JP2016071274A - 光学フィルムおよびその利用 - Google Patents

光学フィルムおよびその利用 Download PDF

Info

Publication number
JP2016071274A
JP2016071274A JP2014202786A JP2014202786A JP2016071274A JP 2016071274 A JP2016071274 A JP 2016071274A JP 2014202786 A JP2014202786 A JP 2014202786A JP 2014202786 A JP2014202786 A JP 2014202786A JP 2016071274 A JP2016071274 A JP 2016071274A
Authority
JP
Japan
Prior art keywords
film
optical film
resin
meth
acrylic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014202786A
Other languages
English (en)
Other versions
JP6683415B2 (ja
Inventor
隆司 大西
Takashi Onishi
隆司 大西
宇賀村 忠慶
Tadayoshi Ukamura
忠慶 宇賀村
倫明 北村
Michiaki Kitamura
倫明 北村
彩 阿部
Aya Abe
彩 阿部
中西 秀高
Hidetaka Nakanishi
秀高 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2014202786A priority Critical patent/JP6683415B2/ja
Publication of JP2016071274A publication Critical patent/JP2016071274A/ja
Application granted granted Critical
Publication of JP6683415B2 publication Critical patent/JP6683415B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】
ハードコート層に代表される機能性コーティング層との密着性に優れ、フィルム強度および可とう性を兼ね備えた光学フィルムを提供する。
【解決手段】
アクリル樹脂フィルムを含み、マイクロスラリーエロージョン(MSE)試験による摩耗率(μm/g)が0.7以上1.4以下の範囲にあると共に、JIS P8115に準拠して測定した耐折回数が300回以上である光学フィルムである。
【選択図】なし

Description

本発明は、光学フィルムおよびその利用に関し、より詳細には、液晶表示装置や有機電界発光表示装置などに用いられるアクリル樹脂フィルムを含む光学フィルム、およびこれを用いた偏光子保護フィルム、偏光板並びに画像表示装置に関する。
ポリメタクリル酸メチル(PMMA)に代表される(メタ)アクリル重合体を含むアクリル樹脂は、光線透過率などの光学特性に優れるとともに、機械的強度、成形加工性および表面硬度のバランスに優れる。このため、アクリル樹脂は、自動車、家電製品をはじめとする各種の工業製品に、透明材料として幅広く使用されている。近年、アクリル樹脂が光学関連用途に使用されるケースが増えている。特に、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、有機EL表示装置(OELD)のような画像表示装置に組み込まれる光学フィルムへのアクリル樹脂の応用が進められている。
例えば、光学フィルムの一種である偏光子保護フィルムは、通常、偏光子と積層された偏光板の状態で画像表示装置に使用される。偏光板は、通常、偏光子と、当該偏光子の少なくとも一方の面に接着層を介して貼り合わされた偏光子保護フィルムとを含む構成を有し、最表層にはハードコート層などの機能性コーティング層を積層されることがある。このような、機能性コーティング層を有するアクリル樹脂フィルムを用いた光学フィルムが特許文献1に開示されている。
特開2010−265461号公報
特許文献1には、各種機能性コーティング層を有するアクリル樹脂フィルムが開示されており、特許文献1に記載の光学用面状熱可塑性樹脂成形体に、前記各種機能性コーティング層を積層塗工する方法や、機能性コーティング層が塗工された部材を粘着剤や接着剤を介して光学用面状熱可塑性樹脂成形体に積層する方法が開示されている。
しかしながら、アクリル樹脂フィルムと機能性コーティング層との密着性が充分であっても、アクリル樹脂フィルム自身の母材破壊により機能性コーティング層が脱離するという問題があった。
本発明は、前記の問題点に鑑みなされたものであり、アクリル樹脂フィルムを含み、ハードコート層に代表される機能性コーティング層との密着性に優れ、フィルム強度および可とう性を兼ね備えた光学フィルムの提供を目的とする。
前記の課題を解決するために、本発明者は、光学フィルムの厚み方向の強度と面内方向の強度を特定の範囲となるように二軸延伸を行うことで、アクリル樹脂フィルムと機能性コーティング層との密着性が大きく向上することを見出し、本発明を完成するに至った。
すなわち、本発明は、以下の構成を包含する。
本発明の光学フィルムは、アクリル樹脂フィルムを含み、マイクロスラリーエロージョン(MSE)試験による摩耗率(μm/g)が0.7以上1.4以下の範囲にあると共に、JIS P8115に準拠して測定した耐折回数が300回以上である。
尚、MSE試験は材料表面の同一のポイントに一定量の粒子投射を行い、その摩耗した深さを計測する操作を繰り返し、摩耗グラフ作成し、その傾きをMSE摩耗率と定義する評価方法であり、測定原理は例えば日本機械学会論文集(C編)74巻739号(2008−3)などに記載されている。
本発明の光学フィルムは、JIS K7128−1に準拠して測定したトラウザー引き裂き強度が0.01N以上である。
本発明の光学フィルムは、前記アクリル樹脂フィルムが、環構造を有する(メタ)アクリル重合体を含有することが好ましい。
本発明の光学フィルムは、前記環構造が、無水マレイン酸構造、N−置換マレイミド構
造、無水グルタル酸構造、グルタルイミド構造およびラクトン環構造からなる群より選ば
れる少なくとも1種であることが好ましい。
本発明の光学フィルムは、380nmにおける光線透過率が30%以下であることが好
ましい。
本発明の光学フィルムは、前記アクリル樹脂フィルムが、分子量600以上の紫外線吸
収剤を含むことが好ましい。
本発明の偏光子保護フィルムは、前記本発明の光学フィルムを含む。
本発明の偏光板は、前記本発明の光学フィルムを備える。
本発明の画像表示装置は、前記本発明の偏光板を備える。
本発明にかかる光学フィルムは、アクリル樹脂フィルムを含み、マイクロスラリーエロージョン(MSE)試験による摩耗率(μm/g)が0.7以上1.4以下の範囲にあると共に、JIS P8115に準拠して測定した耐折回数が300回以上である。
それゆえ、機能性コーティング層を有するアクリル樹脂フィルム自身が母材破壊により脱離することなく密着性に優れ、フィルム強度および可とう性を兼ね備えた光学フィルムおよびそれを用いた偏光子保護フィルム、偏光板並びに画像表示装置を提供することができる。
以下、本発明の実施の形態について、詳細に説明する。これ以降の説明において特に記載がない限り、「%」は「質量%」を、「部」は「質量部」を、それぞれ意味する。また、範囲を示す「A〜B」は、A以上B以下であることを示す。
本明細書における「樹脂」は「重合体」よりも広い概念である。樹脂は、例えば1種または2種以上の重合体から構成されてもよいし、必要に応じて、重合体以外の材料、例えば紫外線吸収剤、酸化防止剤、フィラーなどの添加剤、相溶化剤、安定化剤などを含んでいてもよい。
本発明にかかる光学フィルムは、アクリル樹脂フィルムであり、マイクロスラリーエロージョン(MSE)試験による摩耗率(μm/g)が0.7以上1.4以下の範囲にあると共に、JIS P8115に準拠して測定した耐折回数が300回以上である光学フィルムである。
アクリル樹脂フィルムは、(メタ)アクリル重合体を含有するアクリル樹脂から構成されるフィルムである。つまり、アクリル樹脂フィルムは、アクリル樹脂からなる。アクリル樹脂は熱可塑性であることが好ましい。
アクリル樹脂フィルムは、アクリル樹脂の成形により得られる。アクリル樹脂における(メタ)アクリル重合体の含有率は、通常、30質量%以上、好ましくは50質量%以上、より好ましくは70質量%以上、特に好ましくは90質量%以上、最も好ましくは95質量%以上である。(メタ)アクリル重合体は、光線透過率が高く、屈折率の波長依存性が低いなどの優れた光学特性を有している。このため、(メタ)アクリル重合体を含有するアクリル樹脂は、光学フィルムへの使用に好適である。
(メタ)アクリル重合体は、(メタ)アクリル酸エステル単量体に由来する構成単位((メタ)アクリル酸エステル単位)を有する重合体である。(メタ)アクリル重合体における(メタ)アクリル酸エステル単位の含有率は、通常、10質量%以上、好ましくは30質量%以上、より好ましくは50質量%以上、特に好ましくは70質量%以上である。
(メタ)アクリル重合体は、主鎖に環構造を有していてもよい。当該環構造は、例えば、(メタ)アクリル酸エステル単量体と環構造を有する単量体とを共重合する、あるいは(メタ)アクリル酸エステル単量体を含む単量体群を重合した後に環化反応を進行させることによって、(メタ)アクリル重合体の主鎖に導入される。重合体が主鎖に環構造を有する場合、(メタ)アクリル酸エステル単位および当該環構造の含有率の合計が50質量%以上であれば、当該重合体は(メタ)アクリル重合体である。
(メタ)アクリル酸エステル単位は、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2−クロロエチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6−ペンタヒドロキシヘキシル、(メタ)アクリル酸2,3,4,5−テトラヒドロキシペンチルの各単量体に由来する構成単位である。
(メタ)アクリル重合体は、(メタ)アクリル酸メチル単位を有することが好ましく、この場合、最終的に得られた光学フィルムの光学特性および熱安定性が向上する。(メタ)アクリル重合体は、2種以上の(メタ)アクリル酸エステル単位を有していてもよい。
(メタ)アクリル重合体は、(メタ)アクリル酸エステル単位以外の構成単位を有していてもよい。このような構成単位は、例えば、スチレン、ビニルトルエン、α−メチルスチレン、α−ヒドロキシメチルスチレン、α−ヒドロキシエチルスチレン、アクリロニトリル、メタクリロニトリル、エチレン、プロピレン、4−メチル−1−ペンテン、酢酸ビニル、2−ヒドロキシメチル−1−ブテン、メチルビニルケトン、N−ビニルピロリドン、N−ビニルカルバゾールの各単量体に由来する構成単位である。(メタ)アクリル重合体は、これらの構成単位を2種以上有していてもよい。(メタ)アクリル重合体が、N−ビニルピロリドン単位あるいはN−ビニルカルバゾール単位を有する場合、光学フィルムにおける複屈折の波長分散性の制御の自由度が向上する。例えば、可視光域において、光の波長が短くなるほど複屈折が小さくなる(位相差の絶対値が小さくなる)波長分散性(いわゆる逆波長分散性)を示す位相差フィルムが得られる。
重合後の環化反応により主鎖に環構造を導入する場合、(メタ)アクリル重合体は、水酸基および/またはカルボン酸基を有する単量体を含む単量体群の共重合により形成することが好ましい。
水酸基を有する単量体は、例えば、2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチル、2−(ヒドロキシメチル)アクリル酸イソプロピル、2−(ヒドロキシメチル)アクリル酸ブチル、2−(ヒドロキシエチル)アクリル酸メチル、メタリルアルコール、アリルアルコールである。カルボン酸基を有する単量体は、例えば、アクリル酸、メタクリル酸、クロトン酸、2−(ヒドロキシメチル)アクリル酸、2−(ヒドロキシエチル)アクリル酸である。
これらの単量体を2種以上使用してもよい。なお、これらの単量体は、環化反応によって(メタ)アクリル重合体の主鎖に位置する環構造となるが、環化反応時に当該単量体の全てが環構造に変化する必要はなく、環化反応後の(メタ)アクリル重合体がこれらの単量体に由来する構成単位を有していてもよい。
(メタ)アクリル重合体の重量平均分子量は、好ましくは1万〜50万であり、より好ましくは2万〜40万であり、さらに好ましくは3万〜30万である。
(メタ)アクリル重合体は、主鎖に環構造を有することが好ましい。アクリル樹脂フィルムは、主鎖に環構造を有する(メタ)アクリル重合体を含むことが好ましい。この場合、光学フィルムの耐熱性および硬度が向上する。これに加えて、主鎖の環構造は、延伸によってアクリル樹脂フィルムが大きな位相差を発現することに寄与する。この特徴は、位相差フィルムまたは位相差フィルムの機能を有する偏光子保護フィルムとしての、本発明の光学フィルムの使用を可能とする。
(メタ)アクリル重合体が主鎖に有していてもよい環構造は、例えば、N−置換マレイミド構造、無水マレイン酸構造、グルタルイミド構造、無水グルタル酸構造およびラクトン環構造から選ばれる少なくとも1種である。N−置換マレイミド構造は、例えば、シクロヘキシルマレイミド構造、メチルマレイミド構造、フェニルマレイミド構造、ベンジルマレイミド構造である。
光学フィルムの耐熱性の観点からは、当該環構造は、ラクトン環構造、環状イミド構造(例えば、N−アルキル置換マレイミド構造、グルタルイミド構造)、環状無水物構造(例えば、無水マレイン酸構造および無水グルタル酸構造)が好ましい。
本発明の光学フィルムが位相差フィルムである場合、当該フィルムに対して正の位相差が付与される観点からは、当該環構造は、ラクトン環構造、グルタルイミド構造および無水グルタル酸構造が好ましい。
以下の一般式(1)に無水グルタル酸構造およびグルタルイミド構造を示す。
Figure 2016071274
前記一般式(1)におけるR、Rは互いに独立して水素原子、またはメチル基であり、Xは酸素原子または窒素原子である。Xが酸素原子であるとき、Rは存在せず、Xが窒素原子のとき、Rは、水素原子、炭素数1から6の直鎖アルキル基、シクロペンチル基、シクロヘキシル基、ベンジル基またはフェニル基である。
が酸素原子のとき、一般式(1)により示される環構造は無水グルタル酸構造となる。無水グルタル酸構造は、例えば、(メタ)アクリル酸エステルと(メタ)アクリル酸との共重合体を分子内で脱アルコール環化縮合させることによって形成することができる。
が窒素原子のとき、一般式(1)により示される環構造はグルタルイミド構造となる。グルタルイミド構造は、例えば、(メタ)アクリル酸エステル重合体をメチルアミンなどのイミド化剤によりイミド化することによって形成することができる。
以下の一般式(2)に、無水マレイン酸構造およびN−置換マレイミド構造を示す。
Figure 2016071274
前記一般式(2)におけるR、Rは互いに独立して水素原子、またはメチル基であり、Xは酸素原子または窒素原子である。Xが酸素原子であるとき、Rは存在せず、Xが窒素原子のとき、Rは、水素原子、炭素数1から6の直鎖アルキル基、シクロペンチル基、シクロヘキシル基、ベンジル基またはフェニル基である。
が酸素原子のとき、一般式(2)により示される環構造は無水マレイン酸構造となる。無水マレイン酸構造は、例えば、無水マレイン酸と(メタ)アクリル酸エステルとを共重合することによって形成することができる。
が窒素原子のとき、一般式(2)により示される環構造はN−置換マレイミド構造となる。N−置換マレイミド構造は、例えば、フェニルマレイミドなどのN−置換マレイミドと(メタ)アクリル酸エステルとを重合することによって形成することができる。
なお、一般式(1)、(2)の説明において例示した環構造を形成する各方法では、各々の環構造を形成するために用いる重合体が全て(メタ)アクリル酸エステル単位を構成単位として有するため、当該方法により得た樹脂はアクリル樹脂となる。
(メタ)アクリル重合体が主鎖に有していてもよいラクトン環構造は特に限定されず、例えば、4から8員環であってもよいが、環構造の安定性に優れることから5員環または6員環であることが好ましく、6員環であることがより好ましい。
6員環であるラクトン環構造は、例えば、特開2004−168882号公報に開示されている構造であるが、前駆体の重合収率が高いこと、前駆体の環化縮合反応により、高いラクトン環含有率を有するアクリル樹脂が得られること、メタクリル酸メチル単位を構成単位として有する重合体を前駆体にできること、などの理由から以下の一般式(3)に示される構造が好ましい。
Figure 2016071274
前記一般式(3)において、R、RおよびRは、互いに独立して、水素原子または炭素数1から20の範囲の有機残基である。当該有機残基は酸素原子を含んでいてもよい。
一般式(3)における有機残基は、例えば、メチル基、エチル基、プロピル基などの炭素数1から20の範囲のアルキル基、エテニル基、プロペニル基などの炭素数2から20の範囲の不飽和脂肪族炭化水素基、フェニル基、ナフチル基などの炭素数6から20の範囲の芳香族炭化水素基であり、前記アルキル基、前記不飽和脂肪族炭化水素基、前記芳香族炭化水素基は、水素原子の一つ以上が、水酸基、カルボキシル基、エーテル基、およびエステル基から選ばれる少なくとも1種類の基により置換されていてもよい。
アクリル樹脂におけるラクトン環構造を除く前記環構造の含有率は特に限定されないが、例えば5〜90質量%であり、好ましくは10〜70質量%であり、よりこの好ましくは10〜60質量%であり、さらに好ましくは10〜50質量%である。
アクリル樹脂が主鎖にラクトン環構造を有する場合、当該樹脂におけるラクトン環構造の含有率は特に限定はされないが、例えば5〜90質量%であり、好ましくは10〜80質量%であり、より好ましくは10〜70質量%であり、さらに好ましくは20〜60質量%である。
アクリル樹脂における環構造の含有率が過渡に小さくなると、フィルムの耐熱性の低下や、耐溶剤性および表面硬度が不十分となることがある。一方、前記含有率が過渡に大きくなると、フィルムの成形性や機械的特性が低下する。
主鎖に環構造を有する(メタ)アクリル重合体は、公知の方法により形成することができる。 主鎖に無水グルタル酸構造を有する(メタ)アクリル重合体は、例えば、特開2006−283013号公報、特開2006−335902号公報、特開2006−274118号公報に記載されている重合体であり、当該公報に記載されている方法により形成することができる。
主鎖にグルタルイミド構造を有する(メタ)アクリル重合体は、例えば、特開2006−309033号公報、特開2006−317560号公報、特開2006−328329号公報、特開2006−328334号公報、特開2006−337491号公報、特開2006−337492号公報、特開2006−337493号公報、特開2006−337569号公報、特開2007−009182号公報に記載されている重合体であり、当該公報に記載されている方法により形成することができる。
主鎖に無水マレイン酸構造あるいはN−置換マレイミド構造を有する(メタ)アクリル重合体は、例えば、特開昭57−153008号公報、特開2007−31537号公報に記載されている重合体であり、当該公報に記載されている方法により形成することができる。
主鎖にラクトン環構造を有する(メタ)アクリル重合体は、例えば、特開2000−230016号公報、特開2001−151814号公報、特開2002−120326号公報、特開2002−254544号公報、特開2005−146084号公報に記載されている重合体であり、当該公報に記載されている方法により形成することができる。
なお、樹脂おける各種重合体を作成するにあたり、重合を行う際にそのモノマー原料、重合開始剤や触媒などの副原料および重合に用いる溶媒などは可能な限り濾過してから使用することが、重合体の異物低減の観点、および重合後に濾過することよりも低粘度の段階で濾過できることから好ましい。濾過の方法としては、液体であれば直接、固体であれば重合に使用する溶媒等に溶解してからメンブレンフィルタや中空糸膜フィルタなどの各種フィルタに通せばよく、それぞれ別々に濾過しても、混合物としてから濾過してもよい。また、この際の濾過の精度は、好ましくは5.0μm以下、より好ましくは1.0μm以下、さらに好ましくは0.5μm以下である。
また、重合中に発生するゲル成分等の濾過、重合後の環化反応など反応工程や樹脂ペレット等の成形体とする際の加熱溶融による熱劣化樹脂の除去の観点から、重合溶液の濾過および/または加熱溶融樹脂の濾過を併用することが好ましい。濾過の方法としては、リーフディスクフィルタ、キャンドルフィルタ、パックディスクフィルタおよび円筒型フィルタである。なかでも、有効濾過面積が高いリーフディスクフィルタおよびキャンドルフィルタが好ましい。フィルタ濾材は特に限定されない。例えば、ポリプロピレン、コットン、ポリエステル、ビスコースレーヨン、グラスファイバーなどの各種の繊維の不織布もしくはロービングヤーン巻回体、またはフェノール樹脂含浸セルロースからなる濾材、金属繊維の不織布を焼結した濾材、金属粉末を焼結した濾材、複数の金網を積層した濾材、これらの濾材を組み合わせたいわゆるハイブリッド型の濾材など、いずれの濾材も使用可能である。なかでも、耐久性および耐圧性に優れることから、金属繊維の不織布を焼結した濾材が好ましい。重合液を濾過する精度は、例えば15μm以下であり、得られた樹脂体を光学フィルムなどの光学部材に使用することを想定すると、その光学的欠点の低減のために5μm以下が好ましい。濾過精度の下限は特に限定されないが、例えば0.2μmである。これら濾過工程は、重合工程、或いは環化反応工程などに引き続いて連続的に実施することができる。
アクリル樹脂フィルムは、本発明の効果が得られる限り、(メタ)アクリル重合体以外の他の熱可塑性重合体を含んでいてもよい。
他の熱可塑性重合体は、例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、ポリ(4−メチル−1−ペンテン)などのオレフィン重合体;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ塩化ビニルなどのハロゲン化ビニル重合体;ポリスチレン、スチレン−メタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、アクリロニトリル−ブタジエン−スチレンブロック共重合体などのスチレン系重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどのセルロースアシレート;ナイロン6、ナイロン66、ナイロン610などのポリアミド;ポリアセタール;ポリカーボネート;ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリエーテルエーテルケトン;ポリスルホン;ポリエーテルスルホン;ポリオキシベンジレン;ポリアミドイミド;ポリブタジエン系ゴムあるいはアクリル系ゴムを配合したABS樹脂、ASA樹脂などのゴム質重合体;である。
ゴム質重合体は、表面にアクリル樹脂相溶し得る組成のグラフト部を有するのが好ましく、ゴム質重合体の平均粒子径は、フィルムとした際の透明性向上の観点から、300nm以下であることが好ましく、より好ましくは200nm以下であり、さらに好ましくは150nm以下である。
なお、ゴム質重合体の平均粒子径は、後述する微粒子の平均一次粒子径の求め方と同じ方法で測定することができる。
アクリル樹脂フィルムがスチレン系重合体を含有する延伸フィルムである場合、主鎖に環構造を有する(メタ)アクリル重合体が示す正の位相差を、スチレン系重合体が示す負の位相差により打ち消すことができる。当該アクリル樹脂フィルムにおけるスチレン系重合体の含有率によっては、延伸フィルムである本発明の光学フィルムは、負の位相差フィルムにも、低位相差の偏光子保護フィルムにもなりうる。
アクリル樹脂フィルムがスチレン系重合体を含む場合、(メタ)アクリル重合体との相溶性の観点から、スチレン系重合体としてはスチレン−アクリロニトリル共重合体が好ましい。アクリル樹脂フィルムがABS樹脂またはASA樹脂を含む場合、アクリル樹脂フィルムにおける当該樹脂の含有率によっては、延伸フィルムである本発明の光学フィルムが正または負の位相差フィルムあるいは低位相差のフィルムとなったり、その可撓性が向上したりする。
アクリル樹脂フィルムにおける他の熱可塑性重合体の含有率は、好ましくは0〜50質量%、より好ましくは0〜40質量%、さらに好ましくは0〜30質量%、特に好ましくは0〜20質量%である。
アクリル樹脂フィルムは耐熱性、物性、光学特性を損なわない範囲で紫外線吸収能を有してもよい。具体的には、(メタ)アクリル重合体を製造するときの単量体成分として紫外線吸収性単量体および/または紫外線安定性単量体を用いる方法や、紫外線吸収剤および/または紫外線安定剤を前記(メタ)アクリル重合体に配合する方法がある。またこれらは、アクリル樹脂フィルムを含有する光学フィルムに支障がない限り、これらの方法を併用してもかまわない。
また、前記紫外線吸収機能を持続させるためには、紫外線吸収性単量体と紫外線安定性単量体とを併用することや、紫外線吸収剤と紫外線安定剤とを併用することが好ましい。また、紫外線吸収性単量体および/または紫外線安定性単量体と合わせて、紫外線吸収剤および/または紫外線安定剤を併用することも好ましい。
前記、紫外線吸収性単量体の種類としては、ベンゾトリアゾール系化合物あるいはベンゾフェノン系化合物あるいはトリアジン系化合物と重合性不飽和基とを有するアクリル系単量体が挙げられる。
ベンゾトリアゾール系化合物としては、例えば2−[2’−ヒドロキシ−5’−(メタ)アクリロイルオキシメチルフェニル]−2H−ベンゾトリアゾール、2−[2’−ヒドロキシ−5’−(メタ)アクリロイルオキシエチルフェニル]−2H−ベンゾトリアゾール、2−[2’−ヒドロキシ−5’−(メタ)アクリロイルオキシプロピルフェニル]−2H−ベンゾトリアゾール、2−[2’−ヒドロキシ−5’−(メタ)アクリロイルオキシヘキシルフェニル]−2H−ベンゾトリアゾール、2−[2’−ヒドロキシ−3’−tert−ブチル−5’−(メタ)アクリロイルオキシエチルフェニル]−2H−ベンゾトリアゾール、2−〔2’−ヒドロキシ−5’−(β−(メタ)アクリロイルオキシエトキシ)−3’−tert−ブチルフェニル〕−5−tert−ブチル−2H−ベンゾトリアゾール、2−[2’−ヒドロキシ−3’−メタクリルアミノメチル−5’−(1”,1”,3”,3”−テトラメチル)ブチルフェニル]−2H−ベンゾトリアゾールなどを用いることができる。
また、ベンゾフェノン系化合物としては、例えば、2−ヒドロキシ−4−[2−(メタ)アクリロイルオキシ]エトキシベンゾフェノン、2−ヒドロキシ−4−[2−(メタ)アクリロイルオキシ]ブトキシベンゾフェノン、2,2’−ジヒドロキシ−4−[2−(メタ)アクリロイルオキシ]エトキシベンゾフェノン、2−ヒドロキシ−4−[2−(メタ)アクリロイルオキシ]エトキシ−4’−(2−ヒドロキシエトキシ)ベンゾフェノンなどを用いることができる。
また、トリアジン系化合物としては、例えば、4−ジフェニル−6−[2−ヒドロキシ−4−(2−アクリロイルオキシエトキシ)]−s−トリアジン、2,4−ビス(2−メチルフェニル)−6−[2−ヒドロキシ−4−(2−アクリロイルオキシエトキシ)]−s−トリアジン、2,4−ビス(2−メトキシフェニル)−6−[2−ヒドロキシ−4−(2−アクリロイルオキシエトキシ)]−s−トリアジンなどを用いることができる。
このような紫外線吸収性単量体を用いる場合には、紫外線吸収性単量体が全単量体の0.1〜25質量%共重合されることが好ましく、さらに好ましくは1〜15質量%共重合されることが好ましい。含有量が少ないと耐候性向上の寄与が低く、含有量が多すぎると耐熱水性、耐溶剤性が低下したり、黄変を引き起こしたりする場合がある。
前記紫外線安定性単量体としては、ヒンダードアミン系化合物に重合性不飽和基が結合されたものを用いることができ、具体例としては、4−(メタ)アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−(メタ)アクリロイルアミノ−2,2,6,6−テトラメチルピペリジン、4−(メタ)アクリロイルオキシ−1,2,2,6,6−ペンタメチルピペリジン、4−(メタ)アクリロイルアミノ−1,2,2,6,6−ペンタメチルピペリジン、4−シアノ−4−(メタ)アクリロイルアミノ−2,2,6,6−テトラメチルピペリジン、4−クロトノイルオキシ−2,2,6,6−テトラメチルピペリジン、4−クロトノイルアミノ−2,2,6,6−テトラメチルピペリジン、1−(メタ)アクリロイル−4−(メタ)アクリロイルアミノ−2,2,6,6−テトラメチルピペリジン、1−(メタ)アクリロイル−4−シアノ−4−(メタ)アクリロイルアミノ−2,2,6,6−テトラメチルピペリジン、1−クロトノイル−4−クロトノイルオキシ−2,2,6,6−テトラメチルピペリジンなどが挙げられる。
このような紫外線安定性単量体を用いる場合には、紫外線安定性単量体は、全単量体の0.1〜25質量%共重合されることが好ましく、さらに好ましくは1〜15質量%共重合されることが好ましい。含有量が少ないと耐候性向上の寄与が低く、含有量が多すぎると耐熱水性、耐溶剤性が低下したり、黄変を引き起こしたりする場合がある。
前記紫外線吸収剤としては、ベンゾフェノン系化合物、サリシレート系化合物、ベンゾエート系化合物、トリアゾール系化合物およびトリアジン系化合物等が挙げられる。
ベンゾフェノン系化合物としては、2,4−ジヒドロキシベンゾフェノン、4−n−オクチルオキシ−2−ヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2−ヒドロキシ−4−n−オクチルオキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、1,4−ビス(4−ベンゾイル−3−ヒドロキシフェノン)−ブタン等が挙げられる。
サリシケート系化合物としては、p−t−ブチルフェニルサリシケート等が挙げられる。
ベンゾエート系化合物としては、2,4−ジ−t−ブチルフェニル−3’,5’−ジ−t−ブチル−4’−ヒドロキシベンゾエート等が挙げられる。
また、トリアゾール系化合物としては、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−(3,5−ジ−tert−ブチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−p−クレゾール、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノール、2−ベンゾトリアゾール−2−イル−4,6−ジ−tert−ブチルフェノール、2−[5−クロロ(2H)−ベンゾトリアゾール−2−イル]−4−メチル−6−t−ブチルフェノール、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ジ−t−ブチルフェノール、2−(2H−ベンゾトリアゾール−2−イル)−4−(1,1,3,3−テトラメチルブチル)フェノール、2−(2H−ベンゾトリアゾール−2−イル)−4−メチル−6−(3,4,5,6−テトラヒドロフタルイミジルメチル)フェノール、メチル3−(3−(2H−ベンゾトリアゾール−2−イル)−5−t−ブチル−4−ヒドロキシフェニル)プロピオネート/ポリエチレングリコール300の反応生成物、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、3−(2H−ベンゾトリアゾール−2−イル)−5−(1,1−ジメチルエチル)−4−ヒドロキシ−C7−9側鎖及び直鎖アルキルエステルが挙げられる。
さらに、トリアジン系化合物としては、2−モノ(ヒドロキシフェニル)−1,3,5−トリアジン化合物や2,4−ビス(ヒドロキシフェニル)−1,3,5−トリアジン化合物、2,4,6−トリス(ヒドロキシフェニル)−1,3,5−トリアジン化合物が挙げられ、具体的には、2,4−ジフェニル−6−(2−ヒドロキシ−4−メトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−エトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−プロポキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ヘキシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−オクチルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ドデシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ベンジルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ブトキシエトキシ)−1,3,5−トリアジン、2,4−ビス(2−ヒドロキシ−4−ブトキシフェニル)−6−(2,4−ジブトキシフェニル)−1,3−5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−メトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−エトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−プロポキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ヘキシルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−オクチルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ドデシルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ベンジルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−エトキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ブトキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−プロポキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−メトキシカルボニルプロピルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−エトキシカルボニルエチルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−(1−(2−エトキシヘキシルオキシ)−1−オキソプロパン−2−イルオキシ)フェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−メトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−エトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−プロポキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ブトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ブトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ヘキシルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−オクチルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ドデシルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ベンジルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−エトキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ブトキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−プロポキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−メトキシカルボニルプロピルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−エトキシカルボニルエチルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−(1−(2−エトキシヘキシルオキシ)−1−オキソプロパン−2−イルオキシ)フェニル)−1,3,5−トリアジン等が挙げられる。
その中でも、非晶性の熱可塑性樹脂、特にアクリル樹脂と相溶性が高く吸収特性が優れている点から、2,4−ビス(2,4−ジメチルフェニル)−6−[2−ヒドロキシ−4−(3−アルキルオキシ−2−ヒドロキシプロピルオキシ)−5−α−クミルフェニル]−s−トリアジン骨格(アルキルオキシ;オクチルオキシ、ノニルオキシ、デシルオキシなどの長鎖アルキルオキシ基)を有する紫外線吸収剤が挙げられる。
また、2,4,6−トリス(ヒドロキシフェニル)−1,3,5−トリアジン骨格を有する紫外線吸収剤が好ましく用いられ、2,4,6−トリス(2−ヒドロキシ−4−長鎖アルキルオキシ基置換フェニル)−1,3,5−トリアジン骨格や2,4,6−トリス(2−ヒドロキシ−3−アルキル−4−長鎖アルキルオキシ基置換フェニル)−1,3,5−トリアジン骨格を有する紫外線吸収剤が特に好ましいトリアジン系紫外線吸収剤である。
市販品としては、例えば、トリアジン系紫外線吸収剤として「チヌビン1577」「チヌビン460」「チヌビン477」(BASFジャパン製)、トリアゾール系紫外線吸収剤として「アデカスタブLA−31」「アデカスタブLA−F70」(ADEKA製)等が挙げられる。
これらは単独で、または2種類以上の組み合わせで使用することができる。また、紫外線吸収剤と合わせて、前記紫外線吸収性単量体を共重合する手法を併用することも好ましい。
紫外線安定性単量体紫外線吸収剤の配合量は特に限定されないが、アクリル樹脂を含むフィルム中に0.01〜25質量%であることが好ましく、さらに好ましくは0.05〜10質量%である。添加量が少なすぎると耐候性向上の寄与が低く、また多すぎると機械的強度の低下や黄変を引き起こす場合がある。
前記紫外線吸収剤を含むアクリル樹脂フィルムの波長380nmにおける光線透過率は30%以下であることが好ましく、より好ましくは20%以下であり、さらに好ましくは10%以下であり、5%以下が特に好ましい。
波長380nmにおける光線透過率が30%を超える場合、偏光子の劣化を十分抑制することができない。より好ましくは、前記光線透過率が20%以下であり、更に好ましくは10%以下であり、最も好ましくは5%以下である。
前記紫外線吸収剤は、分子量が600以上であることが好ましく、より好ましくは650以上であり、さらに好ましくは700以上である。
当該分子量が600未満の場合、紫外線吸収剤を添加したアクリル樹脂組成物を成形する際に発泡が生じたり、紫外線吸収剤がブリードアウトしたりすることがある。また、成形時に加えられる熱により紫外線吸収剤が蒸散して、得られた樹脂成形品の紫外線吸収能が低下したり、蒸散した紫外線吸収剤により成形装置を汚染したりするなどの問題が生じることがある。
一方、紫外線吸収剤の分子量の上限は、10000以下であることが好ましく、8000以下がなお好ましく、5000以下がより好ましい。当該分子量が10000を超えると、アクリル系樹脂との相溶性が低下することで、最終的に得られる樹脂成形品の色相、濁度などの光学的特性が低下する。
アクリル樹脂フィルムは、その他の添加剤を含んでいてもよい。その他の添加剤は、例えば、ヒンダードフェノール系、リン系、イオウ系などの酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤などの安定剤;ガラス繊維、炭素繊維などの補強材;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモンなどの難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤から構成される帯電防止剤;無機顔料、有機顔料、染料などの着色剤;有機フィラー、無機フィラー;アンチブロッキング剤;樹脂改質剤;有機充填剤、無機充填剤;可塑剤;滑剤;位相差低減剤である。
アクリル樹脂フィルムに添加剤を添加するタイミングは、特に限定されるものではない。例えば、アクリル樹脂を製造中に所定の段階で添加するか、或いは、アクリル樹脂を製造した後に添加剤を加えて加熱溶融させて混練する方法、アクリル樹脂以外の他の熱可塑性重合体に混練しておいてからアクリル樹脂に加える方法、などが挙げられる。いずれにせよこれら添加剤は、可能であれば濾過などの方法で異物除去してから使用することが好ましい。濾過の方法としては、液体であれば直接、固体であれば重合に使用する溶媒等に溶解してからメンブレンフィルタや中空糸膜フィルタなどの各種フィルタに通せばよく、それぞれ別々に濾過しても、混合物としてから濾過してもよい。また、この際の濾過の精度は、好ましくは5.0μm以下、より好ましくは1.0μm以下、さらに好ましくは0.5μm以下である。
アクリル樹脂フィルムにおけるその他の添加剤の含有率は、好ましくは0〜5質量%、より好ましくは0〜2質量%、さらに好ましくは0〜1質量%である。
アクリル樹脂フィルムのガラス転移温度(Tg)は、好ましくは100℃以上、より好ましくは110℃以上、さらに好ましくは115℃以上、特に好ましくは120℃以上である。アクリル樹脂フィルムのTgの上限は特に限定されないが、当該フィルムの延伸性の観点から、好ましくは170℃以下である。
主鎖に環構造を有する(メタ)アクリル重合体は、アクリル樹脂フィルムならびに当該フィルムを含む光学フィルムのTgを上昇させ、耐熱性を向上させる。
アクリル樹脂フィルムの厚さは特に限定されず、好ましくは5〜200μm、より好ましくは10〜100μmである。
当該厚さが5μm未満になると、光学フィルムとしての十分な強度が保てなくなることがある。当該厚さが200μmを超えると、フィルムの透明性が低下して、光学フィルムとしての使用に適さなくなることがある。
これに加えて、過度に大きなアクリル樹脂フィルムの厚さは、本発明の光学フィルムと他の部材(例えば、機能性フィルム)とを接合する際に接着層に使用する接着剤組成物の乾燥を阻害する。特に、水系の接着剤組成物を使用する際に、溶剤または分散媒である水の乾燥が遅くなることによって、本発明の光学フィルムと他の部材との積層構造を有する光学部材の品質および生産性の低下を招きやすい。
アクリル樹脂フィルムは、1.0%以下のヘイズを有することが好ましい。本発明の光学フィルムの構成によっては、そのヘイズは、0.5%以下、さらには0.3%以下となる。ヘイズは、JIS K7136の規定に基づいて測定される。
アクリル樹脂フィルムは、b値が2.0%以下であることが好ましい。より好ましくは、b値が1.5%以下であり、更に好ましくは1.0%以下であり、最も好ましくは0.5%以下である。b値を2.0%以下にすることにより、本光学フィルムを画像表示装置に組み込んだ場合に表示される色感が優れたものとなる。
アクリル樹脂フィルムは、マイクロスラリーエロージョン(MSE)試験による摩耗率(μm/g)が0.7以上1.4以下の範囲にあることが好ましい。より好ましくは、0.8以上1.3以下であり、さらに好ましくは0.9以上1.2以下である。この範囲内の値をとることによりハードコート層に代表される機能性コーティング層との密着性に優れたフィルムを得ることができる。
なお、フィルムのマイクロスラリーエロージョン(MSE)試験による摩耗率(μm/g)は、フィルムの表面未処理面をサンプル面として、下記測定条件で3回計測した平均値を用いて算出した。
摩耗試験条件
使用機種:MSE−A
濃度:3wt% 球状シリカ粒子(D50=5.0μm)
摩耗力設定:SUS摩耗率が0.005μm/g±10%となるように設定
ノズルサイズ:φ1mm
投射距離:4m
摩耗速度測定
使用機種:触針式表面形状測定機(小坂研究所製)
測定長:4mm
触針子:R10μmダイヤモンド
測定圧力:100μN
送り速度:0.2mm/sec
アクリル樹脂フィルムは、JIS P8115に準拠して測定した、直交する方向に各々測定した耐折回数の平均値が300回以上であることが好ましい。より好ましくは400回以上であり、さらに好ましくは500回以上である。この範囲内の値をとることにより、フィルム面内の強度が優れたフィルムを得ることができるため、ハードコート層に代表される機能性コーティング層を設けても十分なフィルム強度を達成することができる。
アクリル樹脂フィルムは、JIS K7128−1に準拠して測定したトラウザー引き裂き強度が0.01N以上であることが好ましい。より好ましくは、0.02N以上であり、さらに好ましくは0.03N以上である。この範囲内の値をとることによりフィルム厚み方向の強度に優れたフィルムを得ることができるため、ハードコート層に代表される機能性コーティング層との密着性が優れたものとなる。
アクリル樹脂フィルムの表面の濡れ張力は、好ましくは40mN/m以上、より好ましくは50mN/m以上、さらに好ましくは55mN/m以上である。表面の濡れ張力が40mN/m以上の場合、本発明の光学フィルムと他の部材との接着性がさらに向上する。
表面の濡れ張力を調整するために、任意の適切な表面処理をアクリル樹脂フィルムの表面に施し得る。表面処理は、例えば、コロナ放電処理、プラズマ処理、オゾン吹き付け、紫外線照射、火炎処理、化学薬品処理である。なかでも、コロナ放電処理およびプラズマ処理が好ましい。
アクリル樹脂フィルムは、未延伸フィルムであっても、延伸フィルムであってもよい。延伸フィルムは、一軸延伸フィルムであっても、二軸延伸フィルムであってもよい。二軸延伸フィルムは、同時二軸延伸フィルムおよび逐次二軸延伸フィルムのいずれでもよい。また延伸フィルムの遅相軸の方向は、フィルムの流れ方向であってもよく、幅方向であってもよく、更には任意の方向であってもよい。
アクリル樹脂フィルムが二軸延伸フィルムである場合、本発明の光学フィルムの機械的強度が向上する。アクリル樹脂の組成によっては、延伸による位相差の発現が抑えられ、光学的に等方な光学フィルムが得られる。本発明の光学フィルムが位相差フィルムである場合、アクリル樹脂フィルムは延伸フィルムである。
アクリル樹脂フィルムは、公知のフィルム成膜手法により形成できる。フィルム成膜手法は、例えば、溶液キャスト法(溶液流延法)、溶融押出法、カレンダー法、圧縮成形法である。なかでも、溶液キャスト法および溶融押出法が好ましい。
フィルムの成膜に用いるアクリル樹脂は、公知の方法により形成できる。例えば、得たいアクリル樹脂の組成に応じて配合した(メタ)アクリル重合体、その他の熱可塑性重合体および添加剤などを、適切な混合方法により十分に混合することにより、アクリル樹脂が形成される。
混合方法は、例えば、押出混練または溶液状態での混合である。フィルムの成膜に市販のアクリル樹脂を使用してもよい。市販のアクリル樹脂は、例えば、アクリペットVHおよびアクリペットVRL20A(いずれも三菱レイヨン製)である。押出混練には、任意の適切な混合機、例えば、オムニミキサー、単軸押出機、二軸押出機、加圧ニーダーを使用できる。
溶液キャスト法を実施するための装置は、例えば、ドラム式キャスティングマシン、バンド式キャスティングマシン、スピンコーターである。
溶液キャスト法に使用する溶媒は、アクリル樹脂を溶解する限り限定されない。当該溶媒は、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素;シクロヘキサン、デカリンなどの脂肪族炭化水素;酢酸エチル、酢酸ブチルなどのエステル;アセトン、メチルエチエルケトン、メチルイソブチルケトンなどのケトン;メタノール、エタノール、イソプロパノール、ブタノール、イソブタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブなどのアルコール;テトラヒドロフラン、ジオキサンなどのエーテル;ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素;ジメチルホルムアミド;ジメチルスルホキシドである。2種以上のこれら溶媒を併用してもよい。
溶融押出法は、例えば、Tダイ法、インフレーション法である。溶融押出時の成形温度は、好ましくは150〜350℃、より好ましくは200〜300℃である。Tダイ法を選択した場合、例えば、公知の押出機の先端部にTダイを取り付けることにより、帯状のアクリル樹脂フィルムを形成できる。形成した帯状のアクリル樹脂フィルムは、ロールに巻き取って、フィルムロールとしてもよい。溶融押出法では、材料の混合によるアクリル樹脂の形成から、当該樹脂を用いたアクリル樹脂フィルムの成形までを連続的に行うことができる。帯状のアクリル樹脂フィルムに易接着層を形成して、帯状の光学フィルムを得てもよい。
延伸フィルムであるアクリル樹脂フィルムは、前記のようにして得たアクリル樹脂フィルムを延伸して形成できる。延伸方法は特に限定されず、延伸には公知の延伸機を使用できる。Tダイ法によりアクリル樹脂フィルムを形成する場合、形成したフィルムを巻き取るロールの温度を調整して、一軸延伸とフィルムの巻き取りとを同時に行うことも可能である。
アクリル樹脂フィルムを溶融製膜により形成する場合、材料の混合によるアクリル樹脂の形成から、アクリル樹脂フィルムの形成を経て、延伸フィルムである光学フィルムを得るまでの工程を連続的に行うことができる。
溶融成膜に押出機を用いる場合、押出機の種類は特に限定されず、単軸であっても二軸であっても多軸であってもよいが、そのL/D値は(Lは押出機のシリンダの長さ、Dはシリンダ内径)、樹脂を十分に可塑化して良好な混練状態を得るために、好ましくは10以上100以下であり、より好ましくは15以上80以下であり、さらに好ましくは20以上60以下である。L/D値が10未満の場合、樹脂を十分に可塑化できず、良好な混練状態が得られないことがある。一方、L/D値が100を超えると、樹脂に対して過度に剪断発熱が加わることで、樹脂が熱分解する可能性がある。
またこの場合、シリンダの設定温度は、好ましくは200℃以上350℃以下であり、より好ましくは250℃以上320℃以下である。設定温度が200℃未満では、樹脂の溶融粘度が過度に高くなって、原フィルムの生産性が低下する。一方、設定温度が350℃を超えると、樹脂が熱分解する可能性がある。
溶融成膜に押出機を用いる場合、押出機の形状は特に限定されないが、1個以上の開放ベント部を有することが好ましい。このような押出機を用いることによって、開放ベント部から分解ガスを吸引することができ、得られた原フィルムに残存する揮発成分の量を低減できる。開放ベント部から分解ガスを吸引するためには、例えば、開放ベント部を減圧状態にすればよく、その減圧度は、開放ベント部の圧力にして、931〜1.3hPaの範囲が好ましく、798〜13.3hPaの範囲がより好ましい。開放ベント部の圧力が931hPaより高い場合、揮発成分、あるいは樹脂の分解により発生する単量体成分などが、樹脂中に残存しやすい。一方、開放ベント部の圧力を1.3hPaより低く保つことは工業的に困難である。
溶融成膜の際には、ポリマーフィルタで濾過した樹脂を成形して原フィルムとすることが好ましい。ポリマーフィルタにより、樹脂中に存在する異物を除去できるため、最終的に得られた光学フィルムの外観上の欠点を低減できる。なお、ポリマーフィルタによる濾過時には、樹脂は高温の溶融状態となる。このため、ポリマーフィルタを通過する際に樹脂が劣化し、劣化により形成されたガス成分や着色劣化物が流れだして、得られたフィルムに、穴あき、流れ模様、流れスジなどの欠点が観察されることがある。この欠点は、特に、フィルムを連続して溶融成膜する際に観察されやすい。このため、ポリマーフィルタで濾過した樹脂を成形する際には、その成形温度は、樹脂の溶融粘度を低下させ、ポリマーフィルタにおける樹脂の滞留時間を短くするために、例えば、250〜320℃であり、260〜300℃が好ましい。
ポリマーフィルタの構成は特に限定されないが、ハウジング内に多数枚のリーフディスク型フィルタを配したポリマーフィルタを好適に用いることができる。リーフディスク型フィルタの濾材は、金属繊維不織布を焼結したタイプ、金属粉末を焼結したタイプ、金網を数枚積層したタイプ、あるいはそれらを組み合わせたハイブリッドタイプのいずれでもよいが、金属繊維不織布を焼結したタイプが最も好ましい。
ポリマーフィルタによる濾過精度は特に限定されないが、通常15μm以下、好ましくは10μm以下、より好ましくは5μm以下である。濾過精度が1μm以下になると、ポリマーフィルタにおける樹脂の滞留時間が長くなることで当該樹脂の熱劣化が大きくなる他、原フィルムおよび光学フィルムの生産性が低下する。一方、濾過精度が15μmを超えると、樹脂中の異物を除去することが難しくなる。
ポリマーフィルタの形状は特に限定されず、例えば、複数の樹脂流通口を有し、センターポール内に樹脂の流路を有する内流型;断面が複数の頂点もしくは面においてリーフディスクフィルタの内周面に接し、センターポールの外面に樹脂の流路がある外流型;などがある。特に、樹脂の滞留箇所の少ない外流型を用いることが好ましい。
ポリマーフィルタにおける樹脂の滞留時間に特に制限はないが、好ましくは20分以下であり、より好ましくは10分以下であり、さらに好ましくは5分以下である。また、濾過時におけるフィルタ入口圧およびフィルタ出口圧は、例えば、それぞれ、3〜15MPaおよび0.3〜10MPaであり、圧力損失(フィルタの入口圧と出口圧の圧力差)は、1MPa〜15MPaの範囲が好ましい。圧力損失が1MPa以下になると、樹脂がフィルタを通過する流路に偏りが生じやすく、得られた原フィルムおよび光学フィルムの品質が低下する傾向がある。一方、圧力損失が15MPaを超えると、ポリマーフィルタの破損が起こり易くなる。
ポリマーフィルタに導入される樹脂の温度は、その溶融粘度に応じて適宜設定すればよく、例えば250〜320℃であり、好ましくは255〜310℃であり、さらに好ましくは260〜300℃である。
ポリマーフィルタを用いた濾過処理により、異物、着色物の少ない光学フィルムを得る具体的な工程は、特に限定されない。例えば、(1)クリーン環境下で樹脂の形成および濾過処理を行い、引き続いてクリーン環境下で樹脂の成形を行うプロセス、(2)異物または着色物を有する樹脂を、クリーン環境下で濾過処理した後、引き続いてクリーン環境下で樹脂の成形を行うプロセス、(3)異物または着色物を有する樹脂を、クリーン環境下で濾過処理すると同時に成形を行うプロセス、などが挙げられる。それぞれの工程毎に、複数回、ポリマーフィルタによる樹脂の濾過処理を行ってもよい。
ポリマーフィルタによって樹脂を濾過する際には、押出機とポリマーフィルタとの間にギアポンプを設置して、フィルタ内の樹脂の圧力を安定化することが好ましい。
延伸後、フィルムの光学的等方性および機械的特性を安定化するために、フィルムに対する熱処理(アニーリング)を実施してもよい。熱処理の方法および条件は、適宜、選択できる。
本発明の光学フィルムは、アクリル樹脂フィルムを含み、マイクロスラリーエロージョン(MSE)試験による摩耗率(μm/g)が0.7以上1.4以下の範囲にあると共に、JIS P8115に準拠して測定した耐折回数が300回以上である。より好ましくは、0.8以上1.3以下であり、さらに好ましくは0.9以上1.2以下である。この範囲内の値をとることによりハードコート層に代表される機能性コーティング層との密着性に優れたフィルムを得ることができる。
なお、フィルムのマイクロスラリーエロージョン(MSE)試験による摩耗率(μm/g)は、フィルムの表面未処理面をサンプル面として、下記測定条件で3回計測した平均値を用いて算出した。
摩耗試験条件
使用機種:MSE−A
濃度:3wt% 球状シリカ粒子(D50=5.0μm)
摩耗力設定:SUS摩耗率が0.005μm/g±10%となるように設定
ノズルサイズ:φ1mm
投射距離:4m
摩耗速度測定
使用機種:触針式表面形状測定機(小坂研究所製)
測定長:4mm
触針子:R10μmダイヤモンド
測定圧力:100μN
送り速度:0.2mm/sec
光学フィルムは、JIS P8115に準拠して測定した、直交する方向に各々測定した耐折回数の平均値が300回以上であることが好ましい。より好ましくは400回以上であり、さらに好ましくは500回以上である。この範囲内の値をとることにより、フィルム面内の強度が優れたフィルムを得ることができるため、ハードコート層に代表される機能性コーティング層を設けても十分なフィルム強度を達成することができる。
光学フィルムは、JIS K7128−1に準拠して測定したトラウザー引き裂き強度が0.01N以上であることが好ましい。より好ましくは、0.02N以上であり、さらに好ましくは0.03N以上である。この範囲内の値をとることによりフィルム厚み方向の強度に優れたフィルムを得ることができるため、ハードコート層に代表される機能性コーティング層との密着性が優れたものとなる。
本発明の光学フィルムは、1.0%以下のヘイズを有することが好ましい。本発明の光学フィルムの構成によっては、そのヘイズは、0.5%以下、さらには0.3%以下となる。ヘイズは、JIS K7136の規定に基づいて測定される。
本発明の光学フィルムは、b値が2.0%以下であることが好ましい。より好ましくは、b値が1.5%以下であり、更に好ましくは1.0%以下であり、最も好ましくは0.5%以下である。b値を2.0%以下にすることにより、本光学フィルムを画像表示装置に組み込んだ場合に表示される色感が優れたものとなる。
本発明の光学フィルムは、機能性コーティング層を有していてもよい。機能性コーティング層は、例えば、帯電防止層、ハードコート層、防眩(ノングレア)層、低反射層やモスアイ層などの反射防止層、紫外線遮蔽層、熱線遮蔽層、電磁波遮蔽層、ガスバリヤー層、光触媒層などの防汚層、粘接着剤層などであり、各種画像表示装置の最表面に好適に用いることができる。機能性コーティング層は一層のみ積層しても良いし、2層以上を積層しても良い。
機能性コーティング層の積層方法は、種々の機能性コーティング層を各々積層塗工したり、各々の単独の機能性コーティング層が塗工された部材を粘着剤や接着剤を介して積層した積層体であってもよい。なお、各層の積層順序は特に限定されるものではなく、積層方法も特に限定されない。
紫外線遮蔽層は、紫外線遮蔽層よりも下層にある基材層や印刷層などの紫外線劣化する材料の紫外線劣化を防ぐために設けるものである。紫外線遮蔽層は、分子量が1000以下の紫外線吸収剤をアクリル系樹脂、ポリエステル系樹脂、フッ素系樹脂などの熱可塑性または熱硬化性、湿気硬化性、紫外線硬化、電子線硬化などの硬化性樹脂に配合したものが使用できるが、特に、耐候性の点から、特許第3081508号公報、特許第3404160号公報、特許第2835396号公報で開示されているような紫外線吸収性骨格を有する単量体を必須に含む単量体混合物を重合して得られるアクリル系ポリマーが好ましい。市販品としては、例えば、「ハルスハイブリッドUV−G13」や「ハルスハイブリッドUV−G301」(以上、日本触媒社製)、「ULS−935LH」(一方社油脂工業社製)などが挙げられる。
熱線遮蔽層は、例えば、ディスプレイ装置の発光に伴い発生する近赤外線(特に700−1200nm)による周辺機器の誤動作を防ぐために設けられる。熱線遮蔽層としては、有機系や無機系熱線遮蔽物質がアクリル系樹脂、ポリエステル系樹脂、フッ素系樹脂などの熱可塑性または熱硬化性、湿気硬化性、紫外線硬化、電子線硬化などの硬化性樹脂に配合したものが使用される。有機系熱線遮蔽物質としては、フタロシアニン色素やジイモニウム系、スクアリリウム系などの近赤外線領域(700−1800nm)に吸収を有する物質であれば特に限定はなく、用途によってはポルフィリン系やシアニン系色素などの可視領域(400−700nm)に吸収を有する色素と、1種または2種以上組み合わせて使用できる。また、無機系熱線遮蔽物質としては、例えば、金属、金属窒化物、金属酸化物などが挙げられるが、分散媒体への溶解性、耐候性の点から、金属酸化物の微粒子が好ましく使用される。金属酸化物としては、酸化インジウム系、酸化亜鉛系が好ましく、透明性の点から、平均粒径が0.1μm以下であるものが好ましい。
粘接着剤層としては、アクリル樹脂、アクリル酸エステル樹脂、またはこれらの共重合体、スチレン−ブタジエン共重合体、ポリイソプレンゴム、ポリイソブチレンゴム等のゴム類や、ポリビニルエーテル系、シリコーン系、マレイミド系、シアノアクリレート系粘接着剤などが挙げられ、これらは単独としても使用しても良いが、さらに架橋剤、粘着付与剤を用いることもできる。光学特性上、耐光性、透明性からはアクリル酸アルキルエステル単量体を主成分とする共重合体であるアクリル系樹脂が好ましく、さらに好ましくは、芳香族系粘着付与剤を添加して屈折率を調節し、アクリル樹脂フィルムや光学フィルムの屈折率に近づけた粘着剤がより好ましい。必要に応じて、粘着剤に前記の熱線遮蔽物質、例えば、フタロシアニン色素やシアニン色素を混合して機能性の粘着剤層とすることができ、光学積層体として薄層化、生産性の点で有利である。
電磁波遮蔽層は、例えば、ディスプレー装置からの発光に伴い発生する電磁波による生体や電子機器への悪影響を防ぐために設けるものである。電磁波遮蔽層は、銀、銅、酸化インジウム、酸化亜鉛、酸化インジウムスズ、酸化アンチモンスズ等のような金属または金属酸化物の薄膜からなり、これらは真空蒸着法、イオンプレーティング法、スパッタリング法、CVD法、プラズマ化学蒸着法等の従来公知のドライプレーティング法を利用し、製造することができる。電磁波遮蔽層は、最もよく用いられるのは、酸化インジウムスズ(ITOと略記されることもある)の薄膜であるが、メッシュ状の穴を有する銅の薄膜や誘電体層と金属層を基材上に交互に積層させた積層体も好適に用いることができる。前記誘電体層としては、酸化インジウム、酸化亜鉛などの透明な金属酸化物等であり、金属層としては銀あるいは銀−パラジウム合金が一般的である。積層体は、通常、誘電体層よりはじまり3〜13層程度の間で奇数層となるように積層される。
反射防止層は、表面の反射を抑えて、表面への蛍光灯などの外光の写り込みを防止するためのものである。反射防止層は、金属酸化物、フッ化物、ケイ化物、ホウ化物、炭化物、窒化物、硫化物等の無機物の薄膜からなる場合と、アクリル樹脂、フッ素樹脂などの屈折率の異なる樹脂を単層あるいは多層に積層させたものからなる場合とがある。また、特開2003−292805号公報に開示されているような無機系化合物と有機系化合物との複合微粒子を含む薄膜を積層させたものも使用できる。
ノングレア層は、視野角を広げ、透過光を散乱させるために設けられる。シリカ、メラミン樹脂、アクリル樹脂等の微粉体をインキ化し、従来公知の塗布法で、他の機能層上に塗布し、熱あるいは光硬化させることにより形成される。また、ノングレア処理したフィルムを他の機能性フィルム上に貼り付けても良い。
本発明の光学フィルムには、機能層としてハードコート層を設けることも好ましい。本発明において、ハードコート層とは、該層を形成することで透明支持体の鉛筆硬度が上昇する層をいう。実用的には、ハードコート層積層後の鉛筆硬度(JIS K−5400)はH以上が好ましく、更に好ましくは2H以上であり、最も好ましくは3H以上である。ハードコート層の厚みは、0.4〜35μmが好ましく、更に好ましくは1〜30μmであり、最も好ましくは1.5〜20μmである。本発明においてハードコート層は1層でも複数でもかまわない。ハードコート層が複数層の場合、全てのハードコート層の膜厚の合計が上記範囲であることが好ましい。
本発明の光学フィルムのハードコート層の表面は平坦であって凹凸があっても構わない。また、必要に応じて、表面凹凸や内部散乱付与のためにハードコート層に微粒子を含有させることもできる。
本発明において、ハードコート層は、不飽和二重結合を有する化合物、重合開始剤、必要に応じて、微粒子、含フッ素又はシリコーン系化合物、溶剤を含有する組成物を、支持体上に直接又は他の層を介して塗布・乾燥・硬化することにより形成することができる。以下各成分について説明する。
[不飽和二重結合を有する化合物]
本発明のハードコート層形成用組成物には不飽和二重結合を有する化合物を含有することができる。不飽和二重結合を有する化合物はバインダーとして機能することができ、重合性不飽和基を2つ以上有する多官能モノマーであることが好ましい。該重合性不飽和基を2つ以上有する多官能モノマーは、硬化剤として機能することができ、塗膜の強度や耐擦傷性を向上させることが可能となる。重合性不飽和基は3つ以上であることがより好ましい。これらモノマーは、1又は2官能のモノマーと3官能以上のモノマーを併用して用いることもできる。
不飽和二重結合を有する化合物としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の重合性官能基を有する化合物が挙げられ、中でも、(メタ)アクリロイル基及び−C(O)OCH=CH2が好ましい。特に好ましくは下記の1分子内に3つ以上の(メタ)アクリロイル基を含有する化合物を用いることができる。
重合性の不飽和結合を有する化合物の具体例としては、アルキレングリコールの(メタ)アクリル酸ジエステル類、ポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類、多価アルコールの(メタ)アクリル酸ジエステル類、エチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類、エポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類等を挙げることができる。
中でも、多価アルコールと(メタ)アクリル酸とのエステル類が好ましい。例えば、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコール(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、EO変性リン酸トリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート等が挙げられる。
(メタ)アクリロイル基を有する多官能アクリレート系化合物類は市販されているものを用いることもでき、新中村化学工業(株)社製NKエステル A−TMMT、日本化薬(株)製KAYARAD DPHA等を挙げることができる。多官能モノマーについては、特開2009−98658号公報の段落[0114]〜[0122]に記載されており、本発明においても同様である。
不飽和二重結合を有する化合物としては、水素結合性の置換基を有する化合物であることが、支持体との密着性、低カール、後述する含フッ素又はシリコーン系化合物の固定性の点から好ましい。水素結合性の置換基とは、窒素、酸素、硫黄、ハロゲンなどの電気陰性度が大きな原子と水素結合とが共有結合で結びついた置換基を指し、具体的にはOH−、SH−、−NH−、CHO−、CHN−などが挙げられ、ウレタン(メタ)アクリレート類や水酸基を有する(メタ)アクリレート類が好ましい。市販されている(メタ)アクリロイル基を有する多官能アクリレートを用いることもでき、新中村化学工業(株)社製NKオリゴ U4HA、同NKエステルA−TMM−3、日本化薬(株)製KAYARAD PET−30等を挙げることができる。
本発明のハードコート層形成用組成物中の不飽和二重結合を有する化合物の含有量は、十分な重合率を与えて硬度などを付与するため、ハードコート層形成用組成物中の無機成分を除いた全固形分に対して、50質量%以上が好ましく、60〜99質量%がより好ましく、70〜99質量%が更に好ましく、80〜99質量%が特に好ましい。
本発明ではハードコート層形成用組成物に分子内に環状脂肪族炭化水素と不飽和二重結合基を有する化合物を用いることも好ましい。このような化合物を用いることで、ハードコート層に低透湿性を付与することができる。ハードコート性を高めるために、分子内に環状脂肪族炭化水素と不飽和二重結合基を2以上有する化合物を用いることがより好ましい。
ハードコート層形成用組成物が分子内に環状脂肪族炭化水素と不飽和二重結合基を有する化合物を含有する場合、分子内に環状脂肪族炭化水素と不飽和二重結合を有する化合物はハードコート層形成用組成物中の不飽和二重結合を有する化合物中、1〜90質量%が好ましく、2〜80質量%がより好ましく、5〜70質量%が特に好ましい。ハードコート層形成用組成物が分子内に環状脂肪族炭化水素と不飽和二重結合基を有する化合物を含有する場合、更に5官能以上の(メタ)アクリレートを含有することが好ましい。
ハードコート層形成用組成物が更に、5官能以上の(メタ)アクリレートを含有する場合、5官能以上の(メタ)アクリレートは、ハードコート層形成用組成物中の不飽和二重結合を有する化合物中、1〜70質量%が好ましく、2〜60質量%がより好ましく、5〜50質量%が特に好ましい。
市販品としては、例えば、「Siコート2」(第八化学社製)、「トスガード510」や「UVHC8553」(以上、東芝シリコーン社製)、「ソルガードNP720」や「ソルガードNP730」や「ソルガードRF0831」(以上、日本ダクロシャムロック社製)などが挙げられる。また、有機ポリマー複合無機微粒子とは、無機微粒子の表面に有機ポリマーが固定された複合無機微粒子を意味し、当該微粒子を含む硬化性樹脂で表面保護層を形成することにより、表面硬度の向上等が図られる。当該複合無機微粒子とはとその製法の詳細は、例えば、特開平7−178335号公報、特開平9−302257号公報、特開平11−124467号公報などに記載されている。当該複合無機微粒子を含有させる硬化性樹脂にも格別の制限はなく、例えば、メラミン樹脂、ウレタン樹脂、アルキド樹脂、アクリル樹脂、多官能アクリル樹脂などが挙げられる。多官能アクリル樹脂としては、ポリオールアクリレート、ポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレートなどの樹脂を挙げることができる。上記複合無機微粒子を含有する硬化性樹脂の市販品としては、例えば、「ユーダブルC−3300」や「ユーダブルC−3600」(以上、日本触媒社製)等が挙げられる。
本発明の光学フィルムは、易接着層を有してもよい。易接着層はアクリル樹脂フィルムの少なくとも一方の主面に積層されていればよく、両方の主面に積層されていてもよい。
前記易接着層は、前記アクリル樹脂フィルムの一方の主面に形成されていればよい。なお、本明細書において「主面」とは、フィルムが有する面のうち、フィルムの厚み方向における面ではなく、フィルムの長手方向の辺と幅方向の辺とで決まる面、つまり表面および裏面のことをいう。
易接着層の厚さは、特に限定されず、アクリル樹脂フィルムの厚さによって異なるが、1nm〜10μmが好ましく、10nm〜5μmがより好ましく、50nm〜1.5μmがさらに好ましい。この範囲では、易接着層による、光学フィルムと機能性コーティング層との密着性の向上効果が良好である。これに加えて、易接着層自体に位相差が発現することを抑制できる。
易接着層を構成する樹脂は特に限定されず、易接着性を有する公知の樹脂であればよく、例えば、ウレタン樹脂、セルロース樹脂、ポリオール樹脂、ポリカルボン酸樹脂、ポリエステル樹脂、アクリル樹脂、ポリエステル−アクリル複合樹脂である。
易接着層を構成する樹脂の数平均分子量は、0.5万〜60万が好ましく、1万〜40万がより好ましい。
易接着層は易接着層と同様、微粒子を含有してもよく、好ましい微粒子としては、前記の微粒子があげられる。
易接着層を構成する樹脂は、ウレタン樹脂が好ましい。この場合、易接着層が他の樹脂層であるときよりも、偏光子に対する接着性が向上する。
ウレタン樹脂は特に限定されず、典型的には、ポリオールとポリイソシアネートとを反応させて得た樹脂である。ポリオールは、分子中にヒドロキシル基を2個以上有する、任意のポリオールを採用できる。ポリオールは、例えば、ポリアクリルポリオール、ポリエステルポリオール、ポリエーテルポリオールである。2種以上のポリオールを組み合わせてもよい。
ポリアクリルポリオールは、典型的には、(メタ)アクリル酸エステル単量体と、水酸基を有する単量体との共重合体である。
(メタ)アクリル酸エステル単量体は、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸シクロヘキシルである。
水酸基を有する単量体は、例えば、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシブチル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸2−ヒドロキシペンチルなどの(メタ)アクリル酸ヒドロキシアルキルエステル;グリセリン、トリメチロールプロパンなどの多価アルコールの(メタ)アクリル酸モノエステル;N−メチロール(メタ)アクリルアミドである。
ポリアクリルポリオールは、さらなる他の単量体との共重合体であってもよい。他の単量体は、前記(メタ)アクリル酸エステル単量体および水酸基を有する単量体と共重合が可能である限り、限定されない。
当該他の単量体は、例えば、(メタ)アクリル酸などの不飽和モノカルボン酸;マレイン酸などの不飽和ジカルボン酸ならびにその無水物およびモノまたはジエステル類;(メタ)アクリロニトリルなどの不飽和ニトリル類;(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミドなどの不飽和アミド類;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類;メチルビニルエーテルなどのビニルエーテル類;エチレン、プロピレンなどのα−オレフィン類;塩化ビニル、塩化ビニリデンなどのハロゲン化α,β−不飽和脂肪族単量体;スチレン、α−メチルスチレンなどのα,β−不飽和芳香族単量体である。
ポリエステルポリオールは、典型的には、多塩基酸成分とポリオール成分との反応により得られる。多塩基酸成分は、例えば、オルトフタル酸、イソフタル酸、テレフタル酸、1,4−ナフタレンジカルボン酸、2,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、ビフェニルジカルボン酸、テトラヒドロフタル酸などの芳香族ジカルボン酸;シュウ酸、コハク酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、オクタデカンジカルボン酸、酒石酸、アルキルコハク酸、リノレイン酸、マレイン酸、フマル酸、メサコン酸、シトラコン酸、イタコン酸などの脂肪族ジカルボン酸;ヘキサヒドロフタル酸、テトラヒドロフタル酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸などの脂環式ジカルボン酸;あるいは、これらの酸無水物、アルキルエステル、酸ハライドなどの反応性誘導体である。
ポリオール成分は、例えば、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ネオペンチルグリコール、ペンタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,10−デカンジオール、1−メチル−1,3−ブチレングリコール、2−メチル−1,3−ブチレングリコール、1−メチル−1,4−ペンチレングリコール、2−メチル−1,4−ペンチレングリコール、1,2−ジメチル−ネオペンチルグリコール、2,3−ジメチル−ネオペンチルグリコール、1−メチル−1,5−ペンチレングリコール、2−メチル−1,5−ペンチレングリコール、3−メチル−1,5−ペンチレングリコール、1,2−ジメチルブチレングリコール、1,3−ジメチルブチレングリコール、2,3−ジメチルブチレングリコール、1,4−ジメチルブチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール、1,4−シクロヘキサンジメタノール、1,4−シクロヘキサンジオール、ビスフェノールA、ビスフェノールF、水添ビスフェノールA、水添ビスフェノールFである。
ポリエーテルポリオールは、典型的には、多価アルコールにアルキレンオキシドを開環重合して付加させることにより得られる。多価アルコールは、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパンである。アルキレンオキシドは、例えば、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、スチレンオキシド、テトラヒドロフランである。
ポリイソシアネートは、例えば、テトラメチレンジイソシアネート、ドデカメチレンジイソシアネート、1,4−ブタンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2−メチルペンタン−1,5−ジイソシアネート、3−メチルペンタン−1,5−ジイソシアネートなどの脂肪族ジイソシアネート;イソホロンジイソシアネート、水添キシリレンジイソシアネート、4,4′−シクロヘキシルメタンジイソシアネート、1,4−シクロヘキサンジイソシアネート、メチルシクロヘキシレンジイソシアネート、1,3−ビス(イソシアネートメチル)シクロヘキサンなどの脂環族ジイソシアネート;トリレンジイソシアネート、2,2′−ジフェニルメタンジイソシアネート、2,4′−ジフェニルメタンジイソシアネート、4,4′−ジフェニルメタンジイソシアネート、4,4′−ジフェニルジメチルメタンジイソシアネート、4,4′−ジベンジルジイソシアネート、1,5−ナフチレンジイソシアネート、キシリレンジイソシアネート、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネートなどの芳香族ジイソシアネート;ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、α,α,α,α−テトラメチルキシリレンジイソシアネートなどの芳香脂肪族ジイソシアネートである。
ウレタン樹脂は、好ましくは、カルボキシル基を有する。カルボキシル基を有することにより、易接着層の性能(易接着性)が向上する。この効果は、特に、高温・高湿の環境下において顕著である。
カルボキシル基を有するウレタン樹脂は、例えば、ポリオールとポリイソシアネートとに加え、遊離カルボキシル基を有する鎖長剤を反応させることにより得られる。遊離カルボキシル基を有する鎖長剤は、例えば、ジヒドロキシカルボン酸、ジヒドロキシスクシン酸である。ジヒドロキシカルボン酸は、例えば、ジメチロールアルカン酸(例えば、ジメチロール酢酸、ジメチロールブタン酸、ジメチロールプロピオン酸、ジメチロール酪酸、ジメチロールペンタン酸)などのジアルキロールアルカン酸である。
ウレタン樹脂の酸価は、好ましくは10以上、さらに好ましくは10〜50、特に好ましくは20〜45である。これらの場合、易接着層の性能(例えば、偏光子などの他の機能性フィルムとの密着性)がより向上する。
ウレタン樹脂は、上述した各成分に加えて、さらに他のポリオールあるいは他の鎖長剤との反応によって得たものでもよい。
他のポリオールは、例えば、ソルビトール、1,2,3,6−ヘキサンテトラオール、1,4−ソルビタン、1,2,4−ブタントリオール、1,2,5−ペンタントリオール、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトールなど、3以上の水酸基を有するポリオールである。
他の鎖長剤は、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ネオペンチルグリコール、ペンタンジオール、1,6−ヘキサンジオール、プロピレングリコールなどのグリコール類;エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、1,4−ブタンジアミン、アミノエチルエタノールアミンなどの脂肪族ジアミン;イソホロンジアミン、4,4′−ジシクロヘキシルメタンジアミンなどの脂環族ジアミン;キシリレンジアミン、トリレンジアミンなどの芳香族ジアミンである。
ウレタン樹脂は、公知の方法を応用して形成できる。当該方法は、例えば、各成分を一度に反応させるワンショット法、段階的に反応させる多段法である。カルボキシル基を有するウレタン樹脂は、カルボキシル基の導入が容易であることから、多段法により形成することが好ましい。ウレタン樹脂の形成に用いる触媒は、特に限定されない。
ウレタン樹脂層である易接着層の形成に用いられる水系の易接着組成物は、微粒子およびウレタン樹脂以外に、中和剤を含むことが好ましい。この場合、易接着組成物におけるウレタン樹脂の安定性が向上する。中和剤は、例えば、アンモニア、N−メチルモルホリン、トリエチルアミン、ジメチルエタノールアミン、メチルジエタノールアミン、トリエタノールアミン、モルホリン、トリプロピルアミン、エタノールアミン、トリイソプロパノールアミン、2−アミノ−2−メチル−1−プロパノールである。
ウレタン樹脂を含有する易接着組成物が水系である場合、ウレタン樹脂を形成する際に、ポリイソシアネートに対して不活性であるとともに水と相溶する有機溶媒を用いることが好ましい。有機溶剤は、例えば、酢酸エチル、酢酸ブチル、エチルセロソルブアセテートなどのエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;ジオキサン、テトラハイドロフラン、プロピレングリコールモノメチルエーテルなどのエーテル系溶媒である。
ウレタン樹脂を含有する易接着組成物は、架橋剤を含有することが好ましく、この場合、易接着層の性能が向上する。架橋剤は、特に限定されない。ウレタン樹脂がカルボキシル基を有する場合、架橋剤は、当該カルボキシル基と反応し得る基を有するポリマーが好ましい。
カルボキシル基と反応し得る基は、例えば、有機アミノ基、オキサゾリン基、エポキシ基、カルボジイミド基であり、オキサゾリン基が好ましい。オキサゾリン基を有する架橋剤は、ウレタン樹脂と混合したときの室温でのポットライフが長く、加熱によって架橋反応が進行するため、作業性が良好である。当該ポリマーは、例えば、(メタ)アクリルポリマー、スチレン・アクリルポリマーであり、(メタ)アクリルポリマーが好ましい。架橋剤が(メタ)アクリルポリマーである場合、易接着層の性能がさらに向上する。これに加えて、(メタ)アクリルポリマーは、水系の易接着組成物に安定的に相溶し、ウレタン樹脂を良好に架橋する。
ウレタン樹脂を含む易接着組成物において、当該組成物におけるウレタン樹脂の含有率は、1.5〜15質量%が好ましく、2〜10質量%がより好ましい。含有率がこれらの範囲にある場合、易接着組成物をアクリル樹脂フィルムの表面に塗布する際の塗工性が高い。この組成物が架橋剤をさらに含む場合、架橋剤の含有量は、ウレタン樹脂(固形分)100重量部に対して、1〜30重量部が好ましく、3〜20重量部がより好ましい。ウレタン樹脂を含む易接着組成物における微粒子の含有率は、ウレタン樹脂(固形分)100重量部に対して、0.3〜10重量部が好ましく、0.5〜1重量部がより好ましい。
易接着層は、前記密着性を損ねない範囲において微粒子を含有していても良い。微粒子として、任意の適切な微粒子を用いることができ、好ましくは、水分散性の微粒子である。具体的には、無機系微粒子、有機系微粒子のいずれも用いることができ、有機無機複合微粒子であってもよい。
無機系微粒子としては、例えば、シリカ、チタニア、アルミナ、ジルコニア等の無機酸化物、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、燐酸カルシウム等が挙げられる。
有機系微粒子としては、例えば、シリコーン系樹脂、フッ素系樹脂、(メタ)アクリル系樹脂等が挙げられる。
これらの中でも、好ましくは、シリカである。ブロッキング抑制能にさらに優れ得、かつ、透明性に優れ、ヘイズを生じず、着色もないので、偏光板の光学特性に与える影響がより小さいからである。また、シリカは易接着組成物への分散性および分散安定性が良好であるので、易接着層形成時の作業性にもより優れ得るからである。さらに、シリカは、アクリル樹脂フィルムとの密着性にも優れる。
微粒子の粒子径(平均一次粒子径)は、300nm以下であり、好ましくは10〜300nm、さらに好ましくは20〜200nmであり、さらに好ましくは、30〜150nmである。
このような粒子径の微粒子を用いることにより、易接着層表面に適切に凹凸を形成して、アクリル樹脂フィルムと易接着層および/または易接着層どうしの接触面における摩擦力を効果的に低減し得る。その結果、ブロッキング抑制能にさらに優れ得る。また、平均一次粒子径が可視光波長よりも小さく、かつ小さければ小さいほど、粒子による光散乱を抑制できるので、偏光板の光学特性に与える影響をより抑制し得る。
前記微粒子の粒度分布は、1.0〜1.4であることが好ましく、1.0〜1.2がより好ましい。
前記微粒子の平均一次粒子径および粒度分布は、レーザー回折・散乱式の粒度分布測定装置(例えば、Particle Sizing Systems製、Submicron Particle Sizer NICOMP380)により求めることができる。
具体的には、媒体中に分散した状態にある微粒子に対して、前記測定装置により、その等価球形分布を求める。次に、求めた分布における、大粒子側から積算した積算体積分率50%の粒子の粒子径を求め、これを微粒子の平均一次粒子径(d50)とする。
これとは別に、当該分布における、大粒子側から積算した積算体積分率25%の粒子の粒子径(d25)および75%の粒子の粒子径(d75)を求め、その比(d25/d75)を微粒子の粒度分布とする。なお、媒体は、粒度分布装置の構成および能力に応じて適宜選択でき、例えば水であるが、液体に限られない。
易接着層を形成する組成物が水系の場合、好ましくは、前記微粒子は水分散体として配合される。具体的には、微粒子としてシリカを採用する場合、好ましくは、コロイダルシリカとして配合される。コロイダルシリカとしては、市販品をそのまま用い得る。市販品としては、例えば、扶桑化学工業(株)製のクォートロンPLシリーズ、日産化学工業(株)製のスノーテックスシリーズ、日本アエロジル(株)製のAERODISPシリーズおよびAEROSILシリーズ等が挙げられる。
易接着層における微粒子の含有率の上限は、10質量%未満が好ましく、5質量%未満がより好ましく、2質量%未満がさらに好ましい。微粒子の含有率が10質量%を超えると、易接着層の塗膜強度が低下したり透明性が損なわれたりすることがある。易接着層における微粒子の含有率の下限は、0.1質量%以上が好ましく、0.15質量%以上がより好ましく、0.2質量%以上がさらに好ましい。微粒子の含有率が0.1質量%未満になると、光学フィルムの耐ブロッキング性が低下することがある。
アクリル樹脂フィルムの主面に対する易接着層の形成方法は限定されず、公知の方法に従えばよい。易接着層は、易接着層用樹脂を含有する易接着組成物をアクリル樹脂フィルムの主面に塗布して、当該組成物の塗布膜を形成した後、形成した塗布膜を乾燥させて形成することが好ましい。前記易接着組成物は上述した微粒子を含有していてもよい。
易接着組成物は、水系の組成物が好ましい。水系の組成物は、有機溶剤系の組成物に比べて、易接着層を形成する際に生じる環境への負荷が小さく、作業性に優れる。水系の組成物は、例えば、易接着性を有する樹脂の分散体である。分散体は、典型的には、易接着性を有する樹脂のエマルジョンである。易接着層用樹脂のエマルジョンは、乾燥により易接着層用樹脂を含む層となる。当該エマルジョンに含まれる微粒子は、そのまま樹脂層に残留する。
易接着層用樹脂を含む易接着組成物が水系である場合、水と相溶する有機溶媒を用いることが好ましい。当該有機溶剤は、例えば、酢酸エチル、酢酸ブチル、エチルセロソルブアセテートなどのエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;ジオキサン、テトラハイドロフラン、プロピレングリコールモノメチルエーテルなどのエーテル系溶媒である。
易接着組成物は、易接着性を有する樹脂および微粒子以外に、添加剤を含んでいてもよい。添加剤は、例えば、分散安定剤、揺変剤、酸化防止剤、紫外線吸収剤、消泡剤、増粘剤、分散剤、界面活性剤、触媒、帯電防止剤である。
易接着層用樹脂層である易接着層の形成に用いられる水系の易接着組成物において、当該組成物における易接着層用樹脂の含有率は、1〜20質量%が好ましく、2〜15質量%がより好ましい。含有率がこれらの範囲にある場合、易接着組成物をアクリル樹脂フィルムの表面に塗布する際の塗工性が高いほか、易接着層の効果を十分に確保できる。
この組成物が架橋剤をさらに含む場合、架橋剤の含有量は易接着層用樹脂100重量部に対して、1〜30重量部が好ましく、3〜20重量部がより好ましい。易接着層用樹脂を含有する易接着組成物における微粒子の含有率は、易接着層用樹脂100重量部に対して、0.3〜10重量部が好ましく、0.5〜1重量部がより好ましい。
易接着層を形成する場合、アクリル樹脂フィルムの主面(表面)に、易接着層用樹脂を含有する易接着組成物を塗布して当該組成物の塗布膜を形成する工程(塗布工程)と、形成した塗布膜を乾燥させて、前記易接着層用樹脂を含有する易接着層を前記表面に形成する工程(乾燥工程)とを含むことが好ましい。前記易接着組成物は上述した微粒子を含有していてもよい。
この場合、主面(表面)に易接着層用樹脂を含有する易接着層が形成されたアクリル樹脂フィルムから構成される光学フィルム(本発明の光学フィルム)が形成される。易接着層は、易接着組成物に含まれていた樹脂を含む。
塗布工程では、アクリル樹脂フィルムの少なくとも一方の主面(表面)に、易接着組成物の塗布膜が形成される。典型的には、アクリル樹脂フィルムの一方の主面(表面)に、当該塗布膜が形成される。
塗布工程において易接着組成物を塗布する方法には、公知の方法を適用できる。当該方法は、例えば、バーコート法、ロールコート法、グラビアコート法、ロッドコート法、スロットオリフィスコート法、カーテンコート法、ファウンテンコート法である。塗布工程において形成する塗布膜の厚さは、当該塗布膜が易接着層となったときに必要な厚さに応じて、適宜調整できる。
アクリル樹脂フィルムにおける易接着組成物が塗布される主面(表面)は、表面処理が施されていることが好ましい。表面処理は、上述したとおりであるが、コロナ放電処理およびプラズマ処理が好ましい。コロナ放電処理の条件は限定されない。コロナ放電処理における電子照射量は、50〜150W/m2/分が好ましく、70〜100W/m2/分がより好ましい。
乾燥工程は、公知の方法に従えばよい。乾燥温度は、典型的には50℃以上であり、90℃以上が好ましく、110℃以上がより好ましい。乾燥温度をこれらの範囲とすることにより、例えば、耐色性(特に、高温・高湿の環境下)に優れる光学フィルムが得られる。乾燥温度の上限は200℃以下が好ましく、180℃以下がより好ましい。
未延伸のアクリル樹脂フィルムから延伸フィルムである光学フィルムを製造する場合、ならびに一軸延伸されたアクリル樹脂フィルムから二軸延伸フィルムである光学フィルムを製造する場合、これらのアクリル樹脂フィルムをいずれかの時点で延伸する必要がある。アクリル樹脂フィルムの延伸は、易接着層の形成前に行ってもよいし、易接着層の形成後に行ってもよい。易接着層の形成と、アクリル樹脂フィルムの延伸とを同時に行うこともできる。
アクリル樹脂フィルムの延伸は、公知の方法に従えばよい。延伸は、例えば、一軸延伸または二軸延伸である。
一軸延伸は、典型的には、アクリル樹脂フィルムの幅方向(TD方向)の変化を自由とする自由端一軸延伸である。アクリル樹脂フィルムの幅方向の変化を固定した固定端一軸延伸であってもよい。
二軸延伸は、典型的には、逐次二軸延伸であるが、縦横延伸を同時に行う同時二軸延伸も好適に使用できる。さらに、フィルムロールに対して斜め方向への延伸であってもよい。なお、本明細書では、アクリル樹脂フィルムの流れ方向(MD方向)の延伸を縦延伸、幅方向(TD方向)の延伸を横延伸と呼ぶ。帯状のアクリル樹脂フィルムの場合、MD方向は当該フィルムの長手方向である。
アクリル樹脂フィルムの延伸には、公知の延伸機が使用できる。縦延伸機は特に限定されないが、オーブン延伸機が好ましい。
オーブン縦延伸機は、一般に、オーブンと、当該オーブンの入口側および出口側に各々設けられた搬送ロールとから構成される。オーブンの入口側の搬送ロールと、出口側の搬送ロールとの間に周速差を与えることによって、樹脂フィルムがその搬送方向に延伸される。
横延伸機は特に限定されないが、テンター延伸機が好ましい。テンター延伸機は、グリップ式でもピン式でも構わないが、樹脂フィルムの引き裂けが生じ難いことから、グリップ式が好ましい。グリップ式のテンター延伸機は、一般に、横延伸用のクリップ走行装置とオーブンとから構成される。クリップ走行装置では、樹脂フィルムの横端部がクリップで挟まれた状態で当該樹脂フィルムが搬送される。このとき、クリップ走行装置のガイドレールを開き、左右2列のクリップ間の距離を広げることによって、樹脂フィルムが横延伸される。グリップ式のテンター延伸機では、樹脂フィルムの搬送方向に対してクリップの拡縮機能を持たせることで、同時二軸延伸も可能となる。また、樹脂フィルムの延伸方向の左右を異なる速度で、当該フィルムの搬送方向に引張延伸する斜め延伸機であってもよい。
延伸温度は、アクリル樹脂フィルムを構成するアクリル樹脂のTg近傍が好ましい。具体的には、Tg−30℃からTg+100℃の範囲が好ましく、Tg−20℃からTg+80℃の範囲がより好ましい。延伸温度がTg−30℃未満の場合、十分な延伸倍率が確保できないことがある。延伸温度がTg+100℃を超えると、フィルムを構成する樹脂が流動し、安定な延伸が実施できないことがある。
面積比で定義した延伸倍率は、好ましくは1.1〜25倍、より好ましくは1.3〜10倍である。延伸倍率が1.1倍未満の場合、延伸により期待される光学フィルムの特性向上、例えば靱性の向上、が実現しないことがある。一方、延伸倍率が25倍を超えると、通常、光学フィルムの特性が向上する効果が、それ以上、得られなくなる。
延伸速度は、一方向の延伸につき、好ましくは10〜20,000%/分、より好ましく100〜10,000%/分である。延伸速度が10%/分未満の場合、フィルムの延伸に必要な時間が過度に長くなり、光学フィルムの製造コストが増すことがある。延伸速度が20,000%/分を超えると、フィルムが破断することがある。
易接着層の形成と、アクリル樹脂フィルムの延伸とを同時に行う場合、例えば、塗布工程の後に、易接着組成物の塗布膜を形成したアクリル樹脂フィルムを加熱雰囲気下で延伸すればよい。延伸のために当該フィルムに加える熱により、アクリル樹脂フィルムの表面に形成された易接着組成物の塗布膜が乾燥し、易接着層となる。なお、アクリル樹脂フィルムのTgは通常100℃以上であるため、上述した延伸温度は、易接着組成物の塗布膜から易接着層が形成されるのに十分に高い温度である。
塗布工程において易接着組成物の塗布膜を形成するアクリル樹脂フィルムは、未延伸フィルムであっても、既に延伸された延伸フィルムであってもよい。塗布膜を形成するアクリル樹脂フィルムが帯状の一軸延伸フィルムであり、二軸延伸フィルムである光学フィルムを製造する場合、一軸延伸の方向が当該フィルムのMD方向であり、塗布膜を形成した後の延伸方向がそのTD方向であることが好ましい。これにより、効率的な光学フィルムの製造が可能となる。
アクリル樹脂フィルムを溶融押出により形成する場合、アクリル樹脂フィルムの形成から、延伸フィルムである光学フィルムを得るまでの工程を連続的に行うことができる。この場合、アクリル樹脂フィルムの表面に易接着組成物を塗布する工程、ならびに易接着組成物を塗布したアクリル樹脂フィルムを加熱雰囲気下で延伸する工程を、連続的に行うことが好ましい。このような連続的に実施される易接着組成物の塗布工程を、インライン塗工と呼ぶ。
二軸延伸フィルムである光学フィルムを製造する場合、未延伸のフィルムを延伸して一軸延伸フィルムであるアクリル樹脂フィルムとする工程、当該アクリル樹脂フィルムの表面に易接着組成物を塗布する工程、および易接着組成物を塗布したアクリル樹脂フィルムを加熱雰囲気下で延伸する工程、を連続的に行うことが特に好ましい。
さらに、アクリル樹脂フィルムに対してコロナ放電処理およびプラズマ処理などの表面処理を行う場合、未延伸のフィルムを延伸して一軸延伸フィルムであるアクリル樹脂フィルムとする工程、当該アクリル樹脂フィルムの表面を表面処理する工程、表面処理したアクリル樹脂フィルムの当該表面に易接着組成物を塗布する工程、および易接着組成物を塗布したアクリル樹脂フィルムを加熱雰囲気下で延伸する工程、を連続的に行うことが好ましい。
光学フィルムの製造方法において、本発明の効果が得られる限り、上述した工程以外の任意の工程を含んでいてもよい。当該工程は、例えば、形成した光学フィルムに対してさらなる層(例えば樹脂層)を積層する工程、あるいは形成した光学フィルムに対してコーティング処理、表面処理などの後加工を施す工程である。
本発明の光学フィルムは、例えば、偏光子保護フィルム、位相差フィルム、視野角補償フィルム、光拡散フィルム、反射フィルム、反射防止フィルム、防眩フィルム、輝度向上フィルム、タッチパネル用導電フィルムである。
本発明の光学フィルムが示す位相差は、アクリル樹脂フィルムの組成および延伸状態により制御できる。本発明の光学フィルムは、光学的に等方なフィルムであり得るし、光学的な異方性を有する(例えば、位相差などの複屈折を発現する)フィルムでもあり得る。
本発明の光学フィルムは、ロールに巻回されていてもよい(フィルムロールであってもよい)。
本発明の光学フィルムは、画像表示装置への使用に好適である。画像表示装置は、例えば、エレクトロルミネッセンス(EL)ディスプレイパネル、プラズマディスプレイパネル(PDP)、電界放出ディスプレイ(FED:Field Emission Display)、LCDである。LCDは、液晶セルと、液晶セルの少なくとも一方の主面に配置された偏光板とを有する。
本発明の偏光子保護フィルムは上記光学フィルムを含む。光学フィルム以外のフィルムや層を含んでもよい。
本発明の偏光板を説明する。本発明の偏光板は、本発明にかかる光学フィルムを備えている。LCDには、その画像表示原理に基づき、液晶セルを狭持するように一対の偏光板が配置される。本発明の偏光板は、例えば、偏光子の少なくとも一方の表面に、易接着層を介して本発明の光学フィルム(偏光子保護フィルム)が積層された構造を有する。
従来、偏光子保護フィルムには、トリアセチルセルロース(TAC)フィルムが用いられている。しかし、TACフィルムは耐湿熱性が十分ではなく、TACフィルムを偏光子保護フィルムとして用いた場合、高温または高湿度の環境下で偏光板の特性が劣化することがある。また、TACフィルムは厚さ方向の位相差を有しており、この位相差は、LCDなどの画像表示装置、特に大画面の画像表示装置、の視野角特性に悪影響を与える。
これに対して、偏光子保護フィルムである本発明の光学フィルムはアクリル樹脂フィルムから構成されるため、TACフィルムに比べて耐湿熱性および光学特性を向上させることができる。
偏光板は、典型的には、光学フィルムと偏光子とを接着層(粘接着剤層)を介して積層することにより製造される。本発明の光学フィルムが易接着層を有する場合、易接着層が偏光子側となるように、両者は積層されることが好ましい。
具体的には、例えば、偏光子または光学フィルムから選ばれるいずれか一方の表面に、乾燥後に接着層(粘接着剤層)となる接着剤組成物を塗布した後、両者を貼り合わせて乾燥させる。
接着剤組成物の塗布方法は、例えば、ロール法、噴霧法、浸漬法である。接着剤組成物が金属化合物コロイドを含む場合、乾燥後の接着層の厚さが金属化合物コロイド粒子の平均粒子径よりも大きくなるように、接着剤組成物を塗布する。乾燥温度は、典型的には、5〜150℃、好ましくは30〜120℃である。乾燥時間は、典型的には、120秒以上、好ましくは300秒以上である。
偏光子は限定されず、偏光板として必要な機能に応じて、任意の適切な偏光子を採用できる。偏光子は、例えば、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン−酢酸ビニル共重合体(EVA)の部分けん化フィルムのような親水性の高分子フィルムに、ヨウ素または二色性染料のような二色性物質を吸着させて一軸延伸したフィルム;PVAの脱水処理物あるいはポリ塩化ビニルの脱塩酸処理物を用いたポリエン系配向フィルム、である。なかでも、PVA系フィルムに二色性物質を吸着させて一軸延伸したフィルムが、偏光子として好ましい。この偏光子は、高い偏光二色比を示す。偏光子の厚さは限定されず、一般に、1〜80μm程度である。
PVA系フィルムにヨウ素を吸着させて一軸延伸した偏光子は、例えば、PVA系フィルムを、ヨウ素を含む水溶液に浸漬することによって染色し、延伸倍率3〜7倍で一軸延伸することによって作製することができる。
染色に用いる水溶液は、必要に応じて、ホウ酸、硫酸亜鉛、塩化亜鉛などを含んでいてもよい。ヨウ素を含む水溶液として、ヨウ化カリウムなどのヨウ化物の水溶液を用いてもよい。
PVA系フィルムは、染色の前に、水に浸漬して水洗してもよい。PVA系フィルムの水洗により、当該フィルムの表面に存在する汚れおよびブロッキング防止剤などを除去できる。さらに、水洗によってPVA系フィルムが膨潤するため、染色時のムラが抑制される。延伸は、染色前に行っても、染色後に行っても、染色と同時に行ってもよい。
乾燥後に接着層(粘接着剤層)となる接着剤組成物は、限定されない。接着剤組成物は、PVA系樹脂を含むことが好ましい。
PVA系樹脂は、例えば、以下の重合体を含む:ポリ酢酸ビニルのけん化物およびその誘導体;酢酸ビニルと他の単量体との共重合体のけん化物;PVAをアセタール化、ウレタン化、エーテル化、グラフト化またはリン酸エステル化した変性PVA。
前記他の単量体は、例えば、(無水)マレイン酸、フマル酸、クロトン酸、イタコン酸、(メタ)アクリル酸などの不飽和カルボン酸およびそのエステル;エチレン、プロピレンなどのα−オレフィン;(メタ)アリルスルホン酸(ソーダ)、スルホン酸ソーダ(モノアルキルマレート)、ジスルホン酸ソーダアルキルマレート、N−メチロールアクリルアミド、アクリルアミドアルキルスルホン酸アルカリ塩、N−ビニルピロリドン、N−ビニルピロリドン誘導体である。PVA系樹脂は、アセトアセチル基含有PVAを含むことが好ましい。この場合、偏光子と光学フィルム(アクリル樹脂フィルム)との密着性が向上し、偏光板の耐久性が向上する。
PVA系樹脂の平均重合度は、接着剤組成物の接着性の観点から、100〜5000程度が好ましく、1000〜4000がより好ましい。PVA系樹脂の平均ケン化度は、接着剤組成物の接着性の観点から、85〜100モル%程度が好ましく、90〜100モル%がより好ましい。
アセトアセチル基含有PVAは、例えば、PVAとジケテンとを任意の方法で反応させて得られる。具体例は、PVAを酢酸などの溶媒中に分散させた分散体に、ジケテンを添加する方法;PVAをジメチルホルムアミドまたはジオキサンなどの溶媒に溶解させた溶液に、ジケテンを添加する方法;PVAにジケテンガスまたは液状ジケテンを直接接触させる方法である。
アセトアセチル基含有PVAにおけるアセトアセチル基変性度は、典型的には、0.1モル%以上であり、好ましくは0.1〜40モル%、より好ましくは1〜20%、さらに好ましくは2〜7モル%である。0.1モル%未満の変性度では、変性による効果(例えば、耐水性の向上)が不十分となることがある。変性度が40モル%を超えると、それ以上、耐水性が向上しない。PVAのアセトアセチル基変性度は、NMRにより測定できる。
接着剤組成物は、架橋剤を含んでいてもよい。架橋剤は限定されないが、PVA系樹脂に対する反応性を示す官能基を少なくとも2つ有する化合物である。
架橋剤は、例えば、エチレンジアミン、トリエチレンジアミン、ヘキサメチレンジアミンなど、アルキレン基と2つのアミノ基とを有するアルキレンジアミン;トリレンジイソシアネート、水素化トリレンジイソシアネート、トリメチロールプロパントリレンジイソシアネートアダクト、トリフェニルメタントリイソシアネート、メチレンビス(4−フェニルメタントリイソシアネート)、イソホロンジイソシアネート、およびこれらのケトオキシムブロック物またはフェノールブロック物、などのイソシアネート;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、ジグリシジルアミンなどのエポキシ;ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒドなどのモノアルデヒド;グリオキザール、マロンジアルデヒド、スクシンジアルデヒド、グルタルジアルデヒド、マレインジアルデヒド、フタルジアルデヒドなどのジアルデヒド;メチロール尿素、メチロールメラミン、アルキル化メチロール尿素、アルキル化メチロールメラミン、アセトグアナミン、ベンゾグアナミンとホルムアルデヒドとの縮合物などのアミノ−ホルムアルデヒド樹脂;ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム、鉄、ニッケルなど、一価から三価の金属の塩および酸化物である。
なかでも、架橋剤は、アミノ−ホルムアルデヒド樹脂およびジアルデヒドが好ましい。アミノ−ホルムアルデヒド樹脂は、メチロール基を有することが好ましく、メチロールメラミンが好適である。ジアルデヒドは、グリオキザールが好適である。
接着剤組成物における架橋剤の配合量は、PVA系樹脂の種類に応じて、適宜、設定できる。典型的には、PVA系樹脂100重量部に対して10〜60重量部程度であり、20〜50重量部が好ましい。この範囲において、良好な接着性が得られる。架橋剤の配合量が過度に多くなると、架橋剤を介した反応が短時間で進行するため、接着剤組成物がゲル化する傾向がある。このため、接着剤組成物としての可使時間(ポットライフ)が極端に短くなり、工業的な使用が困難になることがある。
接着剤組成物は、金属化合物コロイドを含んでいてもよい。金属化合物コロイドは、金属化合物の粒子が分散媒中に分散したコロイドであり得る。金属化合物コロイドは、粒子が有する同種の電荷の相互反発に起因する静電的な安定化により、永続的に安定性を有するコロイドであり得る。接着剤組成物が金属化合物コロイドを含むことにより、例えば、架橋剤の配合量が多い場合であっても、接着剤組成物の安定性が向上する。
金属化合物コロイドにおけるコロイド粒子の平均粒子径は、偏光板としての光学特性(例えば、偏光特性)に悪影響を及ぼさない範囲で設定できる。コロイド粒子の平均粒子径は、1〜100nmが好ましく、1〜50nmがより好ましい。
なお、前記コロイド粒子の平均粒子径は、前述した微粒子の平均一次粒子径の求め方と同じ方法で測定することができる。
これらの範囲では、接着層中に当該コロイド粒子を均一に分散させることができる。これにより、接着性が確保されるとともに、クニック欠陥の発生が抑えられる。クニック欠陥が発生すると、例えば、当該偏光板を組み込んだ画像表示装置において、光抜けが生じる。
金属化合物は限定されず、例えば、アルミナ、シリカ、ジルコニア、チタニアなどの酸化物;ケイ酸アルミニウム、炭酸カルシウム、ケイ酸マグネシウム、炭酸亜鉛、炭酸バリウム、リン酸カルシウムなどの金属塩;セライト、タルク、クレイ、カオリンなどの鉱物である。正電荷を有する金属化合物コロイドが好ましい。正電荷を有するコロイドとなる金属化合物は、アルミナ、チタニアが好ましく、アルミナが特に好ましい。
金属化合物コロイドは、典型的には、分散媒に分散したコロイド溶液である。分散媒は、例えば、水、アルコールである。コロイド溶液における固形分濃度は、典型的には、1〜50重量%程度であり、1〜30重量%が好ましい。コロイド溶液は、安定剤として、硝酸、塩酸、酢酸などの酸を含んでいてもよい。
接着剤組成物における金属化合物コロイドの配合量(固形分換算)は、PVA系樹脂100重量部に対して200重量部以下が好ましく、10〜200重量部がより好ましく、20〜175重量部がさらに好ましく、30〜150重量部が特に好ましい。これらの範囲では、接着剤組成物の接着性がより確実となりながら、クニック欠陥の発生がより抑えられる。
接着剤組成物は、シランカップリング剤、チタンカップリング剤などのカップリング剤;各種の粘着付与剤;紫外線吸収剤;酸化防止剤;耐熱安定剤、耐加水分解安定剤などの安定剤を含んでいてもよい。
接着剤組成物は、好ましくは水溶液(樹脂溶液)である。水溶液における樹脂の濃度は、組成物の塗工性および放置安定性の観点から、0.1〜15重量%が好ましく、0.5〜10重量%がより好ましい。
水溶液の粘度は、1〜50mPa・sが好ましい。接着剤組成物が金属化合物コロイドを含む場合、1〜20mPa・sの低い粘度であっても、クニック欠陥の発生が効果的に抑制される。
水溶液のpHは、2〜6が好ましく、2.5〜5がより好ましく、3〜5がさらに好ましく、3.5〜4.5が特に好ましい。一般に、水溶液のpHの調整によって、金属化合物コロイドの表面電荷が調整される。表面電荷は、好ましくは正電荷である。正電荷であることにより、クニック欠陥の発生がさらに抑制される。金属化合物コロイドの表面電荷は、例えば、ゼータ電位測定機でゼータ電位を測定することで確認できる。
水溶液(樹脂溶液)である接着剤組成物は、公知の方法により形成できる。接着剤組成物が架橋剤および金属化合物コロイドを含む場合、例えば、PVA系樹脂と架橋剤とを混合して適切な濃度に調整した溶液に、金属化合物コロイドを配合する方法をとり得る。PVA系樹脂と金属化合物コロイドとを混合した後に、架橋剤を、接着剤組成物の使用時期を考慮しながら混合してもよい。水溶液の濃度は、水溶液を調製した後に調整可能である。
接着剤組成物から形成される接着層(粘接着剤層)の厚さは、当該組成物の組成に応じて、適宜、設定できる。当該厚さは、10〜300nmが好ましく、10〜200nmがより好ましく、20〜150nmが特に好ましい。この範囲において、接着層(粘接着剤層)は十分な接着力を示す。
本発明の画像表示装置は、本発明にかかる光学フィルムを備える。画像表示装置は、例えば、エレクトロルミネッセンス(EL)ディスプレイパネル、プラズマディスプレイパネル(PDP)、電界放出ディスプレイ(FED:Field Emission Display)、LCDである。
本発明にかかる光学フィルムを備える画像表示装置(本発明の画像表示装置)の構成は特に限定されず、電源、バックライト部、操作部などの部材を、必要に応じて適宜備えればよい。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
以下、実施例により、本発明をさらに詳細に説明する。本発明は、以下の実施例に限定されない。最初に、本実施例において作製した重合体、樹脂、光学フィルムの評価方法を示す。
[MSE摩耗率]
フィルムのMSE摩耗率は、フィルムの表面未処理面をサンプル面として、下記測定条件で3回計測した平均値を用いて算出した。
摩耗試験条件
使用機種:MSE−A
濃度:3wt% 球状シリカ粒子(D50=5.0μm)
摩耗力設定:SUS摩耗率が0.005μm/g±10%となるように設定
ノズルサイズ:φ1mm
投射距離:4m
摩耗速度測定
使用機種:触針式表面形状測定機(小坂研究所製)
測定長:4mm
触針子:R10μmダイヤモンド
測定圧力:100μN
送り速度:0.2mm/sec
[耐折強度]
フィルムの耐折強度は、JIS P8115に準拠して行った。具体的には長手方向がMD方向とTD方向となる長さ90mm、幅15mmの2種類の試験フィルムを23℃、50%RHの状態に1時間以上静置させてから使用し、MIT耐折度試験機(テスター産業製、BE−201型)を用いて、荷重200gの条件で折り曲げ線が製膜時のフィルムの流れ方向に平行となるように試験を行い、5枚のサンプルのフィルムが破断するまでの回数の平均値求め各方向の耐折強度とした。求めた各方向の耐折強度の平均値を光学フィルムの耐折強度とした。
[トラウザー引き裂き強度]
フィルムのトラウザー引き裂き強度は、JIS K7128−1に準拠して行った。具体的には、長手方向がMD方向とTD方向となる長さ120mm、幅30mmの2種類の試験フィルムを23℃、50%RHの状態に1時間以上静置させてから使用し、オートグラフ(島津製作所社製、AGS−X)を用いて200mm/minの試験速度で試験を行い、引裂き開始の20mmと引裂き終了前の5mmを除外した35mmの平均値を算出し、5枚のサンプルの平均値を測定結果とした。
[ハードコート後のフィルム強度]
ハードコート処理したフィルムを具体的には、長手方向がMD方向とTD方向となる長さ20mm、幅10mmの2種類の試験フィルムを23℃、50%RHの状態に1時間以上静置させてから、長手方向に一度折りたたみフィルムが破断した場合を×、破断しなかった場合を○とした。
[ハードコート層の密着性]
JIS K5400 3.5に準拠して碁盤目試験を行った。具体的にはハードコート層面に、鋭利な刃物で1mm角の碁盤目状の切込みを入れた後、JIS Z1522に準拠した25mm幅のセロハンテープを木へらで密着させた後、セロハンテープを剥がした。作成した100マスのうち、1マス以上剥がれるまで繰り返しセロテープの密着と剥がす操作を繰り返し、10回以上繰り返しても1マス以上の剥離が見られないサンプルを○とした。1マス以上剥離したサンプルは、剥離した個所を下記測定機器にて表面の分析を行い、ハードコート層及びプライマー層が完全に消失し、フィルム自身のスペクトルのみが確認できる場合を×、ハードコート層又はプライマー層のピークが確認できるものを△とした。
表面分析機器:赤外分光装置(VARIAN社製EXCALBUR)及び赤外顕微鏡(DIGILAB社製UMA600)
測定条件:顕微ATR測定法
なお、前記セロハンテープは、JIS Z1522に合格した市販のセロハンテープである。
[フィルムの厚さ]
フィルムの厚さは、デジマチックマイクロメーター(ミツトヨ社製)を用いて測定した。以降に評価方法を示す物性を含め、フィルムの物性を測定、評価するためのサンプルはフィルムの幅方向の中央部から取得した。
[波長380nmにおける光線透過率]
波長380nmにおける光線透過率は、紫外可視分光光度計(島津製作所製、UV−3100)を用いて測定した。
[重量平均分子量]
システム:東ソー製GPCシステム HLC−8220
測定側カラム構成
・ガードカラム:東ソー製、TSKguardcolumn SuperHZ−L
・分離カラム:東ソー製、TSKgel SuperHZM−M 2本直列接続
リファレンス側カラム構成
・リファレンスカラム:東ソー製、TSKgel SuperH−RC
展開溶媒:クロロホルム(和光純薬工業製、特級)
展開溶媒の流量:0.6mL/分
標準試料:TSK標準ポリスチレン(東ソー製、PS−オリゴマーキット)
カラム温度:40℃
[ガラス転移温度(Tg)]
重合体のTgは、JIS K7121の規定に準拠して、始点法により求めた。具体的には、示差走査熱量計(リガク製、DSC−8230)を用い、窒素ガス雰囲気下、約10mgのサンプルを常温から200℃まで昇温(昇温速度20℃/分)して得られたDSC曲線から評価した。リファレンスには、α−アルミナを用いた。
(製造例1)
攪拌装置、温度センサー、冷却管および窒素導入管を備えた反応容器に、メタクリル酸メチル(MMA)229.6部、2−(ヒドロキシメチル)アクリル酸メチル(MHMA)33部、トルエン248.6部、およびn−ドデシルメルカプタン0.19部を仕込み、これに窒素を通じつつ、105℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤としてt−アミルパーオキシイソノナノエート(アルケマ吉富社製「ルペロックス(登録商標)570」)0.28部を添加するとともに、上記t−アミルパーオキシイソノナノエート0.56部とスチレン12.4部とを2時間かけて滴下しながら約105〜110℃の還流下で溶液重合を進行させ、滴下終了後、同温度でさらに4時間の熟成を行った。
次に、得られた重合溶液に、環化縮合反応の触媒(環化触媒)として、リン酸ステアリル(堺化学工業社製「Phoslex A−18」)0.21部を加え、約90〜110℃の還流下において2時間、ラクトン環構造を形成するための環化縮合反応を進行させた。
次に、得られた重合溶液を、240℃に加熱した多管式熱交換器に通して環化縮合反応を完結させた後、バレル温度が250℃であり、1個のリアベント、4個のフォアベント(上流側から第1、第2、第3、第4ベントと称する)および第3ベントと第4ベントとの間にサイドフィーダーを備え、先端部にリーフディスク型のポリマーフィルタ(濾過精度5μm)が配置されたベントタイプスクリュー二軸押出機(L/D=52)に、31.2部/時(樹脂量換算)の処理速度で導入した。その際、イオン交換水を0.47部/時の投入速度で第2ベントの後ろから投入し、紫外線吸収剤(ADEKA社製「アデカスタブ(登録商標)LA−F70」)0.66部をトルエン1.23部に溶解させた溶液を0.59部/時の投入速度で第3ベントの後ろから投入し、さらにイオン交換水を0.47部/時の投入速度で第4ベントの後ろから投入した。
脱揮完了後、押出機内に残された熱溶融状態にある樹脂組成物を当該押出機の先端からポリマーフィルタで濾過しながら排出し、備えたダイスを通過後、孔径1μmのフィルタ(オルガノ社製、製品名:ミクロポアフィルタ1EU)で濾過され、30±10℃の範囲内の温度に保持した冷却水を満たした水槽により、ストランドを冷却し、切断機(ペレタイザ)に導入することで、ラクトン環構造を主鎖に有するラクトン環系重合体と紫外線吸収剤(UV吸収剤)とを含む樹脂組成物からなるペレット(P−1)を得た。
(製造例2)
エポキシ基とカルボキシル基とを有するポリエステル−アクリル複合樹脂(高松油脂株式会社製、ペスレジンA−647GEX、固形分20重量%)75重量部、アモルファスシリカ微粒子を含むエマルジョン(日本触媒製、シーホスターKE−W10、平均粒径(一次粒子径)0.11μm、粒度分布1.1、固形分15重量%)1.0重量部およびパラトルエンスルホン酸1.5重量部、純水73重量部を混合して、エマルジョン状の分散体である易接着組成物(B)を得た。
(製造例3)
4官能アクリレート(新中村化学製、AD−TMP)15重量部、光重合開始剤(チバスペシャリティケミカルズ製、イルガキュア184)0.6重量部、およびメチルエチルケトン14.4重量部を混合して、ハードコート用コーティング組成物(C)を得た。
(実施例1)
製造例1で作製した樹脂ペレット(P−1)を単軸押出機を用いて、280℃でTダイから溶融押出を行い、110℃の冷却ロール上に吐出して、厚さ117μmのフィルムを製膜した。次に、製膜したフィルムを、縦延伸倍率2.0倍、横延伸倍率2.0倍となるように固定端二軸延伸して厚さ40μmの二軸延伸フィルム(F−1)を得た。得られた光学フィルム(F−1)の物性を表−1に示す。
次に、製造例3で作成したコーティング組成物(C)を、乾燥後の塗布膜の厚さが5μmになるように、前記易接着層の上に塗布し、100℃で2分間乾燥した。
続いて、積算照射量500mJ/cmのUV光を照射して、コーティング組成物(C)を硬化させ、表面にハードコート層を有する光学フィルム(Fc−1)を得た。得られたフィルム(Fc−1)の評価結果を表−2に示す。
尚、ハードコート層の厚みは5μm、JIS K5600−5−4に基づいて測定した鉛筆硬度は、光学フィルム(F−1)がHに対して(Fc−1)は3Hであった。
(製造例4)
重合開始剤としてt−アミルパーオキシイソノナノエート(アルケマ吉富社製「ルペロックス(登録商標)570」)0.24部を添加するとともに、上記t−アミルパーオキシイソノナノエート0.48部とスチレン12.4部とを2時間かけて滴下した以外は、製造例1と同様の操作を行い、樹脂ペレット(P−2)を得た。
(製造例5)
重合開始剤としてt−アミルパーオキシイソノナノエート(アルケマ吉富社製「ルペロックス(登録商標)570」)0.20部を添加するとともに、上記t−アミルパーオキシイソノナノエート0.40部とスチレン12.4部とを2時間かけて滴下した以外は、製造例1と同様の操作を行い重合溶液を得た。
次に、得られた重合溶液を、240℃に加熱した多管式熱交換器に通して環化縮合反応を完結させた後、バレル温度が250℃であり、1個のリアベント、4個のフォアベント(上流側から第1、第2、第3、第4ベントと称する)および第3ベントと第4ベントとの間にサイドフィーダーを備え、先端部にリーフディスク型のポリマーフィルタ(濾過精度5μm)が配置されたベントタイプスクリュー二軸押出機(L/D=52)に、31.2部/時(樹脂量換算)の処理速度で導入した。その際、イオン交換水を0.47部/時の投入速度で第2ベントの後ろから投入し、紫外線吸収剤(BASF社製「チヌビン(登録商標)460」)2.0部をトルエン4.0部に溶解させた溶液を1.9部/時の投入速度で第3ベントの後ろから投入し、さらにイオン交換水を0.47部/時の投入速度で第4ベントの後ろから投入した以外は、製造例1と同様の操作を行い樹脂ペレット(P−3)を得た。
(実施例2)
樹脂ペレット(P−2)を単軸押出機を用いて、280℃でTダイから溶融押出を行い、110℃の冷却ロール上に吐出して、厚さ160μmのフィルムを製膜した。次に、製膜したフィルムを、縦延伸倍率1.7倍、横延伸倍率1.7倍となるように二軸延伸して厚さ40μmの二軸延伸フィルムを得た以外は実施例1と同様の操作を行い光学フィルム(F−2)を得た。得られた光学フィルム(F−2)の物性を表−1に示す。
続いて、得られた光学フィルム(F−2)を実施例1同様に処理し、表面にハードコート層を有する光学フィルム(Fc−2)を得た。得られたフィルム(Fc−2)の評価結果を表−2に示す。
(実施例3)
樹脂ペレット(P−2)を単軸押出機を用いて、280℃でTダイから溶融押出を行い、110℃の冷却ロール上に吐出して、厚さ160μmのフィルムを製膜した。次に、製膜したフィルムを、縦延伸倍率2.0倍、横延伸倍率2.0倍となるように二軸延伸して厚さ40μmの二軸延伸フィルムを得た以外は実施例1と同様の操作を行い光学フィルム(F−3)を得た。得られた光学フィルム(F−3)の物性を表−1に示す。
続いて、得られた光学フィルム(F−3)を実施例1同様に処理し、表面にハードコート層を有する光学フィルム(Fc−3)を得た。得られたフィルム(Fc−3)の評価結果を表−2に示す。
(実施例4)
樹脂ペレット(P−3)を単軸押出機を用いて、280℃でTダイから溶融押出を行い、110℃の冷却ロール上に吐出して、厚さ160μmのフィルムを製膜した。次に、製膜したフィルムを、縦延伸倍率2.0倍、横延伸倍率2.0倍となるように二軸延伸して厚さ40μmの二軸延伸フィルムを得た以外は実施例1と同様の操作を行い光学フィルム(F−4)を得た。得られた光学フィルム(F−4)の物性を表−1に示す。
続いて、得られた光学フィルム(F−4)を実施例1同様に処理し、表面にハードコート層を有する光学フィルム(Fc−4)を得た。得られたフィルム(Fc−4)の評価結果を表−2に示す。
(製造例6)
市販のポリメチルメタクリレート樹脂(住友化学社製スミペックスEX)320部、トルエン480部を攪拌機付のオートクレーブに導入し、100℃で30分間加熱して溶解し、冷却後40%メチルアミンメタノール溶液130部加え、更に200℃で30分加熱した。ここに紫外線吸収剤(ADEKA社製「アデカスタブ(登録商標)LA−F70」)3.0部を均一に溶解した。得られた樹脂溶液を200℃の減圧乾燥器にて1時間減圧乾燥後に粉砕し、250℃に設定した二軸押出機にて溶融混練後にペレットに成型することで、グルタルイミド環構造を有するアクリル樹脂ペレット(P−4)を得た。
(実施例5)
樹脂ペレット(P−4)を単軸押出機を用いて、280℃でTダイから溶融押出を行い、110℃の冷却ロール上に吐出して、厚さ160μmのフィルムを製膜した。次に、製膜したフィルムを、縦延伸倍率1.7倍、横延伸倍率1.7倍となるように二軸延伸して厚さ40μmの二軸延伸フィルムを得た以外は実施例1と同様の操作を行い光学フィルム(F−5)を得た。得られた光学フィルム(F−5)の物性を表−1に示す。
続いて、得られた光学フィルム(F−5)を実施例1同様に処理し、表面にハードコート層を有する光学フィルム(Fc−5)を得た。得られたフィルム(Fc−5)の評価結果を表−2に示す。
(製造例7)
攪拌装置、温度センサー、冷却管および窒素導入管を備えた反応容器に、メタクリル酸メチル(MMA)325部、N−フェニルマレイミド(PMI)25部、N−シクロヘキシルマレイミド(CHMI)15部、n−ドデシルメルカプタン0.1部、およびトルエン541部を仕込み、これに窒素を通じつつ、100℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤としてt−ブチルパーオキシイソプロピルカーボネート(化薬アクゾ社製「カヤカルボン(登録商標)bic−75」)0.3部を添加するとともに、上記t−ブチルパーオキシイソプロピルカーボネート0.3部とスチレン22.3部とを4時間かけて滴下しながら約100〜115℃の還流下で溶液重合を進行させ、滴下終了後、同温度でさらに2時間の熟成を行った。
次に、得られた重合溶液を、バレル温度が260℃であり、1個のリアベント、4個のフォアベント(上流側から第1、第2、第3、第4ベントと称する)を備え、先端部にリーフディスク型のポリマーフィルタ(濾過精度5μm)が配置されたベントタイプスクリュー二軸押出機(L/D=52)に31.2部/時(樹脂量換算)の処理速度で導入した。その際、紫外線吸収剤(ADEKA社製「アデカスタブ(登録商標)LA−F70」)0.66部をトルエン1.23部に溶解させた溶液を0.59部/時の投入速度で第3ベントの後ろから投入し、さらにイオン交換水を0.47部/時の投入速度で第4ベントの後ろから投入した。
続いて、押出機内に残された熱溶融状態にある樹脂組成物を当該押出機の先端からポリマーフィルタで濾過しながら排出し、ペレタイザーによりペレット化して、イミド環構造を主鎖に有するマレイミド系重合体と紫外線吸収剤とを含む樹脂組成物からなるペレット(P−5)を得た。
(実施例6)
樹脂ペレット(P−5)を単軸押出機を用いて、280℃でTダイから溶融押出を行い、110℃の冷却ロール上に吐出して、厚さ160μmのフィルムを製膜した。次に、製膜したフィルムを、縦延伸倍率1.7倍、横延伸倍率1.7倍となるように二軸延伸して厚さ40μmの二軸延伸フィルムを得た以外は実施例1と同様の操作を行い光学フィルム(F−6)を得た。得られた光学フィルム(F−6)の物性を表−1に示す。
続いて、得られた光学フィルム(F−6)を実施例1同様に処理し、表面にハードコート層を有する光学フィルム(Fc−6)を得た。得られたフィルム(Fc−6)の評価結果を表−2に示す。
(実施例7)
市販のポリメチルメタクリレート樹脂(住友化学社製スミペックスEX)を単軸押出機を用いて、260℃でTダイから溶融押出を行い、100℃の冷却ロール上に吐出して、厚さ160μmのフィルムを製膜した。次に、製膜したフィルムを、縦延伸倍率2.0倍、横延伸倍率2.0倍となるように二軸延伸して厚さ40μmの二軸延伸フィルムを得た以外は実施例1と同様の操作を行い光学フィルム(F−7)を得た。得られた光学フィルム(F−7)の物性を表−1に示す。
続いて、得られた光学フィルム(F−7)を実施例1同様に処理し、表面にハードコート層を有する光学フィルム(Fc−7)を得た。得られたフィルム(Fc−7)の評価結果を表−2に示す。
尚、F−7に易接着層を塗布し、乾燥する際の温度が100℃の場合、フィルムの一部に収縮が見られたため、乾燥温度は90℃とした。
(実施例8)
市販のポリメチルメタクリレート樹脂(住友化学社製スミペックスHT−55X)を単軸押出機を用いて、260℃でTダイから溶融押出を行い、110℃の冷却ロール上に吐出して、厚さ160μmのフィルムを製膜した。次に、製膜したフィルムを、縦延伸倍率2.0倍、横延伸倍率2.0倍となるように二軸延伸して厚さ40μmの二軸延伸フィルムを得た以外は実施例1と同様の操作を行い光学フィルム(F−8)を得た。得られた光学フィルム(F−8)の物性を表−1に示す。
続いて、得られた光学フィルム(F−8)を実施例1同様に処理し、表面にハードコート層を有する光学フィルム(Fc−8)を得た。得られた光学フィルム(Fc−8)の評価結果を表−2に示す。
尚、F−8に易接着層を塗布し、乾燥する際の温度が100℃の場合、フィルムの一部に収縮が見られたため、乾燥温度は90℃とした。
(比較例1)
樹脂ペレット(P−1)を単軸押出機を用いて、280℃でTダイから溶融押出を行い、110℃の冷却ロール上に吐出して、厚さ160μmのフィルムを製膜した。次に、製膜したフィルムを、縦延伸倍率1.7倍、横延伸倍率1.7倍となるように二軸延伸して厚さ40μmの二軸延伸フィルムを得た以外は実施例1と同様の操作を行い光学フィルム(F−9)を得た。得られた光学フィルム(F−9)の物性を表−1に示す。
続いて、得られた光学フィルム(F−9)を実施例1同様に処理し、表面にハードコート層を有する光学フィルム(Fc−9)を得た。得られたフィルム(Fc−9)の評価結果を表−2に示す。
(比較例2)
樹脂ペレット(P−1)を単軸押出機を用いて、280℃でTダイから溶融押出を行い、110℃の冷却ロール上に吐出して、厚さ117μmの光学フィルム(F−10)を得た。得られた光学フィルム(F−10)の物性を表−1に示す。
続いて、得られた光学フィルム(F−10)を実施例1同様に処理し、表面にハードコート層を有する光学フィルム(Fc−10)を得た。得られたフィルム(Fc−10)の評価結果を表−2に示す。
(比較例3)
樹脂ペレット(P−4)を単軸押出機を用いて、280℃でTダイから溶融押出を行い、110℃の冷却ロール上に吐出して、厚さ160μmのフィルムを製膜した。次に、製膜したフィルムを、縦延伸倍率2.0倍、横延伸倍率2.0倍となるように二軸延伸して厚さ40μmの二軸延伸フィルムを得た以外は実施例1と同様の操作を行い光学フィルム(F−11)を得た。得られた光学フィルム(F−11)の物性を表−1に示す。
続いて、得られた光学フィルム(F−11)を実施例1同様に処理し、表面にハードコート層を有する光学フィルム(Fc−11)を得た。得られたフィルム(Fc−11)の評価結果を表−2に示す。
Figure 2016071274
Figure 2016071274
本発明の光学フィルムは、LCDなどの画像表示装置に用いられる、偏光子保護フィルムなどの各種の保護フィルム、位相差フィルム、偏光フィルムへの使用に好適である。

Claims (9)

  1. アクリル樹脂フィルムを含み、マイクロスラリーエロージョン(MSE)試験による摩耗率(μm/g)が0.7以上1.4以下の範囲にあると共に、JIS P8115に準拠して測定した耐折回数が300回以上である光学フィルム。
  2. JIS K7128−1に準拠して測定したトラウザー引き裂き強度が0.01N以上である請求項1記載の光学フィルム。
  3. 前記アクリル樹脂フィルムが、環構造を有する(メタ)アクリル重合体を含有する請求項1または2に記載の光学フィルム。
  4. 前記環構造が、無水マレイン酸構造、N−置換マレイミド構造、無水グルタル酸構造、グルタルイミド構造およびラクトン環構造からなる群より選ばれる少なくとも1種である請求項1から3のいずれか1項に記載の光学フィルム。
  5. 380nmにおける光線透過率が30%以下である請求項1から4のいずれか1項に記載の光学フィルム。
  6. 前記アクリル樹脂フィルムが、分子量600以上の紫外線吸収剤を含む請求項1から5のいずれか1項に記載の光学フィルム。
  7. 請求項1から6のいずれか1項に記載の光学フィルムを含むことを特徴とする偏光子保護フィルム。
  8. 請求項1から6のいずれか1項に記載の光学フィルムを備えることを特徴とする偏光板。
  9. 請求項1から6のいずれか1項に記載の光学フィルムを備えることを特徴とする画像表示装置。
JP2014202786A 2014-10-01 2014-10-01 光学フィルムおよびその利用 Active JP6683415B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014202786A JP6683415B2 (ja) 2014-10-01 2014-10-01 光学フィルムおよびその利用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014202786A JP6683415B2 (ja) 2014-10-01 2014-10-01 光学フィルムおよびその利用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019007450A Division JP2019066884A (ja) 2019-01-21 2019-01-21 光学フィルムおよびその利用

Publications (2)

Publication Number Publication Date
JP2016071274A true JP2016071274A (ja) 2016-05-09
JP6683415B2 JP6683415B2 (ja) 2020-04-22

Family

ID=55864638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014202786A Active JP6683415B2 (ja) 2014-10-01 2014-10-01 光学フィルムおよびその利用

Country Status (1)

Country Link
JP (1) JP6683415B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013203A1 (ja) * 2018-07-13 2020-01-16 旭化成株式会社 メタクリル系樹脂、成形体、光学部品又は自動車部品
US11312794B2 (en) * 2016-04-07 2022-04-26 Dai Nippon Printing Co., Ltd. Protective film, optical film, laminate, polarizing plate, image display device and method for producing polarizing plate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112207A1 (ja) * 2005-03-31 2006-10-26 Nippon Shokubai Co., Ltd. 偏光子保護フィルム、偏光板、および画像表示装置
JP2008191426A (ja) * 2007-02-05 2008-08-21 Nippon Shokubai Co Ltd 偏光子保護フィルムおよび偏光板
JP2009052021A (ja) * 2007-06-14 2009-03-12 Nippon Shokubai Co Ltd 熱可塑性樹脂組成物とそれを用いた樹脂成形品および偏光子保護フィルムならびに樹脂成形品の製造方法
JP2010065109A (ja) * 2008-09-10 2010-03-25 Nippon Shokubai Co Ltd 熱可塑性樹脂組成物とそれを用いたフィルム
JP2010072135A (ja) * 2008-09-17 2010-04-02 Nippon Shokubai Co Ltd 光学フィルム
JP2010242510A (ja) * 2009-04-01 2010-10-28 Toyota Motor Corp 冷却システムの故障診断装置
JP2011131509A (ja) * 2009-12-25 2011-07-07 Nippon Shokubai Co Ltd 光学フィルムの製造方法
JP2013242510A (ja) * 2012-04-26 2013-12-05 Nippon Shokubai Co Ltd 光学フィルムおよびその利用
JP2014048347A (ja) * 2012-08-29 2014-03-17 Nippon Shokubai Co Ltd 光学フィルムおよびその利用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112207A1 (ja) * 2005-03-31 2006-10-26 Nippon Shokubai Co., Ltd. 偏光子保護フィルム、偏光板、および画像表示装置
JP2008191426A (ja) * 2007-02-05 2008-08-21 Nippon Shokubai Co Ltd 偏光子保護フィルムおよび偏光板
JP2009052021A (ja) * 2007-06-14 2009-03-12 Nippon Shokubai Co Ltd 熱可塑性樹脂組成物とそれを用いた樹脂成形品および偏光子保護フィルムならびに樹脂成形品の製造方法
JP2010065109A (ja) * 2008-09-10 2010-03-25 Nippon Shokubai Co Ltd 熱可塑性樹脂組成物とそれを用いたフィルム
JP2010072135A (ja) * 2008-09-17 2010-04-02 Nippon Shokubai Co Ltd 光学フィルム
JP2010242510A (ja) * 2009-04-01 2010-10-28 Toyota Motor Corp 冷却システムの故障診断装置
JP2011131509A (ja) * 2009-12-25 2011-07-07 Nippon Shokubai Co Ltd 光学フィルムの製造方法
JP2013242510A (ja) * 2012-04-26 2013-12-05 Nippon Shokubai Co Ltd 光学フィルムおよびその利用
JP2014048347A (ja) * 2012-08-29 2014-03-17 Nippon Shokubai Co Ltd 光学フィルムおよびその利用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11312794B2 (en) * 2016-04-07 2022-04-26 Dai Nippon Printing Co., Ltd. Protective film, optical film, laminate, polarizing plate, image display device and method for producing polarizing plate
WO2020013203A1 (ja) * 2018-07-13 2020-01-16 旭化成株式会社 メタクリル系樹脂、成形体、光学部品又は自動車部品
US11603441B2 (en) 2018-07-13 2023-03-14 Asahi Kasei Kabushiki Kaisha Methacrylic resin, shaped article, and optical component or automotive part

Also Published As

Publication number Publication date
JP6683415B2 (ja) 2020-04-22

Similar Documents

Publication Publication Date Title
JP6688304B2 (ja) ブロック共重合体
KR101618902B1 (ko) 편광자 보호 필름 및 편광자 보호 필름을 사용한 편광판 및 화상 표시 장치
JP5272055B2 (ja) 偏光子保護フィルム、偏光板および画像表示装置
KR101344996B1 (ko) 편광자 보호 필름, 편광판 및 화상 표시 장치
JP5827017B2 (ja) 光学フィルムとその製造方法、光学部材および画像表示装置
TWI465463B (zh) A polarizing element protective film, a polarizing plate, and an image display device
KR101771716B1 (ko) 광학 필름과 그 제조 방법, 광학 부재 및 화상 표시 장치
WO2009090932A1 (ja) 偏光板および偏光板を用いた画像表示装置
JP6178553B2 (ja) 光学フィルムおよびその利用
WO2006112223A1 (ja) 偏光子保護フィルム、偏光板、および画像表示装置
JP2013242510A (ja) 光学フィルムおよびその利用
JP2017057265A (ja) ラクトン単位及びスチレン系単位を有する熱可塑性共重合体
JP2014048347A (ja) 光学フィルムおよびその利用
JP2016147949A (ja) 熱可塑性樹脂組成物とそれを用いた光学フィルム
JP2012118479A (ja) 光学フィルムの製造方法
JP6591166B2 (ja) 光学フィルム、その利用およびその製造方法
JP5590997B2 (ja) 光学フィルム、偏光板および画像表示装置
JP2018158987A (ja) 易接着剤組成物およびそれを備える偏光子保護フィルム、偏光フィルムならびに画像表示装置
JP6683415B2 (ja) 光学フィルムおよびその利用
JP2019066884A (ja) 光学フィルムおよびその利用
JP2012177900A (ja) 積層体
JP2011215171A (ja) 光学フィルム
JP2013190577A (ja) 光学フィルム及びその利用
JP6859057B2 (ja) ブロック共重合体
WO2022209279A1 (ja) 偏光板保護フィルム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190121

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190128

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200326

R150 Certificate of patent or registration of utility model

Ref document number: 6683415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150