JP2016041418A - 分離方法及び分離装置 - Google Patents
分離方法及び分離装置 Download PDFInfo
- Publication number
- JP2016041418A JP2016041418A JP2015158480A JP2015158480A JP2016041418A JP 2016041418 A JP2016041418 A JP 2016041418A JP 2015158480 A JP2015158480 A JP 2015158480A JP 2015158480 A JP2015158480 A JP 2015158480A JP 2016041418 A JP2016041418 A JP 2016041418A
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- separation
- membrane
- water
- permeated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
【課題】水と有機化合物とをより効率よく分離する。【解決手段】本発明の分離装置10は、水及び有機化合物を含む処理対象流体を分離する分離装置である。分離装置10は、ゼオライト膜45を備え水を選択的に透過させる分離部40を用い処理対象流体をゼオライト膜45を透過した透過流体と透過しなかった非透過流体とに分離する膜分離装置20と、分離後の非透過流体を蒸留することにより分離する蒸留装置30とを備える。ゼオライト膜45は、DDR型ゼオライトを含む。【選択図】図1
Description
本発明は、分離方法及び分離装置に関する。
従来、分離方法としては、分離膜として無機多孔質支持体表面にゼオライト膜を有する分離膜モジュールに酸−水混合物を供給して濃縮された酸を回収するにあたり、シリカ/アルミナ比が5以上であるゼオライト膜を使用するものが提案されている(例えば、特許文献1参照)。この分離方法では、CHA型ゼオライトを用いた分離膜モジュールで、水/酢酸混合溶液(50/50質量%)を分離することができるとしている。また、分離方法としては、含水率20質量%以上の含水有機化合物を、シリカ/アルミナのモル比率が5以上であり骨格構造が酸素6〜10員環を有しフレームワーク密度が10〜17であるゼオライト膜を有する膜分離手段へ導入し、含水有機化合物から水を分離する方法が提案されている(例えば、特許文献2参照)。この分離方法では、CHA型ゼオライト膜を用いた膜分離装置と蒸留装置との組み合わせにより含水有機化合物を分離することが提案されている。
しかしながら、この特許文献1、2に記載された分離方法では、CHA型ゼオライト膜を用いるものであり、酸に対する耐性がまだ十分ではなかった。また、含水有機化合物の有機化合物の濃度が高い場合など、分離膜には有機化合物に対する高い耐性や高い分離性能が求められていた。これらの要件を満たし、水と有機化合物とを効率よく分離することが求められていた。
本発明は、このような課題に鑑みなされたものであり、水と有機化合物とをより効率よく分離することができる分離方法及び分離装置を提供することを主目的とする。
上述した主目的を達成するために鋭意研究したところ、本発明者らは、酸、有機溶剤に対して高い耐性を有するゼオライト膜を用いた膜分離装置で水と有機化合物とを分離させたのちに、蒸留を行うものとすると、水と有機化合物とをより効率よく分離することができることを見いだし、本発明を完成するに至った。
即ち、本発明の分離方法は、
水及び有機化合物を含む処理対象流体を分離する分離方法であって、
DDR型ゼオライト膜を備え水を選択的に透過させる分離部を用い前記処理対象流体を前記ゼオライト膜を透過した透過流体と透過しなかった非透過流体とに浸透気化法により分離する膜分離工程と、
前記分離後の非透過流体を蒸留することにより、蒸発した第1流体と蒸発せずに残留した第2流体とに分離する蒸留工程と、
を含むものである。
水及び有機化合物を含む処理対象流体を分離する分離方法であって、
DDR型ゼオライト膜を備え水を選択的に透過させる分離部を用い前記処理対象流体を前記ゼオライト膜を透過した透過流体と透過しなかった非透過流体とに浸透気化法により分離する膜分離工程と、
前記分離後の非透過流体を蒸留することにより、蒸発した第1流体と蒸発せずに残留した第2流体とに分離する蒸留工程と、
を含むものである。
本発明の分離装置は、
水及び有機化合物を含む処理対象流体を分離する分離装置であって、
DDR型ゼオライト膜を備え水を選択的に透過させる分離部を用い前記処理対象流体を前記ゼオライト膜を透過した透過流体と透過しなかった非透過流体とに浸透気化法により分離する膜分離装置と、
前記分離後の非透過流体を蒸留することにより、蒸発した第1流体と蒸発せずに残留した第2流体とに分離する蒸留装置と、
を備えたものである。
水及び有機化合物を含む処理対象流体を分離する分離装置であって、
DDR型ゼオライト膜を備え水を選択的に透過させる分離部を用い前記処理対象流体を前記ゼオライト膜を透過した透過流体と透過しなかった非透過流体とに浸透気化法により分離する膜分離装置と、
前記分離後の非透過流体を蒸留することにより、蒸発した第1流体と蒸発せずに残留した第2流体とに分離する蒸留装置と、
を備えたものである。
本発明の分離方法及び分離装置は、水と有機化合物とをより効率よく分離することができる。この理由は、例えば、以下のように説明することができる。本発明では、膜分離処理により有機化合物の濃度を濃縮したあと、この非透過流体に対して蒸留処理を行うため、蒸留における加熱エネルギーなどをより低減することができる。また、DDR型ゼオライト膜は、耐酸性、耐有機溶剤性など、処理対象流体に対して耐性が高く、より高い分離性能を有する。したがって、本発明では、水と有機化合物とをより効率よく分離することができる。
次に、本発明を実施するための形態を図面を用いて説明する。図1は、本発明の一実施形態である分離装置10の構成の概略を示す説明図である。図2は、膜フィルタ41の構成の概略を示す説明図である。分離装置10は、水及び有機化合物を含む処理対象流体を分離する装置である。この分離装置10は、図1に示すように、膜分離装置20と、膜分離装置20の後段に接続された蒸留装置30とを備えている。この分離装置10は、膜分離装置20に処理対象流体を供給する供給経路11と、膜分離装置20と蒸留装置30とをつなぐ送液経路12と、膜分離装置20で分離した水を送出する送出経路13とを備えている。また、分離装置10は、蒸留装置30で蒸発した第1流体を凝縮して送出する送出経路14と、蒸留装置30で蒸発せずに残留した第2流体を回収する回収経路15とを備えている。供給経路11には、処理対象流体を流通させる流通ポンプ21と、処理対象流体の温度を膜分離に適した温度となるように加熱する加熱器22とが配設されている。なお、便宜的に、第1流体を凝縮流体とも称し、第2流体を残留流体とも称する。
分離装置10で分離を行う処理対象流体は、水と有機化合物とを含んでいる。処理対象流体に含まれる有機化合物は、特に限定されないが、アルコール、フェノール、アルデヒド、ケトン、カルボン酸、エーテル、エステル、アミン、ニトリル、直鎖飽和炭化水素、枝分れ飽和炭化水素、環状飽和炭化水素、鎖状不飽和炭化水素、芳香族炭化水素、含窒素化合物、含硫黄化合物、炭化水素のハロゲン誘導体等が挙げられる。アルコールとしては、メタノール、エタノール、イソプロパノール等が挙げられる。ケトンとしては、アセトン、エチルメチルケトン等が挙げられる。カルボン酸としては、ギ酸、酢酸、酪酸、プロピオン酸等が挙げられる。芳香族炭化水素としては、トルエン、ベンゼン等が挙げられる。この有機化合物は、水に比して高沸点であるものがより好ましい。こうすれば、後段の蒸留装置30で蒸発させる水の量を、膜分離装置20によって低減することができるため、蒸留での消費エネルギーをより低減することができる。このような有機化合物としては、例えば、フェノール、1−ブタノール、2−ブタノール、酢酸、エチレンジアミン、N−メチル−2−ピロリドン、エチレングリコールモノエチルエーテル、エチレングリコール、モノエチルエーテルアセテート、酢酸イソブチルなどが挙げられる。処理対象流体は、上述した有機化合物のうちの1種を含むものとしてもよいし、2種以上を含むものとしてもよい。処理対象流体は、例えば、水濃度が40質量%以上であるものとしてもよいし、50質量%以上であるものとしてもよいし、80質量%以上であるものとしてもよい。また、処理対象流体は、有機化合物の濃度が60質量%以下であるものとしてもよいし、50質量%以下であるものとしてもよいし、20質量%以下であるものとしてもよい。
膜分離装置20は、ゼオライト膜45を備え水を選択的に透過させる分離部40を用い、処理対象流体を、ゼオライト膜45を透過した透過流体と透過しなかった非透過流体とに分離する。膜分離装置20は、透過流体である水を外部へ送液する送出経路13に、冷却器23と、送出経路13を減圧する真空ポンプ24とが配設されている。分離部40には、図示しない圧力センサが接続されており、この圧力センサによって容器内の圧力が検出される。分離部40は、水を選択的に透過させるゼオライト膜45(図2参照)が形成された膜フィルタ41を備えている。
膜フィルタ41は、図2に示すように、処理対象流体の流路となる複数のセル42を形成する基材としての多孔質基材44と、多孔質基材44の内表面に設けられ処理対象流体の分離機能を有するゼオライト膜45とを備えている。このように、ゼオライト膜45が多孔質基材44の表面に形成されることにより、ゼオライト膜45を薄膜としても、多孔質基材44に支えられてその形状を維持し破損等を防止することができる。この膜フィルタ41では、入口側からセル42へ入った処理対象流体のうち、ゼオライト膜45を透過可能な分子サイズを有する水が、ゼオライト膜45及び多孔質基材44を透過し、膜フィルタ41の側面から送出される。一方、ゼオライト膜45を透過できない非透過流体(主として有機化合物)は、セル42の流路に沿って流通し、セル42の出口側から送出される。多孔質基材44は、複数のセル42を備えたモノリス構造を有しているものとしてもよいし、1つのセルを備えたチューブラー構造を有しているものとしてもよい。その外形は、特に限定されないが、円柱状、楕円柱状、四角柱状、六角柱状などの形状とすることができる。あるいは、多孔質基材44は、断面多角形の管状としてもよい。この多孔質基材44は、気孔径の大きな粗粒部44aの表面に気孔径の小さな細粒部44bが形成された二層以上の多層構造を有しているものとしてもよい。粗粒部44aの気孔径は、例えば、0.1μm〜数100μm程度とすることができる。細粒部44bの気孔径は、粗粒部44aの気孔径に比して小さければよく、例えば、気孔径が0.001〜1μm程度のものとすることができる。こうすれば、多孔質基材44の透過抵抗を低減することができる。多孔質基材44を構成する材料としては、アルミナ(α−アルミナ、γ−アルミナ、陽極酸化アルミナ等)、ジルコニア等のセラミックスやステンレスなどの金属等を挙げることができ、基材の作製、入手の容易さの点から、アルミナが好ましい。アルミナとしては、平均粒径0.001〜30μmのアルミナ粒子を原料として成形、焼結させたものが好ましい。
ゼオライト膜45は、処理対象流体から、選択的に水を透過して分離するものであり、その膜厚が0.5μm以上2μm以下の範囲で形成されている。膜厚が0.5μm以上では、分離時の選択性を十分確保することができ、2μm以下では、透過抵抗をより低減することができる。このゼオライト膜の膜厚は、ゼオライト膜の断面を走査型電子顕微鏡(SEM)により観察して求めるものとする。ここで、「水を選択的に分離する」とは、処理対象流体から純度100%の水を分離して取り出すだけでなく、処理対象流体の組成と比較して水の含有率が高くなった溶液または気体を分離して取り出すことも含む。例えば、純度90%以上の水や純度95%以上の水を分離して取り出すものとしてもよい。また、「脱水」というときは、水を選択的に分離することをいう。ゼオライト膜45は、アルミニウム及び金属カチオンを含まない原料ゾルを用いて作製されている。即ち、このゼオライトは、シリカ/アルミナのモル比(シリカアルミナ比とも称する)が極めて高い。また、このゼオライトは、酸素8員環を有する。更に、ゼオライト膜45は、フレームワーク密度が17以上であるゼオライトを含むことが好ましい。このようなゼオライトとしては、DDR型ゼオライト(DDR)が挙げられる。DDRは、主成分がシリカからなる結晶であり、その細孔は酸素8員環を含む多面体によって形成されている。この酸素8員環の細孔径は、4.4×3.6Åであることが知られている。DDRは、主成分がシリカであり、シリカアルミナ比が大きく、例えばシリカアルミナ比が200以上、より好ましくは無限大である。このため、耐酸性に優れている。耐酸性に関しては、例えばA型ゼオライトは、シリカアルミナ比が約2であり、アルミナの含有率が高いため、DDRより耐酸性が低い。T型ゼオライトは、A型と比較するとシリカの含有率が若干高いものの、シリカアルミナ比が6〜8と低いためDDRより耐酸性が低い。また、MOR型ゼオライトは、シリカ含有率が更に高いが、シリカ/アルミナ比が40以下程度であるためDDRより耐酸性が低い。また、DDRは、強い親水性により水を選択的に透過させるA型ゼオライト膜などと異なり、分子篩効果によって混合物中の水を透過させるため、A型ゼオライト膜などに比して耐水性が高い。このDDR型ゼオライトは、耐酸性、耐有機溶剤性、耐水性が高く、広範囲の処理対象流体の分離を行うことができる。
DDR型ゼオライト膜の製造方法は、アルミニウム及び金属カチオンを含まない原料ゾルを用いて作製されていれば、特に限定されるものではなく、緻密なDDR型ゼオライト膜を形成できればよい。例えば、特開2003−159518号公報に記載のDDR型ゼオライト膜の製造方法のように、1−アダマンタンアミンとシリカとの含有割合(1−アダマンタンアミン/シリカ)がモル比で0.03〜0.4、水とシリカとの含有割合(水/シリカ)がモル比で20〜500、さらにエチレンジアミンと1−アダマンタンアミンとの含有割合(エチレンジアミン/1−アダマンタンアミン)がモル比で5〜32である原料溶液と、種結晶となるDDR型ゼオライト粉末とを用いて、水熱合成するものとしてもよい。
分離部40では、セル42内部を処理対象流体が流通する供給側空間と、膜フィルタ41から送出経路13へ分離された透過流体が流通する透過側空間とにゼオライト膜45及び多孔質基材44により隔てられている。膜分離装置20では、真空ポンプ24で送出経路13(透過側空間)を減圧することにより、セル42からゼオライト膜45を経て送出経路13側へ透過流体(水)が透過し、冷却器23で冷却して外部に送液する。このとき、透過側空間の真空度(2次圧)は、1.3kPa(10Torr)以上13kPa(100Torr)以下が好ましく、4.0kPa(30Torr)以上9.3kPa(70Torr)以下がより好ましい。
膜分離装置20では、水濃度が40質量%以上(初期値)である処理対象流体を水濃度が20質量%以下(膜分離処理の終了時)の非透過流体に濃縮するものとしてもよい。分離後の非透過流体の水濃度は、より低いことが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが更に好ましい。非透過流体の有機化合物を多く含むものとすれば、例えば、蒸留装置30での蒸留処理の負荷をより低減することができる。分離後の非透過流体の水濃度は、ゼオライト膜45の膜面積で調整することができ、分離装置10の目的に応じて設定することができる。膜面積の調整は、膜フィルタ41の大きさや数などを変更することで行うことができる。送出経路13に送出された透過流体は、その水濃度が99質量%以上であることが好ましい。また、透過流体の水に含まれる有機化合物は、その濃度が1質量%以下であることが好ましい。この透過流体における有機化合物の濃度は、1000ppm以下であることがより好ましい。DDR型のゼオライト膜45を用いれば、耐酸性、耐有機溶媒性などが高いため、分離した水の濃度を高く維持しながら分離処理を継続することができる。また、膜分離装置20では、pHが8.0以下、好ましくは3.0以下の処理対象流体を透過流体(水)と非透過流体(有機化合物)とに分離するものとしてもよい。この膜分離装置20では、ゼオライト膜45の耐酸性が高いため、このような、pHの処理対象流体に対しても、分離した水の濃度を高く維持しながら分離処理を継続することができる。即ち、分離性能が低下しにくい。
蒸留装置30は、膜分離装置20での分離後の非透過流体を蒸留することにより、蒸発凝縮した凝縮流体(第1流体)と、蒸発せずに残留した残留流体(第2流体)とに分離する。この蒸留装置30は、ヒータ32を有し処理対象流体を蒸発させる蒸留塔34と、送出経路14に設けられ蒸留塔34で発生した蒸気を冷却して凝縮させる冷却器36と、回収経路15に設けられ蒸留塔34に残留した成分を冷却する冷却器38とを備えている。蒸留装置30において、送液経路12から蒸留塔34に供給された処理対象流体は、蒸留塔34で蒸発し、冷却器36で冷却されて凝縮液となり、送出経路14から送出される。一方、蒸留塔34で蒸発せずに缶底に残留した残留流体は、例えば、水に比して高沸点である有機化合物を含む処理対象流体では、蒸留前の非透過流体に比して有機化合物がより濃縮されたものとなる。
次に、本実施形態の分離方法について説明する。この分離方法では、分離装置10を用いてもよいし、他の分離装置を用いてもよい。この分離方法は、水及び有機化合物を含む処理対象流体を分離する分離方法であり、膜分離工程と、蒸留工程とを含む。ここでは、分離装置10を用いた分離方法について主として説明する。
(1)膜分離工程
この工程では、ゼオライト膜45を備え水を選択的に透過させる分離部40を用い処理対象流体をゼオライト膜45を透過した透過流体と透過しなかった非透過流体とに分離する。処理対象流体は、例えば、水よりも高い沸点を有する有機化合物を含むものとすることが好ましい。ゼオライト膜45は、アルミニウム及び金属カチオンを含まない原料ゾルを用いて作製されている。また、ゼオライト膜45は、膜厚が0.5μm以上2μm以下の範囲で形成されている。このゼオライトは、酸素8員環を有する。このゼオライト膜45は、DDR型ゼオライト膜であることが好ましい。この膜分離工程では、処理対象流体を分離部40へ液体で供給し、透過側を減圧しゼオライト膜45から水を透過させる、浸透気化法(パーベーパレーション(PV)法)により行うことができる。この膜分離処理は、60℃以上140℃以下で膜分離を行うことが好ましく、90℃以上130℃以下がより好ましい。こうした温度では、膜分離の効率がよい。なお、膜分離の温度は、加熱器22で加熱した直後の流体温度としてもよいし、分離部40に設けられた図示しない温度センサで測定した温度としてもよい。透過側空間の真空度(2次圧)は、1.3kPa以上13kPa以下が好ましく、4.0kPa以上9.3kPa以下がより好ましい。
この工程では、ゼオライト膜45を備え水を選択的に透過させる分離部40を用い処理対象流体をゼオライト膜45を透過した透過流体と透過しなかった非透過流体とに分離する。処理対象流体は、例えば、水よりも高い沸点を有する有機化合物を含むものとすることが好ましい。ゼオライト膜45は、アルミニウム及び金属カチオンを含まない原料ゾルを用いて作製されている。また、ゼオライト膜45は、膜厚が0.5μm以上2μm以下の範囲で形成されている。このゼオライトは、酸素8員環を有する。このゼオライト膜45は、DDR型ゼオライト膜であることが好ましい。この膜分離工程では、処理対象流体を分離部40へ液体で供給し、透過側を減圧しゼオライト膜45から水を透過させる、浸透気化法(パーベーパレーション(PV)法)により行うことができる。この膜分離処理は、60℃以上140℃以下で膜分離を行うことが好ましく、90℃以上130℃以下がより好ましい。こうした温度では、膜分離の効率がよい。なお、膜分離の温度は、加熱器22で加熱した直後の流体温度としてもよいし、分離部40に設けられた図示しない温度センサで測定した温度としてもよい。透過側空間の真空度(2次圧)は、1.3kPa以上13kPa以下が好ましく、4.0kPa以上9.3kPa以下がより好ましい。
膜分離工程では、水濃度が40質量%以上である処理対象流体を水濃度が20質量%以下の非透過流体に濃縮するものとしてもよい。分離後の非透過流体の水濃度は、より低いことが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが更に好ましい。非透過流体の有機化合物を多く含むものとすれば、例えば、蒸留工程での蒸留処理の負荷をより低減することができる。送出経路13に送出された透過流体は、その水濃度が99質量%以上であることが好ましい。また、透過流体の水に含まれる有機化合物は、その濃度が1質量%以下であることが好ましい。この透過流体における有機化合物の濃度は、1000ppm以下であることがより好ましい。また、膜分離工程では、pHが8.0以下、好ましくは3.0以下の処理対象流体を透過流体と非透過流体とに分離するものとしてもよい。この膜分離工程では、ゼオライト膜45の耐酸性が高いため、このような、pHの処理対象流体に対しても、分離した水の濃度を高く維持しながら分離処理を継続することができる。即ち、分離性能が低下しにくい。
(2)蒸留工程
この工程では、膜分離工程での分離後の非透過流体を蒸留することにより、蒸発凝縮した凝縮流体(第1流体)と、残留した残留流体(第2流体)とに分離する。この工程では、蒸留することにより、有機化合物の濃度をより高めることができる。
この工程では、膜分離工程での分離後の非透過流体を蒸留することにより、蒸発凝縮した凝縮流体(第1流体)と、残留した残留流体(第2流体)とに分離する。この工程では、蒸留することにより、有機化合物の濃度をより高めることができる。
以上説明した本実施形態の分離装置及び分離方法では、水と有機化合物とをより効率よく分離することができる。この理由は、例えば、膜分離工程により有機化合物の濃度を濃縮したあと、この非透過流体に対して蒸留工程を行うため、蒸留における加熱エネルギーなどをより低減することができる。また、ゼオライト膜は、アルミニウム及び金属カチオンを含まない原料ゾルを用いて作製され膜厚が0.5μm以上2μm以下の範囲で形成され酸素8員環を有している。このため、ゼオライト膜の耐酸性、耐有機溶剤性など、処理対象流体に対して耐性が高く、より高い分離性能を有する。このため、水と有機化合物とをより効率よく分離することができる。また、ゼオライト膜の分離性能、例えば、分離選択の継続性が高く、且つ透過速度をより長く維持することができる。
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
例えば、上述した実施形態では、流通式の膜分離装置20として説明したが、バッチ式の膜分離装置としてもよい。図3は、膜分離装置20Bを備えた分離装置10Bの構成の概略を示す説明図である。なお、分離装置10と同様の構成に対しては同じ符号を付してその説明を省略する。膜分離装置20Bは、供給経路11から供給された処理対象流体を収容する収容部60と、収容部60から分離部40を介して収容部60へ処理対象流体を循環する循環経路26とを備えている。なお、ここでは、循環経路26を流通して分離部40に供給される流体を、非透過流体も含め、循環液と称する。循環経路26には、循環液を通過させる循環ポンプ27と、循環経路26を流通する循環液の温度を膜分離に適した温度となるように加熱する加熱器22とが配設されている。膜分離装置20Bでは、循環経路26を循環する循環液の有機化合物の濃度が所定値に達すると、分離処理を終了し、循環液を循環経路26に配設された送液経路12を介して蒸留装置30へ送出する。この送液経路12には、バルブ80、送液ポンプ82、冷却器84が配設されている。分離処理が終了すると、バルブ80を開放し、送液ポンプ82により循環液(非透過流体)を、冷却器84で冷却しながら蒸留装置30へ送液する。この分離装置10Bにおいても、上述した実施形態と同様に、水と有機化合物とをより効率よく分離することができる。
以下には、本発明の分離方法を具体的に実施した例について、実施例として説明する。なお、本発明の分離方法及び分離装置は、以下の実施例に限定されるものではない。
[実施例1]
(処理対象流体)
処理対象流体として、水/酢酸の混合溶液を調製した。この処理対象流体は、水を40質量%、酢酸を60質量%とした。また、この処理対象流体のpHは、1.6であった。
(処理対象流体)
処理対象流体として、水/酢酸の混合溶液を調製した。この処理対象流体は、水を40質量%、酢酸を60質量%とした。また、この処理対象流体のpHは、1.6であった。
(膜フィルタの作製)
多孔質基材として、直径30mm長さ160mmのモノリス形状でアルミナ製の多孔質基材を用意した。この多孔質基材の表面に以下のようにDDR型ゼオライト膜(水を選択的に透過させる浸透気化膜)を形成し、膜フィルタを作製した。
多孔質基材として、直径30mm長さ160mmのモノリス形状でアルミナ製の多孔質基材を用意した。この多孔質基材の表面に以下のようにDDR型ゼオライト膜(水を選択的に透過させる浸透気化膜)を形成し、膜フィルタを作製した。
まず、フッ素樹脂製の100ml広口瓶に6.21gのエチレンジアミン(和光純薬工業製)を入れた後、0.98gの1−アダマンタンアミン(アルドリッチ社製)を加え、1−アダマンタンアミンの沈殿が残らないように溶解した。別のビーカーに53.87gの水を入れ、22.00gの30質量%シリカゾル(スノーテックスS、日産化学社製)を加えて軽く撹拌した後、これをエチレンジアミンと1−アダマンタンアミンを混ぜておいた広口瓶に加えて強く振り混ぜた。その後、その広口瓶をシェーカーにセットし、500rpmでさらに1時間振り混ぜ、成膜ゾルを作製した。成膜ゾルの、1−アダマンタンアミン/シリカ比は0.0589、水/シリカ比は35、エチレンジアミン/1−アダマンタンアミン比は16であった(いずれもモル比)。この成膜ゾルを3つ用意した。
次に、多孔質基材にDDR型ゼオライト微粉末を塗布し、フッ素樹脂製内筒付きステンレス製耐圧容器内に配置した。その後、成膜ゾルを耐圧容器に注ぎ、150℃で加熱処理(水熱合成)を行った。加熱処理後、この基材表面にDDR型ゼオライト膜が形成されていた。断面をSEM観察して求めたゼオライト膜の膜厚は、1μmであった。水洗、乾燥した後、大気中、電気炉で0.1℃/minの速度で750℃まで昇温して4時間保持後、1℃/minの速度で室温まで冷却した。このように、DDR型ゼオライト膜を、アルミニウム及び金属カチオンを含まない原料ゾルを用いて作製した。
[比較例1]
(膜フィルタ)
上述したDDR型ゼオライトの代わりにA型ゼオライト(特開平07−185275号公報を参考に作製)を用いた以外は、実施例1と同様に作製した膜フィルタを比較例1とした。
(膜フィルタ)
上述したDDR型ゼオライトの代わりにA型ゼオライト(特開平07−185275号公報を参考に作製)を用いた以外は、実施例1と同様に作製した膜フィルタを比較例1とした。
(膜試験)
この試験では、上記作製した膜フィルタのセル内に処理対象流体を2500g流通させた。膜分離装置での水を分離する分離温度は、膜フィルタの入り口(特開2010−99559の図9の循環ライン12)で測定した値とし、130℃とした。なお、分離温度は、膜フィルタの入り口に設けた温度調整器にて調整した。膜フィルタの側面から約6.7kPa(50Torr)の真空度で減圧し、膜フィルタの側面からの透過蒸気を液体窒素トラップによって捕集した。捕集した透過蒸気の液体物の質量から、単位時間あたりに単位面積の膜を透過した流体の量(水フラックス(kg/m2/h))を算出した。なお、分離処理中に、処理対象流体を数ccサンプリングし、ガスクロマトグラフィーにて組成を分析し、酢酸の濃度が80質量%となるまで脱水した。また、透過液中の酢酸の漏れ濃度の組成を分析した。こうした試験を、膜フィルタを交換せずに100時間継続した。
この試験では、上記作製した膜フィルタのセル内に処理対象流体を2500g流通させた。膜分離装置での水を分離する分離温度は、膜フィルタの入り口(特開2010−99559の図9の循環ライン12)で測定した値とし、130℃とした。なお、分離温度は、膜フィルタの入り口に設けた温度調整器にて調整した。膜フィルタの側面から約6.7kPa(50Torr)の真空度で減圧し、膜フィルタの側面からの透過蒸気を液体窒素トラップによって捕集した。捕集した透過蒸気の液体物の質量から、単位時間あたりに単位面積の膜を透過した流体の量(水フラックス(kg/m2/h))を算出した。なお、分離処理中に、処理対象流体を数ccサンプリングし、ガスクロマトグラフィーにて組成を分析し、酢酸の濃度が80質量%となるまで脱水した。また、透過液中の酢酸の漏れ濃度の組成を分析した。こうした試験を、膜フィルタを交換せずに100時間継続した。
[実験結果]
比較例1では、膜分離装置において30分未満で分離性能の低下が認められたのに対し、実施例1では100時間継続しても分離性能の低下が認められず、安定して機能した。比較例1では、膜分離での選択性が低下したため、膜分離の継続に伴い透過流体に酢酸がより多く含まれることになり、蒸留工程の前工程として適切でないことがわかった。一方、実施例1では、膜分離工程により、水の濃度を20質量%以下にすることができた。実施例1では、分離時間100時間において、水フラックスが7kg/m2/h、酢酸漏れ濃度が0.1質量%であった。このように、実施例1では、水と有機化合物とをより効率よく分離することができることがわかった。また、化学工学通論I(朝倉書店)を参考として化学工学計算を実施した。蒸留の還流比は2とした。図4は、分離方法による全所要熱量及び得られる分離物の計算結果であり、図4(a)が蒸留工程のみの計算結果、図4(b)が膜分離工程及び蒸留工程の計算結果である。図4に示すように、膜分離装置を蒸留工程に組合わせることで、蒸留工程単独に対し、全体での消費エネルギーをより低減することができることがわかった。
比較例1では、膜分離装置において30分未満で分離性能の低下が認められたのに対し、実施例1では100時間継続しても分離性能の低下が認められず、安定して機能した。比較例1では、膜分離での選択性が低下したため、膜分離の継続に伴い透過流体に酢酸がより多く含まれることになり、蒸留工程の前工程として適切でないことがわかった。一方、実施例1では、膜分離工程により、水の濃度を20質量%以下にすることができた。実施例1では、分離時間100時間において、水フラックスが7kg/m2/h、酢酸漏れ濃度が0.1質量%であった。このように、実施例1では、水と有機化合物とをより効率よく分離することができることがわかった。また、化学工学通論I(朝倉書店)を参考として化学工学計算を実施した。蒸留の還流比は2とした。図4は、分離方法による全所要熱量及び得られる分離物の計算結果であり、図4(a)が蒸留工程のみの計算結果、図4(b)が膜分離工程及び蒸留工程の計算結果である。図4に示すように、膜分離装置を蒸留工程に組合わせることで、蒸留工程単独に対し、全体での消費エネルギーをより低減することができることがわかった。
本発明は、水と有機化合物とを含む液体を分離する処理に利用可能である。
10,10B 分離装置、11 供給経路、12 送液経路、13 送出経路、14 送出経路、15 回収経路、20,20B 膜分離装置、21 流通ポンプ、22 加熱器、23 冷却器、24 真空ポンプ、26 循環経路、27 循環ポンプ、30 蒸留装置、32 ヒータ、34 蒸留塔、36 冷却器、38 冷却器、40 分離部、41 膜フィルタ、42 セル、44 多孔質基材、44a 粗粒部、44b 細粒部、45 ゼオライト膜、60 収容部、80 バルブ、82 送液ポンプ、84 冷却器。
Claims (8)
- 水及び有機化合物を含む処理対象流体を分離する分離方法であって、
DDR型ゼオライト膜を備え水を選択的に透過させる分離部を用い前記処理対象流体を前記ゼオライト膜を透過した透過流体と透過しなかった非透過流体とに浸透気化法により分離する膜分離工程と、
前記分離後の非透過流体を蒸留することにより、蒸発した第1流体と蒸発せずに残留した第2流体とに分離する蒸留工程と、
を含む分離方法。 - 前記膜分離工程では、水濃度が40質量%以上である処理対象流体を水濃度が20質量%以下の前記非透過流体に濃縮する、請求項1に記載の分離方法。
- 前記膜分離工程では、pHが8.0以下の前記処理対象流体を分離する、請求項1又は2に記載の分離方法。
- 前記膜分離工程では、pHが3.0以下の前記処理対象流体を分離する、請求項1〜3のいずれか1項に記載の分離方法。
- 前記膜分離工程では、前記透過流体の水濃度が99質量%以上で前記処理対象流体を分離する、請求項1〜4のいずれか1項に記載の分離方法。
- 前記処理対象流体は、水よりも高い沸点を有する前記有機化合物を含む、請求項1〜5のいずれか1項に記載の分離方法。
- 前記膜分離工程では、前記非透過流体を前記処理対象流体として繰り返し前記分離部で分離する、請求項1〜6のいずれか1項に記載の分離方法。
- 水及び有機化合物を含む処理対象流体を分離する分離装置であって、
DDR型ゼオライト膜を備え水を選択的に透過させる分離部を用い前記処理対象流体を前記ゼオライト膜を透過した透過流体と透過しなかった非透過流体とに浸透気化法により分離する膜分離装置と、
前記分離後の非透過流体を蒸留することにより分離する蒸留装置と、
を備えた分離装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015158480A JP2016041418A (ja) | 2014-08-14 | 2015-08-10 | 分離方法及び分離装置 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014165299 | 2014-08-14 | ||
JP2014165299 | 2014-08-14 | ||
JP2015158480A JP2016041418A (ja) | 2014-08-14 | 2015-08-10 | 分離方法及び分離装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016041418A true JP2016041418A (ja) | 2016-03-31 |
Family
ID=55591525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015158480A Pending JP2016041418A (ja) | 2014-08-14 | 2015-08-10 | 分離方法及び分離装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016041418A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019182785A (ja) * | 2018-04-10 | 2019-10-24 | 月島環境エンジニアリング株式会社 | ギ酸の回収方法 |
-
2015
- 2015-08-10 JP JP2015158480A patent/JP2016041418A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019182785A (ja) * | 2018-04-10 | 2019-10-24 | 月島環境エンジニアリング株式会社 | ギ酸の回収方法 |
JP7037993B2 (ja) | 2018-04-10 | 2022-03-17 | 月島環境エンジニアリング株式会社 | ギ酸の回収方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7819944B2 (en) | Method of dehydration, dehydrating apparatus, and membrane reactor | |
US9283522B2 (en) | Process for separating liquid mixtures | |
JP2016041419A (ja) | 分離方法及び分離装置 | |
WO2016027713A1 (ja) | 分離装置及び再生方法 | |
JP2007275690A (ja) | 有機液体水溶液からの有機液体分離回収方法 | |
JP4898502B2 (ja) | 流体の運搬方法 | |
JP2017042724A (ja) | 分離方法 | |
JP2016041418A (ja) | 分離方法及び分離装置 | |
JP2020075865A (ja) | アルコールの製造のための水−アルコール分離システム及び水−アルコール分離方法 | |
JP2017165671A (ja) | 高濃度アルコールの製造方法 | |
JP2016179417A (ja) | 分離方法及び分離装置 | |
JP2017104827A (ja) | 分離装置の使用方法及び分離装置 | |
JP2016027938A (ja) | 膜の再生方法、膜の再生装置及び分離装置 | |
JP2016175063A (ja) | 膜の再生方法 | |
JP2011230035A (ja) | ガス分離方法 | |
JP4998929B2 (ja) | ガス精製方法 | |
JP6728583B2 (ja) | 微量アルコールの除去方法 | |
JP7178997B2 (ja) | 脱水方法及び脱水装置 | |
WO2016024580A1 (ja) | 分離方法及び分離装置 | |
JP2007203210A (ja) | 膜モジュール及び膜分離方法 | |
JP6271405B2 (ja) | ゼオライト膜を用いた脱水方法 | |
WO2010125897A1 (ja) | 硫酸濃縮用分離膜、硫酸濃縮方法及び硫酸濃縮装置 | |
JP7238567B2 (ja) | 膜分離システム及び有機化合物・水混合物の分離処理方法 | |
JP2020075194A (ja) | アルコールの製造のための水−アルコール分離ユニット | |
JP2016041417A (ja) | 廃液処理方法及び廃液処理装置 |