JP2016031763A - 温度制御を有する回路基板及びその設計方法 - Google Patents

温度制御を有する回路基板及びその設計方法 Download PDF

Info

Publication number
JP2016031763A
JP2016031763A JP2015145466A JP2015145466A JP2016031763A JP 2016031763 A JP2016031763 A JP 2016031763A JP 2015145466 A JP2015145466 A JP 2015145466A JP 2015145466 A JP2015145466 A JP 2015145466A JP 2016031763 A JP2016031763 A JP 2016031763A
Authority
JP
Japan
Prior art keywords
heat
lines
electrical connection
heat conducting
temperature sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015145466A
Other languages
English (en)
Other versions
JP6426548B2 (ja
Inventor
ディー.シュマーレンバーグ ポール
D Schmalenberg Paul
ディー.シュマーレンバーグ ポール
エム.ディード アーカン
M Dede Ercan
エム.ディード アーカン
壮史 野村
Takeshi Nomura
壮史 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Engineering and Manufacturing North America Inc
Original Assignee
Toyota Motor Engineering and Manufacturing North America Inc
Toyota Engineering and Manufacturing North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Engineering and Manufacturing North America Inc, Toyota Engineering and Manufacturing North America Inc filed Critical Toyota Motor Engineering and Manufacturing North America Inc
Publication of JP2016031763A publication Critical patent/JP2016031763A/ja
Application granted granted Critical
Publication of JP6426548B2 publication Critical patent/JP6426548B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/394Routing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09781Dummy conductors, i.e. not used for normal transport of current; Dummy electrodes of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/30Details of processes not otherwise provided for in H05K2203/01 - H05K2203/17
    • H05K2203/304Protecting a component during manufacturing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0005Apparatus or processes for manufacturing printed circuits for designing circuits by computer

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

【課題】回路基板及びコンピュータが実装する回路基板を設計する方法を提供する。
【解決手段】絶縁基板を有する回路基板を設計する方法は、コンピュータが、温度感受素子から離れる方向に熱発生素子により発生された熱流が向かうように配置される複数の熱伝導線を決定することと、入力回路図に基づいて複数の電気接続線を決定することとを含む。複数の電気接続線の少なくとも一部は、複数の熱伝導線の少なくとも一部を組み込んで、絶縁基板上に配置された2つ又は3つ以上の素子のピンを電気的に接続する導電線パターンを規定する。導電線パターンは、複数の熱伝導線と、複数の電気接続線とを含む。
【選択図】図2

Description

本発明は、回路基板に関し、より詳細には温度制御及び電気相互接続性の目的を充足する回路基板を配置するための回路基板設計方法に関する。
一般的に、電気素子は、動作の不要な副産物として熱を発生する。電気素子の動作により発生された熱は、周囲の環境に受け入れられるものではない。しかしながら、発生される熱が増加すると、電気素子の性能及び動作に有害になるおそれがある。いくつかのアプリケーションでは、熱に弱い電気素子は、1つ又は2つ以上の回路基板上の他の電気素子からの熱が、熱に弱い電気素子の動作に不利な影響を与える位置に配置されるおそれがある。
したがって、熱エネルギの流れを制御する回路基板を設計し且つ組み立てる方法が望まれている。
1つの実施形態では、絶縁基板を有する回路基板を設計する方法は、コンピュータが、温度感受素子から離れる方向に熱発生素子により発生された熱流が向かうように配置される複数の熱伝導線を決定することと、入力回路図に基づいて複数の電気接続線を決定することとを含む。複数の電気接続線の少なくとも一部は、複数の熱伝導線の少なくとも一部を組み込んで、絶縁基板上に配置された2つ又は3つ以上の素子のピンを電気的に接続する導電線パターンを規定する。導電線パターンは、複数の熱伝導線と、複数の電気接続線とを含む。
他の実施形態では、回路基板は、表面を有する絶縁基板と、絶縁基板の表面に結合された熱発生素子マウントと、絶縁基板の表面上の伝導線パターンとを含む。伝導線パターンは、複数の熱伝導線と、複数の電気接続線とを含む。複数の熱伝導線は、シールド部と、集中部とに配置される。複数の電気接続線の少なくとも一部は、複数の熱伝導線の少なくとも一部を組み込む。伝導線パターンは、絶縁基板上に配置された2つ又は3つ以上の素子のピンを電気的に接続する。さらに、回路基板は、絶縁基板の表面に結合され且つ熱発生素子マウントから遠位に位置する温度感受素子マウントを含む。シールド部は、熱発生素子マウントから放射される熱流を熱発生素子マウントと温度感受素子マウントとの間の第1方向から離れる方向に向けるように配置される。
図1は、本明細書で説明される機能を実行するときに利用されてもよいハードウェア及びソフトウェアを説明するコンピューティングデバイスの一例を示す図である。 図2は、本明細書で説明される1つ又は2つ以上の実施形態に従って回路基板を設計する方法の一例を示すフローチャートを示す。 図3は、本明細書で説明される1つ又は2つ以上の実施形態に従う電気接続線をルーティングする前の複数の熱伝導線を有する単一のコンポジット積層板を有する回路基板の側面斜視図である。 図4は、図3に示す回路基板の平面図である。 図5Aは、本明細書で説明される1つ又は2つ以上の実施形態に従う電気接続線をルーティングする前のコンポジット積層板及び複数の熱伝導線を有する単一のコンポジット積層板を有する回路基板の側面透視図である。 図5Bは、本明細書で説明される1つ又は2つ以上の実施形態に従う図5Aの回路基板の回路基板の分解側面透視図である。 図6は、図5AのA−A線に沿う回路基板の側面断面図である。 図7は、本明細書で説明される1つ又は2つ以上の実施形態に従う電気接続線をルーティングする前の熱発生素子デバイス、熱感受デバイス及び複数の熱伝導線を有する回路基板の平面図である。 図8は、本明細書で説明される1つ又は2つ以上の実施形態に従う図7のいくつかの熱伝導線の拡大図である。 図9は、本明細書で説明される1つ又は2つ以上の実施形態に従う導電ブリッジにより電気的に結合された隣接する2つの熱伝導線の拡大図である。 図10は、本明細書で説明される1つ又は2つ以上の実施形態に従う導電ブリッジにより電気的に結合され且つ絶縁ブレークにより電気的に絶縁された隣接する2つの熱伝導線の拡大図である。 図11Aは、本明細書で説明される1つ又は2つ以上の実施形態に従う対向する熱伝導線の間のビアの形成を示す図である。 図11Bは、本明細書で説明される1つ又は2つ以上の実施形態に従う対向する熱伝導線の間のビアの形成を示す図である。 図11Cは、本明細書で説明される1つ又は2つ以上の実施形態に従う対向する熱伝導線の間のビアの形成を示す図である。 図12は、本明細書で説明される1つ又は2つ以上の実施形態に従う複数の熱伝導線及び複数の電気接続線を有す回路基板の一例の部分平面図である。
図示される実施形態は、実際は、説明のための例示的なものであり、特許請求の範囲に規定される主題を限定することを意図するものではない。説明のための実施形態の以下の詳細な説明は、同一の構造は同一の符号が付される以下の図面を参照して解釈するときに理解できる。
1つ又は2つ以上のコンポジット積層板上に複数の熱伝導線を配置することによって熱流の方向を制御する回路基板及びそのような回路基板を設計し且つ組み立てる方法の実施形態は、詳細に説明されることになる。熱伝導線は、回路基板のコンポジット積層板に沿う方向で及び/又はその方向と異なる割合で及び/又は等方性絶縁基板の熱流の割合で、熱エネルギを移動させる。熱伝導を有するコンポジット積層板及び異方性配置の絶縁基板を提供することによって、熱エネルギは、コンポジット積層板に結合された電気素子の動作を改良する方向及び速度で移動することが可能になる。
さらに、実施形態は、入力回路図に従って回路基板の様々な構成素子の間に電気接続線を自動ルーティングすることを提供する。電気接続線は、先に決定された複数の熱伝導線を考慮して配置される。より詳細には、本開示の実施形態に従うと、電気線は、熱伝導線により提供される熱制御の目的が実現されるように、複数の熱伝導線の配置及び構成の分断が最小限になるように、配置及び構成される。加えて、いくつかの実施形態では、電気接続線は、1つ又は2つ以上の熱伝導線を組み込み、所望の電気的な接続を形成する。
回路基板及び回路基板を設計し組み立てる方法の様々な実施形態は、本明細書でより詳細に説明されることになる。
図1は、本明細書で説明される実施形態に従う、改良された熱制御特性を有する回路基板の設計のためであり及び/又は回路基板の設計のための非一時的なコンピュータ読み取り可能な媒体であり及び/又はファームウェアであるシステムを説明する例示的なコンピューティングデバイス10を示す図である。いくつかの実施形態では、コンピューティングデバイス10は、必須のハードウェア、ソフトウェア及び/又はファームウェアを有する汎用コンピュータとして構成されてもよく、本明細書で説明される機能を実行するために特別に設計された特定用途コンピュータとして構成されてもよい。
図1を参照すると、コンピューティングデバイス10は、プロセッサ30と、入力/出力ハードウェア32と、ネットワークインタフェースハードウェア34と、データ記憶素子36(素子データ38a及び他のデータ38bを記憶してもよい)と、非一時的メモリ素子40とを含んでもよい。メモリ素子40は、揮発性及び不揮発性のコンピュータ読み取り可能な媒体として構成されてもよく、ランダムアクセスメモリ(SRAM、DRAM及び/又は他の形式のランダムアクセスメモリを含む)、フラッシュメモリ、レジスタ、コンパクトディスク(CD)、DVD(digital versatile discs)、及び/又は他の形式の記憶素子のようなものを含んでもよい。加えて、メモリ素子40は、動作ロジック42と、熱最適化ロジック43と、自動電気線ルーティングロジック44と、自動素子配置ロジック45(一例として、これらのそれぞれは、コンピュータプログラム、ファームウェア、又はハードウェアとして具体化されてもよい)を記憶するように構成されてもよい。また、ローカルインタフェース46は、図1に含まれてもよく、バス又はコンピューティングデバイス10の構成素子の間の通信を容易にする他のインタフェースとして実装されてもよい。
プロセッサ30は、(データ記憶素子36及び/又はメモリ素子40などから)命令を受信し且つ実行するように構成された何れかの処理素子を含んでもよい。入力/出力ハードウェア32は、(モニタ等の)グラフィック表示デバイス、キーボード、マウス、プリンタ、カメラ、マイクロフォン、スピーカ、タッチスクリーン及び/又は受信されたデータ、送信されたデータ及び提示されたデータのための他のユーザ入力デバイス及び出力デバイスを含んでもよい。ネットワークインタフェースハードウェア34は、モデム、LANポート、ワイヤレス・フィディリティ(wireless fidelity、Wi−Fi(登録商標))カード、WiMax(登録商標)カード、ロング・ターム・エボリューション・カード、モバイルコミュニケーションハードウェア及び/又は他のネットワーク及び/又は他のデバイスと通信するための他のハードウェアを含んでもよい。
データ記憶素子36は、コンピューティングデバイス10の一部として配置されてもよく及び/又はコンピューティングデバイス10から離れて配置されてもよく、コンピューティングデバイス10及び/又は他の素子によるアクセスのためのデータの1つ又は2つ以上の要素を記憶するように構成されてもよいことが理解されるべきである。図1に示すように、データ記憶素子36は、一例では動作温度、熱流、電圧要求及びパッケージスタイルであるがこれらに限定されない様々な電気素子のパラメータに関するデータを含んでもよい素子データ38aを含んでもよい。以下に説明するように、素子データを、熱最適化ルーティン(すなわち熱最適化ロジック43)及び熱電気線ルーティングルーティン(すなわち自動電気線ルーティングロジック44)が利用して、温度制御及び電気接続性の目的を充足する熱伝導線及び電気接続線を発生してもよい。素子データ38aは、1つ又は2つ以上のデータ記憶デバイスに記憶されてもよい。
同様に、他のデータ38bは、データ記憶素子36に記憶されてもよく、以下に詳細に説明するように、熱伝導線及び/又は電気接続線の発生に関連するデータを含んでもよい。一例では、1つ又は2つ以上の入力回路図は、データ記憶素子36に記憶されて、電気接続線を発生するために使用されてもよい。また、他のデータ38bは、本明細書で説明する機能の付加的な支援を提供してもよい。
他の実施形態では、コンピューティングデバイス10は、複数の熱伝導線及び複数の電気接続線の構成がコンピューティングデバイス10から離れて発生されるように、素子データ及び/又は他のデータを有する遠隔サーバ又はデータ記憶デバイスに接続されてもよい。
動作ロジック42、熱最適化ロジック43、自動電気線ルーティングロジック44及び自動素子配置ロジック45は、メモリ素子40に含まれる。動作ロジック42は、コンピューティングデバイス10の素子を管理するための動作システム及び/又は他のソフトウェアを含んでもよい。熱最適化ロジック43は、以下に詳細に説明されるように、温度感受素子から離れる方向に熱流が向かうように、複数の熱伝導線を発生する熱最適化ルーティンを提供するように構成されてもよい。自動電気線ルーティングロジック44は、入力回路図に従って複数の電気接続線を自動的に発生し且つ熱最適化ロジック43が創出した複数の熱伝導線の分断を最小限にする自動電気接続線ルーティングロジックを提供するように構成される。いくつかの実施形態において、自動素子配置ロジック45を利用して、入力回路図の電気素子の回路基板への配置を自動的に決定してもよい。自動素子配置ロジック45は、電気素子の間の相互接続、パッケージ形式及び電磁干渉許容値等のような要因を考慮してもよい。他の実施形態では、電気素子の配置は、手動で決定されてもよい。
図1に示す素子は、単なる一例であり、本開示の範囲を限定することを意図するものではないことを理解すべきである。より具体的には、図1の素子は、コンピューティングデバイス10の内部に配置されるように示されるが、これは、限定されることがない一例である。いくつかの実施形態では、素子の1つ又は2つ以上は、コンピューティングデバイス10の外に配置されてもよい。
図2のフローチャート50は、回路基板を設計するためのコンピュータに実装される方法の1つの例示的な実施形態を示す。以下に詳細に説明するように、例示的な実施形態において、熱流管理のための複数の熱伝導線の位置及び構成を決定するために、熱最適化ルーティンが最初に実行され、次いで、電気素子の間の必要な電気的な接続を創出し且つ複数の熱伝導の分断を最小限にするために、自動電気線ルーティングルーティンが実行される。
ブロック51において、回路基板上の電気素子を搭載する位置は、決定される。電子素子の配置は、手動で実行されてもよく、コンピュータを使用して自動で実行されてもよい。例えば、自動配置ルーティンを実行して、様々な電子素子のサイズ、様々の電子素子の間の接続性、電磁干渉及び熱特性等の要因に基づいて入力回路図面の電気素子の配置を最適に決定してもよい。
回路基板に搭載される電子素子は、電気コネクタ、抵抗、キャパシタ、ダイオード、光電デバイス、集積回路、マイクロプロセッサ、パワーエレクトロニクスデバイス(絶縁ゲートバイポーラトランジスタ、パワーMOSFETなどのような)等のような何れの形式の電気素子を含んでもよい。
電気素子の1つ又は2つ以上は、動作の浪費副産物として熱を発生してもよい(いわゆる「熱発生素子(heat generating components)」)。また、1つ又は2つ以上の電気素子は、温度感受性であり、1つ又は2つ以上の熱発生素子が発生した熱エネルギを1つ又は2つ以上の温度感受素子(temperature sensitive components)の動作に悪影響を及ぼしてもよい。以下に詳細に説明されるように、熱発生素子は、絶縁ゲートバイポーラトランジスタのようなパワーエレクトロニクスであってもよく、温度感受素子は、制御集積回路(マイクロ制御回路)等であってもよい。本開示の実施形態は、熱伝導線を提供して、回路基板の1つ又は2つ以上の温度感受素子から離れるように、1つ又は2つ以上の熱発生素子が発生する熱流をルーティングしてもよい。
ブロック52において、複数の電気素子の間への電気的な接続のルーティングに先立ち、コンピュータベースの熱最適化ルーティンを実行して、縮小熱伝導領域及び強化熱伝導領域を規定する複数の熱伝導線を決定して、1つ又は2つ以上の温度感受素子から離れる方向に熱流をルーティングする。一般に、熱最適化ルーティンは、様々な電気素子の熱特性(予期される動作状態での動作の間の副産物の熱発生等)及び絶縁基板の熱特性(絶縁基板の熱伝導率等)を考慮して、1つ又は2つ以上の温度感受素子から離れる方向に熱流をルーティングするように複数の熱伝導線を創出する。複数の熱伝導線の構成の決定に関する付加的な詳細は、参照することのより全体が本明細書に包含される米国出願番号14/340,610及び14/340,614と同様に、図3〜6を参照してより詳細に説明される。
このように、熱最適化ルーティンは、設計の温度を制御する目的を達成する複数の熱伝導線を創出する。
ブロック54において、回路基板に配置された様々な素子の間の電気的な接続は、自動電気線ルーティングルーティンにより自動的に発生される。自動電気線ルーティングルーティンは、電気接続線を発生する一方、先に創出された熱伝導線を考慮する。自動電気線ルーティングルーティンは、商用利用可能な電気設計自動化ソフトウェア(米国カリフォルニア州サンノゼのCadence(登録商標)が販売するAllegro(商標)PCB設計ソフトウェア及びウクライナのDnepropetrovskのNovarmが販売するDip Trace(商標)等)の修正版、又は自動電気線ルーティング機能を有する私有の電気設計自動化ソフトウェアであってもよい。
図7〜12を参照して以下により詳細に説明するように、自動電気接続線ルーティングルーティンは、複数の熱伝導線の配置及び構成の分断を最小限にする電気接続線のルーティングにより電気素子のピンを電気的に接続することによって、複数の熱伝導線の有効性の縮小を最小限にして、熱流をルーティングし且つ熱制御の目的を達成する。一般に、自動電気接続線ルーティングルーティンは、熱伝導線(熱導電線の一部を含む)の移動及び/又は除去を回避するような規則を含む。ここで、電気接続線の他の非破壊的なルーティングは利用可能である。限定的でない一例として、自動電気線ルーティングルーティンの実行前の初期の複数の熱伝導線からの複数の熱伝導線の合計の修正部は、15%よりも小さい。合計の修正部の割合は、熱伝導線の修正部の全体の長さを電気線の形成前の初期の熱伝導線の合計の長さで除することにより計算されてもよい。
いくつかの例において、電気接続線ルーティングルーティンは、1つ又は2つ以上の電気素子の1つ又は2つ以上のピンを電気的に接続するために電気接続線が1つ又は2つ以上の熱伝導線を組み込むように、電気接続線をルーティングしてもよい。このように、先に決定された熱伝導線の構成は、自動電気線ルーティングルーティンによる分断を最小限にすることができる。複数の熱伝導線及び複数の電気接続線は、以下に詳細に説明するように、回路基板の1つ又は2つ以上の絶縁基板の1つ又は2つ以上の表面に適用される導電線パターンを共同で規定する。
ブロック58において、複数の熱伝導線及び複数の電気接続線に関連するデータ(位置データ及び寸法データ等)は、(電気素子の表面マウントパッド、スルーホールのような)回路基板の他の特徴に関連するデータと共に、1つ又は2つ以上のガーバーファイル(又は他の同様の画像ファイルフォーマットファイル))に提供されて、回路基板の製造のために使用されてもよい。
ここで図3を参照して、複数の熱伝導線142の発生後且つ複数の電気接続線のルーティング前の回路基板100の1つの実施形態を示す。したがって、図3は、熱流制御のための熱伝導線の配置を示す。なお、図3に示す回路基板100は、設計段階且つ実際の製造の前に表れる。説明を簡単にするために、図3において、熱発生素子230及び温度感受素子232の2つの電気素子のみが回路基板に配置される。回路基板100は、より多くの電気素子が追加されてもよく、回路基板100は、説明のためにのみ提供されることを理解すべきである。
説明される実施形態において、回路基板100は、様々な電気素子が取り付けられる取付基板として機能するコンポジット積層板120を含む。また、回路基板100は、コンポジット積層板120に共に接合された熱発生素子マウント130及び温度感受素子マウント132を含む。温度感受素子マウント132は、熱発生素子マウント130から遠位に位置する。熱発生素子230は、熱発生素子マウント130への取り付けを介して回路基板100に搭載されてもよい。同様に、温度感受素子232は、温度感受素子マウント132への取り付けを介して回路基板100に搭載されてもよい。他の実施形態では、熱発生素子230及び温度感受素子232のそれぞれは、熱発生素子マウント130及び温度感受素子マウント132を使用することなく、回路基板100に直接搭載されてもよい。上述のように、熱発生素子230及び温度感受素子232以外の電気素子は、コンポジット積層板120に配置されてもよい。
図3に示す実施形態において、熱発生素子230は、動作の副産物として熱を発生するパワーエレクトロニクスデバイスであってもよい。熱発生素子230は、例えば、コンピュータ処理ユニット、グラフィカル処理ユニット及びチップセット等の集積回路を含む様々な電気デバイスであってもよい。いくつかの実施形態では、熱発生素子230は、電力インバータ、電圧整流器、電圧レギュレータ等に利用されるようなパワー半導体デバイスであってもよい。例示的なパワー半導体デバイスは、パワー絶縁ゲートバイポーラトランジスタ、MOSFET等を含むがこれらに限定されない。他の実施形態では、熱発生素子230は、電気モータ又は発電機を含んでもよい。一般に動作中、熱発生素子230は、熱発生素子230の設計された動作機能の不要な副産物として熱を発生する。電気素子は、高温条件では温度故障又は固定障害の影響を通常受けやすいので、熱発生素子230が発生した熱は、一般に望まれない。それにもかかわらず、熱発生素子230は、広範な温度帯に亘って動作し続ける。
加えて、図3に示す実施形態において、温度感受素子232は、平面カプラ、インダクタ/トランスフォーマ、高Q共振回路、検出器、電流検知抵抗、水晶発振器、整列された光学素子、又はヒューマンインタフェース制御ボタン等を含む様々な温度感受電気デバイスから選択されてもよい。温度感受素子232の動作は、熱発生素子230が発生した熱エネルギにより悪影響が及ぼされる可能性がある。代替的には、他の実施形態では、温度感受素子232は、熱−電発電機又はピエゾ−電気ファン等のような熱エネルギが増加することによって効率が向上するように動作する温度感受電気デバイスを含んでもよい。また、更に他の実施形態では、温度感受素子232は、複数段のヒートパイプ、対流ヒートシンク等のような熱エネルギが増加することによって効率が向上するように動作する熱―機械デバイスであってもよい。温度感受素子232等に向かう熱エネルギが増加することによって、温度感受素子232の性能を向上できる。これに応じて、コンポジット積層板120に接合された温度感受素子232の温度を管理することによって、コンポジット積層板120は、コンポジット積層板120の沿って流れる熱流の方向及び/又は密度を修正する熱移動管理機能を含んでもよい。
図3に示す実施形態において、コンポジット積層板120は、絶縁基板140と、絶縁基板140に接合された熱伝導せん142の層を含む。熱伝導線142は、銅、銀、金、及びこれらの合金を含むがこれらに限定されない高い熱伝導特性を有する様々な金属の何れかから選択されてもよい。熱伝導線142は、絶縁基板140の熱伝導率kiよりも大きい熱伝導率kcを有してもよい。いくつかの実施形態では、kcは、少なくとも1桁の大きさでkiよりも大きい。絶縁基板140は、カーボン強化又はガラス強化と組み合わせてもよいポリプロピレン、ポリエステル、ナイロン、エポキシ等のようなプラスティック等の導電率が低い様々な材料から選択されてもよい。1つの実施形態では、絶縁基板140は、ガラス強化エポキシであるFR−4から形成されてもよい。絶縁基板140は、熱伝導線142の熱伝導率kcよりも小さい熱伝導率kiを有してもよい。いくつかの実施形態において、コンポジット積層板120は、従来の製造技術によって製造されるプリント回路基板であってもよい。いくつかの実施形態において、熱伝導線142は、絶縁基板140に少なくとも一部が組み込まれる。
説明される実施形態では、熱伝導線142は、概して互いに離れて配置され、熱伝導線142は、絶縁基板140によって互いの接続が分離される。熱伝導線142は、絶縁基板140により互いに分離されることにより、互いに熱的に分離され、熱流は、熱伝導線142の長さ方向に横断する方向よりも熱伝導線142の長さ方向に沿って伝導しやすくなる。熱伝導線142が熱的に分離されているか否かは、熱伝導線142が互いに電気的に分離されるかに基づいて決定されてもよい。
ここで、図3に示す回路基板100の平面図である図4を参照すると、熱発生素子マウント130及び温度感受素子マウント132は、熱発生素子マウント130から温度感受素子マウント132に向かって延伸する複数のシールドパスプロジェクション(shielding path projections)180を規定するように互いに関連して配置される。図4に示す実施形態では、複数のシールドパスプロジェクション180は、熱発生素子マウント130の外周から温度感受素子マウント132の外周まで延伸する。シールドパスプロジェクション180は、熱発生素子マウント130と温度感受素子マウント132との間の等方性基板を介する熱流の流れの全般的な方向を代表する。また、回路基板100は、熱発生素子マウント130から離れて延伸する複数の焦点パスプロジェクション(focusing path projections)184を含む。焦点パスプロジェクション184は、熱発生素子マウント130から温度感受素子232から離れた領域、又は不図示のヒートシンクが配置されるような所望の位置に向かって延伸するように位置してもよい。焦点パスプロジェクション184は、シールドパスプロジェクション180に重複しないように位置してもよい。いくつかの実施形態では、熱伝導線142は、焦点パスプロジェクション184と略整列するように位置してもよい。いくつかの実施形態では、熱伝導線142の一部は、シールドパスプロジェクション180から離れた位置では、焦点パスプロジェクションにと略整列してもよい。
図3及び4に示すように、複数の熱伝導線142は、熱発生素子マウント130から温度感受素子マウント132に延伸するシールドパスプロジェクション180を横断して位置する。いくつかの実施形態では、熱伝導線142は、熱発生素子マウント130から温度感受素子マウント132に延伸するシールドパスプロジェクション180のいくつか又は全てに直交する。シールドパスプロジェクション180に近接して位置する熱伝導線142は、領域150のパスプロジェクションに直交して配列される。シールドパスプロジェクション180から遠位に位置する熱伝導線142は、領域152の焦点プロジェクションの方向に沿って配列される。
この位置の熱伝導線142は、熱発生素子230から温度感受素子232への熱流を修正する。熱伝導線142は、絶縁基板140よりも高い伝導率を有するので、熱発生素子マウント130に接合された熱発生素子230が発生する熱エネルギは、熱伝導線142に沿って、熱発生素子マウント130と温度感受素子マウント132との間のシールドパスプロジェクション180を横断する方向に向かう傾向がある。シールドパスプロジェクション180を横断する方向に熱流が向かうことにより、熱発生素子20から温度感受素子マウント132(したがって、温度感受素子132)への熱の導入は、最小化できる。その代わりに、熱発生素子230で発生された熱は、シールドパスプロジェクション180から離れる熱伝導線142に沿って領域152に向かう。ここで、熱流は、温度感受素子マウント132から離れ、焦点パスプロジェクション184に実質的に平行であり且つ領域152を規定する熱伝導線142に沿った所望の位置に向かってもよい。
図3及び4を更に参照すると、複数の熱伝導線142は、温度感受素子マウント132の周りが略凹型になるように、互いに関連するネスト化構造(nested configuration)で配列されてもよい。ネスト化構造に配置された複数の熱伝導線142は、領域150の内部で評価されたパス長を有する。ここで、温度感受素子マウント132に近接して位置する熱伝導線142のパス長さは、温度感受素子マウント132から遠位に位置する熱伝導線142のパス長よりも短い。熱伝導線142のネスト化構造の幾何学的配置は、熱伝導線142を横切る熱流を減少することができる。その代わりに、熱流は、熱伝導線142の長さ方向に向かい、熱流が温度感受素子マウント132から離れて、熱除去を目的とする回路基板100の素子に、焦点パスプロジェクション184に平行な熱伝導線142に沿って向かう。
ここで、図5A、5B及び6を参照すると、複数のコンポジット積層板120を含む積層板アセンブリ110を有する回路基板101が示される。積層板アセンブリ110は、図5Bにおいて、コンポジット積層板120と共に分解状態で示される。図6は、図5AのA−A線に沿った回路基板101の断面図である。図3及び4を参照して先に説明したコンポジット積層板120の実施形態と同様に、図5A及び5Bに示す実施形態の積層板アセンブリ110の実施形態は、特定のエンドユーザのアプリケーションの要求に従って熱流の方向を制御する配置で、絶縁基板140に接合された複数の熱伝導線142をそれぞれが含む複数のコンポジット積層板120を含んでもよい。図5A及び5Bに示す実施形態において、熱伝導線142は、熱発生素子マウント130と温度感受素子マウント132との間の領域150の絶縁基板140、及び領域150の外側に位置する領域152の絶縁基板140に関連して配置される。積層板アセンブリ110を形成する複数のコンポジット積層板120を横切る伝導熱移動の修正によって、回路基板100に取った熱移動は、複数のコンポジット積層板120に沿った所望の温度プロファイルを提供することを目的にできる。
上述のように、1つ又は2つ以上の領域150は、熱発生素子マウント130と温度感受素子マウント132との間の第1方向から離れる方向に熱流を優先的に向かわせる。領域152は、領域150の外側の位置において、積層板アセンブリ110に沿った熱流を増加してもよい。図5A及び5Bに示す実施形態において、領域152は、温度感受素子マウント132から離れる方向に熱流を制御して、温度感受素子232の温度を低下させてもよい。
複数のコンポジット積層板120は、熱伝導線142及び絶縁基板140を通る熱流の伝導によって、積層板アセンブリ110の厚さによって熱流を優先的に向かわせることのよって、熱流を修正してもよい。それぞれが領域150及び領域152を有する複数のコンポジット積層板120を積層板アセンブリ110に包含することによって、熱発生素子203と温度感受素子232との間の熱流をシールドし且つ集中する効果は、単一のコンポジット積層板120と比較して向上できる。このような積層板アセンブリ110は、複数のコンポジット積層板120により熱移動を同時に管理できる。したがって、複数のコンポジット積層板120を有する積層板アセンブリ110は、領域150及び領域152を有する単一のコンポジット積層板120よりも良好な制御による熱流の伝導を管理できる。
いくつかの実施形態では、絶縁基板140の熱伝導線142の配置は、コンポジット積層板120の全てに亘って均一であってもよい。他の実施形態では、熱伝導線142は、熱発生素子230と温度感受素子232との間の熱流の管理において熱伝導線142を効果的に使用するためにコンポジット積層板120のそれぞれに亘って選択的に位置してもよい。例えば、いくつかの実施形態において、熱発生素子230に近接して位置するコンポジット積層板120と比較して、熱発生素子230から遠位に位置するコンポジット積層板120では、より少ない熱伝導線142が位置してもよい。このような配置によって、熱流が絶縁基板140を介して拡散する動きを把握して、熱発生素子230から遠位に位置するコンポジット積層板120内部に位置する熱伝導線142のいくつかの部分の影響が最小化される。
熱発生素子230及び温度感受素子232が結合されるコンポジット積層板120と相違するコンポジット積層板120に近接して位置する熱伝導線142による熱流の方向を制御することによって、熱発生素子230から温度感受素子232に導入される熱流は、最小化される。
さらに図5A及び5Bを参照すると、本開示に従う積層板アセンブリ110は、絶縁基板140の内部に熱伝導線142の異方性配置を組み込み、指向性のある方法で積層板アセンブリ110に沿った方向に熱流を効果的に向かわせる。例えば、図5A及び5Bに示す実施形態において、熱伝導線142の配置は、特定の設計に従って熱流を効果的に移動させて、熱発生素子マウント130から温度感受素子マウント132に導入される熱流が最小化される。熱流の方向性は、第1方向の熱流を増加し第2方向の熱流を減少する熱伝導線142の異方性配置によるものであってもよい。
図5A及び5Bに示す実施形態では、異方性配置は、温度感受素子マウント132の周りに評価されてもよい。説明される実施形態に示すように、熱伝導線142は、温度感受素子マウント132の周りと、熱発生素子マウント130と温度感受素子マウント132との間とに異方性配置で配置される。図5A及び5Bに示す実施形態では、コンポジット積層板120のそれぞれは、温度感受素子マウント132の周りで評価される熱伝導線142の円形対称性及び極性対称性を含まない。図5A及び5Bに示す積層板アセンブリ110のコンポジット積層板120のそれぞれが熱伝導線142の同一配置を有するので、積層板アセンブリ110は、温度感受素子マウント132の周りに評価される円筒対称性及び球形対称性を有さない。このように、絶縁基板140の熱伝導線142の異方性配置により、積層板アセンブリ110に沿った熱流方向が維持される。
絶縁基板140に少なくとも部分的に組み込まれる熱伝導線142を有するコンポジット積層板120の実施形態は、回路基板100に沿った一定状態の熱移動における熱伝導線142及び絶縁基板140の効果について本明細書で概略的に説明される。しかしながら、熱伝導線142として使用ざれる具体的な材料及び絶縁基板140に対する熱伝導線142の寸法を修正して、回路基板100の熱容量を調整することによって、回路基板100の過渡的な熱応答が管理されることを理解すべきである。
熱伝導線142を1つ又は2つ以上のコンポジット積層板120に配置して、温度感受素子232から離れた熱流を最適にルーティングできる。熱最適化ルーティンにより熱伝導線の最適なトポロジーがコンピュータにより発生された後に、自動電気線ルーティングルーティンを適用して、種々の電気素子(熱発生素子230及び/又は温度感受素子232等)のピンが電気的に接続される。
ここで、図7を参照すると、自動電気線ルーティングルーティンの実行前の複数の熱伝導線142を有する例示的な回路基板102の平面図が示される。例示的な回路基板102は、複数のピン231を有する熱発生素子230を含み、温度感受素子232もまた、複数のピン233を含む。図3〜6に示す実施形態を参照して説明したように、温度感受素子232は、熱発生素子230から遠位の絶縁基板140上に配置される。上述のように、複数の熱伝導線142は、温度感受素子232から離れる方向に熱流を向かわせる。実施形態は、2つ以上の熱発生素子及び温度感受素子を含んでもよいことを理解すべきである。
図8は、図7の方形破線に囲まれた領域の平面図である。図8に示す熱伝導線142A〜142Eは、温度感受素子232に対して凹形であるネスト化配列(nested array)に配置される。熱伝導線142A〜142Enoそれぞれは、幅wを有し、距離dで互いに離隔する。いくつかの実施形態では、幅w及び距離dは、熱伝導線のそれぞれで変動する。幅w及び距離dは、熱最適化ルーティンで決定されてもよい。
自動電気線ルーティングルーティンは、電気素子(熱発生素子230及び温度感受素子232等)の間に電気的な接続を創出する一方、先に決定された複数の熱伝導線の分断を最小限にする。すなわち、自動電気線ルーティングルーティンは、複数の電気接続線が決定されるといに、複巣の熱伝導線の転移を回避する。熱伝導線の分断は、熱電線材料の除去(絶縁ブレーク(isolating breaks))、熱伝導線の間への伝導材料の付加(伝導ブリッジ(conductive bridges))及び熱伝導線の転移を含んでもよい。
自動電気線ルーティングルーティンは、入力として電気的な図面を利用して、複数の電気接続線を発生してもよい。上述のように、自動電気線ルーティングルーティンは、複数の熱伝導線を考慮して電気的な接続を自動的にルーティングするようにプログラミングされた、修正した商用利用可能な電気設計自動化ソフトウェアパッケージ又は私有の電気設計自動化ソフトウェアとして構成されてもよい。
いくつかの実施形態では、複数の電気接続線は、1つ又は2つ以上の熱伝導線142に組み込む。例えば、導電ブリッジは、導電が望ましいときに隣接する熱伝導線の間に位置してもよく、熱伝導線の中の小さな絶縁ブレークは、電気的な絶縁が望ましいときに創出されてもよい。
ここで、図9を参照すると、自動電気線ルーティングルーティンは、熱伝導線142Cと熱伝導線142Dとの電気的な接続が電気接続の目的を達成するために望ましいことが決定されていてもよい。導電ブリッジ145は、熱伝導線142Cと熱伝導線142Dとの間に配置されて、熱伝導線142Cと熱伝導線142Dとの間の電気的な接続を達成する。このように、図9は、隣接する熱伝導線の間の例示的な電気的な接続を示す。なお、導電ブリッジ145の幅は、複数の熱伝導線142による熱制御の目的への変更を最小限にするために、可能な限り小さくしてもよい。すなわち、導電ブリッジを薄くすることによって、より厚い導電ブリッジよりも隣接する熱伝導線の間の熱クロストークが小さくなる。
図10は、電気的な絶縁及び電気的な接続の双方が隣接する熱導電線(すなわち、説明される実施形態における熱伝導線142C及び熱伝導線142D)に自動電気線ルーティングルーティンにより適用される例を示す図である。このような構成によって、隣接する熱伝導線の双方が一部を電気的に接合し且つ電気的に絶縁する電気接続線を提供してもよい。説明される実施形態において、第1絶縁ブレーク147Aは、熱伝導線142Cに形成され、熱伝導線142Cを第1セグメント142C´及び第2セグメント142C´´に分離し、第2絶縁ブレーク147Bは、熱伝導線142Dに形成され、熱伝導線142Dを第1セグメント142D´及び第2セグメント142D´´に分離する。第2セグメント142D´´及び第1セグメント142C´は、第1絶縁ブレーク147A及び第2絶縁ブレーク147Bによって電気トレース144から絶縁される。一例では、第2セグメント142D´´及び第1セグメント142C´は、他の電気的な接続に利用されてもよい。
いくつかの実施形態では、絶縁ブレークの幅は、特定の熱制御線に沿って移動する熱の分断を最小限にするために、可能な限り短くしてもよい。例えば、大きな絶縁ブレークは、熱最適化ルーティンに従う複数の熱伝導線により達成される熱流のルーティングを変更する可能性がある。
図11A〜11Cは、電気接続性及び/又は熱制御の目的を達成するために1つ又は2つ以上の絶縁基板140を通り抜ける電気ビアの提供方法を示す図である。まず、図11Aに示すように、第1熱伝導線142(上側の熱伝導線)は、絶縁基板140の第1表面に位置し、第2熱伝導線142´(下側の熱伝導線)は、絶縁基板140の第2表面に位置する。第1ビアパッド146は、第1熱伝導線142と一体化され、第2熱伝導線142´と一体化される第2ビアパッド146´に平行に配列される。次いで、導電ビア149は、第1ビアパッド146と第2ビアパッド146´との間に位置する(図11B)。これから、導電ビア149は、第1熱伝導線142と第2熱伝導線142´との間を熱的且つ電気的に接続する。そして、説明される実施形態では、第1絶縁ブレーク147は第1ビアパッド146に隣接して位置し、第2絶縁ブレーク147´は第2ビアパッド146´に隣接して位置して、電気接続性及び/又は熱制御の目的に従う所望の電気的な絶縁を提供する(図11C)。
ここで、図12を参照すると、熱最適化ルーティン及び自動電気線ルーティングルーティンの適用後の例示的な回路基板アセンブリ103の一部を示す図である。なお、図12で提供される回路基板103は、回路基板103のコンピュータが発生する表示を示してもよく、実際の製造後の回路基板103の物理的な実装を示してもよい。説明される実施形態では、複数の電気接続線(T1、T2及びTn等)及び複数の熱伝導線142(142A、142B、142C及び142Cが図12において付される)は、絶縁基板140の表面に提供される電導線パターンを集合的に規定する。例示的な回路基板103は、図12により提供される平面図では不図示である伝導線パターンの追加的な層及び追加的なコンポジット積層板を有してもよいことを理解すべきである。また、図12は、説明のために提供されるものであり、他の回路基板構成が可能であることを理解すべきである。
例示的な回路基板103は、熱発生素子230と、不図示の温度感受素子と、電気素子234とを有する。熱最適化ルーティンは熱伝導線142の構造及び配置を決定し、自動電気線ルーティングルーティンは複数の電気接続線(電気接続線Tn)の構造及び配置を決定した。一例では、熱発生素子230のピンP1は、電気接続線T1により規定される電気的な接続により電気素子234のピンP2、熱伝導線142Cの一部、導電ブリッジ145、導電部142B及び電気線T6に電気的に接続される。絶縁ブレーク147は、熱伝導線142Cに提供され、電気的な絶縁を提供する(例えば、図12に不図示の電気的な接続のため)。
電気接続線T2は、説明される例では、熱伝導線142Dに電気的に接続される。熱伝導線142Dは、ビアパッド146と、対応するビア149を含み、熱伝導線142Dを1つ又は2つ以上のコンポジット積層板120(不図示)に関連する付加的な導体に電気的且つ熱的に接続する。
電気素子234のピンP3は電気接続線T5によりビアV1に電気的に接続され、ピンP4は電気接続線T3により熱伝導線142Aに電気的に接続される。さらに、電気接続線T4は、熱伝導線142Aに電気的に接続される。多くの電気接続(Tnが付され又は符号が付されないもの)は、回路基板103の表面又は内部の不図示の位置に伸びる。
本開示の実施形態は、熱制御及び電気接続性の双方の目的を充足する回路基板の設計及び製造のためにコンピュータに実装される方法を対象とするものであることを理解すべきである。より具体的には、実施形態は、熱最適化ルーティンをまず適用して、1つ又は2つ以上の熱発生素子が創出した熱流の方向を、1つ又は2つ以上の温度感受素子から離れ且つ1つ又は2つ以上の所望の位置に制御する複数の熱伝導線を発現する。回路基板の絶縁基板の熱伝導線の選択的な位置により、熱流は、温度感受素子の周囲の温度上昇を最小限にする方向に効果的に向けることができる。
次いで、自動電気接続線ルーティングルーティンは、入力回路図に従って実行される。自動電気接続線ルーティングルーティンは、複数の熱伝導線の配置及び構造の分断を最小限にすると共に、複数の電気接続線を自動的に配置するように構成される。いくつかの例では、複数の電気接続線は、1つ又は2つ以上の熱伝導線と一体化されて、種々の電気素子のピンの間の所望の電気的な接続を形成してもよい。
本明細書に記載される回路基板により提案される伝導熱移動について特定の主張が本明細書においてされるが、上述の説明は、一定状態の動作における熱移動を対象とするものである。熱移動管理装置のパラメータは、過渡的な熱移動の管理を含む具体的なエンドユーザの要求に適合するように修正されてもよいことを理解すべきである。過渡期間の熱流の管理は、熱伝導線、絶縁基板、ビア、熱発生素子マウント、温度感受素子マウント及びヒートシンクなどの使用される回路基板の材料を修正することによって適応されてもよい。加えて、回路基板の何れか1つのコンポジット積層板に沿った過渡期間の熱流の管理のために、絶縁基板に対する熱伝導線の構造は、隣接する熱伝導線の間の相対的な間隙及び熱伝導線の形状と共に、熱伝導線の断面を修正することを含むように修正してもよい。ある過渡熱移動特性に適応するために修正される素子のリストは、説明された例であり、これに限定されないものと考えるべきである。
本明細書では用語「実質的に(substantially)」及び「約(about)」を利用して、量の比較、値、測定値、又はたの表示値に起因すると考えることができる不確実性の固有の程度を示してもよい。また、本明細書ではこれらの用語を利用して、量の表示値が開始基準から問題の主題の基本機能の変化をもたらすことなく変化してもよい程度を示してもよい。
具体的な実施形態が本明細書で図示及び説明されたが、本願発明の主題の精神及び範囲を逸脱することなく、種々の他の変更及び修正が可能であることを理解すべきである。また、本願発明の種々の態様が本明細書で説明されたが、このような態様は、組み合わせに利用しなくてもよい。したがって、本願発明の主題の範囲であるような変更及び修正の全ては、特許請求の範囲に記載される発明が対象とするものである。

Claims (20)

  1. 絶縁基板を有する回路基板の設計方法であって、
    コンピュータが、温度感受素子から離れる方向に熱発生素子により発生された熱流が向かうように配置される複数の熱伝導線を決定し、
    前記コンピュータが、入力回路図に基づいて複数の電気接続線を決定することであって、前記複数の電気接続線の少なくとも一部は、前記複数の熱伝導線の少なくとも一部を組み込んで、前記絶縁基板上に配置された2つ又は3つ以上の素子のピンを電気的に接続する伝導線パターンを規定し、前記伝導線パターンは、前記複数の熱伝導線と、前記複数の電気接続線とを含むこと、
    を含むことを特徴とする方法。
  2. 前記複数の電気接続線を決定するときに、前記複数の熱伝導線の分断は回避される、請求項1に記載の方法。
  3. 前記複数の電気接続線を決定した後、前記複数の熱伝導線の合計の修正部は、自動電気線ルーティングルーティンの実行前の初期の前記複数の熱伝導線の15パーセントよりも小さい、請求項1に記載の方法。
  4. 前記複数の熱伝導線は、前記熱発生素子から前記温度感受素子に延伸するシールドパスプロジェクションを規定することによって決定され、
    前記複数の熱伝導線の少なくとも1つの熱伝導線は、前記熱発生素子と前記温度感受素子との間の前記シールドパスプロジェクションを横断して、前記熱流を前記温度感受素子から離れる方向に向ける、請求項1に記載の方法。
  5. 前記複数の熱伝導線の少なくとも一部は、前記温度感受素子に対して凹形であるネスト化配列に位置する、請求項1に記載の方法。
  6. 前記2つ又は3つ以上の素子は、前記熱発生素子と前記温度感受素子とを有し、前記複数の電気接続線の少なくとも一部は、前記複数の熱伝導線の1つ又は2つ以上の熱伝導線を使用して、前記熱発生素子の1つ又は2つ以上のピンを前記温度感受素子の1つ又は2つ以上のピンに電気的に接続する、請求項1に記載の方法。
  7. 前記複数の電気接続線を決定することは、前記入力回路図に従って前記複数の熱伝導線の1つ又は2以上の熱伝導線を修正することを含む、請求項1に記載の方法。
  8. 前記2つ又は3つ以上の素子は、前記熱発生素子及び前記温度感受素子以外の付加的な電気素子を有し、前記複数の電気接続線の1つ又は2つ以上の電気接続線は、前記付加的な電気素子の1つ又は2つ以上のピンを前記熱発生素子及び/又は前記温度感受素子の1つ又は2つ以上のピンに電気的に接続する、請求項1に記載の方法。
  9. 前記付加的な電気素子の1つ又は2つ以上のピンは、前記複数の熱伝導線の1つ又は2つ以上の熱伝導線によって、前記熱発生素子及び/又は前記温度感受素子の1つ又は2つ以上のピンに電気的に接続される、請求項8に記載の方法。
  10. 前記複数の電気接続線を決定することは、前記複数の熱伝導線の1つ又は2つ以上の熱伝導線に絶縁ブレークを形成することを含む、請求項1に記載の方法。
  11. 前記複数の電気接続線を決定することは、前記複数の熱伝導線の隣接する熱伝導線の間に導電ブリッジを形成することを含む、請求項1に記載の方法。
  12. 前記複数の熱伝導線の一部は、前記複数の電気接続線を決定した後に動いていない、請求項1に記載の方法。
  13. 前記絶縁基板の第2表面のための複数の第2熱伝導線を決定することであって、前記複数の第2熱伝導線は、前記熱発生素子が発生した熱流が前記温度感受素子から離れる方向に向くように配置されることを更に含む、請求項1に記載の方法。
  14. 前記複数の第2熱伝導線は、前記複数の電気接続線を決定する前の前記複数の熱伝導線と同一である、請求項13に記載の方法。
  15. 複数の第2熱伝導線は、前記複数の電気接続線を決定した後の前記複数の熱伝導線と相違する、請求項14に記載の方法。
  16. 前記複数の電気接続線を決定することは、前記絶縁基板の中を通る伝導ビアを配置して前記絶縁基板の表面の少なくとも1つの熱伝導線を前記絶縁基板の前記第2表面の少なくとも1つの熱導電線とを電気的に接続することを含む、請求項13に記載の方法。
  17. 表面を有する絶縁基板と、
    前記絶縁基板の前記表面に結合された熱発生素子マウントと、
    前記絶縁基板の前記表面上の伝導線パターンであって、
    前記伝導線パターンは、複数の熱伝導線と、複数の電気接続線とを有し、
    前記複数の熱伝導線は、シールド部と集中部とに配置され、
    前記複数の電気接続線の少なくとも一部は、前記複数の熱伝導線の少なくとも一部を組み込み、
    前記伝導線パターンは、前記絶縁基板上に配置された2つ又は3つ以上の素子のピンを電気的に接続する伝導線パターンと、
    前記絶縁基板の表面に接合され且つ前記熱発生素子マウントから遠位に位置する温度感受素子マウントであって、前記シールド部は、前記熱発生素子マウントから放射される熱流を前記熱発生素子マウントと前記温度感受素子マウントとの間の第1方向から離れる方向に向けるように配置される温度感受素子マウントと、
    を有することを特徴とする回路基板アセンブリ。
  18. 前記複数の熱伝導線の個々の熱伝導線は、互いに平行である、請求項17に記載の回路基板アセンブリ。
  19. 前記複数の熱伝導線の1つ又は2つ以上の熱伝導線は、絶縁ブレークを有する、請求項17に記載の回路基板アセンブリ。
  20. 前記複数の電気接続線は、前記複数の熱伝導線の隣接する熱伝導線の間の伝導ブリッジを有する、請求項17に記載の回路基板アセンブリ。
JP2015145466A 2014-07-25 2015-07-23 温度制御を有する回路基板及びその設計方法 Active JP6426548B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/340,886 US9779199B2 (en) 2014-07-25 2014-07-25 Circuit boards with thermal control and methods for their design
US14/340,886 2014-07-25

Publications (2)

Publication Number Publication Date
JP2016031763A true JP2016031763A (ja) 2016-03-07
JP6426548B2 JP6426548B2 (ja) 2018-11-21

Family

ID=55167815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015145466A Active JP6426548B2 (ja) 2014-07-25 2015-07-23 温度制御を有する回路基板及びその設計方法

Country Status (2)

Country Link
US (1) US9779199B2 (ja)
JP (1) JP6426548B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018192534A (ja) * 2017-05-12 2018-12-06 国立大学法人 東京大学 熱流方向性制御構造
CN109496055A (zh) * 2017-09-13 2019-03-19 中兴通讯股份有限公司 一种电路结构件的装配方法、设备及电路结构件

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105764307B (zh) * 2016-04-11 2018-06-01 联想(北京)有限公司 散热装置及电子设备
US10056324B2 (en) 2016-11-09 2018-08-21 International Business Machines Corporation Trace/via hybrid structure with thermally and electrically conductive support material for increased thermal and electrical performance
US10627653B2 (en) 2017-08-28 2020-04-21 Toyota Motor Engineering & Manufacturing North America, Inc. Thermal guiding for photonic components
CN108776735B (zh) * 2018-06-05 2022-06-17 温州大学 一种电子设备系统板热设计的优化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169573U (ja) * 1980-05-16 1981-12-15
JP2005223078A (ja) * 2004-02-04 2005-08-18 Murata Mfg Co Ltd 回路モジュール
US20160357898A1 (en) * 2015-06-02 2016-12-08 Global Foundries Inc. Design of temperature-compliant integrated circuits

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074037A (en) 1989-12-01 1991-12-24 Oerlikon-Contraves Ag Process for producing electrical connections on a universal substrate
US5550750A (en) 1993-05-28 1996-08-27 Mentor Graphics Corporation Method and system for integrating component analysis with multiple component placement
US5644687A (en) 1994-12-29 1997-07-01 International Business Machines Corporation Methods and system for thermal analysis of electronic packages
CA2225235A1 (en) * 1997-12-19 1999-06-19 Northern Telecom Limited A line interface module
US7057273B2 (en) * 2001-05-15 2006-06-06 Gem Services, Inc. Surface mount package
US7308008B2 (en) 2002-11-08 2007-12-11 Finisar Corporation Magnetically controlled heat sink
WO2007070879A1 (en) 2005-12-17 2007-06-21 Gradient Design Automation, Inc. Simulation of ic temperature distributions using an adaptive 3d grid
US20070108595A1 (en) 2005-11-16 2007-05-17 Ati Technologies Inc. Semiconductor device with integrated heat spreader
US7490309B1 (en) 2006-08-31 2009-02-10 Cadence Design Systems, Inc. Method and system for automatically optimizing physical implementation of an electronic circuit responsive to simulation analysis
US20080288908A1 (en) 2007-05-15 2008-11-20 Mirror Semiconductor, Inc. Simultaneous design of integrated circuit and printed circuit board
US7855891B1 (en) * 2008-03-25 2010-12-21 Adtran, Inc. Modular heat sinks for housings for electronic equipment
TWI377465B (en) 2010-03-11 2012-11-21 Delta Electronics Inc Heat dissipating module and electronic device using such heat dissipating module
US8361646B2 (en) * 2010-03-15 2013-01-29 Electronvault, Inc. Modular interconnection system
US9287646B2 (en) * 2010-10-14 2016-03-15 Gregory thomas mark Actively cooled electrical connection
CN102548341A (zh) 2010-12-10 2012-07-04 旭丽电子(广州)有限公司 散热壳体结构
US8601428B2 (en) 2011-12-13 2013-12-03 Qualcomm Incorporated System and method for use case-based thermal analysis of heuristically determined component combinations and layouts in a portable computing device
US8877560B2 (en) * 2012-07-17 2014-11-04 Lite-On Technology Corp. Method for assembling heat generating element and heat dissipating element, pressure sensitive element, and power supplying unit
US20140153192A1 (en) * 2012-12-05 2014-06-05 Molex Incorporated Module cage with integrated emi aspect
US9247672B2 (en) * 2013-01-21 2016-01-26 Parker-Hannifin Corporation Passively controlled smart microjet cooling array
US9644829B2 (en) * 2013-04-25 2017-05-09 Xtralight Manufacturing, Ltd. Systems and methods for providing a field repairable light fixture with a housing that dissipates heat
US20140318758A1 (en) * 2013-04-29 2014-10-30 Toyota Motor Engineering & Manufacturing North America, Inc. Composite laminae having thermal management features and thermal management apparatuses comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169573U (ja) * 1980-05-16 1981-12-15
JP2005223078A (ja) * 2004-02-04 2005-08-18 Murata Mfg Co Ltd 回路モジュール
US20160357898A1 (en) * 2015-06-02 2016-12-08 Global Foundries Inc. Design of temperature-compliant integrated circuits

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018192534A (ja) * 2017-05-12 2018-12-06 国立大学法人 東京大学 熱流方向性制御構造
CN109496055A (zh) * 2017-09-13 2019-03-19 中兴通讯股份有限公司 一种电路结构件的装配方法、设备及电路结构件
CN109496055B (zh) * 2017-09-13 2023-03-07 中兴通讯股份有限公司 一种电路结构件的装配方法、设备及电路结构件

Also Published As

Publication number Publication date
US20160029476A1 (en) 2016-01-28
JP6426548B2 (ja) 2018-11-21
US9779199B2 (en) 2017-10-03

Similar Documents

Publication Publication Date Title
JP6426548B2 (ja) 温度制御を有する回路基板及びその設計方法
JP6166701B2 (ja) 半導体装置
JP5447433B2 (ja) 電子機器および電子機器が設けられた電力変換装置
JP6306418B2 (ja) プリント基板、回路基板組立体及び伝熱管理装置
JP2015126089A (ja) 電子装置
JP2014212278A (ja) 電子機器
WO2016084579A1 (ja) 電子機器
JP2015088649A (ja) チップ支持基板の配線部裏面に放熱器設置の面領域を設定する方法およびチップ支持基板並びにチップ実装構造体
JP6856730B2 (ja) 複合層を有する熱伝達管理装置
US10028413B2 (en) Heat transfer management apparatuses having a composite lamina
JP6907672B2 (ja) 放熱装置
JP6600743B2 (ja) 高伝導性放熱パッドを用いたプリント回路基板の放熱システム
JP5846929B2 (ja) パワー半導体モジュール
JP2016001644A (ja) 半導体モジュール
US20240106338A1 (en) Systems and methods for power module for inverter for electric vehicle
JP2010040569A (ja) 電子部品モジュール
JP5783217B2 (ja) 電子機器および電子機器が設けられた電力変換装置
JP6676212B2 (ja) 電子モジュール及び電源装置
JP2011100916A (ja) 電子部品の放熱用実装構造
JP2015042116A (ja) 電力変換装置
JP2004266213A (ja) 半導体装置
JP2013089851A (ja) 多層回路基板
JPS63301594A (ja) 積層配線板
JP2018129418A (ja) 回路基板、電子装置
JP2019057658A (ja) 電源基板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181025

R150 Certificate of patent or registration of utility model

Ref document number: 6426548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350