JP2016043292A - 流体処理システム - Google Patents

流体処理システム Download PDF

Info

Publication number
JP2016043292A
JP2016043292A JP2014167952A JP2014167952A JP2016043292A JP 2016043292 A JP2016043292 A JP 2016043292A JP 2014167952 A JP2014167952 A JP 2014167952A JP 2014167952 A JP2014167952 A JP 2014167952A JP 2016043292 A JP2016043292 A JP 2016043292A
Authority
JP
Japan
Prior art keywords
fluid
heat exchanger
heat
temperature side
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014167952A
Other languages
English (en)
Inventor
恵 北村
Megumi Kitamura
恵 北村
高橋 斗美子
Tomiko Takahashi
斗美子 高橋
武藤 敏之
Toshiyuki Muto
敏之 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014167952A priority Critical patent/JP2016043292A/ja
Publication of JP2016043292A publication Critical patent/JP2016043292A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

【課題】処理過程全体における温度差を有効利用して排熱の利用効率の向上に寄与できる流体処理システムを提供する。【解決手段】反応槽12で処理された処理済み流体を排出する排出管48は、熱音響装置6の高温側熱交換器76に接続されている。背圧弁58には熱媒を用いた熱交換器86が接続されており、減圧の際に背圧弁58を凍らせるほどの低温が低温側熱交換器78に供給される。これにより蓄熱器74の両端に温度勾配が形成され、熱音響現象による振動エネルギーが発生する。振動エネルギーは発電機構84により電気エネルギーに変換され、流体処理装置4の処理に係る電力消費部品の電力に利用される。【選択図】図1

Description

本発明は、廃水等の処理対象流体と酸化剤とを混合し、高温、高圧の条件下で処理対象流体中の有機物を酸化分解することによって処理対象流体を処理(浄化の概念を含む)する流体処理装置を備えた流体処理システムに関する。
従来から、ダイオキシン類やPCB(ポリ塩化ビフェニル)などの難分解物質や、し尿、下水、家畜糞尿、食品工場からの排水などの有機系の処理対象流体を分解、無害化して処理する、超臨界水酸化分解処理装置が知られている。
例えば、超臨界水と酸化剤とを用いて、有機物を含む処理対象流体を酸化反応させて二酸化炭素、水、無機酸などの無害な物質に変換する超臨界水酸化処理装置が知られている。
このような装置において、典型的な反応条件は、圧力が25〜50MPa、温度が500〜700℃程度である。
水の臨界温度以上に加熱され、水の臨界圧力よりも低い圧力の高温高圧水に酸化剤を加えた流体を反応槽内で触媒に接触させて酸化反応を促進させる装置も知られている。
触媒を用いる方式によれば、250〜500℃程度の比較的低温で、難分解性の有機物でも良好に酸化分解することができる。
この方式では、超臨界水酸化処理装置の反応条件よりも緩やかな条件(例えば0.5〜20MPa、100〜500℃)で処理対象流体の処理が行えるため、処理システムの低コスト化に寄与できる。
超臨界水酸化を用いた流体処理装置では、処理過程において多くの排熱が発生する。例えば、分解処理された200〜500℃の過熱水蒸気の熱を再び熱エネルギーとして廃液の予熱などに利用することも可能である。
しかし、熱エネルギーは時間とともに減少するため、有効に利用できないことが多い。このことから、エネルギーを蓄える技術が排熱利用の観点において望まれる。
このため、発生した排熱の熱エネルギーを蓄える技術の提案もなされている(特許文献1)。
排熱を熱エネルギー源として有効利用し、流体処理装置のエネルギー消費量を低減できれば、流体処理装置のランニングコストの抑制につながる。
特許文献1に記載の装置では、反応槽内に、気体と可逆的に反応することが可能な物質を含む熱交換型反応器を設け、廃水中の物質を酸化させることにより発生した熱が前記物質に蓄熱される構成となっている。
このようにすることで、反応槽で必要な熱エネルギーの一部を処理過程で生じる熱で代替することができ、結果的に流体処理装置全体のエネルギー消費量を低減することができる。
上記は反応槽内での排熱利用の例であるが、特許文献2では、反応槽から排出された処理済み流体を熱交換器に通して水蒸気を発生させ、発電による電気エネルギーとして利用することも提案されている。
しかしながら、従来の流体処理装置における排熱利用は、所定の温度を超える高温排熱のみ利用されることが多く、処理過程全体における排熱の観点からすれば、利用効率が悪い。
例えば、300℃を利用の下限としている場合には、排熱温度が300℃を下回る箇所では排熱利用はなされないこととなる。
ところで、この種の流体処理装置では、ある箇所での排熱温度が低くても、処理過程全体からみると大きな温度差(温度勾配)が潜在的に存在している。
例えば、反応槽から排出された高温・高圧の処理済みの流体は最終的に大気圧と同程度に減圧されるが、排ガスの減圧の際には断熱膨張によって背圧弁の温度が低下する。
この場合、高温箇所と低温箇所との間には大きな温度差が存在することになる。
この温度差を他のエネルギーに変換することができれば、局所的な高温箇所での排熱利用ではなく「温度の範囲」として利用できるので、排熱の利用効率を向上させることができる。
本発明は、このような現状に鑑みてなされたもので、処理過程全体における温度差を有効利用して排熱の利用効率の向上に寄与できる流体処理システムの提供を、その主な目的とする。
上記目的を達成するために、本発明の流体処理システムは、処理対象流体と酸化剤との混合流体を加熱及び加圧状態下で前記処理対象流体中の有機物を酸化反応によって分解し、前記処理対象流体を処理するための反応槽を有する流体処理装置と、熱エネルギーを音波に変換する熱音響装置と、前記熱音響装置で発生した振動エネルギーを他のエネルギーに変換するエネルギー変換手段と、を備え、前記熱音響装置は、音波を伝搬させる流体が閉じ込められた気柱管と、該気柱管の管路中に配置された蓄熱器と、該蓄熱器の一端側に配置された高温側熱交換器と、前記蓄熱器の他端側に配置された低温側熱交換器と、を有し、前記処理対象流体を処理する過程で排出される排熱を前記高温側熱交換器に伝達する構成を有している。
本発明によれば、処理過程全体における温度差を有効利用して排熱の利用効率の向上に寄与できる。
本発明の一実施形態に係る流体処理システムの概要構成図である。 熱音響装置の要部を示す図で、(a)は蓄熱器周辺の概要断面図、(b)は(a)のB−B線での断面図である。 従来の流体処理装置の概要構成図である。
以下、本発明の一実施形態を図を参照して説明する。
本実施形態の構成を説明する前に、図3に基づいて従来の流体処理装置の構成の概要を説明する。
流体処理装置4は、処理対象流体供給部8と、酸化剤供給部10と、反応槽12と、気液分離部(降圧部)14と、図示しない制御部等を備えている。
以下、各構成について具体的に説明する。
処理対象流体供給部8は、原水タンク16を有しており、原水タンク16には、有機物を含む処理対象流体Wが未処理の状態で貯留されている。
処理対象流体は攪拌機18で撹拌されることで、処理対象流体中に含まれる浮遊物質SS(Suspended solids)が均等に分散され、有機物濃度の均一化が図られる。
撹拌された処理対象流体は、原水供給ポンプ20によって反応槽12に向けて圧送される。
処理対象流体は圧送される過程で、原水圧力計22により圧力を検知される。
処理対象流体は原水量調節弁24で流量を調整可能となっている。
原水量調節弁24を通過した処理対象流体を、処理対象流体の流路を囲むように配置された図示しない原水予熱器によって予熱するようにしてもよい。
酸化剤供給部10は、コンプレッサーからなる酸化剤圧送ポンプ26を有している。
酸化剤圧送ポンプ26は、酸化剤として取り込んだ空気Aを処理対象流体の圧力と同程度の圧力まで圧縮しながら、反応槽12に向けて送り出す。
空気は圧送される過程で、酸化剤圧力計28により圧力を検知される。
空気は酸化剤流量調節弁30で流量を調整可能となっている。
酸化剤流量調節弁30を通過した空気を、空気の流路を囲むように配置された図示しない予熱器によって予熱するようにしてもよい。
水を亜臨界水、過熱水蒸気又は超臨界水に変化させると共に、廃水中の物質を酸化させるための反応槽12は、内管32と外管34とからなる二重管構造を有している。
処理対象流体供給部8から供給される処理対象流体は、原水供給管36を介して外管34の原水導入側端を貫通し、且つ、内管32内に加圧状態で導入される。
酸化剤供給部10の空気は酸化剤供給管38を介して流体排出側近傍から外管34内に加圧状態で導入される。
内管32の原水導入側端には、外管34内に導入された空気を内管32内に導入する貫通孔40が形成されている。
内管32の流体排出側には、触媒としての二酸化マンガン42が充填されている。
内管32の外面には、コイル状のヒータ44が配置されている。内管32の内部の温度は温度センサ46で検出され、所定の温度になるようにヒータ44が制御される。
内管32に導入される処理対象流体の圧力は原水圧力計22により圧力を検知され、所定の圧力になるように、出口弁62及び背圧弁58で調整される。
以上のようにして、内管32では、処理対象流体供給部8から供給された処理対象流体と、酸化剤供給部10から外管34を経由して導入された空気とが混合される。
運転開始時には温度はまだ十分高くなっていないため、ヒータ44により内管32内の混合流体の温度を200〜550℃に昇温させる。
空気は、外管34を経由して内管32に導入されるため、ヒータ44で予熱される。
処理対象流体の処理を開始した後は、有機物の酸化反応により発熱するため、処理対象流体の有機物濃度が十分であればヒータ44による加熱は不要となる。
処理対象流体の有機物濃度が低い場合には発熱温度が不足するため、ヒータ44による加熱が必要となる。
反応槽12で分解処理された亜臨界流体や超臨界流体状態の200〜500℃の過熱水蒸気は、排出管48を介して、冷却水50を熱交換媒体とする熱交換器52を通り、熱交換することで常温まで冷却される。
常温まで冷却された処理済み流体は気液分離器54に入り、ここで無機酸等を僅かに含む水と、二酸化炭素ガス、窒素ガス等を含む気体に分離され、無機酸等を僅かに含む水が回収される。
無機酸等を僅かに含む水は、水質基準を確認された後、工業用水として再利用される。
気液分離器54で分離された気体は、搬送管56により背圧弁58まで搬送され、大気中へ放出される。
その際、気体は背圧弁58で減圧されることにより、温度が0℃程度まで下がり、減圧弁58は凍りつく。
背圧弁58の凍結を防止するために、減圧弁58はヒータ60で加熱される。
図3において、符号64、66、68は圧力計を、70は液面計を示している。
図1及び図2に基づいて、本実施形態に係る流体処理システムの構成を説明する。
上記従来構成と同一部分は同一符号で示し、既にした構成上及び機能上の説明は適宜省略する。
図1に示すように、流体処理システム2は、流体処理装置4と、熱音響装置6とを備えている。
熱音響装置6は、音波を伝搬させる流体が閉じ込められた気柱管72と、該気柱管72の管路中に配置された蓄熱器74と、該蓄熱器74の一端側に配置された高温側熱交換器76と、蓄熱器74の他端側に配置された低温側熱交換器78とを有している。
音波を伝搬させる流体である作動流体としては、空気、窒素、ヘリウム、アルゴン、水素等を採用することができる。
気柱管72は、断面が円形のステンレス管等により構成されており、上記作動流体が封入されている。
気柱管72は、略矩形のループ状に形成されたループ部80と、ループ部80の一つのコーナー部分に連通するように接続された共鳴部82とを含んでいる。
共鳴部82は、ループ部80と略同径の円形断面を有する管部からなり、その先端にはエネルギー変換手段としての発電機構84が接続されている。
ループ部80の長さ及び径は、封入されたガス状の作動流体の自励振動に共振するように設定されている。
反応槽12で処理された流体を排出する排出管48は、処理済み流体が高温側熱交換器76を経て熱交換器52に向かうように配設されている。
背圧弁58はエチレングリコールやオイル等の熱媒を用いた熱交換器86に接続されており、熱媒は熱媒ポンプ88により搬送管90を介して低温側熱交換器78と背圧弁58との間を循環するようになっている。
図2(a)に示すように、蓄熱器74は、配置箇所における気柱管の軸方向と平行に延びる狭い流路を複数有する。
蓄熱器74としては、セラミック等からなるハニカム構造体、図2(b)に示すようなステンレス等からなる薄いメッシュを微小間隔で配列したもの、およびステンレス等の金属製繊維を集合させた不織布等を採用することができる。
音波は大気中を伝わる際には熱交換しないが、微細な流路を通過するときは熱交換を発生させる。
この理由により、蓄熱器74はハニカム等の微細な流路を有する構造体となっている。
蓄熱器74の両端で温度勾配が生じると、気柱が自励振動を起こすという熱音響現象により、熱エネルギーの一部が力学的な振動(音波)エネルギーに変換される。
つまり、蓄熱器の細管流路内の作動流体が加熱と冷却、及び、膨張と圧縮の自励振動といった熱力学的過程を経ることで、スターリングサイクルと呼ばれる熱力学的サイクルを繰り返し、熱エネルギーが振動エネルギーに変換される。
この振動エネルギーはループ部80で共振して、進行波としてループ部80内に蓄えられる。
反応槽で分解処理された200℃〜550℃の亜臨界流体、超臨界水または過熱水蒸気が高温側熱交換器76を通ると、処理済み流体の熱が高温側熱交換器76に伝達され、蓄熱器74の両端で温度勾配が生じる。
本実施形態における高温側熱交換器76は、気柱管よりも大径に形成されており、蓄熱器74との接触部位には、表面積増加構造としての複数のフィン76aが気柱管の流路と平行に形成されている。
低温側熱交換器78も同様の構造となっている。
フィン76aによる表面積増加構造によって、高温熱源としての処理済み流体が通るときの伝熱面積が増え、高温側熱交換器76における熱効率が向上する。
すなわち、熱エネルギーの回収効率を向上させることができる。
例えば、10MPa、500℃の条件下で、廃液(処理対象流体)を1ton/hの流速で処理したとき、500℃の熱を300℃まで熱交換を行う場合、熱効率を80%とすると、1576MJ/hの熱エネルギーを回収することができる。
この場合、1時間あたり約87.5kWという大きさの電力を生成することができる。
熱音響機関では、高温排熱だけでなく極低温排熱を用いることで、エネルギー変換効率はカルノー効率に匹敵する約30%になる。
高温側熱交換器76で熱交換をすることにより冷却された処理済み流体は、図1に示すように、所定の温度までさらに冷却するために熱交換器52で冷却される。
上記のように、熱媒ポンプ88により循環する熱媒は熱交換器86で背圧弁58との熱交換を行うことで、背圧弁58を温め、これにより背圧弁58の冷却を防ぐことが可能である。
またこの技術により、背圧弁が凍結するほど冷却になる条件でも処理装置を可動させることが可能となる。
従って、従来構成におけるヒータ60は不要となる。
また、背圧弁58との熱交換で冷却された熱媒が低温側熱交換器78を通ることで、蓄熱器74の両端間の温度勾配を大きくすることができ、振動エネルギーの増加、ひいては排熱の利用効率の向上を図ることができる。
図示しないが、発電機構84は、振動エネルギーを電気エネルギーに変換する直動発電機(リニア発電機)等で構成される。
発電機により生成した電力は、原水供給ポンプ20や出口圧力計などの電力消費部品に供給される。
熱音響現象では、温度差が存在すれば熱エネルギーを振動エネルギーに変換することができる。
このため、低温側熱交換器78を設けずに高温側熱交換器76のみを設ける構成でも蓄熱器74の両端間に温度勾配が生じ、振動エネルギーを得ることができる。
この場合には処理過程で生じる高温排熱温度(例えば300℃)と、室温との間の温度差によるエネルギー変換となる。
低温側熱交換器78を設けない構成では、蓄熱器74の端自体が低温側熱交換器として機能する。
本実施形態では、低温となる箇所(背圧弁)の熱エネルギーを回収して低温側熱交換器78に供給する構成としているので、高温排熱(例えば300℃)と、低温排熱(約0℃)との間の温度差によるエネルギー変換となり、排熱の利用効率をさらに高めることができる。
高温排熱のみを利用する排熱利用方式では、排熱温度が基準を下回る場合には利用できないが、熱音響現象を利用した熱音響装置6を備えた構成とすれば、高温から低温の範囲全てにおいて排熱を利用することができ、利用効率を大幅に高めることができる。
また、熱音響装置6は、気柱管、蓄熱器、高温側熱交換器、低温側熱交換器及びヘリウム等の作動流体から構成され、著しく簡単な構造であり、且つ、可動部を持たないためメンテナンスも不要となる。
したがって、低コストで排熱からエネルギーを回収、再利用する構成を構築することができる。
本実施形態では処理済み流体からの熱を利用したが、反応槽からの放熱も高温側熱交換器の加熱に用いることができる。
この熱を用いることにより、蓄熱器にさらなる温度勾配を形成することができ、発電効率(利用効率)を上げることができる。
低温側熱交換器78に背圧弁58で熱交換した低温排熱(低温熱)を供給する構成としたが、本発明はこれに限定されない。
すなわち、高温側熱交換器76に供給される高温排熱よりも低温で温度勾配を形成できる高温排熱を供給するようにしてもよい。
本実施形態では排熱の利用形態を発電としたが、例えば、気柱管72をループ部80のみから構成し、気柱管72の途中にヒートポンプを備えた熱交換器を設け、振動エネルギーを冷却の熱エネルギーに変換して作業環境を冷却する機構としてもよい。
上記実施形態では、触媒として二酸化マンガンを用いたが、二酸化マンガンの代わりに、Ru、Pd、Rh、Pt、Au、Ir、Os、Fe、Cu、Zn、Ni、Co、Ce、Ti等を含む物質を用いてもよい。
また、それらのうち、少なくとも何れか1つを含む化合物でもよい。
また、外管34に空気を供給する酸化剤供給部10の代わりに、外管34にオゾンを供給するオゾン供給部や外管34に過酸化水素水を供給する過酸化水素水供給部を用いてもよい。
以上、本発明の好ましい実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、上述の説明で特に限定しない限り、特許請求の範囲に記載された本発明の趣旨の範囲内において、種々の変形・変更が可能である。
本発明の実施の形態に記載された効果は、本発明から生じる最も好適な効果を例示したに過ぎず、本発明による効果は、本発明の実施の形態に記載されたものに限定されるものではない。
4 流体処理装置
6 熱音響装置
12 反応槽
58 背圧弁
72 気柱管
74 蓄熱器
76 高温側熱交換器
76a、78a 表面積増加構造としてのフィン
78 低温側熱交換器
84 エネルギー変換手段としての発電機構
A 酸化剤としての空気
W 処理対象流体
特開2012−139654号公報 特開2007−229553号公報

Claims (6)

  1. 処理対象流体と酸化剤との混合流体を加熱及び加圧状態下で前記処理対象流体中の有機物を酸化反応によって分解し、前記処理対象流体を処理するための反応槽を有する流体処理装置と、
    熱エネルギーを音波に変換する熱音響装置と、
    前記熱音響装置で発生した振動エネルギーを他のエネルギーに変換するエネルギー変換手段と、
    を備え、
    前記熱音響装置は、音波を伝搬させる流体が閉じ込められた気柱管と、該気柱管の管路中に配置された蓄熱器と、該蓄熱器の一端側に配置された高温側熱交換器と、前記蓄熱器の他端側に配置された低温側熱交換器と、を有し、
    前記処理対象流体を処理する過程で排出される排熱を前記高温側熱交換器に伝達する構成を有している流体処理システム。
  2. 請求項1に記載の流体処理システムにおいて、
    前記高温側熱交換器に、前記反応槽から排出される処理済みの流体の熱を伝達する流体処理システム。
  3. 請求項1又は2に記載の流体処理システムにおいて、
    前記流体処理装置が、前記反応槽から排出された処理済みの流体を減圧する背圧弁を有し、
    前記処理済みの流体を減圧する際に冷却される前記背圧弁から回収した低温熱を前記低温側熱交換器に伝達する構成を有している流体処理システム。
  4. 請求項3に記載の流体処理システムにおいて、
    熱媒を介して前記背圧弁との熱交換を行う熱交換器を有し、前記熱媒は前記低温側熱交換器と前記背圧弁との間を循環する流体処理システム。
  5. 請求項1〜4のいずれか1つに記載の流体処理システムにおいて、
    前記高温側熱交換器と前記低温側熱交換器のうち少なくとも一方は、前記蓄熱器との接触部位に表面積増加構造を有している流体処理システム。
  6. 請求項1〜5のいずれか1つに記載の流体処理システムにおいて、
    前記エネルギー変換手段が、前記振動エネルギーを電気エネルギーに変換する発電機構である流体処理システム。
JP2014167952A 2014-08-20 2014-08-20 流体処理システム Pending JP2016043292A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014167952A JP2016043292A (ja) 2014-08-20 2014-08-20 流体処理システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014167952A JP2016043292A (ja) 2014-08-20 2014-08-20 流体処理システム

Publications (1)

Publication Number Publication Date
JP2016043292A true JP2016043292A (ja) 2016-04-04

Family

ID=55634415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014167952A Pending JP2016043292A (ja) 2014-08-20 2014-08-20 流体処理システム

Country Status (1)

Country Link
JP (1) JP2016043292A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038003A (ja) * 2018-09-05 2020-03-12 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated 圧縮ガス分配ステーションを試験するための器具および方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038003A (ja) * 2018-09-05 2020-03-12 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated 圧縮ガス分配ステーションを試験するための器具および方法
CN110878905A (zh) * 2018-09-05 2020-03-13 气体产品与化学公司 用于测试压缩气体分配站的设备和方法
CN110878905B (zh) * 2018-09-05 2022-04-12 气体产品与化学公司 用于测试压缩气体分配站的设备和方法

Similar Documents

Publication Publication Date Title
US11554960B2 (en) Carbon dioxide reduction system and carbon dioxide reduction method
JP4885449B2 (ja) 低排気火力発電装置
JP4684365B2 (ja) 被分離ガスの分離装置及び方法
KR102290845B1 (ko) 질산을 제조하기 위한 방법 및 설비
JP5496494B2 (ja) 発電システム
KR101943683B1 (ko) 질산 조제를 위한 방법 및 장치
US20220185713A1 (en) Supercritical oxidation of waste
JP2006045308A (ja) 重質油改質装置、改質方法及びコンバインド発電システム
JP2016043292A (ja) 流体処理システム
CN111246937A (zh) 气体生成装置及气体生成方法
KR20190069945A (ko) 해수 전해장치로부터 생성된 수소 처리 시스템
JP6480247B2 (ja) ガスハイドレート製造装置、および、ガスハイドレート製造方法
JP2000033355A (ja) 高温高圧水蒸気を用いた有機性廃棄物処理方法
JP2021046332A (ja) 水素発生分離装置
JP6202715B2 (ja) 水素化合物分解水素回収装置及びその方法
JP6127215B2 (ja) ガス化システム
JP4951760B2 (ja) 水熱酸化分解処理装置および肥料の製造方法
JP2022068715A (ja) 発電システム
KR20050047694A (ko) 열병합 발전에서 발생되는 폐열을 이용한 초임계수산화법에 의한 폐수처리시스템.
JP2013047468A (ja) アクチュエータ装置及び発電システム
CN205367998U (zh) 含盐废水处理系统
KR100676894B1 (ko) 연료전지용 전기발생장치의 폐열을 이용한 냉동시스템
JP2006312917A (ja) 発電設備及びガスタービン発電設備並びに発電設備の改質燃料供給方法
JP2954585B1 (ja) 水素製造方法及び装置
JPH11116222A (ja) 高温,高圧流体に含まれる二酸化炭素の液化分離法及び装置