JP2006310792A - Heating furnace and manufacturing method of solar cell element using the same - Google Patents

Heating furnace and manufacturing method of solar cell element using the same Download PDF

Info

Publication number
JP2006310792A
JP2006310792A JP2006066093A JP2006066093A JP2006310792A JP 2006310792 A JP2006310792 A JP 2006310792A JP 2006066093 A JP2006066093 A JP 2006066093A JP 2006066093 A JP2006066093 A JP 2006066093A JP 2006310792 A JP2006310792 A JP 2006310792A
Authority
JP
Japan
Prior art keywords
heating furnace
heat
processed
heating
conveying means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006066093A
Other languages
Japanese (ja)
Inventor
Hiroto Owada
寛人 大和田
Toshihiko Kaneko
俊彦 兼子
Yasuhiro Matsubara
康弘 松原
Norihiro Yonekura
典宏 米倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006066093A priority Critical patent/JP2006310792A/en
Publication of JP2006310792A publication Critical patent/JP2006310792A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating furnace or the like capable of reducing variations in the temperature received by a workpiece. <P>SOLUTION: A heating furnace 1 heating a workpiece 5 inside comprises a conveying means 2 for mounting the workpiece 5 for conveying it in the heating furnace 1, a heating means 3 arranged inside the heating furnace 1 for heating the workpiece 5, and a heat control means 6 for indirectly transmitting the heat obtained by the heating means 3 to the workpiece 5. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、加熱炉及びこれを用いた太陽電池素子の製造方法に関する。   The present invention relates to a heating furnace and a method for manufacturing a solar cell element using the same.

一般的な太陽電池素子は、半導性を有する単結晶シリコンや多結晶シリコン等の半導体基板にpn接合が形成され、光が照射されたときに電力を取り出せるように、例えば銀やアルミニウム等を主成分とする電極が、半導体基板の表面や裏面に形成されている。   In general solar cell elements, a pn junction is formed on a semiconductor substrate such as single crystalline silicon or polycrystalline silicon having semiconductivity, and silver or aluminum is used so that power can be taken out when irradiated with light. Electrodes as main components are formed on the front and back surfaces of the semiconductor substrate.

このような太陽電池素子の電極は、例えば特許文献1に記載されているように、アルミニウム等を主成分とするペーストを半導体基板の非受光面側の一部を除いた大部分に塗布して乾燥したあと、このアルミニウム等を主成分とするペーストを塗布していない部分とその周辺部を覆うように銀等を主成分とするペーストを塗布して乾燥したあと、最後に半導体基板の受光面側に銀等を主成分とするペーストを塗布して乾燥させ、同時に焼成する同時焼成法が用いられることが多い。   For example, as described in Patent Document 1, the electrode of such a solar cell element is obtained by applying a paste mainly composed of aluminum or the like to most of the semiconductor substrate excluding a part on the non-light-receiving surface side. After drying, after applying and drying a paste mainly composed of silver or the like so as to cover the portion not coated with the paste mainly composed of aluminum or the like and its peripheral part, the light receiving surface of the semiconductor substrate is finally provided. A co-firing method is often used in which a paste mainly composed of silver or the like is applied to the side, dried, and simultaneously fired.

このような電極の焼成には連続式の加熱炉(焼成炉)が用いられるのが一般的である。連続式の加熱炉を用いることにより、電極を形成するペーストを塗布した半導体基板を大量に処理することができ、極めて生産性が高いという特徴がある。   In general, a continuous heating furnace (firing furnace) is used for firing such an electrode. By using a continuous heating furnace, a large amount of a semiconductor substrate coated with a paste for forming an electrode can be processed, and the productivity is extremely high.

このような連続式の加熱炉の一例として、図5に示されるようなベルト式連続加熱炉がある。これは、加熱炉の加熱部を貫通させた、耐熱性の金属メッシュ等から成るエンドレスベルト等の搬送手段上に被処理体を積載してエンドレスベルトを回転させることで、加熱炉の加熱部を通過させ焼成を行うものである。なお、加熱炉の断熱性を高めるため、加熱炉内の空間は断熱材により囲まれており、被処理体が積載されるエンドレスベルトを中心として上下にヒーターが設けられている。
特開平10−335267号公報
As an example of such a continuous heating furnace, there is a belt-type continuous heating furnace as shown in FIG. This is because the object to be processed is loaded on a conveying means such as an endless belt made of a heat-resistant metal mesh or the like passing through the heating part of the heating furnace, and the endless belt is rotated. It is passed through and fired. In addition, in order to improve the heat insulation of a heating furnace, the space in a heating furnace is enclosed with the heat insulating material, and the heater is provided up and down centering on the endless belt with which a to-be-processed object is loaded.
JP 10-335267 A

加熱炉内ではヒーターで発生した熱が被処理体に直接達する以外に、断熱材からなる加熱炉内部の側壁からの反射および輻射の影響があり、加熱炉内の端部と中央部で温度のばらつきが大きくなるという問題がある。さらに、中赤外線若しくは近赤外線を放射するヒーターは、急昇温が可能であるが、遠赤外線ヒーター等と異なり、加熱炉内で小サイズに分割配設することが困難であり、加熱炉内での温度のばらつきが大きく、またコントロールしにくいという欠点をもつ。   In the heating furnace, the heat generated by the heater directly reaches the object to be processed, and there is an influence of reflection and radiation from the side wall inside the heating furnace made of heat insulating material. There is a problem that the variation becomes large. Furthermore, heaters that emit mid-infrared rays or near-infrared rays can be rapidly heated, but unlike far-infrared heaters, it is difficult to divide them into small sizes in a heating furnace. There is a disadvantage that the temperature variation of the is large and difficult to control.

このように加熱炉内の焼成温度の違いにより、被処理体は加熱炉の端部と中央部のどちらか一方、もしくは両方において最適な焼成温度で焼成されない可能性があり、過剰加熱もしくは加熱不足となり、太陽電池素子の電気特性や、半導体基板との表裏両面の電極の接着強度に大きく影響し、太陽電池素子の品質を著しく低下させる要因となる。問題を回避するために、炉内の中央部のみに被処理体を供給する方法もあるが、この方法では生産量を大きく低下させることになるので好ましくない。   As described above, due to the difference in the firing temperature in the heating furnace, the object to be treated may not be fired at the optimum firing temperature at one or both of the end part and the center part of the heating furnace. Thus, the electrical characteristics of the solar cell element and the adhesive strength of the electrodes on both the front and back surfaces with the semiconductor substrate are greatly affected, and the quality of the solar cell element is significantly reduced. In order to avoid the problem, there is a method of supplying the object to be processed only to the central portion in the furnace, but this method is not preferable because the production amount is greatly reduced.

本発明は、このような従来の問題点に鑑みてなされたものであり、被処理体が受ける温度のばらつきを低減させることができる加熱炉、並びにこの加熱炉を用いた太陽電池素子の製造方法を提供することを目的とする。   The present invention has been made in view of such conventional problems, and a heating furnace capable of reducing variations in temperature experienced by an object to be processed, and a method for manufacturing a solar cell element using the heating furnace. The purpose is to provide.

本発明は、内部で被処理体を加熱処理する加熱炉であって、前記被処理体を載置して搬送する搬送手段と、加熱炉内部に配置され、前記被処理体を加熱する加熱手段と、前記加熱手段から得られた熱を、間接的に前記被処理体に伝える熱制御手段とを有して成るものである。   The present invention is a heating furnace that heat-treats an object to be processed therein, a conveying unit that places and conveys the object to be processed, and a heating unit that is disposed inside the heating furnace and heats the object to be processed And heat control means for indirectly transferring the heat obtained from the heating means to the object to be processed.

前記熱制御手段は、前記搬送手段と前記加熱炉内側壁との間に配置されることが好ましい。   It is preferable that the heat control means is disposed between the conveying means and the inner wall of the heating furnace.

また、前記搬送手段は、複数の前記被処理体を複数の列を成すように載置して、該列方向に搬送するものであり、前記熱制御手段は、隣接する前記列の間及び/又は前記列と前記加熱炉内壁との間に配置されることが好ましい。   In addition, the transport unit is configured to place a plurality of the objects to be processed in a plurality of rows and transport in the row direction. Or it is preferable to arrange | position between the said row | line | column and the said heating furnace inner wall.

さらに、前記搬送手段は網目状のベルトで構成され、該搬送手段の上下に前記加熱手段を配置するとともに、前記熱制御手段は、前記搬送手段の上方及び/又は下方に配置されて成ることが好ましい。   Further, the conveying means is constituted by a mesh belt, the heating means is arranged above and below the conveying means, and the heat control means is arranged above and / or below the conveying means. preferable.

ここで、前記熱制御手段は、加熱炉内側壁よりも熱反射が少ない熱反射抑制部材であることが好ましい。この場合、前記加熱手段は、端に位置する前記被処理体よりも加熱炉内側壁側に配置されることが特に好ましい。   Here, it is preferable that the heat control means is a heat reflection suppressing member that has less heat reflection than the inner wall of the heating furnace. In this case, it is particularly preferable that the heating means is disposed closer to the inner wall of the heating furnace than the object to be processed located at the end.

また、前記熱制御手段は、所定方向に熱を反射する熱反射面を有する熱反射部材であっても良く、この場合には、前記加熱手段は、端に位置する前記被処理体よりも加熱炉中央側に配置されることが特に好ましい。   The heat control unit may be a heat reflecting member having a heat reflecting surface that reflects heat in a predetermined direction. In this case, the heating unit heats more than the object to be processed located at an end. It is particularly preferable that it is arranged on the furnace center side.

また本発明は、上記加熱炉を用いて、半導体基板の表面に形成された金属ペーストを焼成する工程を有して成る太陽電池素子の製造方法である。   Moreover, this invention is a manufacturing method of the solar cell element which has the process of baking the metal paste formed in the surface of the semiconductor substrate using the said heating furnace.

本発明の加熱炉は、内部で被処理体を加熱処理するものであって、前記被処理体を載置して搬送する搬送手段と、加熱炉内部に配置され、前記被処理体を加熱する加熱手段と、前記加熱手段から得られた熱を、間接的に前記被処理体に伝える熱制御手段とを有して成るものであることから、搬送手段の中心部と端部とで、被処理体の焼成温度がばらつく事を効果的に抑制して均一な焼成処理が可能となる。   The heating furnace of the present invention heats an object to be processed therein, and is disposed inside the heating furnace for placing and transferring the object to be processed and heating the object to be processed. Since the heating means and the heat control means for indirectly transferring the heat obtained from the heating means to the object to be processed are provided, the center and the end of the conveying means It is possible to effectively suppress variation in the firing temperature of the treatment body and to perform uniform firing.

前記熱制御手段は、前記搬送手段と前記加熱炉内側壁との間に配置されることが好ましい。これによって、特に、搬送手段の端部で、加熱炉内側壁による熱反射の影響が強い場合或いは熱反射が極めて少なく加熱が不十分になる場合に、搬送手段の中心部と端部とで、被処理体の焼成温度がばらつく事を効果的に抑制することができる。   It is preferable that the heat control means is disposed between the conveying means and the inner wall of the heating furnace. Thereby, especially at the end of the conveying means, when the influence of heat reflection by the inner wall of the heating furnace is strong or when the heat reflection is very little and the heating becomes insufficient, at the center and the end of the conveying means, It is possible to effectively suppress variation in the firing temperature of the object to be processed.

また、前記搬送手段は、複数の前記被処理体を複数の列を成すように載置して、該列方向に搬送するものであり、前記熱制御手段は、隣接する前記列の間及び/又は前記列と前記加熱炉内壁との間に配置されることが好ましい。これによって、被処理体の焼成温度が、列毎にばらつくのを抑制することができる。   In addition, the transport unit is configured to place a plurality of the objects to be processed in a plurality of rows and transport in the row direction. Or it is preferable to arrange | position between the said row | line | column and the said heating furnace inner wall. Thereby, it is possible to suppress the firing temperature of the object to be processed from being varied for each column.

さらに、前記搬送手段は網目状のベルトで構成され、該搬送手段の上下に前記加熱手段を配置するとともに、前記熱制御手段は、前記搬送手段の上方及び/又は下方に配置されて成ることが好ましい。これによって、被処理体両面の同時加熱に際して、被処理体の焼成温度のばらつきを両面において効果的に抑制することができる。   Further, the conveying means is constituted by a mesh belt, the heating means is arranged above and below the conveying means, and the heat control means is arranged above and / or below the conveying means. preferable. Thereby, when simultaneously heating both surfaces of the object to be processed, variation in the firing temperature of the object to be processed can be effectively suppressed on both surfaces.

ここで、前記熱制御手段は、加熱炉内側壁よりも熱反射が少ない熱反射抑制部材であることが好ましい。この場合、前記加熱手段は、端に位置する前記被処理体よりも加熱炉内側壁側に配置されることが特に好ましい。これは、加熱炉内で熱反射の影響が強い被処理体に対して、断熱材からなる加熱炉内側壁などからの熱反射の影響を低減することができる。その結果、被処理体の焼成温度が、搬送手段の中心部と端部とでばらつくのを抑制することができる。   Here, it is preferable that the heat control means is a heat reflection suppressing member that has less heat reflection than the inner wall of the heating furnace. In this case, it is particularly preferable that the heating means is disposed closer to the inner wall of the heating furnace than the object to be processed located at the end. This can reduce the influence of heat reflection from the inner wall of the heating furnace made of a heat insulating material or the like on the object to be processed which is strongly affected by heat reflection in the heating furnace. As a result, it is possible to suppress the firing temperature of the object to be processed from being varied between the central portion and the end portion of the conveying means.

また、前記熱制御手段は、所定方向に熱を反射する熱反射面を有する熱反射部材であっても良く、この場合には、前記加熱手段は、端に位置する前記被処理体よりも加熱炉中央側に配置されることが特に好ましい。このようにすることで、加熱手段で発生した熱が熱反射部材により反射して効率よく被処理体に到達させることができ、その結果、被処理体の焼成温度が、搬送手段の中心部と端部とでばらつくのを抑制することができる。   The heat control unit may be a heat reflecting member having a heat reflecting surface that reflects heat in a predetermined direction. In this case, the heating unit heats more than the object to be processed located at an end. It is particularly preferable that it is arranged on the furnace center side. By doing in this way, the heat generated by the heating means is reflected by the heat reflecting member and can efficiently reach the object to be processed, and as a result, the firing temperature of the object to be processed becomes the center of the conveying means. It is possible to suppress variation at the end.

また本発明の太陽電池素子の製造方法は、上記加熱炉を用いて、半導体基板の表面に形成された金属ペーストを焼成する工程を有して成ることから、搬送手段の中心部と端部とで焼成温度がばらつく事を効果的に抑制することができる。その結果、太陽電池素子の焼成電極の焼成状態が均一となり、太陽電池素子の電気特性や、半導体基板と電極との接着強度のばらつきが小さく品質の優れたものとすることが可能となる。   In addition, the method for manufacturing a solar cell element of the present invention includes a step of firing a metal paste formed on the surface of a semiconductor substrate using the heating furnace. Thus, variation in the firing temperature can be effectively suppressed. As a result, the fired state of the fired electrode of the solar cell element becomes uniform, and variations in the electrical characteristics of the solar cell element and the adhesive strength between the semiconductor substrate and the electrode can be reduced and the quality can be improved.

以下、本発明の加熱炉、並びに本発明の太陽電池素子の製造方法について、図を用いて詳細に説明する。   Hereinafter, the heating furnace of this invention and the manufacturing method of the solar cell element of this invention are demonstrated in detail using figures.

――加熱炉――
≪第一実施形態≫
図1、図2は本発明に係る加熱炉の第一実施形態の構造を説明するための図であり、図1(a)は加熱炉の炉長方向の断面を、図1(b)は加熱炉の炉幅方向の断面を示している。また、図2は、図1に示す加熱炉を上方から平面視したときの部分断面図を示すものである。
--heating furnace--
≪First embodiment≫
1 and 2 are views for explaining the structure of the first embodiment of the heating furnace according to the present invention. FIG. 1 (a) is a sectional view in the furnace length direction of the heating furnace, and FIG. The cross section of the furnace width direction of the heating furnace is shown. FIG. 2 is a partial cross-sectional view of the heating furnace shown in FIG. 1 as viewed from above.

図において、1は加熱炉、2は搬送手段(2aはベルト、2bは支持体、2cはローラー)、3は加熱手段(3aは上部ヒーター、3bは下部ヒーター)、5は被処理体、6(60)は熱反射抑制部材、8は処理空間を示す。   In the figure, 1 is a heating furnace, 2 is a conveying means (2a is a belt, 2b is a support, 2c is a roller), 3 is a heating means (3a is an upper heater, 3b is a lower heater), 5 is an object to be processed, 6 (60) is a heat reflection suppressing member, and 8 is a processing space.

加熱炉1は、その内部で被処理体5を加熱処理するものであり、断熱性や安全性、そして雰囲気を外気と遮断するために設けられたカバーや、断熱性、安全性のために断熱材1aによって構成された炉体を有して構成される。この炉体の内側には、被処理体5を処理するための処理空間8が存在している。   The heating furnace 1 heats the object to be processed 5 in its interior, and has heat insulation and safety, and a cover provided to block the atmosphere from outside air, and heat insulation for heat insulation and safety. It has the furnace body comprised with the material 1a. Inside the furnace body, there is a processing space 8 for processing the workpiece 5.

搬送手段2は、炉体内部の処理空間8を炉長方向に貫通するように配置されるものであり、例えば、ステンレス等の耐熱性の合金等によって構成されたエンドレスベルト等が用いられ、ローラー2cが回転することによりエンドレスに循環し、搬送手段2上に積載された被処理体5を搬送方向(炉長方向)に移動させる。なお、搬送手段2としてベルト2aを用いる場合、回転中にたるまないように、支持体2bによって支えるようにしてもよい。搬送手段2上に被処理体5を複数列となるように並べて処理することによって、同時に多数の被処理体5を処理することができる。   The conveying means 2 is disposed so as to penetrate the processing space 8 inside the furnace body in the furnace length direction. For example, an endless belt made of a heat-resistant alloy such as stainless steel is used, and a roller By rotating 2c, it circulates endlessly and moves the object 5 loaded on the conveying means 2 in the conveying direction (furnace length direction). In addition, when using the belt 2a as the conveyance means 2, you may make it support with the support body 2b so that it may not sag during rotation. A large number of objects to be processed 5 can be processed simultaneously by arranging the objects to be processed 5 in a plurality of rows on the conveying means 2.

ヒーター3は、処理空間8の内部に配置され、搬送手段2に載置された被処理体5を加熱処理するものである。このヒーター3は、例えば遠赤外線ヒーターやランプ、抵抗加熱等であっても良いが、急昇温特性等の観点から中赤外線若しくは近赤外線を放射するヒーター(中・近赤外線ヒーター)を用いるのが好ましく、例えばランプヒーターを用いることができる。なお、本明細書において、中赤外線若しくは近赤外線とは、波長が0.7μm〜3μmの赤外線を指すものとする。なお、一般的には、中赤外線は、1.5〜3μm、近赤外線は波長が0.7〜1.5μmのように区分される場合があるが、ここでは厳密には区別しない。   The heater 3 is disposed inside the processing space 8 and heats the workpiece 5 placed on the transport means 2. The heater 3 may be, for example, a far-infrared heater, a lamp, resistance heating, or the like, but a heater that emits mid-infrared rays or near-infrared rays (middle / near-infrared heater) is used from the viewpoint of rapid temperature rise characteristics. For example, a lamp heater can be used. In the present specification, the mid-infrared ray or near-infrared ray refers to an infrared ray having a wavelength of 0.7 μm to 3 μm. In general, the mid-infrared rays may be classified as 1.5 to 3 μm, and the near-infrared rays may be classified as 0.7 to 1.5 μm, but they are not strictly distinguished here.

なお、図1に示す例では、搬送手段2を境にして上部ヒーター3aと下部ヒーター3bが配置されている。特に、搬送手段2としてエンドレスに搬送される網目状のベルト2a(メッシュベルト)を用いた場合、下部ヒーター3bから放射された熱は、メッシュベルトを通して、被処理体5をベルト2aに載置した面に到達するから、被処理体5を上面側と下面側の両面から処理することができる。ただし本発明は、これに制限されるものでなく、上部ヒーター3aや下部ヒーター3bのどちらか一方だけであってもかまわない。   In the example shown in FIG. 1, an upper heater 3a and a lower heater 3b are arranged with the conveying means 2 as a boundary. In particular, when a mesh belt 2a (mesh belt) conveyed endlessly is used as the conveying means 2, the heat radiated from the lower heater 3b places the object 5 on the belt 2a through the mesh belt. Since it reaches the surface, the workpiece 5 can be processed from both the upper surface side and the lower surface side. However, the present invention is not limited to this, and only one of the upper heater 3a and the lower heater 3b may be used.

さらに、図1(a)に示す例では、上部ヒーター3aと下部ヒーター3bを搬送方向に対して3分割したものを記載している。このように搬送方向に対して、複数に分割して独立にヒーターを設けておくことによって、被処理体5に対する焼成プロファイルを変更することが容易になるので望ましい。ただし、本発明はこの構造に限られるものではない。さらに、図2において、分割した上部ヒーター3a間に隙間が存在し、この隙間を通して被処理体5が見えている例によって記載したが、これについても制限されるものではない。   Further, in the example shown in FIG. 1A, the upper heater 3a and the lower heater 3b are divided into three parts in the transport direction. In this way, it is desirable to divide the plurality of parts into a plurality of pieces in the transport direction and provide the heaters independently, so that it becomes easy to change the firing profile for the object 5 to be processed. However, the present invention is not limited to this structure. Furthermore, in FIG. 2, although it described by the example in which the clearance gap exists between the divided | segmented upper heaters 3a and the to-be-processed object 5 is visible through this clearance gap, it is not restrict | limited also about this.

なお、加熱炉1で被処理体5を処理する場合、通常、被処理体5には塗布剤が塗布されている。例えば、太陽電池素子の場合、後述するように所定の金属粉末と、バインダー、有機溶媒等を含む金属ペーストが所定形状に塗布されている。このような塗布剤中に含まれるバインダー等の成分は、焼成処理中に加熱炉1内で被処理体5から蒸発、あるいは燃焼してガス化する。このガスが加熱炉1内に充満すると、焼成処理中に製品特性に悪影響を及ぼすため、加熱炉1には排気ガスを外部に排出する排気装置(不図示)や炉内にエアーを供給する供給装置(不図示)が設けられている。   In addition, when processing the to-be-processed object 5 with the heating furnace 1, the coating agent is normally apply | coated to the to-be-processed object 5. FIG. For example, in the case of a solar cell element, as will be described later, a metal paste containing a predetermined metal powder, a binder, an organic solvent, and the like is applied in a predetermined shape. Components such as a binder contained in such a coating agent are vaporized or burned from the object to be processed 5 in the heating furnace 1 during the baking process, and are gasified. When this gas fills the heating furnace 1, the product characteristics are adversely affected during the firing process. Therefore, the heating furnace 1 is supplied with an exhaust device (not shown) for exhausting exhaust gas to the outside or supplying air to the furnace. A device (not shown) is provided.

次に、熱反射抑制部材60について詳細に説明する。   Next, the heat reflection suppressing member 60 will be described in detail.

本発明において、図1(b)の両矢印及び図2の点線領域に示すように、熱反射抑制部材60は、炉内の反射の影響が強い搬送手段2の端部から、加熱炉内壁1bまでの処理空間8の内部に設けられている。言い換えれば、平面視したときに、搬送手段2と加熱炉内壁1bとの間に熱反射抑制部材60が位置していれば良い。これによって、炉内の反射の影響が強い搬送手段2の端部において、加熱炉内壁1bなどからの反射の影響を抑制することができ、被処理体5の焼成温度が、搬送手段2の中心部と端部とでばらつくのを防ぐことができる。   In the present invention, as shown by the double-headed arrow in FIG. 1 (b) and the dotted line region in FIG. 2, the heat reflection suppressing member 60 starts from the end of the conveying means 2 where the influence of reflection in the furnace is strong, from the heating furnace inner wall 1b. Up to the processing space 8. In other words, it is only necessary that the heat reflection suppressing member 60 is positioned between the conveying means 2 and the heating furnace inner wall 1b when viewed in plan. As a result, the influence of reflection from the heating furnace inner wall 1b and the like can be suppressed at the end of the conveying means 2 where the influence of reflection in the furnace is strong. It is possible to prevent variation between the part and the end part.

熱反射抑制部材60の材質としては、処理空間8の内壁よりもヒーターからの熱、特に赤外領域の波長範囲における放射エネルギーの反射が少ないものが好ましく、処理空間8の内壁である断熱材1aよりも、被処理体5の焼成に寄与する波長の電磁波(赤外線領域)の反射率が少ない材質を選べば良い。特に、赤外領域の波長範囲内、特に0.7μm〜3μmにおける反射率が0.3以下、好ましくは0.2以下を有するものが好ましい。また、反射率を低くするために、黒色部材を用いたり、部材表面を粗面化したりしたほうがより好ましい。尚、反射率は、任意の分光反射率測定器を用いて測定することができ、例えば、オプトリサーチ株式会社製の反射率測定器MSR7000を用いて測定した。さらに、加熱炉1の使用温度域において熱的な強度を有し、変形や変質が生じないものを選択する必要がある。また、被処理体5の焼成時にペースト中に含まれるバインダー等に侵食されない部材を選択する必要がある。このような条件を満たす熱反射抑制部材60としては、純粋な黒体(全ての波長の放射エネルギーを完全に吸収する物体)に近い物質である黒鉛材料が適している。   The material of the heat reflection suppressing member 60 is preferably a material that reflects less heat from the heater, particularly radiant energy in the wavelength range of the infrared region than the inner wall of the processing space 8, and the heat insulating material 1 a that is the inner wall of the processing space 8. Instead, a material having a low reflectance of electromagnetic waves (infrared region) having a wavelength that contributes to firing of the object to be processed 5 may be selected. In particular, those having a reflectivity of 0.3 or less, preferably 0.2 or less in the wavelength range of the infrared region, particularly 0.7 to 3 μm are preferable. In order to reduce the reflectance, it is more preferable to use a black member or roughen the surface of the member. The reflectance can be measured using an arbitrary spectral reflectance measuring device, and for example, measured using a reflectance measuring device MSR7000 manufactured by Opto Research Co., Ltd. Furthermore, it is necessary to select a material that has thermal strength in the operating temperature range of the heating furnace 1 and that does not deform or deteriorate. Moreover, it is necessary to select a member that is not eroded by the binder or the like contained in the paste when the object 5 is fired. As the heat reflection suppressing member 60 satisfying such a condition, a graphite material that is a substance close to a pure black body (an object that completely absorbs radiation energy of all wavelengths) is suitable.

また、熱反射抑制部材60の具体的な配置としては、例えば、上部ヒーター3aの上部にある上部断熱材内側(熱反射抑制部材60a)、上部ヒーター3aと支持体2bとの間に搬送手段2に対して垂直に(熱反射抑制部材60b)、上部ヒーター3aと支持体2bとの間に搬送手段2に対して平行に(熱反射抑制部材60c)、下部ヒーター3bの下部にある下部断熱材内側(熱反射抑制部材60d)、とすることが好ましい。   The specific arrangement of the heat reflection suppressing member 60 is, for example, the conveying means 2 between the upper heat insulating material inside the upper heater 3a (the heat reflection suppressing member 60a), the upper heater 3a and the support 2b. Perpendicular to (heat reflection suppressing member 60b), parallel to the conveying means 2 between the upper heater 3a and the support 2b (heat reflection suppressing member 60c), the lower heat insulating material located below the lower heater 3b The inner side (heat reflection suppressing member 60d) is preferable.

また、図に示した例では、熱反射抑制部材(60a、60b、60c、60d)は、搬送手段2の中心からみて左右対称の位置にも同じ構造を有するように記載しているが、これら全てが必要であるとは限らない。搬送手段2上の被処理体5の焼成温度が均一になるように、これらの熱反射抑制部材(60a、60b、60c、60d)のうち、必要とされる熱反射抑制部材のみ選択して配置すれば良い。また、熱反射抑制部材(60a、60b、60c、60d)のサイズや形状、材質についても搬送手段2上の被処理体5の焼成温度が均一になるようそれぞれの焼成条件に応じて変更すれば良い。   Further, in the example shown in the figure, the heat reflection suppressing members (60a, 60b, 60c, 60d) are described so as to have the same structure at symmetrical positions when viewed from the center of the conveying means 2. Not all are necessary. Of these heat reflection suppression members (60a, 60b, 60c, 60d), only the necessary heat reflection suppression member is selected and arranged so that the firing temperature of the object 5 on the conveying means 2 is uniform. Just do it. Further, the size, shape, and material of the heat reflection suppressing member (60a, 60b, 60c, 60d) may be changed according to the respective baking conditions so that the baking temperature of the object 5 on the conveying means 2 is uniform. good.

またこれらの熱反射抑制部材60は、熱反射抑制部材(60a、60b、60c)のように搬送手段2に対して平行、垂直方向のみに設置するだけでなく、熱反射抑制部材60dのように傾斜させて設置することも可能である。ただしこの場合、搬送の振動等により落下や、傾斜が変化することのないように固定することが望ましい。   Further, these heat reflection suppressing members 60 are not only installed in parallel and perpendicular to the conveying means 2 like the heat reflection suppressing members (60a, 60b, 60c), but also like the heat reflection suppressing member 60d. It can also be installed at an angle. However, in this case, it is desirable to fix so that it does not drop or change its inclination due to vibration of conveyance or the like.

なお、反射率の低い熱反射抑制部材60を設けた場合、ヒーター3からの放射エネルギーの吸収率が高くなり、熱反射抑制部材60の温度が上昇すると、この材質の熱放射の放射発散度と、同温度の黒体の熱放射の放射発散度との比である放射率に基づいて輻射が発生する。よって、搬送手段2の端部においては熱反射抑制部材60からの輻射の影響を受ける可能性を有している。   In addition, when the heat reflection suppression member 60 with a low reflectance is provided, when the absorption rate of the radiant energy from the heater 3 increases and the temperature of the heat reflection suppression member 60 rises, The radiation is generated based on the emissivity, which is the ratio of the radiant divergence of the black body thermal radiation at the same temperature. Therefore, there is a possibility that the end of the conveying means 2 is affected by the radiation from the heat reflection suppressing member 60.

そのため、熱反射抑制部材60からの輻射を抑制するには、熱反射抑制部材60の温度が高くなり過ぎないように、熱反射抑制部材60の温度を制御すればよい。放射エネルギー密度が最大となる波長は、部材の温度に対して逆比例するため、熱反射抑制部材60の温度を制御することにより、赤外領域の波長範囲の放射エネルギーを抑えることができる。例えば、熱反射抑制部材60の熱伝導率を高くし、さらには断熱材1aの熱伝導率を若干高くしたり、断熱材1aの厚みを薄くしたりして、断熱材1aの断熱性を緩和したりすることによって、熱反射抑制部材60の温度上昇を制御し、熱反射抑制部材60の輻射を抑えればよい。或いは、図12に示されるように輻射抑制機構7として、熱反射抑制部材60の中に、熱交換器を組み込んでも良く、エアー等の媒体を流して熱反射抑制部材60の温度を制御してもよい。ただし、加熱炉1内の雰囲気温度の影響抑えるように、熱反射抑制部材の熱伝導率や、断熱材の熱伝導率または厚み、熱交換器におけるエアーの温度、流量等を適宜、調節することが好ましい。   Therefore, in order to suppress the radiation from the heat reflection suppressing member 60, the temperature of the heat reflection suppressing member 60 may be controlled so that the temperature of the heat reflection suppressing member 60 does not become too high. Since the wavelength at which the radiant energy density is maximum is inversely proportional to the temperature of the member, the radiant energy in the wavelength range in the infrared region can be suppressed by controlling the temperature of the heat reflection suppressing member 60. For example, the heat conductivity of the heat insulating material 1a is reduced by increasing the heat conductivity of the heat reflection suppressing member 60, further increasing the heat conductivity of the heat insulating material 1a, or reducing the thickness of the heat insulating material 1a. By controlling the temperature rise of the heat reflection suppressing member 60, the radiation of the heat reflection suppressing member 60 may be suppressed. Alternatively, as shown in FIG. 12, a heat exchanger may be incorporated in the heat reflection suppression member 60 as the radiation suppression mechanism 7, and a medium such as air is flowed to control the temperature of the heat reflection suppression member 60. Also good. However, the thermal conductivity of the heat reflection suppressing member, the thermal conductivity or thickness of the heat insulating material, the temperature of the air in the heat exchanger, the flow rate, etc. are appropriately adjusted so as to suppress the influence of the ambient temperature in the heating furnace 1. Is preferred.

≪第二実施形態≫
次に、図3及び図4を用いて、本発明に係る加熱炉の第二実施形態の構造を説明する。
<< Second Embodiment >>
Next, the structure of the second embodiment of the heating furnace according to the present invention will be described with reference to FIGS. 3 and 4.

図3及び図4は、本発明に係る加熱炉の第二実施形態の構造を説明するための図であり、図3(a)は加熱炉の炉長方向の断面を、図3(b)は加熱炉の炉幅方向の断面の一例を示し、図3(c)は、加熱炉の炉幅方向の断面のさらに別の例を示している。また、図4は加熱炉を上方から平面視したときの部分断面図を示す。   3 and 4 are views for explaining the structure of the second embodiment of the heating furnace according to the present invention. FIG. 3 (a) is a sectional view in the furnace length direction of the heating furnace, and FIG. 3 (b). Shows an example of a cross section in the furnace width direction of the heating furnace, and FIG. 3C shows still another example of a cross section in the furnace width direction of the heating furnace. FIG. 4 is a partial cross-sectional view of the heating furnace as viewed from above.

なお、基本的な加熱炉1の構造は第一実施形態と同様であるため、以下では第二実施形態における特徴点のみ説明を行う。   In addition, since the structure of the basic heating furnace 1 is the same as that of 1st embodiment, only the feature point in 2nd embodiment is demonstrated below.

本実施形態において、被処理体5は、炉幅方向に対して複数の列をなして搬送手段2に積載されている。そして、平面視したときに、熱反射抑制部材60(60e)が、被処理体5の一の列と隣接する他の列との間(図3(b)の両矢印B部に該当)、及び/又は、被処理体5の端の列と処理空間8の内壁1bとの間(図3(b)の両矢印A部に該当)に位置するようにした。   In the present embodiment, the objects to be processed 5 are stacked on the conveying means 2 in a plurality of rows in the furnace width direction. And when seen in a plan view, the heat reflection suppressing member 60 (60e) is between one row of the object to be processed 5 and another row adjacent thereto (corresponding to a double arrow B portion in FIG. 3B), And / or it was made to be located between the row | line | column of the edge of the to-be-processed object 5, and the inner wall 1b of the processing space 8 (corresponding to the double-headed arrow A part in FIG. 3B).

このように熱反射抑制部材60(60e)を配置することによって、断熱材1aによって構成された処理空間8の内壁などからのヒーターの放射エネルギーの反射による影響が緩和され、被処理体5が受ける熱は主にヒーター3からの熱に限定されることとなる。その結果、被処理体5の焼成温度が、列毎にばらつくのを防ぐことができる。   By arranging the heat reflection suppressing member 60 (60e) in this way, the influence of the reflection of the radiant energy of the heater from the inner wall of the processing space 8 constituted by the heat insulating material 1a is mitigated, and the object to be processed 5 receives. The heat is mainly limited to the heat from the heater 3. As a result, it is possible to prevent the firing temperature of the object to be processed 5 from varying from column to column.

図3(b)に示す例では、被処理体5の端の列と処理空間8の内壁1bとの間(図3(b)の両矢印A部)と被処理体5の一の列と隣接する他の列との間(図3(b)の両矢印B部)の双方に、熱反射抑制部材60eが設置されることで、より充分に列毎の温度のばらつきを抑えることができる。   In the example shown in FIG. 3 (b), between the end row of the object to be processed 5 and the inner wall 1b of the processing space 8 (the double arrow A part in FIG. 3 (b)), one row of the object to be processed 5 By disposing the heat reflection suppressing member 60e between both adjacent rows (part B in FIG. 3B), variation in temperature for each row can be more sufficiently suppressed. .

ただし、炉の中央部においては処理空間8の内壁1bからの反射の影響が小さいため、図3(c)に示す例のように、十分に温度のばらつきを抑えることができる状態であれば、炉の中央部においては必ずしも熱反射抑制部材60eを設置しなくても構わない。   However, since the influence of the reflection from the inner wall 1b of the processing space 8 is small in the center of the furnace, as in the example shown in FIG. 3C, if the temperature can be sufficiently suppressed, In the central part of the furnace, the heat reflection suppressing member 60e is not necessarily installed.

≪第三実施形態≫
本発明の第三実施形態は、熱制御手段6として、上述の熱反射抑制部材60の代わりに、熱反射部材61を設置するものである。
≪Third embodiment≫
In the third embodiment of the present invention, a heat reflecting member 61 is installed as the heat control means 6 instead of the above-described heat reflection suppressing member 60.

図10及び図11を用いて、本発明に係る加熱炉の第三実施形態の構造を説明する。   The structure of the third embodiment of the heating furnace according to the present invention will be described with reference to FIGS. 10 and 11.

なお、基本的な加熱炉1の構造は第一実施形態と同様であるため、以下では第三実施形態における特徴点のみ説明を行う。   In addition, since the structure of the basic heating furnace 1 is the same as that of 1st embodiment, only the feature point in 3rd embodiment is demonstrated below.

熱反射部材61は、熱を反射する熱反射面を有するものであることが好ましく、例えば、図10に示すように、上部熱反射部材61aにおける熱反射面62a、下部熱反射部材61bにおける熱反射面62bのように、被処理体5の搬送方向に対して、この熱反射面62a、62bが略同一方向となるように設けられている。このような配置となっていることから、ヒーター3から放射された中、近赤外線は、熱反射面62a、62bで反射され、処理空間8内においてより均一に広がり、その結果、搬送手段2上を搬送されていく被処理体5の加熱状態をより均一とすることができる。   The heat reflecting member 61 preferably has a heat reflecting surface that reflects heat. For example, as shown in FIG. 10, the heat reflecting surface 62a in the upper heat reflecting member 61a and the heat reflecting in the lower heat reflecting member 61b. Like the surface 62b, the heat reflecting surfaces 62a and 62b are provided so as to be substantially in the same direction with respect to the conveying direction of the object 5 to be processed. Due to such an arrangement, the near infrared rays radiated from the heater 3 are reflected by the heat reflecting surfaces 62a and 62b and spread more uniformly in the processing space 8, and as a result, on the conveying means 2 It is possible to make the heating state of the object 5 being conveyed more uniform.

なお、図10(b)に示すように、熱反射部材61は処理空間8の内部において、熱反射面が、略鉛直方向となるように配置することが望ましい。さらに、同図に示すようにこの熱反射部材61として、板状の形状を有する上部熱反射部材61aのような形状のものを用いることによって、その両主面を熱反射面62aとすることができるから望ましい。通常、搬送手段2は略水平に設けられているから、両主面である熱反射面が、略鉛直方向となるように平板状の熱反射部材61を配置すれば、熱反射面62は搬送手段2に対して垂直となり、搬送手段2上の被処理体5をより一層均一な加熱状態とすることができる。この平板状の熱反射部材61として、上部ヒーター3aを囲むように複数を配置すれば、処理空間8内の他の領域からの反射等の影響を減らすことができるので望ましい。   As shown in FIG. 10B, it is desirable that the heat reflecting member 61 is arranged in the processing space 8 so that the heat reflecting surface is in a substantially vertical direction. Furthermore, as shown in the figure, by using a heat reflection member 61 having a shape like an upper heat reflection member 61a having a plate shape, both main surfaces thereof can be used as heat reflection surfaces 62a. It is desirable because it can be done. Usually, since the conveying means 2 is provided substantially horizontally, the heat reflecting surface 62 is conveyed if the flat heat reflecting member 61 is disposed so that the heat reflecting surfaces which are both main surfaces are in a substantially vertical direction. It becomes perpendicular to the means 2, and the object to be processed 5 on the transport means 2 can be heated more uniformly. If a plurality of the plate-like heat reflecting members 61 are arranged so as to surround the upper heater 3a, it is desirable because the influence of reflection from other regions in the processing space 8 can be reduced.

さらに、同様の理由から、下部熱反射部材61bについても、上部熱反射部材61aと同様に、板状の形状を有するものを搬送手段2に対して垂直となるように立てて配置することが望ましく、また下部ヒーター3bを囲むように配置することが望ましい。   Further, for the same reason, it is desirable that the lower heat reflecting member 61b is also arranged so as to be perpendicular to the conveying means 2 in the same manner as the upper heat reflecting member 61a. In addition, it is desirable to arrange so as to surround the lower heater 3b.

このように熱反射部材61を配置することによって、ヒーター3で発生した熱は熱反射部材61に囲まれた空間を通過して、無駄なく搬送手段2上の被処理体5まで到達する。   By disposing the heat reflecting member 61 in this way, the heat generated by the heater 3 passes through the space surrounded by the heat reflecting member 61 and reaches the target object 5 on the conveying means 2 without waste.

さらに、上述したように搬送手段2上に被処理体5は、搬送方向に対して複数の列をなして積載されるが、平面視したときに、熱反射部材61が、被処理体5の一の列と隣接する他の列との間、及び/又は、被処理体5の端の列と処理空間8の内壁1bとの間に位置するように設けることが望ましい。このように配置することで、熱反射部材61は一定間隔(被処理体5の列の周期に依存する)で配置されることになる。したがって、熱反射部材61で囲まれた空間は、相互に類似した熱環境(放射、伝導、対流などの影響)に置かれることとなり、被処理体5を加熱炉1の処理空間8内を通過させたときに、それぞれの被処理体5が受ける熱量のばらつきが低減される。   Further, as described above, the objects to be processed 5 are stacked on the conveying means 2 in a plurality of rows in the conveying direction. However, when viewed in plan, the heat reflecting member 61 is attached to the objects to be processed 5. It is desirable to provide it between one row and another adjacent row and / or between the row at the end of the object to be processed 5 and the inner wall 1b of the treatment space 8. By arrange | positioning in this way, the heat | fever reflection member 61 will be arrange | positioned by the fixed space | interval (it depends on the period of the row | line | column of the to-be-processed object 5). Therefore, the space surrounded by the heat reflecting member 61 is placed in mutually similar thermal environments (effects of radiation, conduction, convection, etc.), and the object to be processed 5 passes through the processing space 8 of the heating furnace 1. When this is done, variation in the amount of heat received by each object 5 is reduced.

また、図11に示されるように、搬送手段2の両側の処理空間8の側壁に、熱反射面62cを内側に向けて配置された側壁部熱反射部材61cをさらに設けたほうが好ましい。側壁部熱反射部材61cにより熱を反射させることによって加熱炉1内の反射の影響を一定にすることができ、ヒーター3で発生した熱を効率よく被処理体5に与えることが可能となるから、焼成温度のばらつきが低減され、被処理体5の焼成温度を炉内の中心部と端部でばらつくのを防ぐことができる。   Moreover, as shown in FIG. 11, it is preferable to further provide side wall heat reflecting members 61c arranged on the side walls of the processing space 8 on both sides of the conveying means 2 with the heat reflecting surface 62c facing inward. By reflecting the heat by the side wall heat reflecting member 61c, the influence of the reflection in the heating furnace 1 can be made constant, and the heat generated by the heater 3 can be efficiently given to the object 5 to be processed. The variation in the firing temperature can be reduced, and the firing temperature of the object to be treated 5 can be prevented from varying between the central portion and the end portion in the furnace.

次に、熱反射部材61の材質としては、赤外領域の波長範囲内、特に0.7μm〜3μmにおける反射率が0.7以上、好ましくは0.8以上を有するものが好ましく、例えば、耐熱性金属や石英ガラス等の中、近赤外線に対して反射率の高いものを選択することができる。尚、反射率は、任意の分光反射率測定器を用いて測定することができ、例えば、オプトリサーチ株式会社製の反射率測定器MSR7000を用いて測定した。さらには、反射率を高めるために、白色部材を用いたり、部材表面を研磨し、鏡面加工を施したりしたほうがより好ましい。特に、上記範囲における反射率の高い部材を用いることによって、ヒーター3で発生した熱をより効率よく被処理体5に与えることができ、被処理体5の昇温速度をより上昇させることができる。ただし、加熱炉1内の反射の影響を促進する効果を有するだけでなく、熱的にも十分な強度が保てること、かつ変形や変質が生じないものを選択する必要があることから、石英ガラスが適している。また、黒鉛、セラミックス等の断熱部材に金属成膜を施したものを用いてもよい。   Next, as the material of the heat reflecting member 61, a material having a reflectance of 0.7 or more, preferably 0.8 or more in the wavelength range of the infrared region, particularly 0.7 μm to 3 μm is preferable. Among the reactive metals and quartz glass, those having a high reflectance with respect to near infrared rays can be selected. The reflectance can be measured using an arbitrary spectral reflectance measuring device, and for example, measured using a reflectance measuring device MSR7000 manufactured by Opto Research Co., Ltd. Furthermore, in order to increase the reflectance, it is more preferable to use a white member or to polish the surface of the member and apply a mirror finish. In particular, by using a highly reflective member in the above range, the heat generated by the heater 3 can be more efficiently applied to the object 5 to be processed, and the temperature increase rate of the object 5 can be further increased. . However, quartz glass not only has the effect of accelerating the influence of reflection in the heating furnace 1 but also needs to select a material that can maintain sufficient thermal strength and that does not undergo deformation or alteration. Is suitable. Moreover, you may use what performed metal film-forming to heat insulation members, such as graphite and ceramics.

なお、本発明は熱反射部材61を用いることによって、ヒーター3からの熱を適度に反射・散乱させて加熱炉1内の熱的な環境を均一化するものであるから、必ずしも熱反射部材61の材質は上述のものに限定されるものではない。例えば、熱反射部材61の材質として加熱炉1の内側の側壁と同じ部材を用いたとしても、上述の所定位置に配置した場合に、加熱炉1内の反射の影響が均一化して、加熱炉1内の温度のばらつきが低減される場合には、本発明の熱反射部材であると見なすことができる。または、側壁の部材として、上記に挙げる熱反射部材を用いても構わない。   In the present invention, the heat reflecting member 61 is used so that the heat from the heater 3 is appropriately reflected and scattered to make the thermal environment in the heating furnace 1 uniform. The material is not limited to those described above. For example, even if the same member as the inner side wall of the heating furnace 1 is used as the material of the heat reflecting member 61, the effect of reflection in the heating furnace 1 is uniformized when arranged at the predetermined position described above, and the heating furnace When the temperature variation within 1 is reduced, it can be regarded as the heat reflecting member of the present invention. Alternatively, the heat reflecting member mentioned above may be used as the side wall member.

≪その他の変形例など≫
以上が本発明に係る加熱炉の基本的な説明であるが、本発明は上記実施形態に限定されるものではなく、例えば以下に説明するように、本発明の範囲内で多くの修正及び変更を加えることができる。
≪Other variations etc.≫
The above is the basic description of the heating furnace according to the present invention, but the present invention is not limited to the above-described embodiment. For example, as described below, many modifications and changes are made within the scope of the present invention. Can be added.

まず、上記実施形態において、搬送手段2としてベルト2aを用いたベルト式連続加熱炉について説明したが、特にそれに制限されるものではなく、例えばウォーキングビーム式の連続加熱炉やローラー搬送体を用いた連続加熱炉であっても本発明の効果は十分に得られる。   First, in the above embodiment, the belt-type continuous heating furnace using the belt 2a as the conveying means 2 has been described. However, the belt-type continuous heating furnace is not particularly limited thereto. For example, a walking beam type continuous heating furnace or a roller conveyance body is used. Even if it is a continuous heating furnace, the effect of this invention is fully acquired.

また、図1、図3、図10に示す例では、搬送手段2を境にして上部ヒーター3aと下部ヒーター3bが配置されている。特に、搬送手段2としてエンドレスに搬送されるメッシュベルトを用いた場合、下部ヒーター3bから放射された熱は、メッシュベルトを通して、被処理体5をベルト2aに積載した面に到達するから、被処理体5を上面側と下面側の両面から処理することができる。このとき、熱反射抑制部材60または熱反射部材61は、上記の第一実施形態、第二実施形態、第三実施形態の条件を満たすように、搬送手段2の上方、及び/又は、下方の位置に配置されていれば、発明の効果を十分に発揮するものとなる。例えば、図3(b)においては、搬送手段2の上部だけに熱反射抑制部材60eが設置されているが、搬送手段2の下部にも設けることによってさらに炉内の反射による影響をさらに緩和することができ、良好な結果を得ることができる。   Moreover, in the example shown in FIG.1, FIG3, FIG.10, the upper heater 3a and the lower heater 3b are arrange | positioned by the conveyance means 2 as a boundary. In particular, when a mesh belt conveyed endlessly is used as the conveying means 2, the heat radiated from the lower heater 3b reaches the surface on which the object to be processed 5 is loaded on the belt 2a through the mesh belt. The body 5 can be processed from both the upper surface side and the lower surface side. At this time, the heat reflection suppressing member 60 or the heat reflecting member 61 is located above and / or below the conveying means 2 so as to satisfy the conditions of the first embodiment, the second embodiment, and the third embodiment. If it is arranged at the position, the effect of the invention will be sufficiently exerted. For example, in FIG. 3B, the heat reflection suppressing member 60e is installed only at the upper part of the conveying means 2. However, by providing it at the lower part of the conveying means 2, the influence of reflection in the furnace is further alleviated. And good results can be obtained.

さらに、熱反射抑制部材60の配置位置については本発明の効果を有すればどこでもよく、例えば、図9に示すように、熱反射抑制部材60を側壁の部材として設けても構わない。   Further, the arrangement position of the heat reflection suppressing member 60 may be anywhere as long as the effect of the present invention is obtained. For example, as shown in FIG. 9, the heat reflection suppressing member 60 may be provided as a side wall member.

さらにまた、熱反射抑制部材60または熱反射部材61は、加熱炉1の長手方向全域に設けたほうが好ましいが、特に全域に設ける必要もなく、例えば温度が急昇温する範囲とか最高温度に達する範囲のみに設けても構わない。   Furthermore, the heat reflection suppressing member 60 or the heat reflection member 61 is preferably provided in the entire longitudinal direction of the heating furnace 1, but is not particularly required to be provided in the entire region. For example, the temperature rises rapidly or reaches a maximum temperature. You may provide only in the range.

またさらに、熱反射抑制部材60または熱反射部材61は、搬送手段2を中心にして、上下対称、左右対称に配置することが望ましい。ただし加熱炉1内で温度に差をつけたい場合等には熱反射抑制部材60または熱反射部材61を上下対称、左右対称につけることなく自由に変更することができる。さらに熱反射抑制部材60または熱反射部材61はすべてに設ける必要もなく、例えば搬送手段2の中央部で温度のばらつきがない場合には熱反射抑制部材60または熱反射部材61をはずすことも可能であり、必要とされる熱反射抑制部材60または熱反射部材61のみ選択すればよい。また熱反射抑制部材60または熱反射部材61の形状、サイズや材質についても、焼成温度が均一になるように変更すればよい。   Furthermore, it is desirable that the heat reflection suppressing member 60 or the heat reflecting member 61 be arranged symmetrically in the vertical direction and in the horizontal direction with the conveying means 2 as the center. However, when it is desired to make a difference in temperature within the heating furnace 1, the heat reflection suppressing member 60 or the heat reflecting member 61 can be freely changed without being vertically or horizontally symmetrical. Further, it is not necessary to provide the heat reflection suppressing member 60 or the heat reflecting member 61 at all. For example, when there is no variation in temperature at the central portion of the conveying means 2, the heat reflection suppressing member 60 or the heat reflecting member 61 can be removed. Therefore, only the required heat reflection suppressing member 60 or heat reflection member 61 may be selected. The shape, size and material of the heat reflection suppressing member 60 or the heat reflecting member 61 may be changed so that the firing temperature is uniform.

――太陽電池素子の製造方法――
次に、本発明の加熱炉の最適な応用例の一つとして、太陽電池素子の製造方法を例にとり、図6〜図8を参照しながら簡単に説明する。
--Method of manufacturing solar cell elements--
Next, as one example of the optimum application of the heating furnace of the present invention, a method for manufacturing a solar cell element will be taken as an example and briefly described with reference to FIGS.

図6は一般的な太陽電池素子の断面構造である。   FIG. 6 shows a cross-sectional structure of a general solar cell element.

図7は一般的な太陽電池素子を受光面側、非受光面側から見た図であり、図7(a)は受光面側、図7(b)は非受光面側を示す。   7A and 7B are views of a general solar cell element as viewed from the light receiving surface side and the non-light receiving surface side. FIG. 7A shows the light receiving surface side, and FIG. 7B shows the non-light receiving surface side.

図8(a)〜図8(d)は図6に示す一般的な太陽電池素子を形成する工程を表す図である。   FIG. 8A to FIG. 8D are diagrams showing a process of forming the general solar cell element shown in FIG.

図中、11は半導体基板、12は拡散領域、13は反射防止膜、14は表面電極(14aはバスバー電極、14bはフィンガー電極)、15および16は裏面電極(15は集電電極、16は出力取出電極)、17はBSF層である。   In the figure, 11 is a semiconductor substrate, 12 is a diffusion region, 13 is an antireflection film, 14 is a front electrode (14a is a bus bar electrode, 14b is a finger electrode), 15 and 16 are back electrodes (15 is a collector electrode, 16 is a collector electrode) An output extraction electrode 17) is a BSF layer.

太陽電池素子10として多く用いられる半導体基板11は、単結晶シリコンや多結晶シリコン等からなる。この半導体基板11はボロン(B)等の一導電型半導体不純物を1×1016atoms・cm−3程度含有し、比抵抗は1〜5Ω・cm程度である。単結晶半導体基板の場合は引上げ法等により形成され、多結晶半導体基板の場合は鋳造法等によって形成される。多結晶半導体基板は、大量生産が可能であり鋳造コスト面で単結晶半導体基板より有利であるので、ここでは多結晶半導体基板を用いた例について説明する。 The semiconductor substrate 11 often used as the solar cell element 10 is made of single crystal silicon, polycrystalline silicon, or the like. The semiconductor substrate 11 contains about 1 × 10 16 atoms · cm −3 of one conductivity type semiconductor impurity such as boron (B) and has a specific resistance of about 1 to 5 Ω · cm. In the case of a single crystal semiconductor substrate, it is formed by a pulling method or the like, and in the case of a polycrystalline semiconductor substrate, it is formed by a casting method or the like. Since a polycrystalline semiconductor substrate can be mass-produced and is more advantageous than a single crystal semiconductor substrate in terms of casting cost, an example using a polycrystalline semiconductor substrate will be described here.

例えば鋳造法によって形成された多結晶シリコンのインゴットを10cm×10cm又は15cm×15cm等、適当な大きさに切断して500μm以下、より好ましくは300μm以下の厚さにスライスして、半導体基板11とする。なお半導体基板11の切断面の機械的ダメージ層や汚染層を洗浄化するため、半導体基板の表面をNaOHやKOH、あるいはフッ酸やフッ硝酸等で極わずかエッチングすることが望ましい。   For example, a polycrystalline silicon ingot formed by a casting method is cut into an appropriate size such as 10 cm × 10 cm or 15 cm × 15 cm, and sliced to a thickness of 500 μm or less, more preferably 300 μm or less, and the semiconductor substrate 11 To do. In order to clean the mechanically damaged layer and the contaminated layer on the cut surface of the semiconductor substrate 11, it is desirable to slightly etch the surface of the semiconductor substrate with NaOH, KOH, hydrofluoric acid, or hydrofluoric acid.

次に、半導体基板11を拡散炉中に配置して、オキシ塩化リン(POCl)等不純物元素を含むガス中で熱処理をすることによって、半導体基板11の表面部にリン原子を1×1016〜1018atoms・cm−3程度拡散させ、厚み0.3〜0.5μm程度の拡散領域12を形成する。 Next, the semiconductor substrate 11 is placed in a diffusion furnace, and heat treatment is performed in a gas containing an impurity element such as phosphorus oxychloride (POCl 3 ), whereby 1 × 10 16 phosphorus atoms are formed on the surface portion of the semiconductor substrate 11. ~10 18 atoms · cm -3 approximately is diffused to form a diffusion region 12 having a thickness of approximately 0.3 to 0.5 [mu] m.

そして、半導体基板11の表面側に反射防止膜13を形成する。この反射防止膜13は、例えば窒化シリコン膜(SiN)等からなり、シラン(SiH)とアンモニア(NH)の混合ガスを用いてプラズマCVD法等で厚み500〜1000nm、屈折率1.90〜2.30程度に形成される。この反射防止膜13は半導体基板11の表面で光が反射するのを防止して、半導体基板11内に光を有効的に取り込むために設ける。 Then, an antireflection film 13 is formed on the surface side of the semiconductor substrate 11. The antireflection film 13 is made of, for example, a silicon nitride film (SiN x ) or the like, and has a thickness of 500 to 1000 nm by a plasma CVD method using a mixed gas of silane (SiH 4 ) and ammonia (NH 3 ). It is formed in about 90-2.30. The antireflection film 13 is provided in order to prevent light from being reflected from the surface of the semiconductor substrate 11 and to effectively take light into the semiconductor substrate 11.

次に、半導体基板11の受光面側に表面電極14を、また、半導体基板11の非受光面側に裏面電極15、16を形成する。この表面電極14、裏面電極15、16は、いずれも金属を主成分とする焼成電極であり、これらの焼成電極は、銀ペーストやアルミニウムペースト等の金属ペーストを所定形状に塗布した半導体基板11を被処理体5として、本発明の加熱炉を用いて、焼成することによって得られる。具体的には次の通りである。   Next, the surface electrode 14 is formed on the light receiving surface side of the semiconductor substrate 11, and the back electrodes 15 and 16 are formed on the non-light receiving surface side of the semiconductor substrate 11. Each of the front electrode 14 and the back electrodes 15 and 16 is a fired electrode mainly composed of a metal, and these fired electrodes are formed of a semiconductor substrate 11 coated with a metal paste such as a silver paste or an aluminum paste in a predetermined shape. The object 5 is obtained by firing using the heating furnace of the present invention. Specifically, it is as follows.

ここで、表面電極14は、バスバー電極14aとフィンガー電極14bから形成されている。バスバー電極14aは半導体基板11の全長にわたって1本あるいは複数本が平行に形成されており、フィンガー電極14bはバスバー電極14aと交差するように多数本が半導体基板11の全長にわたって形成されている。表面電極14は主に銀粉、バインダー、ガラスフリット等からなる銀ペーストをスクリーン印刷法等で半導体基板11の表面に塗布し形成される。   Here, the surface electrode 14 is formed of a bus bar electrode 14a and finger electrodes 14b. One or a plurality of bus bar electrodes 14a are formed in parallel over the entire length of the semiconductor substrate 11, and a plurality of finger electrodes 14b are formed over the entire length of the semiconductor substrate 11 so as to intersect with the bus bar electrodes 14a. The surface electrode 14 is formed by applying a silver paste mainly made of silver powder, a binder, glass frit or the like to the surface of the semiconductor substrate 11 by a screen printing method or the like.

また、裏面電極15、16は、主に銀粉、バインダー、ガラスフリット等からなる銀ペーストを出力取出電極16の形成予定位置にスクリーン印刷法等で塗布し乾燥させたあと、主にアルミニウム粉、バインダー、ガラスフリット等からなるアルミニウムペーストを集電電極15の形成予定位置にスクリーン印刷法等で塗布して形成する。裏面電極15、16を形成する順番は特に問わず、すなわち、アルミニウムペーストをスクリーン印刷して集電電極15を形成してから、銀ペーストをスクリーン印刷して出力取出電極16を形成してもよい。   The back electrodes 15 and 16 are mainly made of aluminum powder and binder after a silver paste mainly composed of silver powder, binder, glass frit and the like is applied to the formation position of the output extraction electrode 16 by a screen printing method and dried. Then, an aluminum paste made of glass frit or the like is formed by applying the current collecting electrode 15 at a position where the collector electrode 15 is to be formed by a screen printing method or the like. The order in which the back electrodes 15 and 16 are formed is not particularly limited. That is, the output electrode 16 may be formed by screen-printing an aluminum paste to form the collecting electrode 15 and then screen-printing the silver paste. .

以上のようにして形成された、両面に金属ペーストを所定形状で塗布した半導体基板11は、金属ペーストを乾燥させた後、上述したような、例えば、図1〜図4、図10、図11に示す熱制御手段6(熱反射抑制部材60または熱反射部材61)を備えた本発明の加熱炉を用いて、上述した方法により、600〜800℃で1〜30分程度焼き付けることによって、表面電極14と裏面電極15、16が形成される。このように、所定形状に金属ペーストを塗布した半導体基板11を被処理体5として焼成処理を行うことによって、太陽電池素子10の焼成電極の焼成状態が均一となり、太陽電池素子10の電気特性や、半導体基板と電極の接着強度等に影響を与えることが少なく、半導体基板11との表裏両面の電極の接着強度のばらつきが小さく品質に優れたものとなる。   The semiconductor substrate 11 formed as described above and coated with a metal paste on both sides in a predetermined shape is dried, and then, for example, as described above, for example, FIG. 1 to FIG. 4, FIG. Using the heating furnace of the present invention provided with the heat control means 6 (heat reflection suppressing member 60 or heat reflection member 61) shown in FIG. 4, the surface is baked at 600 to 800 ° C. for about 1 to 30 minutes by the method described above. Electrode 14 and backside electrodes 15 and 16 are formed. As described above, by performing the baking treatment using the semiconductor substrate 11 coated with the metal paste in a predetermined shape as the object 5 to be processed, the baking state of the baking electrode of the solar cell element 10 becomes uniform, and the electrical characteristics of the solar cell element 10 and Thus, the adhesive strength between the semiconductor substrate and the electrode is less affected, and the variation in the adhesive strength between the front and back electrodes of the semiconductor substrate 11 is small and the quality is excellent.

なお、半導体基板11の非受光面側では、裏面電極15、16の集電電極15であるアルミニウムペーストを焼き付けることでBSF層17が形成される。このBSF層17は、半導体基板11の非受光面側に内部電界を形成し、半導体基板11の裏面近傍でキャリアの再結合による効率低下を防ぐことができる。つまり、半導体基板11の裏面近傍で発生したキャリアがこの電界によって加速される結果、電力を有効的に取出せることとなり、特に長波長での光感度が増大するため好ましい。   Note that the BSF layer 17 is formed on the non-light-receiving surface side of the semiconductor substrate 11 by baking the aluminum paste that is the current collecting electrode 15 of the back surface electrodes 15 and 16. The BSF layer 17 forms an internal electric field on the non-light-receiving surface side of the semiconductor substrate 11 and can prevent a reduction in efficiency due to carrier recombination in the vicinity of the back surface of the semiconductor substrate 11. That is, carriers generated in the vicinity of the back surface of the semiconductor substrate 11 are accelerated by this electric field, so that electric power can be taken out effectively. This is particularly preferable because the photosensitivity at a long wavelength increases.

なお、半導体基板11の両面に金属ペーストが塗布されているので、加熱炉1としては、搬送手段2の上下にヒーター3が設けられている種類のものを用いることが望ましく、これにより表裏を同時に焼成することができる。   In addition, since the metal paste is applied to both surfaces of the semiconductor substrate 11, it is desirable to use the heating furnace 1 of a type in which the heaters 3 are provided above and below the conveying means 2, so that the front and back sides can be simultaneously applied. It can be fired.

中・近赤外線ヒーターを配置した加熱炉1は、加熱炉1内の温度ばらつきが大きく、またコントロールしにくいという欠点を持つが、焼成状態のばらつきが低減され、加熱炉1内の端部、中央部のどの列に太陽電池素子10が供給されたとしても同様な焼成状態を得られる効果を生む。   The heating furnace 1 provided with the middle / near infrared heater has the disadvantages that the temperature variation in the heating furnace 1 is large and difficult to control, but the variation in the firing state is reduced, and the end and center in the heating furnace 1 are reduced. Even if the solar cell elements 10 are supplied to any row of the parts, the same firing state can be obtained.

なお、上記実施形態において、太陽電池素子10の電極の焼成方法については同時焼成法を例にとり説明したが、これに限定されるものではなく複数回の焼成を行う場合でも有効にその効果を発揮する。つまり裏面の電極材料を焼き付けた後に本発明に係る加熱炉1を使用しても、裏面電極材料の再焼結により与えられる影響を抑止することができる。   In the above embodiment, the method for firing the electrodes of the solar cell element 10 has been described by taking the simultaneous firing method as an example. However, the present invention is not limited to this, and the effect is effectively exhibited even when firing multiple times. To do. That is, even if the heating furnace 1 according to the present invention is used after baking the back electrode material, the influence given by re-sintering of the back electrode material can be suppressed.

また、裏面電極15、16としてアルミニウムからなる集電電極15と銀からなる出力取出電極16で構成される太陽電池素子10を例にとり説明したが、これも制限されるものではない。   Moreover, although the solar cell element 10 comprised as the back surface electrodes 15 and 16 by the current collection electrode 15 which consists of aluminum, and the output extraction electrode 16 which consists of silver was demonstrated as an example, this is not restrict | limited.

本発明の加熱炉の第一実施形態を示す模式図であり、(a)は炉長方向の断面模式図、(b)は炉幅方向の断面模式図である。It is a schematic diagram which shows 1st embodiment of the heating furnace of this invention, (a) is a cross-sectional schematic diagram of a furnace length direction, (b) is a cross-sectional schematic diagram of a furnace width direction. 本発明の加熱炉の第一実施形態を示す模式図であり、平面視した部分断面図である。It is a mimetic diagram showing a first embodiment of a heating furnace of the present invention, and is a partial sectional view seen in plan view. 本発明の加熱炉の第二実施形態を示す模式図であり、(a)は炉長方向の断面模式図、(b)、(c)は炉幅方向の断面模式図である。It is a schematic diagram which shows 2nd embodiment of the heating furnace of this invention, (a) is a cross-sectional schematic diagram of a furnace length direction, (b), (c) is a cross-sectional schematic diagram of a furnace width direction. 本発明の加熱炉の第二実施形態を示す模式図であり、平面視した部分断面図である。It is a schematic diagram which shows 2nd embodiment of the heating furnace of this invention, and is the fragmentary sectional view seen from the top. 一般的な加熱炉の実施形態を示す模式図であり、(a)は炉長方向の断面模式図、(b)は炉幅方向の断面模式図である。It is a schematic diagram which shows embodiment of a general heating furnace, (a) is a cross-sectional schematic diagram of a furnace length direction, (b) is a cross-sectional schematic diagram of a furnace width direction. 太陽電池素子の構造を説明するための図である。It is a figure for demonstrating the structure of a solar cell element. 太陽電池素子の構造を説明するための図であり、(a)は表面側から見た上視図であり、(b)は裏面側から見た下視図である。It is a figure for demonstrating the structure of a solar cell element, (a) is the top view seen from the surface side, (b) is the bottom view seen from the back surface side. (a)〜(d)は太陽電池素子の電極の製造方法を説明するための図である。(A)-(d) is a figure for demonstrating the manufacturing method of the electrode of a solar cell element. 本発明の加熱炉の他の実施形態を示す模式図であり、(a)は炉長方向の断面模式図、(b)は炉幅方向の断面模式図である。It is a schematic diagram which shows other embodiment of the heating furnace of this invention, (a) is a cross-sectional schematic diagram of a furnace length direction, (b) is a cross-sectional schematic diagram of a furnace width direction. 本発明における加熱炉の第三実施形態を示す模式図であり、(a)は炉長方向の断面模式図、(b)は炉幅方向の断面模式図、(c)は上部からの断面模式図である。It is a schematic diagram which shows 3rd embodiment of the heating furnace in this invention, (a) is a cross-sectional schematic diagram of a furnace length direction, (b) is a cross-sectional schematic diagram of a furnace width direction, (c) is a cross-sectional schematic diagram from the upper part FIG. 本発明における加熱炉の第三実施形態の変形例を示す炉幅方向の断面模式図である。It is a cross-sectional schematic diagram of the furnace width direction which shows the modification of 3rd embodiment of the heating furnace in this invention. 本発明における加熱炉の第二実施形態の変形例を示す炉幅方向の断面模式図である。It is a cross-sectional schematic diagram of the furnace width direction which shows the modification of 2nd embodiment of the heating furnace in this invention.

符号の説明Explanation of symbols

1:加熱炉
1a:断熱材
1b:加熱炉内壁(処理空間の内壁)
2:搬送手段
2a:ベルト
2b:支持体
2c:ローラー
3:加熱手段(ヒーター)
3a:上部ヒーター
3b:下部ヒーター
5:被処理体(太陽電池素子)
6:熱制御手段
60(60a、60b、60c、60d、60e):熱反射抑制部材
61(61a、61b、61c):熱反射部材
62(62a、62b、62c):熱反射面
7:輻射抑制機構
8:処理空間
10:太陽電池素子
11:半導体基板
12:拡散領域
13:反射防止膜
14:表面電極
14a:バスバー電極
14b:フィンガー電極
15:集電電極
16:出力取出電極
17:BSF層
1: Heating furnace 1a: Heat insulating material 1b: Heating furnace inner wall (inner wall of processing space)
2: Conveying means 2a: Belt 2b: Support 2c: Roller 3: Heating means (heater)
3a: Upper heater 3b: Lower heater 5: Object to be treated (solar cell element)
6: Heat control means 60 (60a, 60b, 60c, 60d, 60e): Heat reflection suppression member 61 (61a, 61b, 61c): Heat reflection member 62 (62a, 62b, 62c): Heat reflection surface 7: Radiation suppression Mechanism 8: Processing space 10: Solar cell element 11: Semiconductor substrate 12: Diffusion region 13: Antireflection film 14: Surface electrode 14a: Bus bar electrode 14b: Finger electrode 15: Current collecting electrode 16: Output extraction electrode 17: BSF layer

Claims (9)

内部で被処理体を加熱処理する加熱炉であって、
前記被処理体を載置して前記加熱炉内を搬送する搬送手段と、
加熱炉内部に配置され、前記被処理体を加熱する加熱手段と、
前記加熱手段から得られた熱を、間接的に前記被処理体に伝える熱制御手段と、を有して成る加熱炉。
A heating furnace for heat-treating an object to be processed inside;
Conveying means for placing the object to be processed and conveying the inside of the heating furnace;
A heating means disposed inside the heating furnace for heating the object to be processed;
And a heat control means for indirectly transferring the heat obtained from the heating means to the object to be processed.
前記熱制御手段は、前記搬送手段と前記加熱炉内側壁との間に配置されることを特徴とする請求項1に記載の加熱炉。   The heating furnace according to claim 1, wherein the heat control means is disposed between the conveying means and the inner wall of the heating furnace. 前記搬送手段は、複数の前記被処理体を複数の列を成すように載置して、該列方向に搬送するものであり、
前記熱制御手段は、隣接する前記列の間及び/又は前記列と前記加熱炉内側壁との間に配置されることを特徴とする請求項1に記載の加熱炉。
The conveying means is configured to place a plurality of the objects to be processed so as to form a plurality of rows, and to convey in the row direction,
The heating furnace according to claim 1, wherein the thermal control means is disposed between the adjacent rows and / or between the rows and the inner wall of the heating furnace.
前記搬送手段は網目状のベルトで構成され、該搬送手段の上下に前記加熱手段を配置するとともに、
前記熱制御手段は、前記搬送手段の上方及び/又は下方に配置されて成る請求項1乃至請求項3のいずれかに記載の加熱炉。
The conveying means is composed of a mesh belt, and the heating means is arranged above and below the conveying means,
The heating furnace according to any one of claims 1 to 3, wherein the heat control means is arranged above and / or below the conveying means.
前記熱制御手段は、加熱炉内側壁よりも熱反射が少ない熱反射抑制部材であることを特徴とする請求項1乃至請求項4のいずれかに記載の加熱炉。   The heating furnace according to any one of claims 1 to 4, wherein the heat control means is a heat reflection suppressing member having less heat reflection than the inner wall of the heating furnace. 前記加熱手段は、端に位置する前記被処理体よりも加熱炉内側壁側に配置されることを特徴とする請求項5に記載の加熱炉。   The heating furnace according to claim 5, wherein the heating unit is disposed closer to the inner wall side of the heating furnace than the object to be processed located at an end. 前記熱制御手段は、所定方向に熱を反射する熱反射面を有する熱反射部材であることを特徴とする請求項1乃至請求項4のいずれかに記載の加熱炉。   The heating furnace according to any one of claims 1 to 4, wherein the heat control means is a heat reflecting member having a heat reflecting surface that reflects heat in a predetermined direction. 前記加熱手段は、端に位置する前記被処理体よりも加熱炉中央側に配置されることを特徴とする請求項7に記載の加熱炉。   The heating furnace according to claim 7, wherein the heating means is disposed closer to the center of the heating furnace than the object to be processed located at an end. 請求項1乃至請求項8のいずれかに記載の加熱炉を用いて、半導体基板の表面に形成された金属ペーストを焼成する工程、を有して成る太陽電池素子の製造方法。

A method for producing a solar cell element, comprising a step of firing a metal paste formed on a surface of a semiconductor substrate using the heating furnace according to any one of claims 1 to 8.

JP2006066093A 2005-03-29 2006-03-10 Heating furnace and manufacturing method of solar cell element using the same Pending JP2006310792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006066093A JP2006310792A (en) 2005-03-29 2006-03-10 Heating furnace and manufacturing method of solar cell element using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005095845 2005-03-29
JP2006066093A JP2006310792A (en) 2005-03-29 2006-03-10 Heating furnace and manufacturing method of solar cell element using the same

Publications (1)

Publication Number Publication Date
JP2006310792A true JP2006310792A (en) 2006-11-09

Family

ID=37477259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066093A Pending JP2006310792A (en) 2005-03-29 2006-03-10 Heating furnace and manufacturing method of solar cell element using the same

Country Status (1)

Country Link
JP (1) JP2006310792A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519224A (en) * 2010-02-03 2013-05-23 リモ パテントフェルヴァルトゥング ゲーエムベーハー ウント コー.カーゲー Method and apparatus for heat treating a disk-shaped substrate material of a solar cell, in particular a crystalline or polycrystalline silicon solar cell
JP2015068635A (en) * 2013-10-01 2015-04-13 光洋サーモシステム株式会社 Thermal treatment equipment
CN105374706A (en) * 2014-08-15 2016-03-02 茂迪股份有限公司 Processing apparatus
US11616163B2 (en) 2010-06-10 2023-03-28 Shin-Etsu Chemical Co., Ltd. Firing furnace for firing electrode of solar cell element, method for manufacturing solar cell element, and solar cell element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519224A (en) * 2010-02-03 2013-05-23 リモ パテントフェルヴァルトゥング ゲーエムベーハー ウント コー.カーゲー Method and apparatus for heat treating a disk-shaped substrate material of a solar cell, in particular a crystalline or polycrystalline silicon solar cell
US11616163B2 (en) 2010-06-10 2023-03-28 Shin-Etsu Chemical Co., Ltd. Firing furnace for firing electrode of solar cell element, method for manufacturing solar cell element, and solar cell element
JP2015068635A (en) * 2013-10-01 2015-04-13 光洋サーモシステム株式会社 Thermal treatment equipment
CN105374706A (en) * 2014-08-15 2016-03-02 茂迪股份有限公司 Processing apparatus
JP2016042569A (en) * 2014-08-15 2016-03-31 茂迪股▲分▼有限公司 Processing device

Similar Documents

Publication Publication Date Title
US7805064B2 (en) Rapid thermal firing IR conveyor furnace having high intensity heating section
JP6139600B2 (en) Solar cell post-processing equipment
US4482393A (en) Method of activating implanted ions by incoherent light beam
US8828776B2 (en) Diffusion furnaces employing ultra low mass transport systems and methods of wafer rapid diffusion processing
US20100267188A1 (en) Diffusion Furnaces Employing Ultra Low Mass Transport Systems and Methods of Wafer Rapid Diffusion Processing
US20120181265A1 (en) Firing furnace configuration for thermal processing system
JP5477180B2 (en) Calcination furnace for firing electrodes of solar cell element, method for producing solar cell element, and solar cell element
JPWO2009131111A1 (en) SOLAR CELL MANUFACTURING METHOD, SOLAR CELL MANUFACTURING DEVICE, AND SOLAR CELL
CN103053008A (en) Device and method for heat-treating a plurality of multi-layer bodies
US20100230771A1 (en) Methods and arrangement for diffusing dopants into silicon
JP2006310792A (en) Heating furnace and manufacturing method of solar cell element using the same
JP5705095B2 (en) Solar cell heat treatment method and heat treatment furnace
TWI650877B (en) High photoelectric conversion efficiency solar cell manufacturing method and high photoelectric conversion efficiency solar cell
JP2006185974A (en) Burning furnace and burning method of workpiece using the same, method of manufacturing solar battery element
Kim et al. A novel approach for co-firing optimization in RTP for the fabrication of large area mc-Si solar cell
CN102538453A (en) Rapid thermal roasting infrared conveyor belt type thermal treatment furnace having high-reflectivity heating section
JP2006245100A (en) Baking furnace, method for baking body to be treated by using the same, and method for manufacturing solar cell element
US20120090962A1 (en) Device for driving photovoltaic cells or their substrates during the process for manufacture of the photovoltaic cells
JP2006183886A (en) Kiln, method of baking treated object using the same, and method of manufacturing solar battery element
TW201512622A (en) IR conveyor furnace having single belt with multiple independently controlled processing lanes
JP4817618B2 (en) Method for manufacturing solar cell element
KR20090047169A (en) Top-side lamp heating type in-line apcvd apparatus
JP4601318B2 (en) Method for manufacturing solar cell element
JP4823863B2 (en) Baking apparatus for manufacturing semiconductor device and semiconductor device manufacturing method
US20230245868A1 (en) Holding device, and use of the holding device