JP2016033465A - 物理量センサーの製造方法、物理量センサー、電子機器および移動体 - Google Patents

物理量センサーの製造方法、物理量センサー、電子機器および移動体 Download PDF

Info

Publication number
JP2016033465A
JP2016033465A JP2014155933A JP2014155933A JP2016033465A JP 2016033465 A JP2016033465 A JP 2016033465A JP 2014155933 A JP2014155933 A JP 2014155933A JP 2014155933 A JP2014155933 A JP 2014155933A JP 2016033465 A JP2016033465 A JP 2016033465A
Authority
JP
Japan
Prior art keywords
physical quantity
quantity sensor
sealing
substrate
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014155933A
Other languages
English (en)
Inventor
紙透 真一
Shinichi Kamisuke
真一 紙透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2014155933A priority Critical patent/JP2016033465A/ja
Priority to US14/812,255 priority patent/US20160033273A1/en
Priority to CN201510455242.4A priority patent/CN105319392A/zh
Publication of JP2016033465A publication Critical patent/JP2016033465A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】寸法精度に優れ、信頼性の高い物理量センサーの製造方法、物理量センサー、電子機器および移動体を提供すること。
【解決手段】本発明の物理量センサーの製造方法は、加速度センサー素子4が配置された支持基板2と、凹部51を有するとともに、凹部51と連通する貫通孔52を有する封止基板5と、を用意する用意工程と、加速度センサー素子4が凹部51内に収納されるように支持基板2と封止基板5とを接合する接合工程と、貫通孔52に封止材3を充填して凹部51を封止する封止工程とを備えている。また、接合工程における支持基板2および封止基板5の温度Taは、封止材3の融点Tbよりも低い。そして、封止工程では、封止材3を融点Tb以上の温度Tcとして溶融することにより、凹部51を封止する。
【選択図】図5

Description

本発明は、物理量センサーの製造方法、物理量センサー、電子機器および移動体に関するものである。
例えば、角速度センサーや加速度センサー等を備える物理量センサーが知られている(例えば、特許文献1参照)。
特許文献1に開示されている物理量センサーは、2つのセンサーと、各センサーが配置されたセンサー基板と、センサー基板に接合され、各センサーをそれぞれ収納する2つの凹部を有するキャップ基板とを備えている。また、各センサーが収納された凹部は、気密封止されており、互いに圧力が異なっている。
特許文献1において、このような物理量センサーを製造するには、溝を有するセンサー基板用母材に各センサー素子を配置し、次いで各センサー素子が各凹部に収納されるようにキャップ基板用母材をセンサー基板に接合する。この接合を大気圧よりも圧力が低い第1の圧力状態で行うことで、各凹部内が第1の圧力状態のまま各センサー素子を封止することができる。なお、2つの凹部のうちの一方の凹部は、溝を介して外部と連通している。
そして、各基板が接合された接合体の雰囲気を第1の圧力状態よりも圧力が高い第2の圧力状態とする。これにより、溝を介して外部と連通する一方の凹部内は第2の圧力状態となる。最後に、加熱および加圧により、溝を潰すように各母材を変形させる。これにより、第2の凹部が第2の圧力状態で気密封止される。このようにして互いに異なる圧力で各センサー素子を気密封止することができる。
しかしながら、第2の凹部を封止する際、溝を潰すようにして封止するため、その程度によっては、物理量センサーの寸法精度が低下し、信頼性が低くなる。
特開2010−107325号公報
本発明の目的は、寸法精度に優れ、信頼性の高い物理量センサーを生産性良く製造することができる物理量センサーの製造方法、物理量センサー、電子機器および移動体を提供することにある。
このような目的は、下記の本発明により達成される。
[適用例1]
本発明の物理量センサーの製造方法は、センサー素子が配置された支持基板と、凹部を有するとともに、前記凹部と連通する貫通孔を有する封止基板と、を用意する用意工程と、
前記センサー素子が前記凹部内に収納されるように前記支持基板と前記封止基板とを接合する接合工程と、
前記貫通孔に封止材を充填して前記凹部を封止する封止工程と、を備え、
前記接合工程における前記支持基板および前記封止基板の温度Taは、前記封止材の融点Tbよりも低く、
前記封止工程では、前記封止材を前記融点Tb以上の温度Tcとして溶融することにより、前記凹部を封止することを特徴とする。
本発明によれば、貫通孔に封止材を充填するという方法で凹部を封止するため、「特開2010−107325(特許文献1)」のような、溝を潰すように基板を変形させる工程を省略することができる。よって、支持基板を変形させることなく、凹部を封止することができる。したがって、本製造方法により得られた物理量センサーは、寸法精度に優れ、信頼性が高いものとなる。
また、接合工程における支持基板および封止基板の温度Taは、封止材の融点Tbよりも低いため、例えば、接合工程に先立って、予め封止材を貫通孔に配置して、その配置状態のまま接合工程および封止工程を同一のチャンバー内で行うことができる。よって、支持基板および封止基板をチャンバーから出し入れする回数を少なくすることができる。従って、その分、本製造方法は、簡素になり、生産性に優れる。
さらには、物理量センサーをチャンバーから出し入れする場合、センサー素子は常温より高温である接合温度から、一旦常温に下げられ、この後、封止のために再度昇温される。このため、余計な熱履歴(ヒートサイクル)が加わることになり、センサー素子の信頼性を低下させる一因となる。本発明では、チャンバーからの出し入れの回数を少なくすることができ、上記熱履歴を低減することができる。したがって、信頼性に優れる物理量センサーを提供することができる。
[適用例2]
本発明の物理量センサーの製造方法では、前記接合工程および前記封止工程は、同一のチャンバー内で行われるのが好ましい。
これにより、接合工程後に、支持基板および封止基板をチャンバーから出し入れするのを省略することができる。よって、本発明は、生産性に優れる。
[適用例3]
本発明の物理量センサーの製造方法では、前記接合工程後は、前記封止材が前記貫通孔に充填されるまで、前記チャンバー内の温度が前記温度Ta以上に維持されるのが好ましい。
これにより、接合工程後に、チャンバー内の温度を、温度Taと温度Tcとの差分だけ上昇させればよい。よって、比較的短時間で封止材の温度をTcとして貫通孔に封止材を充填することができる。
[適用例4]
本発明の物理量センサーの製造方法では、前記接合工程に先立って、前記貫通孔に前記封止材を配置する配置工程を有しているのが好ましい。
これにより、例えば、同一のチャンバー内で、接合工程後に、貫通孔に封止材を配置するのを省略することができる。よって、貫通孔に封止材が配置された封止基板および支持基板をチャンバーに入れさえすれば、接合工程および封止工程を行うことができる。
[適用例5]
本発明の物理量センサーは、センサー素子と、
前記センサー素子が配置された支持基板と、
前記センサー素子を収納する凹部と、前記凹部と連通する貫通孔とを有し、前記支持基板に接合された封止基板と、
前記貫通孔に充填され、前記凹部を封止する封止材と、を備え、
前記封止材の融点は、前記支持基板および前記封止基板の接合に要する温度よりも高いことを特徴とする。
本発明によれば、製造工程において、封止材を融点以上に加熱することにより、凹部を封止することができる。これにより、「特開2010−107325(特許文献1)」のように、溝を潰すように基板を変形させる工程を省略することができる。よって、各基板を変形させることなく、凹部を封止することができる。よって、本製造方法により得られた物理量センサーは、寸法精度に優れ、信頼性が高いものとなる。
[適用例6]
本発明の物理量センサーでは、前記貫通孔は、前記凹部に向って横断面積が減少している部分を有しているのが好ましい。
これにより、例えば、封止材を溶融して貫通孔に充填するに際し、溶融する以前の封止材を安定的に配置することができる。
[適用例7]
本発明の電子機器は、本発明の物理量センサーを備えることを特徴とする。
これにより、信頼性の高い電子機器を得ることができる。
[適用例8]
本発明の移動体は、本発明の物理量センサーを備えることを特徴とする。
これにより、信頼性の高い移動体を得ることができる。
本発明の物理量センサーを示す断面図である。 図1に示す物理量センサーが備える加速度センサー素子を示す平面図である。 本発明の物理量センサーの製造方法を説明するための断面図であって、(a)が用意工程を示す図、(b)が配置工程を示す図、(c)が各基板を配置状態でチャンバー内に挿入した状態を示す図である。 本発明の物理量センサーの製造方法を説明するための断面図であって、(a)が接合工程を示す図、(b)が圧力調節工程(真空状態)を示す図である。 本発明の物理量センサーの製造方法を説明するための断面図であって、(a)が圧力調節工程(大気圧状態)を示す図、(b)が封止工程を示す図である。 図6は、本発明の物理量センサーを備える電子機器を適用したモバイル型(またはノート型)のパーソナルコンピューターの構成を示す斜視図である。 図7は、本発明の物理量センサーを備える電子機器を適用した携帯電話機(PHSも含む)の構成を示す斜視図である。 図8は、本発明の物理量センサーを備える電子機器を適用したディジタルスチルカメラの構成を示す斜視図である。 図9は、本発明の電子部品を備える移動体を適用した自動車の構成を示す斜視図である。
以下、本発明の物理量センサーの製造方法、物理量センサー、電子機器および移動体を添付図面に示す好適な実施形態に基づいて詳細に説明する。
まず、本発明の物理量センサーについて説明する。
1.物理量センサー
<第1実施形態>
図1は、本発明の物理量センサーを示す断面図である。図2は、図1に示す物理量センサーが備える加速度センサー素子を示す平面図である。
なお、以下では、説明の便宜上、図2中の紙面手前側を「上」、紙面奥側を「下」、右側を「右」、左側を「左」と言う。また、図1〜5では、互いに直交する3つの軸として、X軸、Y軸およびZ軸が図示されている。また、以下では、X軸に平行な方向(左右方向)を「X軸方向」、Y軸に平行な方向を「Y軸方向」、Z軸に平行な方向(上下方向)を「Z軸方向」と言う。
図1に示す物理量センサー1は、支持基板2と、この支持基板2に接合・支持された加速度センサー素子4と、加速度センサー素子4を覆うように設けられた封止基板5と、封止材3とを有する。
以下、物理量センサー1を構成する各部について説明する。
(支持基板)
支持基板2は、加速度センサー素子4を支持する機能を有する。
この支持基板2は、板状をなし、その上面(一方の面)には、空洞部21が設けられている。
空洞部21は、支持基板2を平面視したときに、後述する加速度センサー素子4の可動部43を包含するように形成されていて、内底を有する。このような空洞部21は、加速度センサー素子4の可動部43が支持基板2に接触するのを防止する逃げ部を構成する。これにより、加速度センサー素子4の変位を許容することができる。
このような支持基板2の構成材料としては、具体的には、高抵抗なシリコン材料、ガラス材料を用いるのが好ましく、特に、加速度センサー素子4がシリコン材料を主材料として構成されている場合、アルカリ金属イオン(可動イオン)を含むガラス材料(例えば、パイレックスガラス(登録商標)のような硼珪酸ガラス)を用いるのが好ましい。これにより、加速度センサー素子4がシリコンを主材料として構成されている場合、支持基板2と加速度センサー素子4とをそれぞれ陽極接合することができる。
また、支持基板2の融点または軟化点(以下、単に「融点」と言う)Tは、特に限定されないが、例えば、500℃以上1000℃以下であるのが好ましく、600℃以上900℃以下であるのがより好ましい。
また、支持基板2の構成材料は、加速度センサー素子4の構成材料との熱膨張係数差ができるだけ小さいのが好ましく、具体的には、支持基板2の構成材料と加速度センサー素子4の構成材料との熱膨張係数差が3ppm/℃以下であるのが好ましい。これにより、支持基板2と各センサー素子との接合時等に高温下にさらされても、支持基板2と加速度センサー素子4との間の残留応力を低減することができる。
(加速度センサー素子)
加速度センサー素子4は、Y軸方向の加速度を検出するものである。加速度センサー素子4は、支持部41、42と、可動部43と、連結部44、45と、複数の第1固定電極指48と、複数の第2固定電極指49と、を有している。また、可動部43は、基部431と、基部431からX軸方向両側に突出している複数の可動電極指432と、を有している。
支持部41、42は、それぞれ、支持基板2の上面に接合されており、導電性バンプ(図示せず)を介して配線(図示せず)と電気的に接続されている。そして、これら支持部41、42の間に可動部43が設けられている。可動部43は、−Y軸側において連結部44を介して支持部41に連結されると共に、+Y軸側において連結部45を介して支持部42に連結されている。これにより、可動部43が支持部41、42に対して矢印bで示すようにY軸方向に変位可能となる。
複数の第1固定電極指48は、可動電極指432のY軸方向一方側に配置され、対応する可動電極指432に対して間隔を隔てて噛み合う櫛歯状をなすように並んでいる。このような複数の第1固定電極指48は、その基端部にて支持基板2の上面に接合され、導電性バンプを介して配線に電気的に接続されている。
これに対して、複数の第2固定電極指49は、可動電極指432のY軸方向他方側に配置され、対応する可動電極指432に対して間隔を隔てて噛み合う櫛歯状をなすように並んでいる。このような複数の第2固定電極指49は、その基端部にて、ベース基板の上面に接合され、導電性バンプを介して配線に電気的に接続されている。
このような加速度センサー素子4は、次のようにしてY軸方向の加速度を検出する。すなわち、Y軸方向の加速度が物理量センサー1に加わると、その加速度の大きさに基づいて、可動部43が、連結部44、45を弾性変形させながら、Y軸方向に変位する。このような変位に伴って、可動電極指432と第1固定電極指48との間の静電容量および可動電極指432と第2固定電極指49との間の静電容量の大きさがそれぞれ変化する。そのため、これら静電容量の変化(差動信号)に基づいて加速度を検出することができる。
(封止基板)
封止基板5は、加速度センサー素子4を封止して保護する機能を有する。この封止基板5は、板状をなし、支持基板2の上面に接合されている。また、封止基板5は、互いに異なる位置に設けられ、一方の面(下面)に開放する凹部51を有している。
凹部51は、加速度センサー素子4を収納し加速度センサー素子4を十分に収納し得る程度の大きさを有している。
また、図示の構成では、凹部51は、それぞれ略直方体に凹没して形成されているが、例えば、半球状、三角錐等の形状に凹没していてもよい。
図1に示すように、封止基板5には、その厚さ方向(所定方向)に貫通する貫通孔52が設けられている。貫通孔52は、凹部51と連通している。
貫通孔52は、Z軸方向の全長にわたって横断面形状が円形をなしている。また、貫通孔52の孔径は、凹部51側にいくに従って漸減している。すなわち、貫通孔52の横断面積は、凹部51側にいくに従って漸減している。貫通孔52の上面開口の直径D1と、貫通孔52の下面開口の直径D2との比D1/D2は、4〜100であるのが好ましく、8〜35であるのがより好ましい。これにより、後述するように、貫通孔52に球状の封止材3を安定的に配置することができる。
また、貫通孔52の上面開口の直径D1は、特に限定されず、例えば、200μm以上、500μm以下であるのが好ましく、250μm以上、350μm以下であるのがより好ましい。一方、貫通孔52の下面開口の直径D2は、特に限定されず、例えば、5μm以上、50μm以下であるのが好ましく、10μm以上、30μm以下であるのがより好ましい。
また、封止基板5の構成材料としては、前述したような機能を発揮し得るものであれば、特に限定されないが、例えば、シリコン材料、ガラス材料等を好適に用いることができる。
また、封止基板5の融点(軟化点)Tは、特に限定されず、例えば、1000℃以上、1600℃以下であるのが好ましく、1100℃以上、1500℃以下であるのがより好ましい。
図1に示すように、貫通孔52には、封止材3が充填されている。これにより、凹部51は、気密封止されている。
封止材3の融点T(Tb)は、支持基板2の構成材料および封止基板5の構成材料の融点または軟化点よりも低い。この融点Tは、200℃以上、400℃以下であるのが好ましく、270℃以上、380℃以下であるのがより好ましい。
また、封止材3の融点Tと、支持基板2の融点Tまたは封止基板5の融点Tとの差Txは、20℃以上、700℃以下であるのが好ましく、50℃以上、660℃以下であるのがより好ましい。これにより、凹部51を効果的に封止することができる。
差Txが上記下限値を下回った場合、後述の接合工程において、加熱時間(接合時間)が比較的長くなると、封止材3が溶融される可能性がある。一方、差Txが上記上限値を上回った場合、封止材3、支持基板2および封止基板5の構成材料の選定が難しくなる。
この封止材3の構成材料としては、特に限定されず、例えば、Au−Ge系合金や、Au−Sn系合金等の金属材料や、低融点ガラス材料等を用いることができる。
(物理量センサーの製造方法)
次に、本発明の物理量センサーの製造方法について説明する。
図3は、本発明の物理量センサーの製造方法を説明するための断面図であって、(a)が用意工程を示す図、(b)が配置工程を示す図、(c)が各基板を配置状態でチャンバー内に挿入した状態を示す図である。図4は、本発明の物理量センサーの製造方法を説明するための断面図であって、(a)が接合工程を示す図、(b)が圧力調節工程(真空状態)を示す図である。図5は、本発明の物理量センサーの製造方法を説明するための断面図であって、(a)が圧力調節工程(大気圧状態)を示す図、(b)が封止工程を示す図である。
本発明の物理量センサーの製造方法は、用意工程と、配置工程と、接合工程と、圧力調節工程と、封止工程と、を有している。
なお、以下では、支持基板2がアルカリ金属イオンを含むガラス材料で構成され、封止基板5がシリコン材料で構成されている場合を一例として説明する。
また、加速度センサー素子4は、公知の方法によって形成することができるため、その説明を省略する。
[1]用意工程
まず、図3(a)に示すように、上面に加速度センサー素子4が設けられた支持基板2と、封止基板5とを用意する。
なお、支持基板2の空洞部21、封止基板5の凹部51および貫通孔52は、エッチングすることにより形成されている。
このエッチング方法としては、特に限定されないが、例えば、プラズマエッチング、リアクティブイオンエッチング、ビームエッチング、光アシストエッチング等の物理的エッチング法、ウェットエッチング等の化学的エッチング法等のうちの1種または2種以上を組み合わせて用いることができる。
[2]配置工程
次いで、図3(b)に示すように、貫通孔52内に、溶融することにより封止材3となる球状の封止材3aを配置する。封止材3aの外径(最大外径)は、貫通孔52の下面開口の直径D2よりも大きく、かつ、貫通孔52の上面開口の直径D1よりも小さい。これにより、封止材3aを、貫通孔52内に配置することができる(以下、この状態を「配置状態」と言う)。
また、前述したように、貫通孔52は、それぞれ、孔径が下側にいくに従って漸減している。これにより、配置状態では、封止材3aは、貫通孔52の孔径と一致した部分で留まることとなる。よって、封止材3aは、貫通孔52内をZ軸方向に移動するのが規制されている。さらに、封止材3aが貫通孔52の孔径と一致した部分で留まることにより、封止材3aがXY平面方向に移動するのも規制することができる。これにより、封止材3aをさらに安定的に貫通孔52内に配置することができる。
このような封止材3aの外径は、100μm以上、500μm以下であるのが好ましく、150μm以上、300μm以下であるのがより好ましい。
[3]接合工程
次いで、図3(c)に示すように、貫通孔52に封止材3aが配置された状態で、凹部51に加速度センサー素子4が収納されるように、支持基板2の上面に封止基板5を配置する(この状態を以下、「物理量センサー1’」とも言う)。そして、物理量センサー1’をチャンバー100に入れる。なお、支持基板2の上面に封止基板5を配置した後に、貫通孔52に封止材3aを配置してもよい。
そして、図4(a)に示すように、陽極接合によって支持基板2の上面と封止基板5の下面とを接合する。
この陽極接合におけるチャンバー100内の温度、すなわち、陽極接合時の物理量センサー1’の温度Taは、封止材3aの融点Tよりも低い。この温度Taとしては、150℃以上、380℃以下であるのが好ましく、250℃以上、360℃以下であるのがより好ましい。これにより、貫通孔52に封止材3aを配置した状態で陽極接合を行っても、封止材3aが溶融して凹部51が封止されるのを防止することができる。
なお、接合工程において、温度Taが上記下限値を下回ると、支持基板2と封止基板5との接合強度が不十分となるおそれがある。また、温度Taが上記上限値を上回ると、封止材3aが軟化して、凹部51が封止されるおそれがある。
また、陽極接合時の物理量センサー1の温度Taと、封止材3aの融点Tとの差Tyは、20℃以上、100℃以下であるのが好ましく、50℃以上、80℃以下であるのがより好ましい。差Tyを上記数値範囲とすることにより、本製造工程は、生産性に優れる。
差Tyが、上記下限値を下回った場合、接合工程において、封止材3aが溶融する可能性がある。一方、差Tyが上記上限値を上回った場合、接合工程でのチャンバー100内の温度Taから、後述の封止工程においてチャンバー100内の温度を融点Tまで上昇させるのに比較的時間がかかる傾向にある。
なお、圧力調節工程が完了するまでは、チャンバー100内は、温度Ta以上に維持される。
[4]圧力調節工程
次いで、図4(b)に示すように、チャンバー100内を真空ポンプによって真空引きする。このとき、図4(b)中の矢印で示すように、凹部51の空気は、封止材3aと貫通孔52の内側面との間の微小な隙間を介して、凹部51の外側に排出される。これにより、凹部51内は真空状態となる。なお、本明細書中では、「真空状態」とは、気圧が10Pa以下の状態のことを言う。
一旦、凹部51内を真空状態とした後に、チャンバー100内に、例えば、空気や、窒素、アルゴン、ヘリウム、ネオン等の不活性ガスを注入して、チャンバー100内の気圧を大気圧状態とする。これにより、図5(a)中の矢印で示すように、封止材3aと貫通孔52の内側面との間の微小な隙間を介して、凹部51内に空気(不活性ガス)が流入し、凹部51内は、大気圧状態となる。
なお、本実施形態では、圧力調節工程において、凹部51内を大気圧としているが、圧力調節工程後の凹部51内の圧力としては、大気圧よりも気圧が低い減圧状態とするのも本発明に含まれる。この減圧状態としては、気圧が0.3×10Pa以上、1×10Pa以下であるのが好ましく、0.5×10Pa以上、0.8×10Pa以下であるのがより好ましい。このような減圧状態のまま凹部51を封止した場合、加速度センサー素子4には、駆動時に適度なダンピング(振動の減衰力)が作用し、その結果、不要振動が生じるのを防止することができる。よって、加速度センサー素子4の検出感度を高めることができる。
[5]封止工程
次いで、図5(b)に示すように、チャンバー100内を加熱して、温度Taから封止材3aの融点T以上の温度Tcとして封止材3aを溶融する。これにより、溶融により液状となった封止材3a(以下、この液状の封止材3aを「封止材3b」と言う)は、貫通孔52の内側面に全周にわたって密着する。よって、凹部51内と凹部51の外側の空間とは、封止材3bによって分離された状態となる。その結果、凹部51は、大気圧状態のまま気密封止される。
このとき、前述したように、接合工程後は、チャンバー100内は、温度Taに維持されている。これにより、チャンバー100内の温度を、温度Taと温度Tcとの差分だけ上昇させればよい。よって、比較的短時間で封止材3aを溶融することができる。
なお、封止材3として金属材料を用いることにより、封止材3bは、比較的表面張力が高く、貫通孔52内に留まり易くなる。したがって、封止材3bが貫通孔52の下面開口から凹部51内に流入するのを防止することができる。
また、封止工程における温度Tcは、封止材3の融点T以上、支持基板2の融点Tおよび封止基板5の融点Tよりも低い温度とされる。これにより、封止材3aを溶融することができるとともに、支持基板2および封止基板5が熱変形するのを防止することができる。
ここで、封止材3bの粘度は、ある程度高いのが好ましく、具体的には、1×10−3Pa・s以上であるのが好ましく、3×10−3Pa・s以上であるのがより好ましい。これにより、封止材3bが貫通孔52の下面開口から凹部51内に流入するのをより効果的に防止することができる。
さらに、前述したように、貫通孔52の下面開口の開口径が十分に小さい。これにより、上記と相まって、封止材3bが凹部51内に流入するのをさらに効果的に防止することができる。
そして、最後に、封止材3bを、例えば常温に戻すことにより凝固させる。これにより、凹部51は、封止材3によって封止される(図1参照)。
以上説明したように、本発明によれば、貫通孔52に封止材3を充填するという簡単な方法で凹部51を封止することができる。これにより、「特開2010−107325(特許文献1)」のように、溝を潰すように基板を変形させる工程を省略することができる。よって、支持基板2を変形させることなく、凹部を封止することができる。よって、本製造方法により得られた物理量センサーは、寸法精度に優れ、信頼性が高いものとなる。
さらに、接合工程におけるチャンバー100内の温度Taは、封止材3の融点Tよりも低いため、接合工程に先立って、封止材3aを貫通孔52に配置して、その配置状態のまま接合工程および封止工程を同一のチャンバー100内で行うことができる。これにより、配置状態でチャンバー100内に物理量センサー1’を入れさえすれば、物理量センサー1’をチャンバー100から出し入れすることなく、物理量センサー1を得ることができる。よって、本製造方法は、簡素になり、生産性に優れる。
さらに、物理量センサー1’をチャンバー100から出し入れする回数を少なくすることができるため、物理量センサー1’の加熱・冷却を繰り返すことにより生じる物理量センサー1’への影響(例えば、各基板に生じるクラック等)を効果的に防止または抑制することができる。よって、本発明によれば、信頼性が非常に高い物理量センサー1を得ることができる。
また、複数の物理量センサー1’を一括してチャンバー100内に挿入することによって、複数の物理量センサー1を一括して得ることもできる。
2.電子機器
次いで、物理量センサー1を適用した電子機器について、図6〜図8に基づき、詳細に説明する。
図6は、本発明の物理量センサーを備える電子機器を適用したモバイル型(またはノート型)のパーソナルコンピューターの構成を示す斜視図である。この図において、パーソナルコンピューター1100は、キーボード1102を備えた本体部1104と、表示部1108を備えた表示ユニット1106とにより構成され、表示ユニット1106は、本体部1104に対しヒンジ構造部を介して回動可能に支持されている。このようなパーソナルコンピューター1100には、角速度検知手段として機能する物理量センサー1が内蔵されている。
図7は、本発明の物理量センサーを備える電子機器を適用した携帯電話機(PHSも含む)の構成を示す斜視図である。この図において、携帯電話機1200は、複数の操作ボタン1202、受話口1204および送話口1206を備え、操作ボタン1202と受話口1204との間には、表示部1208が配置されている。このような携帯電話機1200には、角速度検知手段として機能する物理量センサー1が内蔵されている。
図8は、本発明の物理量センサーを備える電子機器を適用したディジタルスチルカメラの構成を示す斜視図である。なお、この図には、外部機器との接続についても簡易的に示されている。ここで、通常のカメラは、被写体の光像により銀塩写真フィルムを感光するのに対し、ディジタルスチルカメラ1300は、被写体の光像をCCD(Charge Coupled Device)などの撮像素子により光電変換して撮像信号(画像信号)を生成する。
ディジタルスチルカメラ1300におけるケース(ボディー)1302の背面には、表示部が設けられ、CCDによる撮像信号に基づいて表示を行う構成になっており、表示部1310は、被写体を電子画像として表示するファインダーとして機能する。
また、ケース1302の正面側(図中裏面側)には、光学レンズ(撮像光学系)やCCDなどを含む受光ユニット1304が設けられている。
撮影者が表示部に表示された被写体像を確認し、シャッターボタン1306を押下すると、その時点におけるCCDの撮像信号が、メモリー1308に転送・格納される。
また、このディジタルスチルカメラ1300においては、ケース1302の側面に、ビデオ信号出力端子1312と、データ通信用の入出力端子1314とが設けられている。そして、図示されるように、ビデオ信号出力端子1312にはテレビモニター1430が、デ−タ通信用の入出力端子1314にはパーソナルコンピューター1440が、それぞれ必要に応じて接続される。さらに、所定の操作により、メモリー1308に格納された撮像信号が、テレビモニター1430や、パーソナルコンピューター1440に出力される構成になっている。
このようなディジタルスチルカメラ1300には、角速度検知手段として機能する物理量センサー1が内蔵されている。
なお、本発明の物理量センサーを備える電子機器は、図6のパーソナルコンピューター(モバイル型パーソナルコンピューター)、図7の携帯電話機、図8のディジタルスチルカメラの他にも、例えば、インクジェット式吐出装置(例えばインクジェットプリンター)、ラップトップ型パーソナルコンピューター、テレビ、ビデオカメラ、ビデオテープレコーダー、カーナビゲーション装置、ページャ、電子手帳(通信機能付も含む)、電子辞書、電卓、電子ゲーム機器、ワードプロセッサー、ワークステーション、テレビ電話、防犯用テレビモニター、電子双眼鏡、POS端末、医療機器(例えば電子体温計、血圧計、血糖計、心電図計測装置、超音波診断装置、電子内視鏡)、魚群探知機、各種測定機器、計器類(例えば、車両、航空機、船舶の計器類)、フライトシュミレーター等に適用することができる。
3.移動体
次いで、図1に示す物理量センサーを適用した移動体について、図9に基づき、詳細に説明する。
図9は、本発明の電子部品を備える移動体を適用した自動車の構成を示す斜視図である。自動車1500には、角速度検知手段として機能する物理量センサー1が内蔵されており、物理量センサー1によって車体1501の姿勢を検出することができる。物理量センサー1からの信号は、車体姿勢制御装置1502に供給され、車体姿勢制御装置1502は、その信号に基づいて車体1501の姿勢を検出し、検出結果に応じてサスペンションの硬軟を制御したり、個々の車輪1503のブレーキを制御したりすることができる。その他、このような姿勢制御は、二足歩行ロボットやラジコンヘリコプターで利用することができる。以上のように、各種移動体の姿勢制御の実現にあたって、物理量センサー1が組み込まれる。
以上、本発明の物理量センサーの製造方法および物理量センサーを図示の実施形態について説明したが、本発明は、これに限定されるものではなく、物理量センサーを構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。
また、本発明の物理量センサーの製造方法および物理量センサーは、前記各実施形態のうちの、任意の2以上の構成(特徴)を組み合わせたものであってもよい。
なお、前記第1実施形態では、各貫通孔に配置される封止材は、同じ材料でそれぞれ構成されているが本発明では、これに限定されず、互いに異なる材料で構成されていてもよい。
また、前記各実施形態では、貫通孔は、その深さ方向の全長にわたって幅(孔径)が漸減しているが、本発明ではこれに限定されず、段階的に減少していてもよく、幅(孔径)が一定の部分を有していてもよい。
また、前記各実施形態では、凹部は1つであるが、本発明ではこれに限定されず、凹部は2つ以上形成されており、各凹部にセンサー素子をそれぞれ配置してもよい。
また、前記実施形態では、チャンバー内の温度を上げることによって封止材を溶融しているが、本発明ではこれに限定されず、例えば、レーザーを封止材に照射して封止材を溶融してもよい。
1、1’……物理量センサー
2……支持基板
21……空洞部
3、3a、3b……封止材
4……加速度センサー素子
41……支持部
42……支持部
43……可動部
431……基部
432……可動電極指
44……連結部
45……連結部
48……第1固定電極指
49……第2固定電極指
5……封止基板
51……凹部
52……貫通孔
100……チャンバー
1100……パーソナルコンピューター
1102……キーボード
1104……本体部
1106……表示ユニット
1108……表示部
1200……携帯電話機
1202……操作ボタン
1204……受話口
1206……送話口
1208……表示部
1300……ディジタルスチルカメラ
1302……ケース
1304……受光ユニット
1306……シャッターボタン
1308……メモリー
1310……表示部
1312……ビデオ信号出力端子
1314……入出力端子
1430……テレビモニター
1440……パーソナルコンピューター
1500……自動車
1501……車体
1502……車体姿勢制御装置
1503……車輪

Claims (8)

  1. センサー素子が配置された支持基板と、凹部を有するとともに、前記凹部と連通する貫通孔を有する封止基板と、を用意する用意工程と、
    前記センサー素子が前記凹部内に収納されるように前記支持基板と前記封止基板とを接合する接合工程と、
    前記貫通孔に封止材を充填して前記凹部を封止する封止工程と、を備え、
    前記接合工程における前記支持基板および前記封止基板の温度Taは、前記封止材の融点Tbよりも低く、
    前記封止工程では、前記封止材を前記融点Tb以上の温度Tcとして溶融することにより、前記凹部を封止することを特徴とする物理量センサーの製造方法。
  2. 前記接合工程および前記封止工程は、同一のチャンバー内で行われる請求項1に記載の物理量センサーの製造方法。
  3. 前記接合工程後は、前記封止材が前記貫通孔に充填されるまで、前記チャンバー内の温度が前記温度Ta以上に維持される請求項2に記載の物理量センサーの製造方法。
  4. 前記接合工程に先立って、前記貫通孔に前記封止材を配置する配置工程を有している請求項1ないし3のいずれか1項に記載の物理量センサーの製造方法。
  5. センサー素子と、
    前記センサー素子が配置された支持基板と、
    前記センサー素子を収納する凹部と、前記凹部と連通する貫通孔とを有し、前記支持基板に接合された封止基板と、
    前記貫通孔に充填され、前記凹部を封止する封止材と、を備え、
    前記封止材の融点は、前記支持基板および前記封止基板の接合に要する温度よりも高いことを特徴とする物理量センサー。
  6. 前記貫通孔は、前記凹部に向って横断面積が減少している部分を有している請求項5に記載の物理量センサー。
  7. 請求項5または6に記載の物理量センサーを備えることを特徴とする電子機器。
  8. 請求項5または6に記載の物理量センサーを備えることを特徴とする移動体。
JP2014155933A 2014-07-31 2014-07-31 物理量センサーの製造方法、物理量センサー、電子機器および移動体 Withdrawn JP2016033465A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014155933A JP2016033465A (ja) 2014-07-31 2014-07-31 物理量センサーの製造方法、物理量センサー、電子機器および移動体
US14/812,255 US20160033273A1 (en) 2014-07-31 2015-07-29 Method for manufacturing physical quantity sensor, physical quantity sensor, electronic device, and moving body
CN201510455242.4A CN105319392A (zh) 2014-07-31 2015-07-29 物理量传感器及其制造方法、电子设备及移动体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014155933A JP2016033465A (ja) 2014-07-31 2014-07-31 物理量センサーの製造方法、物理量センサー、電子機器および移動体

Publications (1)

Publication Number Publication Date
JP2016033465A true JP2016033465A (ja) 2016-03-10

Family

ID=55452429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014155933A Withdrawn JP2016033465A (ja) 2014-07-31 2014-07-31 物理量センサーの製造方法、物理量センサー、電子機器および移動体

Country Status (1)

Country Link
JP (1) JP2016033465A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192587A (ja) * 2006-01-17 2007-08-02 Seiko Instruments Inc 力学量センサ用配線基板、力学量センサ用配線基板の製造方法および力学量センサ
JP2009190055A (ja) * 2008-02-14 2009-08-27 Seiko Epson Corp ろう材、電子デバイス及び電子デバイスの封止方法
JP2009289953A (ja) * 2008-05-29 2009-12-10 Hitachi Ulsi Systems Co Ltd ウェハレベルパッケージ、ウェハレベルパッケージの製造方法及びmemsデバイスの製造方法
US20130023082A1 (en) * 2008-09-10 2013-01-24 Analog Devices, Inc. Apparatus and Method of Wafer Bonding Using Compatible Alloy
JP2013153038A (ja) * 2012-01-25 2013-08-08 Seiko Epson Corp パッケージ、振動デバイス及び電子機器
JP2013232626A (ja) * 2012-04-04 2013-11-14 Seiko Epson Corp 電子デバイス及びその製造方法、電子機器、並びに移動体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192587A (ja) * 2006-01-17 2007-08-02 Seiko Instruments Inc 力学量センサ用配線基板、力学量センサ用配線基板の製造方法および力学量センサ
JP2009190055A (ja) * 2008-02-14 2009-08-27 Seiko Epson Corp ろう材、電子デバイス及び電子デバイスの封止方法
JP2009289953A (ja) * 2008-05-29 2009-12-10 Hitachi Ulsi Systems Co Ltd ウェハレベルパッケージ、ウェハレベルパッケージの製造方法及びmemsデバイスの製造方法
US20130023082A1 (en) * 2008-09-10 2013-01-24 Analog Devices, Inc. Apparatus and Method of Wafer Bonding Using Compatible Alloy
JP2013153038A (ja) * 2012-01-25 2013-08-08 Seiko Epson Corp パッケージ、振動デバイス及び電子機器
JP2013232626A (ja) * 2012-04-04 2013-11-14 Seiko Epson Corp 電子デバイス及びその製造方法、電子機器、並びに移動体

Similar Documents

Publication Publication Date Title
JP5983912B2 (ja) 電子デバイスおよびその製造方法、並びに電子機器
JP5999302B2 (ja) 電子デバイスおよびその製造方法、並びに電子機器
JP2016099224A (ja) 物理量センサー、電子機器および移動体
EP3333578B1 (en) Physical quantity sensor, physical quantity sensor device, electronic apparatus, and vehicle
JP2016048176A (ja) 物理量センサー、電子機器および移動体
US20160033273A1 (en) Method for manufacturing physical quantity sensor, physical quantity sensor, electronic device, and moving body
JP2016044978A (ja) 物理量センサー、電子機器および移動体
JP2017125753A (ja) 電子デバイス、電子機器および移動体
JP6866623B2 (ja) 物理量センサー、物理量センサーデバイス、電子機器および移動体
JP2018148137A (ja) 電子デバイス、電子デバイスの製造方法、電子モジュール、電子機器および移動体
JP2016044979A (ja) 物理量センサー、電子機器および移動体
JP2016033465A (ja) 物理量センサーの製造方法、物理量センサー、電子機器および移動体
JP2015007559A (ja) モジュール、モジュールの製造方法、電子機器及び移動体
JP2019007855A (ja) 振動デバイス、振動デバイスモジュール、電子機器および移動体
JP2018132492A (ja) 物理量センサー、物理量センサーデバイス、電子機器および移動体
JP2017092117A (ja) 電子デバイス、電子デバイスの製造方法、電子機器および移動体
JP2016033464A (ja) 物理量センサーの製造方法、物理量センサー、電子機器および移動体
JP2016099225A (ja) 物理量センサー、物理量センサーの製造方法、電子機器および移動体
JP2017125755A (ja) 物理量センサーの製造方法、物理量センサー、電子機器および移動体
JP6369200B2 (ja) 物理量センサー、電子機器および移動体
JP2018163137A (ja) 物理量センサー、電子機器および移動体
JP2015161641A (ja) 機能デバイスの製造方法、機能デバイス、電子機器および移動体
JP2017126626A (ja) 電子デバイス、電子デバイスの製造方法、電子機器および移動体
JP6679890B2 (ja) 物理量センサー、電子機器および移動体
JP2016045190A (ja) 物理量センサー、電子機器および移動体

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160617

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20180403