)(a)の6−3−0に示すスリープ状態において、スタンバイ状態への移行要求があると、図6の6−3−1乃至6−3−3の第五起動シーケンスを行う。なお、リレーRL3の故障検知を行う際には、図6(C)(a)の6−3−1に示すように、Q1駆動信号によりリレーRL1を導通状態とし、6−3−2に示すようにQ4駆動信号によりトライアックQ3を導通状態とする。また、リレーRL3が故障しているとき、図6(C)(a)の6−3−2の破線で示す電流経路で電流が流れる。
また、図6(C)(b)の6−3−4に示すスタンバイ状態において、スリープ状態への移行要求があると、制御部1は、図6(C)(b)の6−3−5乃至6−3−8の第五停止シーケンスを行う。なお、リレーRL3の故障検知を行う際には、図6(C)(b)の6−3−5に示すように、Q5駆動信号によりリレーRL3を非導通状態とする。このとき、リレーRL3の接点にはアークが発生する。また、6−3−6に示すように、Q2駆動信号によりリレーRL2を非導通状態とする。更に、図6(C)(b)の6−3−7に示すようにQ4駆動信号によりトライアックQ3を導通状態とする。その他のリレーRL3の故障検知方法とリレーRL3が故障していると判断した場合の処理は、第三リレー制御シーケンスと同様のため説明を省略する。更に、第五リレー制御シーケンスでは、図6(C)(a)の6−3−3に示すように、XコンデンサC1への突入電流でリレーRL3の接点にアークが発生し、リレーRL3の接点にストレスが加わる。
[リレー制御の選択処理]
図7は制御部1による本実施例のリレー制御シーケンスを説明するフローチャートである。実施例1と同様の処理については同一のステップ番号を付けて説明を省略する。S4002で制御部1は、スタンバイ移行要求があったと判断した場合、S7003の処理に進む。S7003で制御部1は、不揮発性メモリ1dに記憶された情報に基づき直近に実行したリレー制御シーケンスが第五リレー制御シーケンスであったか否かを判断する。S7003で制御部1は、直近に実行したリレー制御シーケンスが第五リレー制御シーケンスでなかったと判断した場合はS7103の処理に進む。S7003で制御部1は、直近に実行したリレー制御シーケンスが第五リレー制御シーケンスであったと判断した場合は、S7004の処理に進む。
S7103で制御部1は、不揮発性メモリ1dに記憶された情報に基づき直近に実行したリレー制御シーケンスが第三リレー制御シーケンスであったか否かを判断する。S7103で制御部1は、直近に実行したリレー制御シーケンスが第三リレー制御シーケンスであったと判断した場合はS7104の処理に進む。S7103で制御部1は、直近に実行したリレー制御シーケンスが第三リレー制御シーケンスではなかったと判断した場合には、S7204の処理に進む。S7004で制御部1は、第三起動シーケンスを実行してリレーRL1の故障検知を行い、リレーRL1が故障しているか否かを判断する。S7004で制御部1は、リレーRL1が故障していると判断した場合は、S4013の処理に進む。一方、S7004で制御部1は、リレーRL1が故障していないと判断した場合は、S4005の処理に進む。
S7104で制御部1は、第四起動シーケンスを実行し、リレーRL2の故障検知を行い、リレーRL2が故障しているか否かを判断する。S7104で制御部1は、リレーRL2が故障していると判断した場合は、S4013の処理に進む。一方、S7104で制御部1は、リレーRL2が故障していないと判断した場合は、S4005の処理に進む。S7204で制御部1は、第五起動シーケンスを実行し、リレーRL3の故障検知を行い、リレーRL3が故障しているか否かを判断する。S7204で制御部1は、リレーRL3が故障していると判断した場合は、S4013の処理に進む。一方、S7204で制御部1は、リレーRL3が故障していないと判断した場合は、S4005の処理に進む。
次に、スタンバイ状態からスリープ状態に移行したS7008で制御部1は、S4005で不揮発性メモリ1dに記憶した現在実行しているリレー制御シーケンスが第三リレー制御シーケンスであるか否かを判断する。S7008で制御部1は、第三リレー制御シーケンスを実行していると判断した場合はS7009の処理に進み、第三リレー制御シーケンスを実行していないと判断した場合は、S7108の処理に進む。S7108で制御部1は、現在実行しているリレー制御シーケンスが第四リレー制御シーケンスであるか否かを判断する。S7108で制御部1は、第四リレー制御シーケンスを実行していると判断した場合は、S7109の処理に進み、第四リレー制御シーケンスを実行していないと判断した場合は、S7209の処理に進む。
S7009で制御部1は、第三停止シーケンスを実行してリレーRL1の故障検知を行い、リレーRL1が故障しているか否かを判断する。S7009で制御部1は、リレーRL1が故障していると判断した場合には、S4013の処理に進む。S7009で制御部1は、リレーRL1が故障していないと判断した場合は、S4010の処理に進む。S7109で制御部1は、第四停止シーケンスを実行し、リレーRL2の故障検知を行い、リレーRL2が故障しているか否かを判断する。S7109で制御部1は、リレーRL2が故障していると判断した場合は、S4013の処理に進み、リレーRL2が故障していないと判断した場合は、S4010の処理に進む。S7209で制御部1は、第五停止シーケンスを実行し、リレーRL3の故障検知を行い、リレーRL3が故障しているか否かを判断する。S7209で制御部1は、リレーRL3が故障していると判断した場合は、S4013の処理に進み、リレーRL3が故障していないと判断した場合は、S4010の処理に進む。
以上のように、本実施例では、3つのリレーを組み合わせて用いることにより、リレーの接点にアークが発生する頻度がリレー毎に分散されるため、2つのリレーを用いる場合よりもリレーの接点に加わるストレスを低減することができる。従って、更に、リレーの長寿命化を図ることが期待できる。尚、実施例1及び実施例2で説明したリレーの個数や接続形態は一例であり、リレーの個数や接続形態は上述した形態に限定されるものではない。商用電源から負荷装置への伝送ラインにおけるライブ側とニュートラル側に、少なくとも一つの第一のリレー及び第二のリレーを備えている実施形態であれば、本実施例で説明した構成を適用できる。また、リレー制御シーケンスを組み合わせることにより、実施例で説明した形態にかかわらずリレーの接点に発生するアークによるストレスを分散して軽減させる様々な形態が考えられる。更に、実施例1と同様に、各リレー制御シーケンス中で各リレーの故障検知を実行しない構成としてもよい。この場合、トライアックQ3は非導通状態とする。
以上、本実施例によれば、1つのリレーの接点にアークが発生する頻度を低減させて、リレーの寿命を延ばすことができる。
1 制御部
1d 不揮発性メモリ
200 電力供給装置
RL1、RL2 リレー

Claims (28)

  1. 負荷に電力を供給する電力供給装置であって、
    交流電源のライブラインに接続された少なくとも一つの第一のリレーと、
    前記交流電源のニュートラルラインに接続された少なくとも一つの第二のリレーと、
    前記第一のリレー及び前記第二のリレーを非導通状態から導通状態に制御する起動シーケンスと、前記第一のリレー及び前記第二のリレーを導通状態から非導通状態に制御する停止シーケンスを実行する制御手段と、
    前記制御手段により実行された前記起動シーケンス及び前記停止シーケンスに関する情報を記憶する記憶手段と、
    を備え、
    前記制御手段は、前記電力供給装置が起動又は停止される際に、前記記憶手段に記憶された前記情報に基づいて、前記起動シーケンス又は前記停止シーケンスを切り替えることを特徴とする電力供給装置。
  2. 前記制御手段は、前記起動シーケンスとして、
    前記第二のリレーを導通状態にした後、前記第一のリレーを導通状態にする第一の起動シーケンスと、
    前記第一のリレーを導通状態にした後、前記第二のリレーを導通状態にする第二の起動シーケンスと、を実行することが可能であることを特徴とする請求項1に記載の電力供給装置。
  3. 前記制御手段は、前記電力供給装置が起動される際に、前記記憶手段に前記第一の起動シーケンスに関する情報が記憶されていた場合には、前記第二の起動シーケンスを実行することを特徴とする請求項2に記載の電力供給装置。
  4. 前記制御手段は、前記電力供給装置が起動される際に、前記記憶手段に前記第二の起動シーケンスに関する情報が記憶されていた場合には、前記第一の起動シーケンスを実行することを特徴とする請求項2に記載の電力供給装置。
  5. 前記制御手段は、前記第一の起動シーケンスにおいて前記第一のリレーの故障検知を行い、前記第二の起動シーケンスにおいて前記第二のリレーの故障検知を行うことを特徴とする請求項2乃至4のいずれか1項に記載の電力供給装置。
  6. 前記制御手段は、前記停止シーケンスとして、
    前記第一のリレーを非導通状態にした後、前記第二のリレーを非導通状態にする第一の停止シーケンスと、
    前記第二のリレーを非導通状態にした後、前記第一のリレーを非導通状態にする第二の停止シーケンスと、を実行することが可能であることを特徴とする請求項1に記載の電力供給装置。
  7. 前記制御手段は、前記電力供給装置が停止される際に、前記記憶手段に前記第一の停止シーケンスに関する情報が記憶されていた場合には、前記第二の停止シーケンスを実行することを特徴とする請求項6に記載の電力供給装置。
  8. 前記制御手段は、前記電力供給装置が停止される際に、前記記憶手段に前記第二の停止シーケンスに関する情報が記憶されていた場合には、前記第一の停止シーケンスを実行することを特徴とする請求項6に記載の電力供給装置。
  9. 前記制御手段は、前記第一の停止シーケンスにおいて前記第一のリレーの故障検知を行い、前記第二の停止シーケンスにおいて前記第二のリレーの故障検知を行うことを特徴とする請求項6乃至8のいずれか1項に記載の電力供給装置。
  10. 負荷に電力を供給する電力供給装置であって、
    交流電源のライブラインに接続された少なくとも一つの第一のリレーと、
    前記交流電源のニュートラルラインに接続された少なくとも一つの第二のリレーと、
    前記第一のリレー及び前記第二のリレーを非導通状態から導通状態に制御する起動シーケンスを実行する制御手段と、
    前記制御手段により実行された前記起動シーケンスに関する情報を記憶する記憶手段と、
    を備え、
    前記制御手段は、前記電力供給装置が起動される際に、前記記憶手段に記憶された前記情報に基づいて、前記起動シーケンスを切り替えることを特徴とする電力供給装置。
  11. 前記制御手段は、前記起動シーケンスとして、
    前記第二のリレーを導通状態にした後、前記第一のリレーを導通状態にする第一の起動シーケンスと、
    前記第一のリレーを導通状態にした後、前記第二のリレーを導通状態にする第二の起動シーケンスと、を実行することが可能であることを特徴とする請求項10に記載の電力供給装置。
  12. 前記制御手段は、前記電力供給装置が起動される際に、前記記憶手段に前記第一の起動シーケンスに関する情報が記憶されていた場合には、前記第二の起動シーケンスを実行することを特徴とする請求項11に記載の電力供給装置。
  13. 前記制御手段は、前記電力供給装置が起動される際に、前記記憶手段に前記第二の起動シーケンスに関する情報が記憶されていた場合には、前記第一の起動シーケンスを実行することを特徴とする請求項11に記載の電力供給装置。
  14. 前記制御手段は、前記第一の起動シーケンスにおいて前記第一のリレーの故障検知を行い、前記第二の起動シーケンスにおいて前記第二のリレーの故障検知を行うことを特徴とする請求項11乃至13のいずれか1項に記載の電力供給装置。
  15. 負荷に電力を供給する電力供給装置であって、
    交流電源のライブラインに接続された少なくとも一つの第一のリレーと、
    前記交流電源のニュートラルラインに接続された少なくとも一つの第二のリレーと、
    前記第一のリレー及び前記第二のリレーを導通状態から非導通状態に制御する停止シーケンスを実行する制御手段と、
    前記制御手段により実行された前記停止シーケンスに関する情報を記憶する記憶手段と、
    を備え、
    前記制御手段は、前記電力供給装置が停止される際に、前記記憶手段に記憶された前記情報に基づいて、前記停止シーケンスを切り替えることを特徴とする電力供給装置。
  16. 前記制御手段は、前記停止シーケンスとして、
    前記第一のリレーを非導通状態にした後、前記第二のリレーを非導通状態にする第一の停止シーケンスと、
    前記第二のリレーを非導通状態にした後、前記第一のリレーを非導通状態にする第二の停止シーケンスと、を実行することが可能であることを特徴とする請求項15に記載の電力供給装置。
  17. 前記制御手段は、前記電力供給装置が停止される際に、前記記憶手段に前記第一の停止シーケンスに関する情報が記憶されていた場合には、前記第二の停止シーケンスを実行することを特徴とする請求項16に記載の電力供給装置。
  18. 前記制御手段は、前記電力供給装置が停止される際に、前記記憶手段に前記第二の停止シーケンスに関する情報が記憶されていた場合には、前記第一の停止シーケンスを実行することを特徴とする請求項16に記載の電力供給装置。
  19. 前記制御手段は、前記第一の停止シーケンスにおいて前記第一のリレーの故障検知を行い、前記第二の停止シーケンスにおいて前記第二のリレーの故障検知を行うことを特徴とする請求項16乃至18のいずれか1項に記載の電力供給装置。
  20. 前記負荷に電力の供給を行う供給手段と、
    前記第一のリレー又は前記第二のリレーの故障を検知する検知手段と、
    を備え、
    前記制御手段は、前記故障検知を行う際には、前記供給手段により前記負荷に電力を供給させている状態で、前記検知手段により前記第一のリレー又は前記第二のリレーの故障検知を行うことを特徴とする請求項5、9、14、19のいずれか1項に記載の電力供給装置。
  21. 前記検知手段は、前記負荷に流れる電流を検知する電流検知手段であることを特徴とする請求項20に記載の電力供給装置。
  22. 前記検知手段は、前記負荷に印加される電圧を検知する電圧検知手段であることを特徴とする請求項20に記載の電力供給装置。
  23. 前記検知手段は、前記交流電源の交流電圧のゼロクロス点を検知するゼロクロス検知手段であることを特徴とする請求項20に記載の電力供給装置。
  24. 前記第一のリレー及び前記第二のリレーを介して前記ライブラインと前記ニュートラルラインの間に接続されたアクロス・ザ・ラインコンデンサを備えることを特徴とする請求項1乃至23のいずれか1項に記載の電力供給装置。
  25. 記録紙に画像を形成する画像形成手段と、
    前記画像形成手段により記録紙上に形成された画像を定着する定着手段と、
    前記定着手段に電力を供給する請求項1乃至24のいずれか1項に記載の電力供給装置と、
    を備えることを特徴とする画像形成装置。
  26. 記録紙に画像を形成する画像形成手段と、
    前記画像形成手段により記録紙上に形成された画像を定着する定着手段と、
    前記定着手段に電力を供給する請求項1乃至9のいずれか1項に記載の電力供給装置と、
    を備え、
    前記制御手段は、
    前記画像形成手段により画像形成を行うプリント状態への移行を待機しているスタンバイ状態よりも消費電力が低いスリープ状態から前記スタンバイ状態へ移行する際に前記起動シーケンスを実行し、
    前記スタンバイ状態から前記スリープ状態へ移行する際に前記停止シーケンスを実行することを特徴とする画像形成装置。
  27. 記録紙に画像を形成する画像形成手段と、
    前記画像形成手段により記録紙上に形成された画像を定着する定着手段と、
    前記定着手段に電力を供給する請求項10乃至14のいずれか1項に記載の電力供給装置と、
    を備え、
    前記制御手段は、
    前記画像形成手段により画像形成を行うプリント状態への移行を待機しているスタンバイ状態よりも消費電力が低いスリープ状態から前記スタンバイ状態へ移行する際に前記起動シーケンスを実行することを特徴とする画像形成装置。
  28. 記録紙に画像を形成する画像形成手段と、
    前記画像形成手段により記録紙上に形成された画像を定着する定着手段と、
    前記定着手段に電力を供給する請求項15乃至19のいずれか1項に記載の電力供給装置と、
    を備え、
    前記制御手段は、
    前記画像形成手段により画像形成を行うプリント状態への移行を待機しているスタンバイ状態から前記スタンバイ状態よりも消費電力が低いスリープ状態へ移行する際に前記停止シーケンスを実行することを特徴とする画像形成装置。
JP2014197108A 2014-09-26 2014-09-26 電力供給装置及び画像形成装置 Pending JP2016073015A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014197108A JP2016073015A (ja) 2014-09-26 2014-09-26 電力供給装置及び画像形成装置
US14/863,776 US9519253B2 (en) 2014-09-26 2015-09-24 Electric power supply device and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014197108A JP2016073015A (ja) 2014-09-26 2014-09-26 電力供給装置及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2016073015A true JP2016073015A (ja) 2016-05-09
JP2016073015A5 JP2016073015A5 (ja) 2017-11-09

Family

ID=55584272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014197108A Pending JP2016073015A (ja) 2014-09-26 2014-09-26 電力供給装置及び画像形成装置

Country Status (2)

Country Link
US (1) US9519253B2 (ja)
JP (1) JP2016073015A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187274A (ja) * 2019-05-15 2020-11-19 キヤノン株式会社 電源装置及び画像形成装置
JP7459522B2 (ja) 2020-01-21 2024-04-02 沖電気工業株式会社 負荷制御装置および画像形成装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106856321B (zh) * 2015-12-08 2019-11-05 太琦科技股份有限公司 洗浴安全控制系统及洗浴安全控制方法
WO2019212525A1 (en) * 2018-04-30 2019-11-07 Hewlett-Packard Development Company, L.P. Isolating electrical components
US11334009B2 (en) * 2020-01-21 2022-05-17 Oki Electric Industry Co., Ltd. Load controller and image forming apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251550A (ja) * 1994-03-16 1995-10-03 Canon Inc 画像形成装置
JP2006338924A (ja) * 2005-05-31 2006-12-14 Yamatake Corp 接点駆動装置および方法
JP2009027848A (ja) * 2007-07-20 2009-02-05 Honda Motor Co Ltd コンタクタの接続・遮断方法
JP2011237480A (ja) * 2010-05-06 2011-11-24 Canon Inc 画像形成装置
JP2014010307A (ja) * 2012-06-29 2014-01-20 Canon Inc 画像形成装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572168B2 (ja) * 2003-03-31 2010-10-27 日本電気株式会社 リレー接点の溶着の検出方法及び装置
JP5233018B2 (ja) * 2008-01-18 2013-07-10 アズビル株式会社 床暖房用制御装置
JP5479268B2 (ja) 2010-08-16 2014-04-23 キヤノン株式会社 画像形成装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251550A (ja) * 1994-03-16 1995-10-03 Canon Inc 画像形成装置
JP2006338924A (ja) * 2005-05-31 2006-12-14 Yamatake Corp 接点駆動装置および方法
JP2009027848A (ja) * 2007-07-20 2009-02-05 Honda Motor Co Ltd コンタクタの接続・遮断方法
JP2011237480A (ja) * 2010-05-06 2011-11-24 Canon Inc 画像形成装置
JP2014010307A (ja) * 2012-06-29 2014-01-20 Canon Inc 画像形成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187274A (ja) * 2019-05-15 2020-11-19 キヤノン株式会社 電源装置及び画像形成装置
JP7263112B2 (ja) 2019-05-15 2023-04-24 キヤノン株式会社 電源装置及び画像形成装置
JP7459522B2 (ja) 2020-01-21 2024-04-02 沖電気工業株式会社 負荷制御装置および画像形成装置

Also Published As

Publication number Publication date
US20160091849A1 (en) 2016-03-31
US9519253B2 (en) 2016-12-13

Similar Documents

Publication Publication Date Title
US9897964B2 (en) Power supply apparatus and image forming apparatus
JP2016073015A (ja) 電力供給装置及び画像形成装置
JP5791271B2 (ja) 画像形成装置及び電源装置
JP5693190B2 (ja) 画像形成装置
JP6548446B2 (ja) 定着装置
JP5258453B2 (ja) 画像形成装置及びその電力制御方法
JP6020219B2 (ja) 電源システム
US8270862B2 (en) Image forming apparatus and method for controlling fuser thereof
JP5640491B2 (ja) 電源装置および画像形成装置
JP7040884B2 (ja) 電源装置、画像形成装置および制御方法
JP2013235107A (ja) 画像形成装置
JP2008003469A (ja) 加熱装置および画像形成装置
JP2017188978A (ja) 電源装置及び画像形成装置
JP2008225347A (ja) 画像形成装置
JP2006262681A (ja) 蓄電装置及び画像形成装置
JP2010217786A (ja) 定着装置および画像形成装置
JP2005274886A (ja) 電源回路
JP2006304534A (ja) スイッチング電源装置及びこれを具備した画像形成装置
JP5533439B2 (ja) 画像形成装置
JP2014155370A (ja) 電源装置及び画像形成装置
JP6919191B2 (ja) 画像形成装置
JP2020027164A (ja) 画像形成装置
JP2017122814A (ja) 画像形成装置
JP2015022170A (ja) 像加熱装置及び画像形成装置
JP2007047211A (ja) 定着ヒータ制御装置、定着ヒータ制御方法、および画像形成装置

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170925

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180911