JP2016042569A - Processing device - Google Patents

Processing device Download PDF

Info

Publication number
JP2016042569A
JP2016042569A JP2015105677A JP2015105677A JP2016042569A JP 2016042569 A JP2016042569 A JP 2016042569A JP 2015105677 A JP2015105677 A JP 2015105677A JP 2015105677 A JP2015105677 A JP 2015105677A JP 2016042569 A JP2016042569 A JP 2016042569A
Authority
JP
Japan
Prior art keywords
transport passage
battery transport
processing apparatus
region
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015105677A
Other languages
Japanese (ja)
Inventor
皇宇 陳
Huangyu Chen
皇宇 陳
光揚 郭
Kuangyang Kuo
光揚 郭
建竣 王
Jian-Jiun Wang
建竣 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motech Industries Inc
Original Assignee
Motech Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motech Industries Inc filed Critical Motech Industries Inc
Publication of JP2016042569A publication Critical patent/JP2016042569A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processing device that is applied to perform a light irradiation heating process to a plurality of semiconductor solar batteries.SOLUTION: A processing device comprises: a first battery transport passage 104a; a second battery transport passage 104b adjacent to the first battery transport passage; and a plurality of heating light sources 106 installed above the first battery transport passage and the second battery transport passage. Each of the first battery transport passage and the second battery transport passage includes: a transport device 108 applied to transportation of a semiconductor solar battery 102; and two reflection diaphragms 110a and 112a respectively installed along opposite both sides of the transport device so that each cross section of the first battery transport passage and the second battery transport passage is in a substantially U-shape.SELECTED DRAWING: Figure 2

Description

本発明は、半導体デバイスの処理装置に関し、特に半導体太陽電池の光照射加熱処理装置に関する。 The present invention relates to a semiconductor device processing apparatus, and more particularly to a light irradiation heat processing apparatus for semiconductor solar cells.

従来の太陽エネルギー技術において、殆どチヨクラルスキー(Czochralski Method;CZ)結晶成長法で製造されたホウ素ドーピング単一チップを太陽電池の製造に必要な基材とし、原因としては、このようなホウ素ドーピング単結晶シリコン材料のドープ工程が容易に行われ、且つ製造された単結晶シリコン棒の抵抗率の分布が均一であることにある。しかしながら、ホウ素ドーピング単結晶シリコン、特に抵抗率が低い(例えば、0.5Ω.cm〜l.5Ω.cmの範囲内)ホウ素ドーピング単結晶シリコンを基材として製造された太陽電池は、その電池効率が太陽光の照射又はキャリア注入によって劣化し、このような現象は光誘起劣化(light induced degradation、LID)と呼ばれる。 In the conventional solar energy technology, a boron-doped single chip manufactured by the Czochralski Method (CZ) crystal growth method is used as a substrate necessary for manufacturing a solar cell. The single crystal silicon material is easily doped, and the manufactured single crystal silicon rod has a uniform resistivity distribution. However, a solar cell manufactured using boron-doped single crystal silicon, particularly a boron-doped single crystal silicon having a low resistivity (for example, within a range of 0.5 Ω · cm to 1.5 Ω · cm) as a base, has a cell efficiency. Is deteriorated by irradiation with sunlight or carrier injection, and such a phenomenon is called light induced degradation (LID).

現在、市場においてホウ素ドーピング単結晶シリコン基質で製造された太陽電池の効率劣化は約2%〜7%である。このような太陽電池の効率の光誘起劣化特性の本質的な原因としては、チヨクラルスキー結晶成長法で製造されたホウ素ドーピング単結晶シリコンにおける酸素含有量が高く、ホウ素ドーピング単結晶シリコンにおける置換型ホウ素原子と単結晶シリコンにおける格子間状態の酸素原子が光照射又はキャリア注入によってホウ素酸素複合体を形成することにある。ホウ素酸素複合体が深いエネルギー複合中心であり、キャリアを阻止するため、少数のキャリアの寿命を低下させて、少数のキャリアの拡散距離を短くして、更に太陽電池の効率を低下させる。 Currently, the efficiency degradation of solar cells made with boron-doped single crystal silicon substrates in the market is about 2% to 7%. The essential cause of the photoinduced degradation characteristics of the efficiency of such solar cells is that the oxygen content in the boron-doped single crystal silicon produced by the Tyoklalsky crystal growth method is high, and the substitution type in the boron-doped single crystal silicon A boron atom and oxygen atoms in an interstitial state in single crystal silicon form a boron oxygen complex by light irradiation or carrier injection. Since the boron-oxygen complex is a deep energy complex center and blocks carriers, it reduces the lifetime of minority carriers, shortens the diffusion distance of minority carriers, and further reduces the efficiency of solar cells.

現在、既存の光誘起劣化の減少や防止の方式は主に以下の通りである。一、シリコンチップの酸素含有量を減少する。二、ホウ素のドープ量を減少し又は他のドーパントを使用し、例えば、ガリウムでホウ素を置換する。三、直接n型単結晶シリコンチップでホウ素等の元素をドープするp型シリコンチップを置換する。しかしながら、シリコンチップの酸素含有量を減少する方法としては、結晶成長の時に、磁界を付加し、このようにしてプロセスコストを向上させ、更にシリコンチップの価格を高くする。次に、ホウ素含有量を減少することによってシリコンチップの電気抵抗が向上し、電気特性が悪くなり、且つ電気抵抗の均一性が悪くなる。他の三族の元素、例えば、ガリウムでホウ素を置換する方法によって、シリコンチップのコストも向上する。更に、n型単結晶シリコンチップの価格がp型単結晶シリコンチップよりも高いため、n型単結晶シリコンチップでp型単結晶シリコンチップを置換するとコストが向上することとなる。 Currently, the existing methods for reducing or preventing light-induced degradation are mainly as follows. First, reduce the oxygen content of the silicon chip. 2. Reduce boron doping or use other dopants, eg, replace boron with gallium. 3. A p-type silicon chip doped with an element such as boron is directly replaced with an n-type single crystal silicon chip. However, as a method of reducing the oxygen content of the silicon chip, a magnetic field is added during crystal growth, thus improving the process cost and increasing the price of the silicon chip. Next, by reducing the boron content, the electrical resistance of the silicon chip is improved, the electrical characteristics are degraded, and the uniformity of electrical resistance is degraded. The cost of silicon chips is also increased by replacing boron with other Group III elements, such as gallium. Furthermore, since the price of the n-type single crystal silicon chip is higher than that of the p-type single crystal silicon chip, replacing the p-type single crystal silicon chip with the n-type single crystal silicon chip will increase the cost.

このため、本発明の一目的は、光照射加熱処理によって、半導体太陽電池の効率に影響を与えることなく、急速に半導体太陽電池の欠陥を取り除き、更に半導体太陽電池の光誘起劣化現象を低下させる処理装置を提供することにある。 For this reason, an object of the present invention is to remove defects of a semiconductor solar cell rapidly without affecting the efficiency of the semiconductor solar cell by light irradiation heat treatment, and further reduce the light-induced degradation phenomenon of the semiconductor solar cell. It is to provide a processing apparatus.

本発明の別の目的は、連続伝送の方式によって半導体太陽電池に対して光照射加熱処理を行って、半導体太陽電池の欠陥を取り除くため、量産の目標を実現できる処理装置を提供することにある。 Another object of the present invention is to provide a processing apparatus capable of realizing a mass production target in order to remove defects of a semiconductor solar cell by performing light irradiation heat treatment on the semiconductor solar cell by a continuous transmission method. .

本発明の上記目的によれば、複数の半導体太陽電池に対して光照射加熱処理を行うことに適用される処理装置が提案される。この処理装置は、第1の電池輸送通路、第2の電池輸送通路及び複数の加熱光源を備える。第2の電池輸送通路は、第1の電池輸送通路に隣接される。第1の電池輸送通路と第2の電池輸送通路の何れも、輸送装置及び2つの反射隔板を含む。輸送装置は、前記半導体太陽電池の輸送に適用される。2つの反射隔板は、第1の電池輸送通路と第2の電池輸送通路のそれぞれの断面が略U型の形状を呈するように、それぞれ輸送装置の反対する両側に沿って設置される。加熱光源は、第1の電池輸送通路と第2の電池輸送通路との上方に設置される。 According to the above object of the present invention, a processing apparatus is proposed that is applied to performing light irradiation heat treatment on a plurality of semiconductor solar cells. The processing apparatus includes a first battery transport passage, a second battery transport passage, and a plurality of heating light sources. The second battery transport passage is adjacent to the first battery transport passage. Each of the first battery transport passage and the second battery transport passage includes a transport device and two reflection barrier plates. The transport device is applied to transport of the semiconductor solar cell. The two reflection barrier plates are respectively installed along opposite sides of the transport device so that each of the first battery transport passage and the second battery transport passage has a substantially U-shaped cross section. The heating light source is installed above the first battery transport passage and the second battery transport passage.

本発明の一実施例によれば、上記第1の電池輸送通路と第2の電池輸送通路のそれぞれは、温度上昇調整領域と、温度上昇調整領域の直後に連結する主処理領域と、を含む。 According to an embodiment of the present invention, each of the first battery transport passage and the second battery transport passage includes a temperature increase adjustment region and a main processing region connected immediately after the temperature increase adjustment region. .

本発明の別の実施例によれば、上記温度上昇調整領域に位置する加熱光源と輸送装置との間の距離は、主処理領域に位置する加熱光源と輸送装置との間の距離よりも小さい。 According to another embodiment of the present invention, the distance between the heating light source located in the temperature increase adjustment region and the transport device is smaller than the distance between the heating light source located in the main processing region and the transport device. .

本発明の更に他の実施例によれば、上記第1の電池輸送通路と第2の電池輸送通路のそれぞれは、温度上昇調整領域に設置される加熱デバイスを更に含む。 According to still another embodiment of the present invention, each of the first battery transport passage and the second battery transport passage further includes a heating device installed in the temperature rise adjustment region.

本発明の更に1つの実施例によれば、上記温度上昇調整領域は、半導体太陽電池の温度を180℃よりも高い領域に向上させる。 According to still another embodiment of the present invention, the temperature increase adjustment region increases the temperature of the semiconductor solar cell to a region higher than 180 ° C.

本発明の更に1つの実施例によれば、上記第1の電池輸送通路と第2の電池輸送通路のそれぞれは、主処理領域と、主処理領域の前に位置し且つ処理装置の前の高温処理領域と主処理領域との間に介在する温度降下調整領域と、を含む。 According to a further embodiment of the present invention, each of the first battery transport passage and the second battery transport passage is located in front of the main processing region and the main processing region and in front of the processing device. A temperature drop adjustment region interposed between the processing region and the main processing region.

本発明の更に1つの実施例によれば、上記の温度降下調整領域は、半導体太陽電池の温度を230℃よりも低い領域に低下させる。 According to a further embodiment of the present invention, the temperature drop adjustment region reduces the temperature of the semiconductor solar cell to a region lower than 230 ° C.

本発明の更に1つの実施例によれば、上記の輸送装置は、半導体太陽電池をそれぞれ直接且つ連続的に温度降下調整領域に伝送するように、高温処理領域と繋がっている。 According to a further embodiment of the invention, the transport device is connected to the high temperature treatment area so as to transmit the semiconductor solar cells directly and continuously to the temperature drop regulation area.

本発明の更に1つの実施例によれば、上記の加熱光源は複数のストリップ型チューブライトであり、且つこれらストリップ型チューブライトが第1の電池輸送通路と第2の電池輸送通路と直交する。 According to a further embodiment of the present invention, the heating light source is a plurality of strip-type tube lights, and the strip-type tube lights are orthogonal to the first battery transport passage and the second battery transport passage.

本発明の更に1つの実施例によれば、上記複数のストリップ型チューブライトのそれぞれは、第1の電池輸送通路と第2の電池輸送通路を跨ぐ。 According to still another embodiment of the present invention, each of the plurality of strip-type tube lights straddles the first battery transport passage and the second battery transport passage.

本発明の更に1つの実施例によれば、上記の加熱光源は複数のストリップ型チューブライトであり、且つこれらストリップ型チューブライトが第1の電池輸送通路と第2の電池輸送通路と平行する。 According to a further embodiment of the present invention, the heating light source is a plurality of strip-type tube lights, and these strip-type tube lights are parallel to the first battery transport passage and the second battery transport passage.

本発明の更に1つの実施例によれば、上記の加熱光源は、半導体太陽電池に第1の電池輸送通路と第2の電池輸送通路において3000W/mよりも大きい照度を受けさせる複数の光照射デバイスである。 According to a further embodiment of the invention, the heating light source comprises a plurality of lights that cause the semiconductor solar cell to receive an illuminance greater than 3000 W / m 2 in the first battery transport passage and the second battery transport passage. Irradiation device.

本発明の更に1つの実施例によれば、上記の加熱光源は、半導体太陽電池の第1の電池輸送通路と第2の電池輸送通路における温度を200℃〜230℃にさせる複数の光照射デバイスである。 According to still another embodiment of the present invention, the heating light source includes a plurality of light irradiation devices that cause the temperature in the first battery transport passage and the second battery transport passage of the semiconductor solar cell to be 200 ° C. to 230 ° C. It is.

本発明の更に1つの実施例によれば、上記の処理装置カバー、複数の排気管及び複数の温度センサーを更に含む。カバーは加熱光源の上方を覆うように設けられる。排気管は、カバー上に設置され、且つ主処理領域の上方に位置する。温度センサーは、それぞれ主処理領域の中に設置される。 According to still another embodiment of the present invention, the apparatus further includes the processing apparatus cover, a plurality of exhaust pipes, and a plurality of temperature sensors. The cover is provided so as to cover the top of the heating light source. The exhaust pipe is installed on the cover and is located above the main processing area. Each temperature sensor is installed in the main processing area.

本発明の更に1つの実施例によれば、上記の処理装置は、加熱光源の上方を覆うように設けられるカバーを更に含み、主処理領域の上方に散布される複数の排気孔がカバーに穿設される。 According to still another embodiment of the present invention, the processing apparatus further includes a cover provided to cover the top of the heating light source, and a plurality of exhaust holes sprayed above the main processing region are formed in the cover. Established.

本発明の更に1つの実施例によれば、上記の排気孔は、複数の主処理領域のそれぞれの中央領域における穴開けサイズが大きい。 According to still another embodiment of the present invention, the exhaust hole has a large drilling size in each central region of the plurality of main processing regions.

本発明の更に1つの実施例によれば、上記の排気孔は、複数の主処理領域のそれぞれの中央領域における穴開け密度が大きい。 According to a further embodiment of the present invention, the exhaust holes have a high drilling density in the central region of each of the plurality of main processing regions.

本発明の更に1つの実施例によれば、上記の処理装置は、複数の照度計及び複数の可動シャッターを更に含む。照度計は、昇降可能に輸送装置の下方に設置される。可動シャッターは、それぞれ照度計の上方に設置されて、照度計と加熱光源を仕切る。 According to a further embodiment of the invention, the processing device further comprises a plurality of luminometers and a plurality of movable shutters. The illuminometer is installed below the transport device so that it can be raised and lowered. The movable shutters are respectively installed above the illuminance meter and partition the illuminance meter and the heating light source.

本発明の更に1つの実施例によれば、上記の処理装置は、それぞれ加熱光源に電気的に接続される複数の電流検出器を更に含む。 According to a further embodiment of the invention, the processing device further comprises a plurality of current detectors each electrically connected to the heating light source.

本発明の更に1つの実施例によれば、上記の処理装置は、蓋板を更に含み、加熱光源が蓋板の底面の下に固定される。 According to still another embodiment of the present invention, the processing apparatus further includes a lid plate, and the heating light source is fixed below the bottom surface of the lid plate.

本発明の更に1つの実施例によれば、上記の蓋板は、上開き可能な蓋板である。 According to a further embodiment of the present invention, the lid plate is a lid plate that can be opened upward.

本発明の更に1つの実施例によれば、上記の蓋板は、ひっくり返すことができるように反射隔板上に設置される。 According to a further embodiment of the invention, the lid plate is placed on the reflective barrier so that it can be turned over.

本発明の更に1つの実施例によれば、上記の蓋板は、抜き取り式の蓋板である。 According to a further embodiment of the invention, the lid plate is a detachable lid plate.

本発明の更に1つの実施例によれば、上記の処理装置は、第1の電池輸送通路と第2の電池輸送通路における隣接する反射隔板の間に設置される放熱流体管路を更に含む。 According to still another embodiment of the present invention, the processing apparatus further includes a heat-dissipating fluid conduit that is installed between the adjacent reflection barrier plates in the first battery transport passage and the second battery transport passage. .

本発明の上記及び他の目的、特徴、メリット及び実施例をより分かりやすくするために、添付図面の説明は以下の通りである。
本発明の一実施形態による処理装置を示す斜視図である。 本発明の一実施形態による処理装置を示す組立模式図である。 本発明の別の実施形態による処理装置を示す斜視図である。 本発明の更に他の実施形態による処理装置の蓋板を示す操作模式図である。 本発明の更に1つの実施形態による処理装置の蓋板を示す操作模式図である。 本発明の更に1つの実施形態による処理装置の蓋板を示す操作模式図である。 本発明の一実施形態の処理装置によって処理済み半導体太陽電池と未処理半導体太陽電池の光誘起劣化による電池効率損失を示す比較図である。 図8Aは、本発明の一実施形態による処理装置を示す配置模式図である。図8Bは、本発明の別の実施形態による処理装置を示す配置模式図である。 本発明の一実施形態による処理装置の輸送装置、照度計と可動シャッターの間の位置関係を示す模式図である。
To make the above and other objects, features, advantages and embodiments of the present invention more comprehensible, the accompanying drawings are described as follows.
It is a perspective view which shows the processing apparatus by one Embodiment of this invention. It is an assembly schematic diagram which shows the processing apparatus by one Embodiment of this invention. It is a perspective view which shows the processing apparatus by another embodiment of this invention. It is an operation schematic diagram which shows the cover plate of the processing apparatus by further another embodiment of this invention. It is an operation schematic diagram which shows the cover plate of the processing apparatus by further one Embodiment of this invention. It is an operation schematic diagram which shows the cover plate of the processing apparatus by further one Embodiment of this invention. It is a comparison figure which shows the battery efficiency loss by the light induced deterioration of the semiconductor solar cell processed and the unprocessed semiconductor solar cell by the processing apparatus of one Embodiment of this invention. FIG. 8A is an arrangement schematic diagram showing a processing apparatus according to an embodiment of the present invention. FIG. 8B is an arrangement schematic diagram showing a processing apparatus according to another embodiment of the present invention. It is a schematic diagram which shows the positional relationship between the transport apparatus of the processing apparatus by one Embodiment of this invention, an illuminance meter, and a movable shutter.

図1と図2を同時に参照して、それらはそれぞれ本発明の一実施形態による処理装置を示す斜視図と組立模式図である。本実施形態において、処理装置100は、数多くの半導体太陽電池102に対して光照射加熱処理を行うことに用いられ、これによって半導体太陽電池102の半導体基材の欠陥を改善する。半導体太陽電池102は、結晶シリコン太陽電池であってもよい。ある例において、半導体太陽電池102は、ホウ素ドーピング単結晶シリコン太陽電池又はホウ素ドーピング多結晶シリコン太陽電池である。処理装置100の半導体太陽電池102に対する光照射加熱処理は、非常に短い時間で半導体太陽電池102のホウ素ドーピング単結晶シリコン基材における大部分のホウ素酸素欠陥を取り除くことができ、半導体太陽電池102の光誘起劣化による効率損失を低下させる。 Referring to FIG. 1 and FIG. 2 at the same time, they are a perspective view and a schematic assembly view showing a processing apparatus according to an embodiment of the present invention, respectively. In this embodiment, the processing apparatus 100 is used for performing light irradiation heat processing with respect to many semiconductor solar cells 102, and thereby improves the defect of the semiconductor base material of the semiconductor solar cells 102. The semiconductor solar cell 102 may be a crystalline silicon solar cell. In one example, the semiconductor solar cell 102 is a boron doped single crystal silicon solar cell or a boron doped polycrystalline silicon solar cell. The light irradiation heat treatment for the semiconductor solar cell 102 of the processing apparatus 100 can remove most boron oxygen defects in the boron-doped single crystal silicon substrate of the semiconductor solar cell 102 in a very short time. Reduces efficiency loss due to light-induced degradation.

ある実施例において、処理装置100は、少なくとも1つの電池輸送通路及び複数の加熱光源106を主に含む。示範例において、図2に示すように、処理装置100は、複数の電池輸送通路104a、104b、104c、104dと104eを含む。これら電池輸送通路104a〜104eは、相互に隣接して配列される。ある例において、各電池輸送通路104a〜104eは、輸送装置108を含み、且つそれぞれ2つの反射隔板110a及び112a、110b及び112b、110c及び112c、110d及び112d、並びに、110e及び112eを更に含む。輸送装置108は、半導体太陽電池102の輸送に用いられてもよい。各輸送装置108は、例えば、1つの輸送コンベヤーからなっても、又は2つの輸送コンベヤーからなってもよい。もちろん、各輸送装置108は、複数のローラーからなっても、又は1つの輸送コンベヤーと複数のローラーとの組み合わせからなってもよいが、本発明はこれに限定されない。 In one embodiment, the processing apparatus 100 mainly includes at least one battery transport passage and a plurality of heating light sources 106. In the illustrative example, as shown in FIG. 2, the processing apparatus 100 includes a plurality of battery transport passages 104a, 104b, 104c, 104d, and 104e. These battery transport passages 104a to 104e are arranged adjacent to each other. In one example, each battery transport passage 104a-104e includes a transport device 108 and further includes two reflective separators 110a and 112a, 110b and 112b, 110c and 112c, 110d and 112d, and 110e and 112e, respectively. . The transport device 108 may be used for transporting the semiconductor solar cell 102. Each transport device 108 may comprise, for example, one transport conveyor or two transport conveyors. Of course, each transport device 108 may be composed of a plurality of rollers or a combination of one transport conveyor and a plurality of rollers, but the present invention is not limited to this.

図2を再び参照して、電池輸送通路104aにおいて、2つの反射隔板110aと112aは、それぞれ輸送装置108の反対する両側に沿って設置され、即ち半導体太陽電池102の伝送方向114に沿って、それぞれ輸送装置108の反対する両側に立設され、且つ相互に対向する。このため、反射隔板110aと112a及び輸送装置108により構成される断面は、略U型の形状を呈する。同様に、2つの反
射隔板110bと112bは、電池輸送通路104bの断面が略U型の形状を呈するように、それぞれ輸送装置108の反対する両側に沿って設置される。2つの反射隔板110cと112cは、電池輸送通路104cの断面が略U型の形状を呈するように、それぞれ輸送装置108の反対する両側に沿って設置される。2つの反射隔板110dと112dは、電池輸送通路104dの断面が略U型の形状を呈するように、それぞれ輸送装置108の反対する両側に沿って設置される。2つの反射隔板110eと112eは、電池輸送通路104eの断面が略U型の形状を呈するように、それぞれ輸送装置108の反対する両側に沿って設置される。その中、反射隔板110a〜110eと112a〜112eには、光反射材質を使用し、可視光線に対する反射率が70%よりも大きい。ある示範例において、反射隔板110a〜110eと112a〜112eは、金属材質であってもよい。
Referring again to FIG. 2, in the battery transport passage 104 a, the two reflectors 110 a and 112 a are installed along opposite sides of the transport device 108, that is, along the transmission direction 114 of the semiconductor solar cell 102. , Respectively, are erected on opposite sides of the transport device 108 and face each other. For this reason, the cross section constituted by the reflection barrier plates 110a and 112a and the transport device 108 has a substantially U-shaped shape. Similarly, the two reflection barrier plates 110b and 112b are respectively installed along opposite sides of the transport device 108 so that the battery transport passage 104b has a substantially U-shaped cross section. The two reflection separators 110c and 112c are installed along opposite sides of the transport device 108 so that the cross section of the battery transport passage 104c has a substantially U shape. The two reflection barrier plates 110d and 112d are respectively installed along opposite sides of the transport device 108 so that the cross section of the battery transport passage 104d has a substantially U shape. The two reflecting separators 110e and 112e are installed along opposite sides of the transport device 108 so that the battery transport passage 104e has a substantially U-shaped cross section. Among them, a light reflecting material is used for the reflection barrier plates 110a to 110e and 112a to 112e, and the reflectance with respect to visible light is larger than 70%. In a specific example, the reflection barrier plates 110a to 110e and 112a to 112e may be made of a metal material.

ある示範例において、処理装置100には、何れか2つの隣接する電池輸送通路104a〜104eの間の間隔が約1センチメートル〜15センチメートルであり、放熱を考えると、2センチメートル〜3センチメートルであることが好ましい。例を挙げれば、図2に示すように、電池輸送通路104aの反射隔板112aと隣接する電池輸送通路104bの反射隔板110bとの間の間隔は、約2センチメートル〜3センチメートルであり、処理装置100の実際の温度分布及び放熱条件に応じて調整されてもよい。特定の例において、処理装置100は、放熱効果を向上させるように、隣接する電池輸送通路104a〜104eの隣接する反射隔板、例えば、反射隔板112aと110b、112bと110c、112cと110d、又は112dと110eとの間に、放熱流体管路を選択的に設置してもよい。それ以外、電池輸送通路104aの2つの反射隔板110aと112a、電池輸送通路104bの2つの反射隔板110bと112b、電池輸送通路104cの2つの反射隔板110cと112c、電池輸送通路104dの2つの反射隔板110dと112d、及び電池輸送通路104eの2つの反射隔板110eと112eとの間の距離は、約17センチメートル〜20センチメートルであってもよい。 In one illustrative example, the processing apparatus 100 has a spacing between any two adjacent battery transport passages 104a-104e of about 1 centimeter to 15 centimeters, and 2 centimeters to 3 centimeters considering heat dissipation. Preferably it is a meter. For example, as shown in FIG. 2, the distance between the reflective barrier plate 112a of the battery transport passage 104a and the reflective barrier plate 110b of the adjacent battery transport passage 104b is about 2 centimeters to 3 centimeters. The temperature may be adjusted according to the actual temperature distribution and heat dissipation conditions of the processing apparatus 100. In a specific example, the processing apparatus 100 may improve the heat dissipation effect by using adjacent reflective barriers of adjacent battery transport passages 104a to 104e, for example, reflective barriers 112a and 110b, 112b and 110c, 112c and 110d, Alternatively, a radiating fluid conduit may be selectively installed between 112d and 110e. In addition, the two reflection barrier plates 110a and 112a of the battery transport passage 104a, the two reflection barrier plates 110b and 112b of the battery transport passage 104b, the two reflection barrier plates 110c and 112c of the battery transport passage 104c, and the battery transport passage 104d The distance between the two reflective barriers 110d and 112d and the two reflective barriers 110e and 112e of the battery transport passage 104e may be about 17 centimeters to 20 centimeters.

加熱光源106は、これら電池輸送通路104a〜104eの上方に設置され、且つ反射隔板110a〜110eと112a〜112eの上に位置して、加熱光源106からの光を装置108の上における半導体太陽電池102へ反射する。ある例において、加熱光源106は、ハロゲンランプ、キセノンライト又は白熱電球であってもよい。加熱光源106は、半導体太陽電池102に加える照度の範囲が例えば2500W/m〜5000W/mであってもよい。それ以外、加熱光源106は、図2に示すようなストリップ型チューブライトであってもよい。又は、図3に示すような処理装置100aは、電球型の加熱光源106aでストリップ型チューブライトの加熱光源106を置換する。図2に示すような例において、加熱光源106は、ストリップ型チューブライトであり、且つ反射隔板110a〜110eと112a〜112eの上方に位置し、又は反射隔板110a〜110eと112a〜112eのトップ部に穿設されてもよい。図3に示すような例において、加熱光源106aは、電球型であるため、反射隔板110a〜110eと112a〜112eの上方に位置し、又は完全に電池輸送通路104a〜104e内に位置してもよい。 The heating light source 106 is installed above the battery transport passages 104a to 104e, and is positioned on the reflection barrier plates 110a to 110e and 112a to 112e, so that the light from the heating light source 106 is transmitted to the semiconductor solar on the device 108. Reflected to the battery 102. In some examples, the heating light source 106 may be a halogen lamp, a xenon light, or an incandescent bulb. Heating source 106, a range of illumination applied to the semiconductor solar cell 102 may be, for example, 2500W / m 2 ~5000W / m 2 . In addition, the heating light source 106 may be a strip type tube light as shown in FIG. Alternatively, the processing apparatus 100a as shown in FIG. 3 replaces the heating light source 106 of the strip type tube light with a light bulb type heating light source 106a. In the example shown in FIG. 2, the heating light source 106 is a strip type tube light and is located above the reflective diaphragms 110 a to 110 e and 112 a to 112 e, or of the reflective diaphragms 110 a to 110 e and 112 a to 112 e. You may perforate in a top part. In the example as shown in FIG. 3, since the heating light source 106a is a light bulb type, it is located above the reflective barrier plates 110a to 110e and 112a to 112e, or is completely located within the battery transport passages 104a to 104e. Also good.

電池輸送通路104a〜104eにおいて、反射隔板110a〜110eと112a〜112eは、加熱光源106aからの光を集中し、更に半導体太陽電池102に与えられる温度、照度と光均一性を向上させる。それ以外、加熱光源106aの電池輸送通路104a〜104eにおける半導体太陽電池102の距離、電池輸送通路104a〜104e両側の反射隔板110a〜110eと112a〜112eとの間の距離、及び/又は加熱光源106a自身の仕事率を調整することによって、半導体太陽電池102に与えられる照度と温度を制御する。示範例において、反射隔板110a〜110eと112a〜112eの設置は、面積が15.6×15.6cmであるシングルチップ半導体太陽電池102内の光均一性を1.5倍〜2倍向上させることができる。 In the battery transport passages 104a to 104e, the reflection barrier plates 110a to 110e and 112a to 112e concentrate the light from the heating light source 106a, and further improve the temperature, illuminance and light uniformity given to the semiconductor solar cell 102. Other than that, the distance of the semiconductor solar cell 102 in the battery transport passages 104a to 104e of the heating light source 106a, the distance between the reflective barrier plates 110a to 110e and 112a to 112e on both sides of the battery transport passages 104a to 104e, and / or the heating light source The illuminance and temperature given to the semiconductor solar cell 102 are controlled by adjusting the power of 106a itself. In the example, the installation of the reflective barriers 110a to 110e and 112a to 112e improves the light uniformity within the single chip semiconductor solar cell 102 having an area of 15.6 × 15.6 cm 2 by 1.5 to 2 times. Can be made.

図2に示すように、ストリップ型チューブライトの加熱光源106を採用する場合、これら加熱光源106が電池輸送通路104a〜104eと直交し、即ち加熱光源106の長手方向が電池輸送通路104a〜104eの長手方向と直交し、電池輸送通路104a〜104eの長手方向が例えば、伝送方向114と平行してもよい。ある示範例において、図2を再び参照して、各ストリップ型チューブライトの加熱光源106は電池輸送通路104a〜104eを跨ぐ。特定の例において、ストリップ型チューブライトの加熱光源106は、部分の電池輸送通路104a〜104eのみを跨いでもよく、例えば、ストリップ型チューブライトの加熱光源106が電池輸送通路104aと104bのみを跨ぎ、又は電池輸送通路104a〜104cを跨ぎ、又は電池輸送通路104c〜104eを跨ぐが、各電池輸送通路104a〜104eの上方の何れも加熱光源106が通過する必要がある。加熱光源106が電池輸送通路104a〜104eと直交する設計は、加熱光源106を取り替えることに寄与する。 As shown in FIG. 2, when the heating light source 106 of the strip type tube light is adopted, these heating light sources 106 are orthogonal to the battery transport passages 104a to 104e, that is, the longitudinal direction of the heating light source 106 is the battery transport passages 104a to 104e. The longitudinal direction of the battery transport passages 104a to 104e may be parallel to the transmission direction 114, for example, orthogonal to the longitudinal direction. In one example, referring again to FIG. 2, the heating light source 106 of each strip-type tube light straddles the battery transport passages 104a-104e. In a specific example, the heating light source 106 of the strip type tube light may straddle only the partial battery transport passages 104a to 104e, for example, the heating light source 106 of the strip type tube light straddles only the battery transport passages 104a and 104b, Or it straddles the battery transport passages 104a to 104c or straddles the battery transport passages 104c to 104e, but the heating light source 106 needs to pass through any of the battery transport passages 104a to 104e. The design in which the heating light source 106 is orthogonal to the battery transport passages 104 a to 104 e contributes to replacing the heating light source 106.

図4A〜図5Bを同時に参照して、その中、図4Aと図4B、及び図5Aと図5Bは、それぞれ本発明の2つの実施形態による処理装置の蓋板を示す操作模式図である。ストリップ型チューブライトの加熱光源106bを採用する場合、これら加熱光源106bが電池輸送通路104a〜104eと平行し、即ち加熱光源106bの長手方向が電池輸送通路104a〜104eの長手方向と平行し、即ち例えば、伝送方向114と平行してもよい。ある示範例において、図4Bと図5Bを再び参照して、各電池輸送通路104a〜104eは、複数の伝送方向114に沿って直列接続される加熱光源106bを含んでもよい。特定の例において、各電池輸送通路104a〜104eには、1つの加熱光源106bのみが対応的に設置され、この加熱光源106bの長さが対応する電池輸送通路104a〜104eの長さにほぼ等しい。 Referring to FIGS. 4A to 5B at the same time, FIGS. 4A and 4B and FIGS. 5A and 5B are operation schematic diagrams showing the cover plate of the processing apparatus according to the two embodiments of the present invention, respectively. When the strip-type tube light heating light source 106b is employed, the heating light source 106b is parallel to the battery transport passages 104a to 104e, that is, the longitudinal direction of the heating light source 106b is parallel to the longitudinal direction of the battery transport passages 104a to 104e. For example, it may be parallel to the transmission direction 114. In one example, referring again to FIGS. 4B and 5B, each battery transport passage 104a-104e may include a heating light source 106b connected in series along a plurality of transmission directions 114. In a specific example, only one heating light source 106b is correspondingly installed in each battery transport passage 104a-104e, and the length of this heating light source 106b is approximately equal to the length of the corresponding battery transport passage 104a-104e. .

下記の表1と表2を参照して、表1と表2は、それぞれ半導体太陽電池102が処理装置100の異なる光照射強度による処理がなされた前後の電池効率差異、及び異なる処理温度による処理がなされた前後と、対応する光照射劣化テストがなされた前後との電池効率差異を示すものである。その中、光照射劣化テストは、太陽光且つ温度が110℃の条件で、10分間の加速光誘起劣化テスト(accelerated light induced degradation、ALID)がなされた後の電池効率差異を示すものである。

Figure 2016042569
Figure 2016042569
Referring to Tables 1 and 2 below, Tables 1 and 2 show the difference in battery efficiency before and after the semiconductor solar cell 102 was processed with different light irradiation intensities of the processing apparatus 100, and the processing with different processing temperatures, respectively. The battery efficiency difference between before and after the test was performed and before and after the corresponding light irradiation deterioration test was performed is shown. Among them, the light irradiation deterioration test shows a difference in battery efficiency after an accelerated light induced degradation (ALID) test for 10 minutes under the condition of sunlight and a temperature of 110 ° C.
Figure 2016042569
Figure 2016042569

上記の表1から分かるように、処理装置100によって半導体太陽電池102に対して3つの太陽光以上の光照射強度を与え、即ち照度が3000W/m以上である光照射加熱処理を行い、半導体太陽電池102の電池効率にもたらす影響が小さい。更に、上記の表2から分かるように、200℃以下の処理温度で処理された後で、半導体太陽電池102の光誘起劣化が小さいが、処理された後の電池効率損失が大きい。それ以外、235℃以上の処理温度で処理された後で、半導体太陽電池102の効率への影響が大きくないが、光誘起劣化が大きい。 As can be seen from Table 1 above, the processing device 100 gives the semiconductor solar cell 102 light irradiation intensity of three or more sunlights, that is, performs light irradiation heat treatment with an illuminance of 3000 W / m 2 or more. The influence on the battery efficiency of the solar battery 102 is small. Furthermore, as can be seen from Table 2 above, after processing at a processing temperature of 200 ° C. or less, the light-induced degradation of the semiconductor solar cell 102 is small, but the battery efficiency loss after processing is large. Other than that, after processing at a processing temperature of 235 ° C. or higher, the effect on the efficiency of the semiconductor solar cell 102 is not large, but the light-induced degradation is large.

このため、ある例において、加熱光源106は、半導体太陽電池102に電池輸送通路104a〜104eにおいて3000W/mよりも大きい照度を受けさせる光照射デバイスであり、即ち半導体太陽電池102の光照射加熱処理が3000W/mよりも大きい照度に制御される。それ以外、加熱光源106は、半導体太陽電池102に電池輸送通路104a〜104eにおける温度を200℃〜230℃に維持させる光照射デバイスであってもよく、即ち半導体太陽電池102の光照射加熱処理が半導体太陽電池102の温度を200℃〜230℃維持する。 Therefore, in one example, the heating light source 106 is a light irradiation device that causes the semiconductor solar cell 102 to receive an illuminance greater than 3000 W / m 2 in the battery transport passages 104 a to 104 e, that is, light irradiation heating of the semiconductor solar cell 102. The process is controlled to an illuminance greater than 3000 W / m 2 . Other than that, the heating light source 106 may be a light irradiation device that causes the semiconductor solar cell 102 to maintain the temperature in the battery transport passages 104 a to 104 e at 200 ° C. to 230 ° C. That is, the light irradiation heating process of the semiconductor solar cell 102 is performed. The temperature of the semiconductor solar cell 102 is maintained at 200 ° C. to 230 ° C.

ある示範例において、半導体太陽電池102は、プロセス完成後に、処理装置100によってこれら半導体太陽電池102に対して照度が3000W/mよりも大きく且つ温度が200℃〜230℃である光照射加熱処理を行って、半導体太陽電池102の電池効率を低下させ又はそれに影響を与えることなく、短時間で急速に半導体太陽電池102のシリコン結晶基材の欠陥を取り除いてもよく、更に半導体太陽電池102の光誘起劣化を低下させる効果を実現する。これら示範例において、光照射加熱処理の時間が約1.5分間〜約3分間である。光照射加熱処理の時間が3分間以内に短縮されることができるため、連続伝送の方式によって半導体太陽電池102の欠陥を取り除くことができ、量産の目標を実現できる。 In a specific example, the semiconductor solar cell 102 is subjected to light irradiation heat treatment with an illuminance greater than 3000 W / m 2 and a temperature of 200 ° C. to 230 ° C. with respect to the semiconductor solar cell 102 by the processing apparatus 100 after the process is completed. The defect of the silicon crystal base material of the semiconductor solar cell 102 may be rapidly removed in a short time without reducing or affecting the battery efficiency of the semiconductor solar cell 102. Realizes the effect of reducing light-induced degradation. In these examples, the light irradiation heat treatment time is about 1.5 minutes to about 3 minutes. Since the time of the light irradiation heat treatment can be shortened within 3 minutes, the defect of the semiconductor solar cell 102 can be removed by the continuous transmission method, and the mass production target can be realized.

まず図7を参照して、本発明の一実施形態の処理装置によって処理済み半導体太陽電池と未処理半導体太陽電池の光誘起劣化による電池効率損失を示す比較図である。図7から分かるように、光照射加熱がされていない半導体太陽電池と比べて、処理装置100によって処理された半導体太陽電池102は、非常に小さい光誘起劣化効率損失を有する。 First, referring to FIG. 7, it is a comparison diagram showing cell efficiency loss due to light-induced degradation of a processed semiconductor solar cell and an unprocessed semiconductor solar cell by the processing apparatus of one embodiment of the present invention. As can be seen from FIG. 7, the semiconductor solar cell 102 processed by the processing apparatus 100 has a very small loss of light-induced degradation efficiency compared to a semiconductor solar cell that is not heated by light irradiation.

ある例において、図2を再び参照して、処理装置100は、蓋板116を選択的に含む。蓋板116は、電池輸送通路104a〜104eの上方に設置され、且つ反射隔板110a〜110eと112a〜112eの上に位置する。加熱光源106は、蓋板116の底面の下に固定される。本実施形態において、蓋板116のような様式に加え、多種の異なる蓋板様式があってもよい。図4Aと図4Bを再び参照して、処理装置100bの蓋板116aは、上開き可能な蓋板である。処理装置100bの加熱光源106bを交換するには、図4Bのように、直接蓋板116aを開けてから、加熱光源106bを交換する。 In one example, referring again to FIG. 2, the processing apparatus 100 optionally includes a lid plate 116. The cover plate 116 is installed above the battery transport passages 104a to 104e, and is located on the reflection barrier plates 110a to 110e and 112a to 112e. The heating light source 106 is fixed below the bottom surface of the lid plate 116. In this embodiment, in addition to the manner of the lid plate 116, there may be a variety of different lid plate formats. 4A and 4B again, the cover plate 116a of the processing apparatus 100b is a cover plate that can be opened upward. In order to replace the heating light source 106b of the processing apparatus 100b, as shown in FIG. 4B, the lid plate 116a is directly opened and then the heating light source 106b is replaced.

更に、図5Aと図5Bを再び参照して、処理装置100cの蓋板116bは、ひっくり返すことができる蓋板であり、且つ回転可能に反射隔板110aと110bの上に設置される。処理装置100cの加熱光源106bを交換するには、図5Bのように、直接蓋板116bを回転させて、加熱光源106bを交換する。図6Aと図6Bを参照して、処理装置100dの蓋板116cは、抜き取り式の蓋板であり、且つ反射隔板110a〜110eと112a〜112eの上方から半導体太陽電池102の伝送方向114と平行しなく、例えば、直交する方向へ移動してもよく。処理装置100dの加熱光源106aを交換するには、図6Bのように、まず直接蓋板116cを反射隔板110a〜110eと112a〜112eの上方から半導体太陽電池102の伝送方向114と平行しない方向へ抜き出してから、加熱光源106aを交換してもよい。 5A and 5B again, the cover plate 116b of the processing apparatus 100c is a cover plate that can be turned over, and is rotatably installed on the reflection barrier plates 110a and 110b. In order to replace the heating light source 106b of the processing apparatus 100c, as shown in FIG. 5B, the lid plate 116b is directly rotated to replace the heating light source 106b. With reference to FIG. 6A and FIG. 6B, the cover plate 116c of the processing apparatus 100d is a detachable cover plate, and the transmission direction 114 of the semiconductor solar cell 102 from above the reflective partition plates 110a to 110e and 112a to 112e. For example, they may be moved in the orthogonal direction. In order to replace the heating light source 106a of the processing apparatus 100d, as shown in FIG. 6B, first, the cover plate 116c is directly placed above the reflection barrier plates 110a to 110e and 112a to 112e in a direction not parallel to the transmission direction 114 of the semiconductor solar cell 102. The heating light source 106a may be replaced after extraction.

まず図8Aを参照して、本発明の一実施形態による処理装置を示す配置模式図である。ある実施例において、処理装置100の各電池輸送通路104a〜104eの何れも、図8Aに示すように、入口の温度調整領域128、及び温度調整領域128の直後に連結する1つ又は複数の主処理領域、例えば、主処理領域130、132と134に分けられてもよい。ある例において、処理しようとする半導体太陽電池102は、前の処理設備によって処理装置100に輸送されてから、処理装置100の入口前の積載装置136によって一つ一つ各輸送装置108に輸送され、各電池輸送通路104a〜104eに積載されて光照射加熱処理を行う。このような
例において、温度調整領域128は、温度上昇調整領域であってもよく、急速昇温領域であることが好ましく、急速に半導体太陽電池102の温度を向上させることに寄与する。半導体太陽電池102は、温度調整領域128によって180℃よりも大きくされると、接続される主処理領域130に入って光照射加熱の欠陥改善処理をすることができる。
First, referring to FIG. 8A, it is an arrangement schematic diagram showing a processing apparatus according to an embodiment of the present invention. In one embodiment, each of the battery transport passages 104a-104e of the processing apparatus 100 is connected to the inlet temperature adjustment region 128 and one or more main regions connected immediately after the temperature adjustment region 128, as shown in FIG. 8A. It may be divided into processing areas, for example main processing areas 130, 132 and 134. In one example, the semiconductor solar cells 102 to be processed are transported to the processing apparatus 100 by the previous processing equipment, and then transported one by one to the respective transport apparatuses 108 by the loading device 136 before the entrance of the processing apparatus 100. The battery is loaded in each of the battery transport passages 104a to 104e and subjected to light irradiation heat treatment. In such an example, the temperature adjustment region 128 may be a temperature increase adjustment region, preferably a rapid temperature increase region, and contributes to rapidly increasing the temperature of the semiconductor solar cell 102. When the temperature of the semiconductor solar cell 102 is made higher than 180 ° C. by the temperature adjustment region 128, the semiconductor solar cell 102 can enter the main processing region 130 to be connected and perform the defect improvement processing of light irradiation heating.

ある示範例において、照度が3000W/m以上となる場合で、温度が180℃よりも大きい時に急速に欠陥改善の反応が発生されるため、昇温させる温度調整領域128は、半導体太陽電池102の温度を180℃よりも大きい領域に高める。温度調整領域128において、半導体太陽電池102を光照射加熱の改善処理の温度に、例えば、180℃以上に高めれば高めるほど、半導体太陽電池102の各電池輸送通路104a〜104eにおける改善に必要な時間が長くなり、このようにして電池輸送通路104a〜104eの利用率を高めるようになる。 In a specific example, when the illuminance is 3000 W / m 2 or more and the temperature is higher than 180 ° C., a defect improvement reaction is rapidly generated. Therefore, the temperature adjustment region 128 to be heated is the semiconductor solar cell 102. Is raised to a region larger than 180 ° C. In the temperature adjustment region 128, the time required for improvement in each of the battery transport passages 104a to 104e of the semiconductor solar cell 102 is increased as the temperature of the semiconductor solar cell 102 is increased to, for example, 180 ° C. or higher. Thus, the utilization rate of the battery transport passages 104a to 104e is increased.

示範例において、昇温させる温度調整領域128における加熱光源106と輸送装置108との間の距離が主処理領域130、132と134に位置する加熱光源106と輸送装置108との間の距離よりも小さく、温度調整領域128の加熱光源106による半導体太陽電池102への照度を高め、更に半導体太陽電池102を急速に昇温させる。別の示範例において、各電池輸送通路104a〜104eの温度調整領域128は、定額以外の加熱デバイス152が設置されてもよく、温度調整領域128における加熱光源106と組み合わせて、半導体太陽電池102を急速に昇温させる。更に他の示範例において、各温度調整領域128における加熱光源106の仕事率を高くし、又は各温度調整領域128でより高い仕事率の加熱光源106を使用してもよく、急速に半導体太陽電池102の温度を高めることに寄与する。 In the example, the distance between the heating light source 106 and the transport device 108 in the temperature adjustment region 128 to be heated is larger than the distance between the heating light source 106 and the transport device 108 located in the main processing regions 130, 132, and 134. The illuminance to the semiconductor solar cell 102 by the heating light source 106 in the temperature adjustment region 128 is increased, and the semiconductor solar cell 102 is rapidly heated. In another example, the temperature adjustment region 128 of each of the battery transport passages 104a to 104e may be provided with a heating device 152 other than a fixed amount, and the semiconductor solar cell 102 is combined with the heating light source 106 in the temperature adjustment region 128. Raise temperature rapidly. In yet another example, the heating power of the heating light source 106 in each temperature adjustment region 128 may be increased, or a higher power heating light source 106 may be used in each temperature adjustment region 128, and the semiconductor solar cell rapidly This contributes to increasing the temperature of 102.

別の例において、図8Bを参照して、処理装置100eは、半導体太陽電池102の電極ペーストが印刷された高温焼結炉管設備の後に接続し設置されてもよく、この時に処理装置100の積載装置136を省略してもよく、且つ各電池輸送通路104a〜104eの輸送装置108は、高温処理領域148によって高温処理された半導体太陽電池102を直接且つ連続的に対応する電池輸送通路104a〜104eに伝送することに寄与するように、高温炉管設備の高温処理領域148と繋がっている。このような例において、温度調整領域128は、温度降下調整領域であってもよく、温度調整領域128が主処理領域130、132と134の前に位置し、高温処理領域148と主処理領域130との間に介在する。それ以外、これら例において、処理装置100eには流路変換装置154が設けられてもよく、処理装置100eの輸送装置108の数に応じて、高温処理領域148からの半導体太陽電池102を各輸送装置108上に配る。各輸送装置108は、高温処理領域148から且つ流路変換装置154によって配られる半導体太陽電池102を直接且つ連続的に対応する温度調整領域128に伝送する。ある示範例において、降温させる温度調整領域128は、半導体太陽電池102の温度を230℃以下の領域に下げる。半導体太陽電池102は、温度調整領域128によって230℃以下に下げられると、接続される主処理領域130に入って光照射加熱の欠陥改善処理をすることができる。このため、このような例において、急速昇温領域の設置を省くことができ、昇温の過程を省略し、更にプロセス時間を短くすることができる。特定の例において、各温度調整領域128に定額以外の降温装置を設置してもよく、半導体太陽電池102の降温時間を短くするに寄与する。 In another example, referring to FIG. 8B, the processing apparatus 100e may be connected and installed after the high-temperature sintering furnace tube facility on which the electrode paste of the semiconductor solar cell 102 is printed. The loading device 136 may be omitted, and the transport device 108 of each of the battery transport passages 104a to 104e may directly and continuously correspond to the semiconductor solar cells 102 that have been subjected to the high temperature treatment by the high temperature treatment region 148. It is connected with the high temperature processing area | region 148 of a high temperature furnace tube installation so that it may contribute to transmitting to 104e. In such an example, the temperature adjustment region 128 may be a temperature drop adjustment region, the temperature adjustment region 128 is positioned in front of the main processing regions 130, 132, and 134, and the high temperature processing region 148 and the main processing region 130 are located. It intervenes between. In addition, in these examples, the processing apparatus 100e may be provided with a flow path conversion device 154, and each semiconductor solar cell 102 from the high temperature processing region 148 is transported according to the number of transport devices 108 of the processing apparatus 100e. Distribute on device. Each transport device 108 directly and continuously transmits the semiconductor solar cells 102 distributed by the flow path conversion device 154 from the high temperature processing region 148 to the corresponding temperature adjustment region 128. In a specific example, the temperature adjustment region 128 for lowering the temperature lowers the temperature of the semiconductor solar cell 102 to a region of 230 ° C. or lower. When the temperature of the semiconductor solar cell 102 is lowered to 230 ° C. or lower by the temperature adjustment region 128, the semiconductor solar cell 102 can enter the main processing region 130 to be connected and perform the defect improvement processing of the light irradiation heating. For this reason, in such an example, installation of the rapid temperature raising region can be omitted, the temperature raising process can be omitted, and the process time can be further shortened. In a specific example, a temperature lowering device other than a fixed amount may be installed in each temperature adjustment region 128, which contributes to shortening the temperature lowering time of the semiconductor solar cell 102.

図8Aを再び参照して、温度調整領域128によって昇温され又は降温された後で、半導体太陽電池102はまず主処理領域130に入り、次に順次に主処理領域132と134を通過して、光照射加熱処理を行い、半導体太陽電池102の欠陥を改善し、効果的に光誘起劣化による電池効率低下という問題を改善し、更に半導体太陽電池102の効率を改善することができる。図2と図8Aを同時に参照して、処理装置100は、主処理領域134の後に設置される冷却装置126を含んでもよく、光照射加熱処理が完成された後の半導体太陽電池102を冷却させ、半導体太陽電池102の温度を室温に低下させて、後継ぎのチップ収集作業に寄与する。輸送装置108は、次に半導体太陽電池102を卸下装置138に輸送し、光照射加熱処理が完成され且つ冷却された半導体太陽電池102を処理装置100から移出して、半導体太陽電池102の欠陥を改善するプロセスを完成する。 Referring again to FIG. 8A, after being raised or lowered by the temperature adjustment region 128, the semiconductor solar cell 102 first enters the main processing region 130 and then sequentially passes through the main processing regions 132 and 134. By performing light irradiation heat treatment, defects of the semiconductor solar cell 102 can be improved, the problem of battery efficiency reduction due to light-induced degradation can be effectively improved, and further the efficiency of the semiconductor solar cell 102 can be improved. Referring to FIG. 2 and FIG. 8A simultaneously, the processing apparatus 100 may include a cooling device 126 installed after the main processing region 134 to cool the semiconductor solar cell 102 after the light irradiation heating process is completed. The temperature of the semiconductor solar cell 102 is lowered to room temperature, contributing to the successor chip collection work. Next, the transport device 108 transports the semiconductor solar cell 102 to the wholesale device 138, removes the semiconductor solar cell 102 that has been subjected to the light irradiation heating process and has been cooled, from the processing device 100, and detects defects in the semiconductor solar cell 102. Complete the process of improving.

ある例において、図1、図2と図8Aを再び参照して、処理装置100は、カバー118、複数の排気管122と複数の温度センサー140を選択的に含んでもよい。カバー118は、すべての加熱光源106の上方を覆うように設けられてもよく、すべての電池輸送通路104a〜104eを覆ってもよい。排気管122は、カバー118のトップ板120に設置されてもよく、カバー118内の空間と繋がっているようにトップ板120を貫通する。ある示範例において、各排気管122には、バルブが設けられてもよく、バルブの開閉と開け程度を調整することによって、排気管122に抽出された気流の大きさを制御することができる。特定の例において、排気管122は、主処理領域130、132と134の上方に設置される。 In one example, referring again to FIGS. 1, 2, and 8A, the processing apparatus 100 may optionally include a cover 118, a plurality of exhaust pipes 122, and a plurality of temperature sensors 140. The cover 118 may be provided so as to cover all the heating light sources 106 and may cover all the battery transport passages 104a to 104e. The exhaust pipe 122 may be installed on the top plate 120 of the cover 118 and penetrates the top plate 120 so as to be connected to the space in the cover 118. In one example, each exhaust pipe 122 may be provided with a valve, and the magnitude of the airflow extracted into the exhaust pipe 122 can be controlled by adjusting the degree of opening and closing of the valve. In a particular example, the exhaust pipe 122 is installed above the main processing areas 130, 132 and 134.

温度センサー140は、それぞれ各電池輸送通路104a〜104eの主処理領域130、132と134に設置されて、これら主処理領域130、132と134の温度の検出に用いられる。温度センサー140に検出された温度が高すぎると、この温度センサー140は、信号を出し、フィードバックの制御によってこの温度センサー140の上方又は付近の排気管122を開け、又は既に開けられた排気管122のバルブを更に大きく開けて、この領域の気流量を向上させて、この領域の温度を下げる。逆に、温度センサー140に検出された温度が低いと、この温度センサー140は、信号を出し、フィードバックの制御によってこの温度センサー140の上方又は付近の排気管122を閉め、又は既に開けられた排気管122のバルブを小さく閉めて、この領域の気流量を小さくして、この領域の温度を上げる。 The temperature sensor 140 is installed in the main processing areas 130, 132, and 134 of the battery transport passages 104a to 104e, respectively, and is used to detect the temperatures of the main processing areas 130, 132, and 134. If the temperature detected by the temperature sensor 140 is too high, the temperature sensor 140 outputs a signal and opens or closes the exhaust pipe 122 above or near the temperature sensor 140 by feedback control. The valve is further opened to improve the air flow rate in this area and to lower the temperature in this area. Conversely, when the temperature detected by the temperature sensor 140 is low, the temperature sensor 140 outputs a signal and closes the exhaust pipe 122 above or near the temperature sensor 140 by feedback control, or exhaust gas that has already been opened. The valve of the pipe 122 is closed small to reduce the air flow rate in this region and raise the temperature in this region.

前記排気管122は、主処理領域130、132と134の熱気を排出することに限定されなく、外部からの冷気を主処理領域130、132と134に導入し、直接前記領域の温度を低下させることに用いられてもよい。同様に、排気管122のバルブの開閉と開け程度を調整することによって、排気管122から導入された冷気気流の大きさを調整してもよい。 The exhaust pipe 122 is not limited to exhausting hot air from the main processing regions 130, 132, and 134, but introduces cool air from the outside into the main processing regions 130, 132, and 134 to directly lower the temperature of the regions. May be used. Similarly, the magnitude of the cold airflow introduced from the exhaust pipe 122 may be adjusted by adjusting the opening / closing and opening degree of the valve of the exhaust pipe 122.

別の例において、図3と図8Aを再び参照して、処理装置100aは、カバー118aを選択的に含んでもよい。カバー118aは、すべての加熱光源106aの上方を覆うように設けられてもよく、すべての電池輸送通路104a〜104eを覆ってもよい。カバー118aには、数多くの排気孔124が設けられ、これら排気孔124がカバー118aのトップ板120aに散布され、カバー118a内の空間と繋がっているようにトップ板120aを貫通してもよい。排気孔124は、多種のサイズを有してもよく、そのサイズが互いに異なり、又は部分が同じ、別の部分が異なるようになってもよい。もちろん、これら排気孔124は、単一のサイズであってもよい。それ以外、排気孔124は、トップ板120aにおける設置密度が不均一に設置されてもよく、均一に設置されてもよい。各電池輸送通路104a〜104eの主処理領域108の温度が一般的に高く、特にトップ板120aの中央領域の温度がより高いため、ある示範例において、排気孔124の各電池輸送通路104a〜104eの主処理領域108の中央領域における穴開けサイズが大きく、又は排気孔124が各電池輸送通路104a〜104eの主処理領域108の中央領域における穴開け密度が大きく、排気量を高め、更にこれら領域の降温効率を向上させる。特定の例において、排気孔124は、主処理領域130、132と134の上方に設置される。排気孔124の形は、同じであってもよく、又は多種の形を有し、例えば、すべて形が異なり、又は部分の排気孔124の形が同じ部分が異なるようになってもよい。 In another example, referring again to FIGS. 3 and 8A, the processing apparatus 100a may optionally include a cover 118a. The cover 118a may be provided so as to cover all the heating light sources 106a, and may cover all the battery transport passages 104a to 104e. A number of exhaust holes 124 may be provided in the cover 118a, and these exhaust holes 124 may be dispersed on the top plate 120a of the cover 118a and penetrate the top plate 120a so as to be connected to the space in the cover 118a. The exhaust holes 124 may have various sizes, and the sizes may be different from each other, or may be the same in different parts and different in different parts. Of course, these exhaust holes 124 may have a single size. Other than that, the exhaust holes 124 may be installed non-uniformly in the installation density of the top plate 120a, or may be installed uniformly. In one example, each battery transport passage 104a-104e has a generally higher temperature in the main processing region 108, and in particular, a higher temperature in the central region of the top plate 120a. The hole size in the central region of the main processing region 108 is large, or the exhaust holes 124 have a large hole density in the central region of the main processing region 108 of each of the battery transport passages 104a to 104e, thereby increasing the exhaust amount. To improve the temperature drop efficiency. In a particular example, the exhaust holes 124 are located above the main processing areas 130, 132 and 134. The shape of the exhaust holes 124 may be the same or may have various shapes, for example, the shapes may be all different, or the portions having the same shape of the exhaust holes 124 may be different.

図2と図9を同時に参照して、図9は、本発明の一実施形態による処理装置を示す輸送装置、照度計と可動シャッターとの間の位置関係模式図である。ある例において、処理装置100は、複数の照度計144と複数の可動シャッター146を選択的に含んでもよい。ある示範例において、照度計144が昇降可能に輸送装置108の下に設置され、可動シャッター146がそれぞれこれら照度計144の上方に設置されて、照度計144と加熱光源106を仕切って、これによって、照度計144が長時間で加熱光源106によって照射されて温度が向上し、更に照度計144の寿命が大幅に短くなることを避ける。照度計144を使用して半導体太陽電池102の照度を測量する必要がある時に、可動シャッター146を照度計144の上方から移出して、照度計144が輸送装置108の高さに上がると、処理しようとする半導体太陽電池102の上表面の高さとほぼ同じようになって、照度の測量をする。測量完成後、照度計144が下がり、可動シャッター146を移動して照度計144を覆う。 Referring to FIGS. 2 and 9 at the same time, FIG. 9 is a schematic view of the positional relationship between the transport device, the illuminometer, and the movable shutter showing the processing device according to the embodiment of the present invention. In an example, the processing apparatus 100 may selectively include a plurality of luminometers 144 and a plurality of movable shutters 146. In one example, the illuminance meter 144 is installed below the transport device 108 so as to be movable up and down, and the movable shutters 146 are respectively installed above the illuminance meters 144 to partition the illuminance meter 144 and the heating light source 106, thereby The illuminance meter 144 is irradiated by the heating light source 106 for a long time, so that the temperature is improved and the lifetime of the illuminance meter 144 is not significantly shortened. When it is necessary to measure the illuminance of the semiconductor solar cell 102 using the illuminance meter 144, the movable shutter 146 is moved out of the illuminance meter 144 and the illuminance meter 144 rises to the height of the transport device 108. The illuminance is measured in the same manner as the height of the upper surface of the semiconductor solar cell 102 to be obtained. After completion of surveying, the illuminometer 144 is lowered, and the movable shutter 146 is moved to cover the illuminometer 144.

図2と図8Aを再び参照して、ある例において、処理装置100は、複数の電流検出器142を選択的に含んでもよく、これら電流検出器142がそれぞれ加熱光源106に電気的に接続され、且つ各加熱光源106の電流値の検出に用いられる。電流検出器142が加熱光源106の電流値が特定値以下になることを検出する場合、この加熱光源106の電気抵抗が向上し、且つこの加熱光源106の効能が既に劣化することを表明する。この時に、図8Aに示すように、加熱光源106を電池輸送通路104a〜104eの上方から領域150へ抜き出して、加熱光源106の交換作業をしてもよい。 Referring again to FIGS. 2 and 8A, in one example, the processing apparatus 100 may optionally include a plurality of current detectors 142, each of which is electrically connected to the heating light source 106. And used to detect the current value of each heating light source 106. When the current detector 142 detects that the current value of the heating light source 106 is equal to or less than a specific value, it indicates that the electrical resistance of the heating light source 106 is improved and the efficacy of the heating light source 106 is already deteriorated. At this time, as shown in FIG. 8A, the heating light source 106 may be extracted from the upper side of the battery transport passages 104a to 104e to the region 150, and the heating light source 106 may be replaced.

上記の実施形態から分かるように、本発明の1つのメリットとしては、本発明の処理装置が光照射加熱処理によって、半導体太陽電池の効率に影響を与えることなく、急速に半導体太陽電池の欠陥を取り除き、更に半導体太陽電池の光誘起劣化現象を低下させることにある。 As can be seen from the above embodiment, one advantage of the present invention is that the processing apparatus of the present invention can rapidly remove defects in the semiconductor solar cell without affecting the efficiency of the semiconductor solar cell by the light irradiation heat treatment. It is to remove and further reduce the light-induced degradation phenomenon of the semiconductor solar cell.

上記の実施形態から分かるように、本発明の別のメリットとしては、本発明の処理装置が連続伝送方式によって半導体太陽電池に対して光照射加熱処理を行って、半導体太陽電池の欠陥を取り除くため、量産の目標を実現することができることにある。 As can be seen from the above embodiment, another advantage of the present invention is that the processing apparatus of the present invention performs light irradiation heat treatment on a semiconductor solar cell by a continuous transmission method to remove defects in the semiconductor solar cell. The goal of mass production is to be realized.

本発明を実施例で前述の通り開示したが、これは本発明を限定するためのものではなく、当業者であれば、本発明の精神と範囲から逸脱しない限り、各種の変更や修正を加えることができる。従って、本発明の保護範囲は、特許請求の範囲で指定した内容を基準とするものである。 Although the present invention has been disclosed in the embodiments as described above, this is not intended to limit the present invention, and various changes and modifications can be made by those skilled in the art without departing from the spirit and scope of the present invention. be able to. Therefore, the protection scope of the present invention is based on the contents specified in the claims.

100、100a、100b、100c、100d、100e 処理装置102 半導体太陽電池104a、104b、104c、104d、104e 電池輸送通路106、106a、106b 加熱光源108 輸送装置110a、110b、110c、110d、110e、112a、112b、112c、112d、112e 反射隔板114 伝送方向116、116a、116b、116c 蓋板118、118a カバー120、120a トップ板122 排気管124 排気孔126 冷却装置128 温度調整領域130、132、134 主処理領域136 積載装置138 卸下装置140 温度センサー142 電流検出器144 照度計146 可動シャッター148 高温処理領域150 領域152 加熱デバイス154 流路変換装置 100, 100a, 100b, 100c, 100d, 100e Processing device 102 Semiconductor solar cell 104a, 104b, 104c, 104d, 104e Battery transport passage 106, 106a, 106b Heating light source 108 Transport device 110a, 110b, 110c, 110d, 110e, 112a 112b, 112c, 112d, 112e Reflection barrier 114 Transmission direction 116, 116a, 116b, 116c Cover plate 118, 118a Cover 120, 120a Top plate 122 Exhaust pipe 124 Exhaust hole 126 Cooling device 128 Temperature adjustment region 130, 132, 134 Main processing region 136 Loading device 138 Wholesale device 140 Temperature sensor 142 Current detector 144 Illuminance meter 146 Movable shutter 148 High temperature processing region 150 Region 152 Heating device 154 Road conversion device

Claims (24)

複数の半導体太陽電池に対して光照射加熱処理を行うことに適用される処理装置であって、 第1の電池輸送通路と、 前記第1の電池輸送通路に隣接される第2の電池輸送通路と、 前記第1の電池輸送通路と前記第2の電池輸送通路との上方に設置される複数の加熱光源と、 を備え、 また、前記第1の電池輸送通路と前記第2の電池輸送通路のそれぞれは、前記複数の半導体太陽電池の輸送に適用される輸送装置と、前記第1の電池輸送通路と前記第2の電池輸送通路のそれぞれの断面が略U型の形状を呈するように、それぞれ前記輸送装置の反対する両側に沿って設置される2つの反射隔板と、を含む処理装置。 A treatment apparatus applied to performing light irradiation heat treatment on a plurality of semiconductor solar cells, a first battery transport passage, and a second battery transport passage adjacent to the first battery transport passage And a plurality of heating light sources installed above the first battery transport passage and the second battery transport passage, and the first battery transport passage and the second battery transport passage. Each of the transport device applied to transport the semiconductor solar cells, and the first battery transport passage and the second battery transport passage each have a substantially U-shaped cross section, A treatment apparatus comprising two reflective barriers each installed along opposite sides of the transport device. 前記第1の電池輸送通路と前記第2の電池輸送通路のそれぞれは、温度上昇調整領域と、前記温度上昇調整領域の直後に連結する主処理領域と、を含む請求項1に記載の処理装置。 2. The processing apparatus according to claim 1, wherein each of the first battery transport passage and the second battery transport passage includes a temperature increase adjustment region and a main processing region connected immediately after the temperature increase adjustment region. . 前記温度上昇調整領域に位置する前記複数の加熱光源と前記輸送装置との間の距離は、前記主処理領域に位置する前記複数の加熱光源と前記輸送装置との間の距離よりも小さい請求項2に記載の処理装置。 The distance between the plurality of heating light sources located in the temperature increase adjustment region and the transportation device is smaller than the distance between the plurality of heating light sources located in the main processing region and the transportation device. 2. The processing apparatus according to 2. 前記第1の電池輸送通路と前記第2の電池輸送通路のそれぞれは、前記温度上昇調整領域に設置される加熱デバイスを更に含む請求項2に記載の処理装置。 The processing apparatus according to claim 2, wherein each of the first battery transport passage and the second battery transport passage further includes a heating device installed in the temperature rise adjustment region. 前記温度上昇調整領域は、前記複数の半導体太陽電池の温度を180℃よりも高い領域に向上させる請求項2に記載の処理装置。 The processing apparatus according to claim 2, wherein the temperature increase adjustment region improves the temperature of the plurality of semiconductor solar cells to a region higher than 180 ° C. 3. 前記第1の電池輸送通路と前記第2の電池輸送通路のそれぞれは、 主処理領域と、 前記主処理領域の前に位置し、且つ前記処理装置の前の高温処理領域と前記主処理領域との間に介在する温度降下調整領域と、 を含む請求項1に記載の処理装置。 Each of the first battery transport passage and the second battery transport passage is a main processing region, located in front of the main processing region, and a high temperature processing region and the main processing region in front of the processing apparatus. The processing apparatus according to claim 1, further comprising: a temperature drop adjustment region interposed between the two. 前記温度降下調整領域は、前記複数の半導体太陽電池の温度を230℃よりも低い領域に低下させる請求項6に記載の処理装置。 The processing apparatus according to claim 6, wherein the temperature drop adjustment region reduces the temperature of the plurality of semiconductor solar cells to a region lower than 230 ° C. 前記複数の輸送装置と前記高温処理領域とは、それぞれ前記複数の半導体太陽電池を直接且つ連続的に前記複数の温度降下調整領域に伝送するように繋がっている請求項6に記載の処理装置。 The processing apparatus according to claim 6, wherein the plurality of transport devices and the high temperature processing region are connected so as to transmit the plurality of semiconductor solar cells directly and continuously to the plurality of temperature drop adjustment regions, respectively. 前記複数の加熱光源は、複数のストリップ型チューブライトであり、且つ前記複数のストリップ型チューブライトが前記第1の電池輸送通路と前記第2の電池輸送通路と直交する請求項1に記載の処理装置。 2. The process according to claim 1, wherein the plurality of heating light sources are a plurality of strip-type tube lights, and the plurality of strip-type tube lights are orthogonal to the first battery transport passage and the second battery transport passage. apparatus. 前記複数のストリップ型チューブライトのそれぞれは、前記第1の電池輸送通路と前記第2の電池輸送通路を跨ぐ請求項9に記載の処理装置。 The processing apparatus according to claim 9, wherein each of the plurality of strip-type tube lights straddles the first battery transport passage and the second battery transport passage. 前記複数の加熱光源は、複数のストリップ型チューブライトであり、且つ前記複数のストリップ型チューブライトが前記第1の電池輸送通路と前記第2の電池輸送通路と平行する請求項1に記載の処理装置。 2. The process according to claim 1, wherein the plurality of heating light sources are a plurality of strip-type tube lights, and the plurality of strip-type tube lights are parallel to the first battery transport passage and the second battery transport passage. apparatus. 前記複数の加熱光源は、前記複数の半導体太陽電池に、前記第1の電池輸送通路と前記第2の電池輸送通路において3000W/mよりも大きい照度を受けさせる複数の光照射デバイスである請求項1に記載の処理装置。 The plurality of heating light sources are a plurality of light irradiation devices that cause the plurality of semiconductor solar cells to receive an illuminance greater than 3000 W / m 2 in the first battery transport passage and the second battery transport passage. Item 2. The processing apparatus according to Item 1. 前記複数の加熱光源は、前記複数の半導体太陽電池に、前記第1の電池輸送通路と前記第2の電池輸送通路における温度を200℃〜230℃にさせる複数の光照射デバイスである請求項1に記載の処理装置。 The plurality of heating light sources are a plurality of light irradiation devices that cause the plurality of semiconductor solar cells to have a temperature in the first battery transport passage and the second battery transport passage of 200 ° C to 230 ° C. The processing apparatus as described in. 前記複数の加熱光源上方を覆うように設けられるカバーと、 前記カバー上に設置され、且つ前記複数の主処理領域の上方に位置する複数の排気管と、 それぞれ前記複数の主処理領域に設置される複数の温度センサーと、 を更に含む請求項1に記載の処理装置。 A cover provided to cover the plurality of heating light sources; a plurality of exhaust pipes disposed on the cover and positioned above the plurality of main processing areas; and each disposed in the plurality of main processing areas. The processing apparatus according to claim 1, further comprising: a plurality of temperature sensors. 前記複数の加熱光源上方を覆うように設けられ、前記複数の主処理領域の上方に散布される複数の排気孔が穿設されるカバーを更に含む請求項1に記載の処理装置。 The processing apparatus according to claim 1, further comprising a cover provided so as to cover the plurality of heating light sources and having a plurality of exhaust holes sprayed above the plurality of main processing regions. 前記排気孔は、前記複数の主処理領域のそれぞれの中央領域における穴開けサイズが大きい請求項15に記載の処理装置。 The processing apparatus according to claim 15, wherein the exhaust hole has a large perforation size in a central region of each of the plurality of main processing regions. 前記排気孔は、前記複数の主処理領域のそれぞれの中央領域における穴開け密度が大きい請求項15に記載の処理装置。 The processing apparatus according to claim 15, wherein the exhaust holes have a high hole density in a central region of each of the plurality of main processing regions. 昇降可能に前記複数の輸送装置の下方に設置される複数の照度計と、 それぞれ前記複数の照度計の上方に設置されて、前記複数の照度計と前記複数の加熱光源を仕切る複数の可動シャッターと、 を更に含む請求項1に記載の処理装置。 A plurality of illuminance meters installed below the plurality of transport devices so as to be capable of ascending and descending, and a plurality of movable shutters respectively installed above the plurality of illuminance meters and partitioning the plurality of illuminance meters and the plurality of heating light sources The processing apparatus according to claim 1, further comprising: それぞれ前記複数の加熱光源に電気的に接続される複数の電流検出器を更に含む請求項1に記載の処理装置。 The processing apparatus according to claim 1, further comprising a plurality of current detectors each electrically connected to the plurality of heating light sources. 蓋板を更に含み、前記複数の加熱光源が前記蓋板の底面の下に固定される請求項1に記載の処理装置。 The processing apparatus according to claim 1, further comprising a lid plate, wherein the plurality of heating light sources are fixed below a bottom surface of the lid plate. 前記蓋板は、上開き可能な蓋板である請求項20に記載の処理装置。 The processing apparatus according to claim 20, wherein the cover plate is a cover plate that can be opened upward. 前記蓋板は、ひっくり返すことができるように前記複数の反射隔板上に設置される請求項20に記載の処理装置。 21. The processing apparatus according to claim 20, wherein the cover plate is installed on the plurality of reflection barrier plates so as to be turned over. 前記蓋板は、抜き取り式の蓋板である請求項20に記載の処理装置。 The processing apparatus according to claim 20, wherein the lid plate is a detachable lid plate. 前記第1の電池輸送通路と前記第2の電池輸送通路における隣接する前記複数の反射隔板の間に設置される放熱流体管路を更に含む請求項1に記載の処理装置。 The processing apparatus according to claim 1, further comprising a heat-dissipating fluid conduit installed between the plurality of adjacent reflection barrier plates in the first battery transport passage and the second battery transport passage.
JP2015105677A 2014-08-15 2015-05-25 Processing device Pending JP2016042569A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW103128147A TWI513028B (en) 2014-08-15 2014-08-15 Treating apparatus
TW103128147 2014-08-15

Publications (1)

Publication Number Publication Date
JP2016042569A true JP2016042569A (en) 2016-03-31

Family

ID=55376780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015105677A Pending JP2016042569A (en) 2014-08-15 2015-05-25 Processing device

Country Status (4)

Country Link
JP (1) JP2016042569A (en)
KR (1) KR20160021026A (en)
CN (1) CN105374706A (en)
TW (1) TWI513028B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208519A (en) * 2016-05-16 2017-11-24 ▲ゆ▼晶能源科技股▲分▼有限公司Gintech Energy Corporation Solar cell hydrogenation method and apparatus
CN108387108A (en) * 2018-04-02 2018-08-10 通威太阳能(安徽)有限公司 Temperature-adjusting device in a kind of solar battery sheet sintering furnace
JP2020509602A (en) * 2017-03-03 2020-03-26 広東愛旭科技股▲フン▼有限公司 P-type PERC double-sided solar cell, and module, system and manufacturing method thereof
JP2021516528A (en) * 2018-06-28 2021-07-01 華南理工大学 Electrical injection annealing test equipment and methods for crystalline silicon solar cells

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI601304B (en) * 2016-01-18 2017-10-01 茂迪股份有限公司 Treating apparatus
TWI604630B (en) * 2016-12-13 2017-11-01 茂迪股份有限公司 Treating apparatus of semiconductor substrate
TWI635247B (en) 2017-10-02 2018-09-11 財團法人工業技術研究院 Solidifying equipment
KR102568449B1 (en) * 2021-06-15 2023-08-23 재단법인 구미전자정보기술원 Apparatus for analyzing light-induced degradation and lid healing process characteristic of solar cell module and the method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158952A (en) * 1983-03-02 1984-09-08 Ushio Inc Light irradiation heating device
JPS60258928A (en) * 1984-02-28 1985-12-20 タマラツク・サイエンテイフイツク・カンパニ−・インコ−ポレ−テツド Device and method for heating semiconductor wafer
JP2002170972A (en) * 2000-12-01 2002-06-14 Sharp Corp Method of manufacturing solar cell element
JP2006245100A (en) * 2005-03-01 2006-09-14 Kyocera Corp Baking furnace, method for baking body to be treated by using the same, and method for manufacturing solar cell element
JP2006310792A (en) * 2005-03-29 2006-11-09 Kyocera Corp Heating furnace and manufacturing method of solar cell element using the same
US20080012499A1 (en) * 2006-06-26 2008-01-17 Thermal Processing Solutions, Inc. Rapid Thermal Firing IR Conveyor Furnace Having High Intensity Heating Section
JP2009164251A (en) * 2007-12-28 2009-07-23 Mitsubishi Heavy Ind Ltd Method of producing photoelectric converting apparatus
JP2011075132A (en) * 2009-09-29 2011-04-14 Kazuhiro Utano Continuous baking furnace for solar battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006012920B3 (en) * 2006-03-21 2008-01-24 Universität Konstanz Method for producing a photovoltaic element with stabilized efficiency
WO2010039500A2 (en) * 2008-09-23 2010-04-08 Applied Materials, Inc. Light soaking system and test method for solar cells
CN201450015U (en) * 2009-07-08 2010-05-05 中电电气(南京)光伏有限公司 Device for improving photoinduced attenuation characteristic of crystalline silicon solar battery plate
TW201324809A (en) * 2011-12-14 2013-06-16 Auria Solar Co Ltd Method for repairing solar cell defect

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158952A (en) * 1983-03-02 1984-09-08 Ushio Inc Light irradiation heating device
JPS60258928A (en) * 1984-02-28 1985-12-20 タマラツク・サイエンテイフイツク・カンパニ−・インコ−ポレ−テツド Device and method for heating semiconductor wafer
JP2002170972A (en) * 2000-12-01 2002-06-14 Sharp Corp Method of manufacturing solar cell element
JP2006245100A (en) * 2005-03-01 2006-09-14 Kyocera Corp Baking furnace, method for baking body to be treated by using the same, and method for manufacturing solar cell element
JP2006310792A (en) * 2005-03-29 2006-11-09 Kyocera Corp Heating furnace and manufacturing method of solar cell element using the same
US20080012499A1 (en) * 2006-06-26 2008-01-17 Thermal Processing Solutions, Inc. Rapid Thermal Firing IR Conveyor Furnace Having High Intensity Heating Section
JP2009164251A (en) * 2007-12-28 2009-07-23 Mitsubishi Heavy Ind Ltd Method of producing photoelectric converting apparatus
JP2011075132A (en) * 2009-09-29 2011-04-14 Kazuhiro Utano Continuous baking furnace for solar battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208519A (en) * 2016-05-16 2017-11-24 ▲ゆ▼晶能源科技股▲分▼有限公司Gintech Energy Corporation Solar cell hydrogenation method and apparatus
JP2020509602A (en) * 2017-03-03 2020-03-26 広東愛旭科技股▲フン▼有限公司 P-type PERC double-sided solar cell, and module, system and manufacturing method thereof
JP7023976B2 (en) 2017-03-03 2022-02-22 広東愛旭科技有限公司 Manufacturing method of P-type PERC double-sided solar cell
CN108387108A (en) * 2018-04-02 2018-08-10 通威太阳能(安徽)有限公司 Temperature-adjusting device in a kind of solar battery sheet sintering furnace
CN108387108B (en) * 2018-04-02 2023-09-22 通威太阳能(安徽)有限公司 Temperature regulating device in solar cell sintering furnace
JP2021516528A (en) * 2018-06-28 2021-07-01 華南理工大学 Electrical injection annealing test equipment and methods for crystalline silicon solar cells
JP7050363B2 (en) 2018-06-28 2022-04-08 華南理工大学 Electrical injection annealing test method for crystalline silicon solar cells

Also Published As

Publication number Publication date
TW201607072A (en) 2016-02-16
CN105374706A (en) 2016-03-02
TWI513028B (en) 2015-12-11
KR20160021026A (en) 2016-02-24

Similar Documents

Publication Publication Date Title
JP2016042569A (en) Processing device
JP6139600B2 (en) Solar cell post-processing equipment
CN100490184C (en) Method for forming light absorbing layer in cis-based thin film solar battery
US8236596B2 (en) Diffusion furnaces employing ultra low mass transport systems and methods of wafer rapid diffusion processing
US8828776B2 (en) Diffusion furnaces employing ultra low mass transport systems and methods of wafer rapid diffusion processing
KR102048148B1 (en) Heat treatment apparatus and heat treatment method
TW201626581A (en) Method and apparatus for reduction of solar cell LID
CN103053008B (en) For the apparatus and method that multiple multilayer bodies are heat-treated
CN105140347A (en) Mass-production apparatus capable of fast improving photoinduced degradation of a P-type crystalline silicon cell and using method thereof
Ahmed et al. Enhancement in solar cell efficiency by luminescent down-shifting layers
WO2016173472A1 (en) Roller type solar cell sintering and irradiation annealing integrated continuous furnace
KR101274095B1 (en) Apparatus for forming cigs layer
CN210073901U (en) Electric injection machine platform
WO2012151410A1 (en) Novel doping process for solar cell manufacture
TWM493756U (en) Treating apparatus
CN109695061A (en) Lamp box apparatus, attemperator and annealing furnace apparatus
CN104451891B (en) The infrared ray conveyer stove of line is handled with single tape and multiple independent controls
TWI601304B (en) Treating apparatus
CN209685956U (en) Lamp box apparatus, attemperator and annealing furnace apparatus
CN202989270U (en) Non-vacuum step-by-step pass type fast selenizing device
CN103021823B (en) A kind of antivacuum stepping passing rapid selenium gasifying device and the selenizing method utilizing it to realize
TW201314942A (en) Ultra low mass transport systems for diffusion furnaces employing anti-sag arresters and side wall heaters
Lotse Electrical analysis of interface recombination of thin-film CIGS solar cells
TWI492406B (en) Annealing device for a thin-film solar cell
CN103456830B (en) The manufacture method of thin-film solar cells and manufacturing equipment thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206