JP2016012671A - 圧粉磁心用前駆体、圧粉磁心、および電子部品 - Google Patents

圧粉磁心用前駆体、圧粉磁心、および電子部品 Download PDF

Info

Publication number
JP2016012671A
JP2016012671A JP2014133805A JP2014133805A JP2016012671A JP 2016012671 A JP2016012671 A JP 2016012671A JP 2014133805 A JP2014133805 A JP 2014133805A JP 2014133805 A JP2014133805 A JP 2014133805A JP 2016012671 A JP2016012671 A JP 2016012671A
Authority
JP
Japan
Prior art keywords
binder
strength
magnetic
dust core
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014133805A
Other languages
English (en)
Other versions
JP6330517B2 (ja
Inventor
関 淳一
Junichi Seki
淳一 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2014133805A priority Critical patent/JP6330517B2/ja
Publication of JP2016012671A publication Critical patent/JP2016012671A/ja
Application granted granted Critical
Publication of JP6330517B2 publication Critical patent/JP6330517B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

【課題】高比透磁率、高強度、高熱伝導率の圧粉磁心およびその圧粉磁心を備える小型、高機能、高信頼性のインダクター、リアクトル、トランス、非接触給電デバイス、磁気シールド部品等の磁気応用電子部品を提供する。
【解決手段】圧粉磁心4のバインダーをメソゲン骨格をもつエポキシ樹脂硬化物とすることで高比透磁率かつ高強度かつ高熱伝導率の圧粉磁心4を得る。
【選択図】図2

Description

本発明は、金属磁性粒子を圧縮成形した圧粉磁心に関するもので、良好な磁気特性と高信頼性を得ることが可能なインダクター、リアクトル、トランス、非接触給電コイル、磁気シールドなどの磁気応用電子部品に用いられる圧粉磁心を提供するものである。
近年、スマートフォン・タブレットPC分野に代表されるように電気・機器の小型化と高機能化が進み、小型で高性能の磁心が要求されてきている。また、自動車分野においても、自動車の電子化の急速な進展に伴い、その電装品への小型化と高機能化の要求は極めて強い。電子機器の高機能化に対応した小型で高性能な磁心の材料技術として、軟磁性金属材料の採用があげられる。
一般にインダクター、リアクトル等の磁気応用電子部品の磁心としては、軟磁性フェライト粒子を焼結して作成される焼結(フェライト)磁心と、金属磁性粒子を圧縮成形して作成される圧粉磁心がある。金属磁性粒子は、軟磁性フェライト粒子と比較して著しく高い飽和磁束密度を有しているために小型化に有利である。また、金属磁性粒子の圧粉磁心はパワー系用途において大きな直流電流を重畳して磁気飽和に達しづらいため、電子機器の高機能化には必須である磁心の大電流化対応にも有利である。しかしながら、金属磁性粒子は電気抵抗率が小さいため、渦電流による損失が大きくなり、圧粉磁心の発熱損失が膨大なものとなる。このことで電子機器の高周波化が進むにつれ、エネルギー損失が大きくなり、電子機器の省エネ化の流れに逆行することになるので大きな問題となる。
また、その圧粉磁心は焼結(フェライト)磁心とは異なり、金属磁性粒子間の接合が焼結により形成されるわけではないので、電子部品として必要な磁心の強度の確保のため、粒子間の接合手法も必要となる。
一般工業的には渦電流による損失を減らし、磁心強度の確保のため、その金属磁性粒子に有機あるいは無機の絶縁層を設けたものを、バインダーとよばれる有機あるいは無機の絶縁性結着剤で被覆した後、圧縮成形、接合した後、加熱等により固化させて圧粉磁心としている。ここでバインダーとして使用される樹脂等は、該金属磁性粒子との複合化工程ではその粒子被覆が容易であり、固化工程では加熱される時に溶融流動して金属磁性粒子の間を十分に充填できることが必要である。バインダーとして従来使用されてきた代表的なものとしては、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリシルセン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、水ガラス、低融点ガラス等がある。いずれのバインダー検討でも圧粉磁心の、高強度化の検討がさかんになされてきている(特許文献1〜3)。現在では、高い接着力からの圧粉磁心の高強度性の付与、優れた電気絶縁性をもつこと、200℃以下の低温硬化が可能であること、寸法安定性に優れていること、耐溶剤性に優れていること、低コストであり工業的に容易に入手できる等により、巻線が圧粉磁心の中に備えられているモールド型インダクター等の電子部品ではエポキシ樹脂がもっとも一般的に用いられている。
こうした圧粉磁心では、単位体積あたりの金属磁性粒子の充填率すなわち磁心密度を高くすることで、高比透磁率化が可能となる。その結果、高い磁束密度が得られやすくなることで、磁心の小型・高性能化を達成することができる。
その磁心密度の向上に関しては、特許文献1にあるように純鉄に代表される軟質な磁性材料に高絶縁性を付与して、その純鉄粉の成形圧力による大きな塑性変形すなわち圧縮性の高さを利用し、充填率を上げ、その密度を向上させることが一般になされてきている。また、金属磁性粒子間に潤滑剤を存在させることで、圧粉成形時の粒子間の摩擦を最小にし、粒子の加圧時の再配列を促進することでの高密度化することも行われている。(特許文献4)ここでいう再配列とは、粒子が加圧により動き、その最密充填状態に近づいていくことをいう。
特開 2006−233295号公報 特開2002−280209号公報 特開2007−324210号公報 特開 2011−29605号公報
しかしながら、前記の特許文献1の手法では軟質の金属材料ではない、硬質のアモルファス金属、Fe−Si系金属等の合金系磁性材料では塑性変形の寄与が期待できず、原理的に適用が困難という本質的な課題がある。
また、前記の特許文献2〜3の手法では圧粉磁心の強度確保のため、硬質のフェノール樹脂や高強度のスーパーエンジニアリングプラスチックであるポリエーテルケトン樹脂を用いているため、圧縮成型時に、それらのバインダーの変形が困難である。これにより粒子の再配列も困難となり、圧粉磁心において高強度を保持しつつ、高密度化をするということが困難という本質的な課題がある。
また、特許文献4については、金属磁性粒子の再配列を用いた手法なので粒子の硬度にかかわらず磁心の高密度化は期待できるが、その粒子間に結着とは相反する潤滑剤が存在することとなるので、エポキシ樹脂硬化物等の高接着の結着剤を粒子間に存在させても磁心の強度は低下する。したがって、それを適用したインダクター等の磁気応用電子部品の信頼性も低下することとなる。
特に、軟磁性材料の最重要特性である磁気特性の向上や圧粉磁心の耐電圧性向上のため、球状の金属磁性粒子を用いた場合に、不定形状の粒子と比較して、投錨効果とよばれる粒子間の引っ掛かり具合が最小となるため、粒子間の結着に不利である潤滑剤により圧粉磁心の強度はさらに大きく低下する。そして、その大きな強度低下に伴い磁気応用電子部品の信頼性もさらに大きく低下する。
さらに、前記球状の金属磁性粒子を圧粉磁心へ適用した場合においては、不定形状の粒子と比較して、粒子間の熱伝導パスが少なくなることにより、磁心の熱伝導率が低下する。これにより、それを適用した磁気応用電子部品の熱抵抗が増大することで、電子部品の発熱の観点より、高磁束密度化が達成できたとしても、その小型化および高機能化に伴う大電流化対応すなわち動作時の温度上昇制御が困難となる。
そこで、本発明の目的は、高比透磁率、高強度、高熱伝導率の圧粉磁心およびその圧粉磁心を備える小型、高機能、高信頼性のインダクター、リアクトル、トランス、非接触給電デバイス、磁気シールド部品等の磁気応用電子部品を提供することである。
本発明者は、巻線内蔵型インダクター等の磁気応用電子部品に最適な圧粉磁心の検討の中で、その圧粉磁心中のバインダーの組成、化学構造および物性を種々詳細に検討したそのバインダーをメソゲン骨格をもつエポキシ樹脂硬化物と高比透磁率かつ高強度かつ高熱伝導率の圧粉磁心が得られ、その圧粉磁心は小型、高機能、高信頼性のインダクター、リアクトル、トランス、非接触給電デバイス、磁気シールド部品等の磁気応用電子部品に有用であることを見出し、本発明を完成するに至った。
本発明の圧粉磁心用前駆体は、少なくとも下記式に示すメソゲン骨格を有するエポキシ樹脂を含むバインダーと金属磁性粒子との複合体で構成されることを特徴とする。
Figure 2016012671
これにより、高比透磁率、高強度、高熱伝導率の圧粉磁心を得ることができる。
さらに、本発明の圧粉磁心用前駆体は、少なくとも下記式に示す配向したメソゲン骨格を有するエポキシ樹脂を含むバインダーと金属磁性粒子との複合体で構成されることが好ましい。
Figure 2016012671
これにより、さらに、より一層、高比透磁率化、高強度化、高熱伝導率化が可能である。
本発明の圧粉磁心は、少なくとも下記式に示すメソゲン骨格を有するエポキシ樹脂を含むバインダーと金属磁性粒子との複合体で構成されることを特徴とする。
Figure 2016012671
これにより、高比透磁率、高強度、高熱伝導率の圧粉磁心を得ることができる。
さらに、本発明の圧粉磁心は、少なくとも下記式に示す配向したメソゲン骨格を有するエポキシ樹脂を含むバインダーと金属磁性粒子との複合体で構成されることが好ましい。
Figure 2016012671
これにより、さらに、より一層、高比透磁率化、高強度化、高熱伝導率化が可能である。
また、本発明の圧粉磁心は、上記に記載の圧粉磁心用前駆体で構成していることが好ましい。上記前駆体を使用することにより、高比透磁率、高強度、高熱伝導率の圧粉磁心を得ることができる。
さらに、本発明の圧粉磁心用前駆体は、金属磁性粒子が球状粒子であることが好ましい。これにより、高比透磁率、高強度、高熱伝導率に加え、高耐電圧の圧粉磁心を得ることができる。
さらに、本発明の圧粉磁心は、金属磁性粒子が球状粒子であることが好ましい。これにより、高比透磁率、高強度、高熱伝導率に加え、高耐電圧の圧粉磁心を得ることができる。
また、本発明の電子部品は、上記の圧粉磁心を備える。この圧粉磁心を使用してインダクター、リアクトル、トランス、非接触給電コイル、磁気シールド部品等の電子部品を提供する。そして、このような電子部品に対して、本発明は小型化、高機能化を可能にし、かつ信頼性を大きく向上させることができる。
本発明によれば、高比透磁率、高強度、高熱伝導の圧粉磁心を提供することができる。さらに、その圧粉磁心からなる小型、高機能、高信頼性のインダクター、リアクトル、トランス、非接触給電デバイス、磁気シールド部品等の電子部品を提供することができる。
図1は本発明の一実施形態を示す圧粉磁心前駆体の組織を模式的に表す図面である。 図2は本発明の一実施形態を示す圧粉磁心の組織を模式的に表す図面である。 図3は本発明の一実施形態を示す電子部品のである巻線(コイル)内蔵型インダクターを表す図面である。図3(a)は巻線(コイル)内蔵型インダクターの外観斜視図、図3(b)は、内蔵される巻線(コイル)の斜視図である。
以下、本発明について実施形態を用い、詳細に説明する。ただし、本発明は、実施形態に限定されない。
本発明の一実施形態の圧粉磁心前駆体の組織を模式的に表す図を図1に、圧粉磁心の組織図を表す図を図2に示す。圧粉磁心用前駆体の組織1は、金属磁性粒子2と少なくとも下記式に示すメソゲン骨格をもつエポキシ樹脂を含むバインダーとよばれる粒子の結着・保持機能をもつ有機物を主成分として構成されている。圧粉磁心4は圧粉磁心前駆体1を圧縮成形することで構成されるので、圧粉磁心前駆体1でのバインダー3は、その成形時の粒子の再配列させるため、軟質の未硬化あるいは半硬化のエポキシ樹脂からなる。
Figure 2016012671
圧粉磁心4は金属磁性粒子2を圧縮成形することで形成されるが、その圧縮成形だけでは、金属磁性粒子同士の接合力はほとんどないので、圧粉磁心の強度は極めて小さなものとなる。このように小さな強度では電子部品等への実用は困難なため、圧粉磁心前駆体バインダー3の結着後の硬化がなされている。ここでいう強度とは、公知の圧環強度等の測定によって得られたものをいう。
加えて、圧粉磁心4の組織は、金属磁性粒子2の低い電気抵抗のため、磁性材料とした時の渦電流損失が大きいので、その低減を目的としてバインダー3によって結着後硬化した組織構造となっている。
バインダー3は公知のアルミナ、シリカ、窒化ホウ素等の無機粒子、有機あるいは無機系の潤滑剤、フェノール系、アミン系等のエポキシ硬化剤、イミダゾール等の硬化促進剤、有機溶剤、シリコーンやアクリル等の可とう化剤、ハイドロタルサイト類化合物等のイオン捕捉物質、接着付与剤等、分散剤、安定剤、着色剤、沈降防止剤等を1種あるいは複数含んでもよい。
金属磁性粒子2は公知の純鉄粉、Fe−Si系の鉄基合金、Fe−Ni系合金(パーマロイ系)、Fe−Si−Al系合金(センダスト系)、アモルファス金属等を1種あるいは複数種を組み合わせて好適に用いることができる。
さらに、金属磁性粒子2はリン酸処理等の化成処理やバインダー3との親和性を高めるためのカップリング剤処理やより高い絶縁性を得るためのBN、SiO、MgO、Al等の無機物被覆あるいは有機物被覆といった金属磁性粒子2の表面処理がなされていてもよい。
ここで、圧粉磁心前駆体1のバインダー3は(式1)に示すメソゲン骨格の化学構造を含んでいるエポキシ樹脂を含んでいることが必須である。それはすなわち、圧粉磁心4は、金属磁性粒子2とバインダー3とを一体化した複合化物を前駆体とし、その圧粉磁心前駆体1を圧縮成形、固化して形成されているが、ここでいう圧粉磁心のバインダー3がメソゲン骨格をもつエポキシ樹脂であることを意味する。
圧粉磁心用前駆体1において、このようなバインダー3と一体化した金属磁性粒子2は、メソゲン骨格をもたないエポキシ樹脂を含むバインダー3の系と比較すると、圧縮成形時の圧力により、容易に、高効率にその粒子の再配列を引き起こし、高密度の圧粉磁心すなわち高透磁率の圧粉磁心4を与えることができる。そしてこの場合には、硬化後の圧粉磁心中のバインダー3は、少なくとも必ずメソゲン骨格からなるエポキシ樹脂を含むこととなる。この現象は、剛性の高いメソゲン骨格をもつエポキシ樹脂が、金属磁性粒子間の潤滑剤のように作用したためと考えられる。
また、圧粉磁心4において、前記バインダー3がメソゲン骨格をもつエポキシ樹脂を含むことで、そのメソゲン骨格間のスタッキング(分子重なり)を形成させ、バインダー3の機械的破断に対する耐性を大きくすることで、圧粉磁心4の機械的強度を向上させることができる。この機械的強度とは、公知の圧環強度等を意味する。
さらに、圧粉磁心4において、前記バインダー3がメソゲン骨格をもつエポキシ樹脂を含むことで、金属磁性粒子2間の熱抵抗が低減されるため、圧粉磁心4の熱伝導率が大きく向上する。
また、本発明の別の実施形態では、前記圧粉磁心前駆体1を構成するバインダー3は、そのエポキシ樹脂中のメソゲン骨格が、エポキシ樹脂同士あるいはバインダー3中の他の硬化剤等の他成分との間で配向構造を形成していることが好ましい。ここでいう配向構造とは、X線回折等の公知の物質の解析手法で分析を行い、回折パターンのような規則構造が検出されるものをいう。そしてこの場合には、硬化後の圧粉磁心4中のバインダーは、少なくとも必ず配向したメソゲン骨格をもつエポキシ樹脂を含むこととなる。配向は電場、磁場、応力、自己組織化等の公知の手法を用いて行うことができる。
この圧粉磁心前駆体1中の配向構造の形成により、圧縮成形時、配向したメソゲン骨格間の大きな分子すべりにより、金属磁性粒子2間の潤滑剤としての効果が増大し、さらに容易に高効率に金属磁性粒子2の再配列が引き起こされる。また、圧粉磁心中にメソゲン骨格の配向構造が形成されることにより、硬化後のメソゲン骨格間のスタッキングはさらに強固なものとなり、圧粉磁心4の強度は大きく向上する。さらに、この配向構造により、金属磁性粒子2間の熱抵抗はさらに低減され、圧粉磁心4の熱伝導率はさらに大きく向上する。
また、圧粉磁心前駆体1においてバインダー3が、メソゲン骨格をもつエポキシ樹脂と配向構造を形成しやすい硬化剤を含むことが好ましい。この硬化剤としては、ナフタレン骨格をもつ硬化剤、ビフェニル骨格をもつ硬化剤等を好適に用いることができる。これにより、さらに圧粉磁心4の比透磁率、強度、熱伝導率を向上させることができる。
さらに、圧粉磁心前駆体1において、バインダー3が、下記式に示すような側鎖に官能基を持たないメソゲン骨格をもつエポキシ樹脂を含むことが好ましい。これにより、より容易にバインダー3中に配向構造は形成することができ、さらに圧粉磁心の比透磁率、強度、熱伝導率を向上させることができる。
Figure 2016012671
さらに、圧粉磁心前駆体1において、金属磁性粒子2の平均粒子径は20μm以下であることが好ましく、10μm以下であることがさらに好ましい。これにより、圧粉磁心前駆体1が与える圧粉磁心4をさらにより一層高強度化することができる。ここでいう平均粒子径とは、累積粒度分布において累積度が50%の粒子径の値をいう。
さらに、本発明の別の実施形態では、前記圧粉磁心前駆体1において、バインダー3は、少なくともメソゲン骨格をもつエポキシ樹脂を含み、かつ金属磁性粒子2の形状が球状であることが好ましい。この球状粒子は、不定形状の金属磁性粒子2と複数種組み合わせて使用してもよい。そしてこの場合は、硬化後の圧粉磁心4では、少なくともメソゲン骨格をもつエポキシ樹脂を含むバインダー3とすくなくとも球状の金属磁性粒子2から構成されることとなる。球状の金属磁性粒子2は、前記の不定形状の金属磁性粒子2とは異なり、圧縮成形時にその粒子同士が接触した時に投錨効果とよばれる粒子同士の絡み合いが期待できないため、一般には強度が大きく低下する。しかしながら、本発明の少なくともメソゲン骨格をもつエポキシ樹脂を含むバインダー3から圧粉磁心4が構成されることで、その強度を保持することができる。これにより、高耐電圧の圧粉磁心4を得ることができる。
ここでいう球状とは、圧粉磁心4の破断面において観察される金属磁性粒子2の累積円形度分布で50%のところを平均円形度(D50)とし、この値が0.9以上をいう。ここでいう円形度とは、破断面の画像解析等の公知の手法等から以下の関係式で算出される。
(円形度)=4πS/L
S:円形状の対象物の面積
L: 円形状対象物の輪郭線の長さ
また、耐電圧とはある一定形状の圧粉磁心4に電圧を印加した時、ある規定値の電流が流れる電圧のことをいう。耐電圧性の確保は、高信頼性が要求される自動車分野等では必須である。
さらに前記の球状の金属磁性粒子2の球形度は、0.95以上であることが好ましい。
さらには、前記(式1)からなるエポキシ樹脂を含むバインダー3のDSC(示差熱容量分析)により解析されたガラス転移点は、100℃以上であることが好ましい。ここでいうガラス転移温度とは、圧粉磁心をDSC(示差走査熱容量分析)で解析した結果から得られた転移温度であり100℃未満ではバインダー3の架橋が不十分なため、圧粉磁心4としては十分な強度が確保できない可能性があるためである。なお、ガラス転移点は、250 ℃以下であることが好ましい。250 ℃を超えると硬くなりすぎて、応力を吸収することが困難となり、圧粉磁心4が脆弱となる。
さらに、本発明の実施形態の磁気応用電子部品は、圧粉磁心の中に巻線(コイル)を備える実施形態、又は、圧粉磁心の外に巻線(コイル)を備える実施形態のいずれであっても、上記圧粉磁心4を使用することにより小型かつ高機能かつ高信頼性のインダクター、リアクトル、トランス、非接触給電デバイス、磁気シールド部品等の磁気応用電子部品を提供することができる。
以下、本発明に係る実施例を示し、本発明について詳細に説明する。尚、以下の実施例および比較例において(部)とは(質量部)を意味する。また、本発明は、その要旨を逸脱しない限り、本実施例に限定されるものではない。
<実施例1>
バインダーとして、メソゲン骨格をもつエポキシ樹脂としてメソゲン骨格の側鎖にメチル基をもつ2官能のビフェニル型エポキシ樹脂(三菱化学製 YX−4000)100質量部、バインダーの硬化剤はフェノール硬化剤としてフェノールノボラック樹脂(DIC製TD−2131)50質量部、さらに硬化触媒として2−エチル−4−メチルイミダゾール(四国化成製 2E4Mz) 1質量部を用い、これらをメチルエチルケトン溶媒に溶解させることで塗料を作製した。次に作成した塗料をガスアトマイズ法で作製そして分級した平均粒子径(D50)=30.2μm、円形度(D50)=0.84、金属組成(元素組成)がFe/Si=93.5重量%/6.5重量%)であるFe−Si系合金粒子と混合し、ニーダーを用いて混練することで、圧粉磁心の前駆体を作製した。バインダー量については、Fe−Si系合金粉 100 質量部に対してバインダーが3質量部になるよう調整した。次に、この前駆体を金型を用いて成形圧力400MPaで圧縮成形を行い、外形11mm、内径6.5mmのトロイダル状に成形し、最後に175℃にて1時間の条件で熱硬化を行い、圧粉磁心を作製した。
圧粉磁心のバインダー部のガラス転移点に関しては、熱硬化の完了した圧粉磁心を粉末状に乳鉢を用いて粉砕し、その粉末を示差走査熱容量分析装置で昇温5℃/min.のDSC測定し、そのDSCプロファイルよりバインダーのガラス転移点を求めたところ85℃であった。
圧粉磁心の比透磁率については、前記トロイダルコアに巻線をし、閉磁路を形成し、100KHzにて50mVで励磁させることで得られるインダクタンスから比透磁率を算出したところ28.2と優れた値であった。27以上の比透磁率を有した場合、その圧粉磁心は比透磁率に優れると判断した。
圧粉磁心の強度については、JIS Z2507に基づいて前記トロイダルコアの圧環強度を算出することで評価したところ、80MPaであった。80MPa以上の圧環強度を有した場合、その圧粉磁心の強度特性が良好であると判断した。
圧粉磁心の熱伝導率については、まず、前記圧粉磁心前駆体を金型を用いて直径10mm×厚み1mmの円板上に400MPaの成形圧で成形し、熱拡散率測定用試験片を作成した。次にその試験片をレーザーフラッシュ熱伝導率計で熱拡散率の測定を行った。比熱はサファイアを標準サンプルとしてDSC(示差走査熱容量測定装置)にて測定を行った。以下の式にそれぞれ測定値を代入したところ、4.00W/(m・K)であった。熱伝導率の値が4W/(m・K)以上の場合、熱伝導率が良好であると判断した。
λ=α・Cp・d
α:熱拡散率
Cp:比熱
d:試験片の密度
圧粉磁心の耐電圧については、まず、前記圧粉磁心前駆体を金型を用いて直径10mm×高さ5mmの円柱状に400MPaの成形圧で成形し、耐電圧測定用試験片を作成した。次にその試験片である円柱の上下にソースメーターを用いて電圧を印加し、100mAの電流が流れた電圧値を耐電圧としたところ、70Vであった。耐電圧の値が、60V以上の場合、耐電圧が良好と判断した。
表1に、実施例1の圧粉磁心の特性を示す。比透磁率は28.2、強度は80MPa、熱伝導率は4.00W/(m・K)、耐電圧は70Vであり、すべての特性が良好であった。
<実施例2>
バインダーの硬化剤をフェノールノボラック樹脂からp−キシリレン型フェノール樹脂(明和化成製MEH−7800S)に変更したことを除いて、実施例1と同様に実施した。その結果を表1に示す。比透磁率は28.0、強度は81MPa、熱伝導率は4.15W/(m・K)、耐電圧は72Vであり、すべての特性が良好であった。
<比較例1>
バインダーのエポキシ樹脂をメソゲン骨格をもたない2官能のビスフェノールF型エポキシ樹脂(新日鉄住金化学製YSLV−80XY)に変更したことを除いて、実施例1と同様に実施した。その結果を表1に示す。比透磁率は22.1、強度は80MPa、熱伝導率は3.33W/(m・K)、耐電圧は65Vであり、比透磁率、熱伝導率が不良であった。
<比較例2>
バインダーのエポキシ樹脂をメソゲン骨格をもたない2官能のスルフィド型エポキシ樹脂(新日鉄住金化学製YSLV−120TE)に変更したことを除いて、実施例1と同様に実施した。その結果を表1に示す。比透磁率は23.3、強度は82MPa、熱伝導率は3.23W/(m・K)、耐電圧は70Vであり、比透磁率、熱伝導率が不良であった。
<比較例3>
バインダーのエポキシ樹脂をメソゲン骨格をもたない2官能のキノン型エポキシ樹脂(新日鉄住金化学製ZX−1312)に変更したことを除いて、実施例1と同様に実施した。その結果を表1に示す。比透磁率は24.5、強度は80MPa、熱伝導率は3.18W/(m・K)、耐電圧は66Vであり、比透磁率、熱伝導率が不良であった。
<比較例4>
バインダーのエポキシ樹脂をメソゲン骨格をもたないo−クレソールノボラック型エポキシ樹脂(DIC製N−695)に変更したことを除いて、実施例1と同様に実施した。その結果を表1に示す。比透磁率は24.0、強度は81MPa、熱伝導率は3.34W/(m・K)、耐電圧は70Vであり、比透磁率、熱伝導率が不良であった。
<比較例5>
バインダーのエポキシ樹脂をメソゲン骨格をもたないジシクロペンタジエン型エポキシ樹脂(DIC製HP−7200)に変更したことを除いて、実施例1と同様に実施した。その結果を表1に示す。比透磁率は23.8、強度は80MPa、熱伝導率は3.28W/(m・K)、耐電圧は68Vであり、比透磁率、熱伝導率が不良であった。
以上、実施例1〜2、および比較例1〜5より、メソゲン骨格をもつエポキシ樹脂を圧粉磁心前駆体および圧粉磁心のバインダーに適用することにより、透磁率と熱伝導率を大きく向上できることを見出した。
<実施例3>
バインダーのメソゲン骨格をもつエポキシ樹脂に配向処理を行ったことを除いて、実施例1と同様に実施した。配向処理は、圧粉磁心前駆体に100℃ 15分の熱処理を加えることによる自己組織化の手法で行った。配向の有無は、公知のX線回折により圧粉磁心中のバインダーに規則構造がみられるかどうかで判断した。その結果を表1に示す。比透磁率は31.3、強度は93MPa、熱伝導率は4.45W/(m・K)、耐電圧は70Vであり、実施例1〜2と比較すると比透磁率、強度、熱伝導率を大きく向上できた。
<実施例4>
圧粉磁心の金属磁性粒子を平均粒子径(D50)=31.8μm、円形度(D50)=0.91の球状粒子に変更したことを除いて、実施例3と同様に実施した。その結果を表1に示す。比透磁率は31.1、強度は90MPa、熱伝導率は4.42W/(m・K)、耐電圧は140Vであり、実施例3と比較すると耐電圧を大きく向上できた。
<実施例5>
バインダーのエポキシ樹脂をメソゲン骨格をもち、かつその骨格の側鎖に置換基をもたない2官能のビフェニル型エポキシ樹脂(三菱化学製YL6121H)としたことを除いて、実施例1と同様に実施した。その結果を表1に示す。比透磁率は30.1、強度は90MPa、熱伝導率は4.46W/(m・K)、耐電圧は70Vであり、実施例1と比較すると、比透磁率、強度、熱伝導率を大きく向上できた。
<実施例6>
バインダーのメソゲン骨格をもつエポキシ樹脂に前記配向処理を行ったことを除いて、実施例5と同様に実施した。その結果を表1に示す。比透磁率は33.3、強度は99MPa、熱伝導率は4.66W/(m・K)、耐電圧は69Vであり、実施例5と比較すると、比透磁率、強度を大きく向上できた。
<実施例7>
圧粉磁心の金属磁性粒子を平均粒子径(D50)=31.8μm、円形度(D50)=0.91の球状粒子に変更したことを除いて、実施例6と同様に実施した。その結果を表1に示す。比透磁率は33.0、強度は96MPa、熱伝導率は4.65W/(m・K)、耐電圧は160Vであり、実施例6と比較すると耐電圧を大きく向上できた。
<実施例8>
圧粉磁心の金属磁性粒子を平均粒子径(D50)=18.3μm、円形度(D50)=0.90の球状粒子に変更したことを除いて、実施例7と同様に実施した。その結果を表1に示す。比透磁率は32.0、強度は103MPa、熱伝導率は4.58W/(m・K)、耐電圧は170Vであり、実施例7と比較すると強度を大きく向上できた。
<実施例9>
圧粉磁心の金属磁性粒子を平均粒子径(D50)=9.8μm、円形度(D50)=0.90の球状粒子に変更したことを除いて、実施例7と同様に実施した。その結果を表1に示す。比透磁率は31.5、強度は110MPa、熱伝導率は4.51W/(m・K)、耐電圧は180Vであり、実施例8と比較すると強度を大きく向上できた。
<実施例10>
圧粉磁心の金属磁性粒子を平均粒子径(D50)=33.2μm、円形度(D50)=0.97の球状粒子に変更したことを除いて、実施例7と同様に実施した。その結果を表1に示す。比透磁率は31.3、強度は96MPa、熱伝導率は4.62W/(m・K)、耐電圧は200V以上であり、実施例7と比較すると耐電圧を大きく向上できた。
以上、実施例1〜2と実施例5〜10と比較すると、バインダーのエポキシ樹脂をメソゲン骨格をもち、かつその骨格の側鎖に置換基をもたない2官能のビフェニル型エポキシ樹脂(三菱化学製YL6121H)とすることで、圧粉磁心の透磁率、強度、熱伝導率を大きく向上できる。
<実施例11>
バインダーのエポキシ硬化剤をビフェニルアラルキル型フェノール硬化剤(明和化成製MEH−7851SS)に変更したことを除いて、実施例1と同様に実施した。その結果を表1に示す。比透磁率は30.3、強度は93MPa、熱伝導率は4.48W/(m・K)、耐電圧は70Vであり、実施例1と比較すると、比透磁率、強度、熱伝導率を大きく向上できた。
<実施例12>
バインダーのメソゲン骨格をもつエポキシ樹脂に前記配向処理を行ったことを除いて、実施例11と同様に実施した。その結果を表1に示す。比透磁率は33.3、強度は105MPa、熱伝導率は4.72W/(m・K)、耐電圧は71Vであり、実施例11と比較すると、比透磁率、強度、熱伝導率を大きく向上できた。
<実施例13>
圧粉磁心の金属磁性粒子を平均粒子径(D50)=31.8μm、円形度(D50)=0.91の球状粒子に変更したことを除いて、実施例12と同様に実施した。その結果を表1に示す。比透磁率は33.5、強度は96MPa、熱伝導率は4.69W/(m・K)、耐電圧は155Vであり、実施例12と比較すると耐電圧を大きく向上できた。
<実施例14>
圧粉磁心の金属磁性粒子を平均粒子径(D50)=18.3μm、円形度(D50)=0.90の球状粒子に変更したことを除いて、実施例13と同様に実施した。その結果を表1に示す。比透磁率は32.0、強度は104MPa、熱伝導率は4.62W/(m・K)、耐電圧は165Vであり、実施例13と比較すると強度を大きく向上できた。
<実施例15>
圧粉磁心の金属磁性粒子を平均粒子径(D50)=9.8μm、円形度(D50)=0.90の球状粒子に変更したことを除いて、実施例14と同様に実施した。その結果を表1に示す。比透磁率は31.1、強度は111MPa、熱伝導率は4.61W/(m・K)、耐電圧は160Vであり、実施例14と比較すると強度を大きく向上できた。
<実施例16>
圧粉磁心の金属磁性粒子を平均粒子径(D50)=33.2μm、円形度(D50)=0.97の球状粒子に変更したことを除いて、実施例13と同様に実施した。その結果を表1に示す。比透磁率は31.0、強度は95MPa、熱伝導率は4.68W/(m・K)、耐電圧は200V以上であり、実施例13と比較すると耐電圧を大きく向上できた。
以上、実施例1〜2と実施例11〜16と比較すると、圧粉磁心前駆体および圧粉磁心において、バインダーをすくなくともメソゲン骨格をもつエポキシ樹脂とビフェニルアラルキル型フェノール硬化剤から構成することで、圧粉磁心の透磁率、強度、熱伝導性を大きく向上できることがわかる。
<実施例17>
バインダーのエポキシ硬化剤に多官能型フェノール硬化剤(明和化成製MEH−7500H)を用い、バインダーのガラス転移点を85℃から101℃に向上させたことを除き、実施例1と同様に実施した。その結果を表1に示す。比透磁率は28.3、強度は95MPa、熱伝導率は4.12W/(m・K)、耐電圧は72Vであり、実施例1と比較すると、強度を大きく向上できた。
<実施例18>
バインダーのメソゲン骨格をもつエポキシ樹脂に前記配向処理を行ったことを除いて、実施例17と同様に実施した。また、バインダーのガラス転移点は105℃であった。その結果を表1に示す。比透磁率は30.9、強度は103MPa、熱伝導率は4.61W/(m・K)、耐電圧は73Vであり、実施例17と比較すると、比透磁率、強度、熱伝導率を大きく向上できた。
<実施例19>
圧粉磁心の金属磁性粒子を平均粒子径(D50)=31.8μm、円形度(D50)=0.91の球状粒子に変更したことを除いて、実施例18と同様に実施した。また、バインダーのガラス転移温度は108℃であった。その結果を表1に示す。比透磁率は31.1、強度は104MPa、熱伝導率は4.54W/(m・K)、耐電圧は160Vであり、実施例18と比較すると耐電圧を大きく向上できた。
<実施例20>
圧粉磁心の金属磁性粒子を平均粒子径(D50)=18.3μm、円形度(D50)=0.90の球状粒子に変更したことを除いて、実施例19と同様に実施した。また、バインダーのガラス転移温度は、104℃であった。その結果を表1に示す。比透磁率は30.5、強度は107MPa、熱伝導率は4.48W/(m・K)、耐電圧は170Vであり、実施例19と比較すると強度を大きく向上できた。
<実施例21>
圧粉磁心の金属磁性粒子を平均粒子径(D50)=9.8μm、円形度(D50)=0.90の球状粒子に変更したことを除いて、実施例20と同様に実施した。また、バインダーのガラス転移温度は、103℃であった。その結果を表1に示す。比透磁率は30.1、強度は111MPa、熱伝導率は4.61W/(m・K)、耐電圧は175Vであり、実施例20と比較すると強度を大きく向上できた。
<実施例22>
圧粉磁心の金属磁性粒子を平均粒子径(D50)=33.2μm、円形度(D50)=0.97の球状粒子に変更したことを除いて、実施例19と同様に実施した。また、バインダーのガラス転移温度は、100℃であった。その結果を表1に示す。比透磁率は30.3、強度は100MPa、熱伝導率は4.58W/(m・K)、耐電圧は200V以上であり、実施例19と比較すると耐電圧を大きく向上できた。
以上、実施例1〜2、および実施例17〜22より、メソゲン骨格をもつエポキシ樹脂を圧粉磁心前駆体および圧粉磁心のバインダーに適用し、そのバインダーのガラス転移点を100℃以上とすることで、圧粉磁心の強度を大きく向上できることを見出した。
Figure 2016012671
以上、表1から明らかなように、メソゲン骨格をもつバインダーと金属磁性粒子から形成される圧粉磁心は、高い比透磁率かつ高強度かつ高熱伝導率かつ高耐電圧であり、これを用いたインダクター、リアクトル等の磁気応用電子部品に高特性かつ高信頼性を付与することができる。
本発明の実施例1にある圧粉磁心用いて、巻線(コイル)12を圧粉磁心11中に内蔵したインダクター10(6.5mm × 6.5mm × 2.5mm厚、銅線巻数8ターン)を作製した(図3a及び図3b)。また、比較のため同様に比較例1にある圧粉磁心を用いても、巻線(コイル)12を圧粉磁心11中に内蔵したインダクター10(6.5mm × 6.5mm × 2.5mm厚、銅線巻数8ターン)を作製した。インダクタンスは、50kHz、100mVで測定した。
それらのインダクター特性を表2に示す。比較例1の圧粉磁心のインダクタンスは3.3μHであったのと比較して、実施例1の圧粉磁心は同じ形状で4.0μHという高いインダクタンスを達成した。また、耐振動性は比較例1の圧粉磁心が30Gの5Hz〜2KHzの耐振動性試験で素体に微小クラックが発生したのに対し、実施例1のそれは同一の評価条件で素体に微小クラックは見られなかった。さらに、50kHz、100mVの条件で動作している前記インダクターに、温度上昇40℃までで重畳できる直流電流を測定したところ、比較例1の圧粉磁心が6Aであったのに対し、実施例1のそれは10Aであった。
以上のように、本発明の高透磁率、高強度、高熱伝導率の圧粉磁心を用いた磁気応用電子部品は、高性能かつ高信頼性である。
Figure 2016012671
本発明により、小型・高特性かつ高信頼性の圧粉磁心が生産でき、それを用いたインダクター、リアクトル、トランス、非接触給電コイル、磁気シールドなどの磁気応用電子部品が広く流通することで、タブレット、スマートフォン等の小型・高機能化が図られ市場が拡大し、産業として成長する。また、高い信頼性が不可欠な自動車や社会インフラ向け等の用途にも幅広く適用できることから、それらの市場も拡大し、産業として成長する。
1 圧粉磁心前駆体の組織
2 金属磁性粒子
3 バインダー
4 圧粉磁心
10 巻線(コイル)内蔵型インダクター
11 インダクターの圧粉磁心部
12 インダクター中に内蔵される巻線(コイル)

Claims (7)

  1. 少なくとも下記式に示すメソゲン骨格を有するエポキシ樹脂を含むバインダーと金属磁性粒子との複合体で構成されることを特徴とする圧粉磁心用前駆体
    Figure 2016012671
  2. 少なくとも下記式に示す配向したメソゲン骨格を有するエポキシ樹脂を含むバインダーと金属磁性粒子との複合体で構成されることを特徴とする圧粉磁心用前駆体
    Figure 2016012671
  3. 少なくとも下記式に示すメソゲン骨格を有するエポキシ樹脂を含むバインダーと金属磁性粒子との複合体で構成されることを特徴とする圧粉磁心
    Figure 2016012671
  4. 少なくとも(式1)に示す配向したメソゲン骨格を有するエポキシ樹脂を含むバインダーと金属磁性粒子との複合体で構成されることを特徴とする圧粉磁心
    Figure 2016012671
  5. 金属磁性粒子が球状であることを特徴とする請求項1〜2のいずれかに記載の圧粉磁心用前駆体
  6. 金属磁性粒子が球状であることを特徴とする請求項3〜4に記載の圧粉磁心
  7. 請求項3〜4および請求項6のいずれかに記載の圧粉磁心を備える電子部品
JP2014133805A 2014-06-30 2014-06-30 圧粉磁心用前駆体、圧粉磁心、および電子部品 Active JP6330517B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014133805A JP6330517B2 (ja) 2014-06-30 2014-06-30 圧粉磁心用前駆体、圧粉磁心、および電子部品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014133805A JP6330517B2 (ja) 2014-06-30 2014-06-30 圧粉磁心用前駆体、圧粉磁心、および電子部品

Publications (2)

Publication Number Publication Date
JP2016012671A true JP2016012671A (ja) 2016-01-21
JP6330517B2 JP6330517B2 (ja) 2018-05-30

Family

ID=55229194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014133805A Active JP6330517B2 (ja) 2014-06-30 2014-06-30 圧粉磁心用前駆体、圧粉磁心、および電子部品

Country Status (1)

Country Link
JP (1) JP6330517B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106812A1 (ja) * 2017-11-30 2019-06-06 日立化成株式会社 コンパウンド粉
JP2019102782A (ja) * 2017-11-28 2019-06-24 住友ベークライト株式会社 熱硬化性樹脂組成物、磁性コアおよび/または外装部材を備えるコイルおよび成形品の製造方法
JP2019212664A (ja) * 2018-05-31 2019-12-12 住友ベークライト株式会社 磁性部材成形用の樹脂組成物、磁性部材、コイル、磁性部材の製造方法および磁性部材成形用キット
JP2022037533A (ja) * 2020-08-25 2022-03-09 Tdk株式会社 磁気コア、磁性部品および電子機器
KR20220166739A (ko) * 2021-06-10 2022-12-19 티디케이가부시기가이샤 압분 자심 및 전자 부품
KR20220166740A (ko) 2021-06-10 2022-12-19 티디케이가부시기가이샤 압분 자심 및 전자 부품
US11732124B2 (en) 2017-11-30 2023-08-22 Resonac Corporation Compound and tablet
JP7569641B2 (ja) 2020-08-25 2024-10-18 Tdk株式会社 磁気コア、磁性部品および電子機器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051221A (ja) * 2005-08-18 2007-03-01 Asahi Kasei Corp 反応硬化型樹脂およびその組成物
JP2010084042A (ja) * 2008-09-30 2010-04-15 Tdk Corp エポキシプレポリマー、並びに、これを用いたエポキシ樹脂組成物、硬化物、半硬化物、プリプレグ及び複合基板
JP2011023673A (ja) * 2009-07-21 2011-02-03 Nec Tokin Corp 非晶質軟磁性粉末、トロイダルコア、インダクタおよびチョークコイル
JP2012238866A (ja) * 2012-07-12 2012-12-06 Sumitomo Electric Ind Ltd リアクトル用コアとその製造方法およびリアクトル
JP2013241321A (ja) * 2011-11-29 2013-12-05 Mitsubishi Chemicals Corp 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051221A (ja) * 2005-08-18 2007-03-01 Asahi Kasei Corp 反応硬化型樹脂およびその組成物
JP2010084042A (ja) * 2008-09-30 2010-04-15 Tdk Corp エポキシプレポリマー、並びに、これを用いたエポキシ樹脂組成物、硬化物、半硬化物、プリプレグ及び複合基板
JP2011023673A (ja) * 2009-07-21 2011-02-03 Nec Tokin Corp 非晶質軟磁性粉末、トロイダルコア、インダクタおよびチョークコイル
JP2013241321A (ja) * 2011-11-29 2013-12-05 Mitsubishi Chemicals Corp 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路
US20140349105A1 (en) * 2011-11-29 2014-11-27 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
JP2012238866A (ja) * 2012-07-12 2012-12-06 Sumitomo Electric Ind Ltd リアクトル用コアとその製造方法およびリアクトル

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102782A (ja) * 2017-11-28 2019-06-24 住友ベークライト株式会社 熱硬化性樹脂組成物、磁性コアおよび/または外装部材を備えるコイルおよび成形品の製造方法
WO2019106812A1 (ja) * 2017-11-30 2019-06-06 日立化成株式会社 コンパウンド粉
JPWO2019106812A1 (ja) * 2017-11-30 2020-11-26 昭和電工マテリアルズ株式会社 コンパウンド粉
JP7136121B2 (ja) 2017-11-30 2022-09-13 昭和電工マテリアルズ株式会社 コンパウンド粉
US11732124B2 (en) 2017-11-30 2023-08-22 Resonac Corporation Compound and tablet
JP2019212664A (ja) * 2018-05-31 2019-12-12 住友ベークライト株式会社 磁性部材成形用の樹脂組成物、磁性部材、コイル、磁性部材の製造方法および磁性部材成形用キット
JP2022037533A (ja) * 2020-08-25 2022-03-09 Tdk株式会社 磁気コア、磁性部品および電子機器
JP7569641B2 (ja) 2020-08-25 2024-10-18 Tdk株式会社 磁気コア、磁性部品および電子機器
KR20220166739A (ko) * 2021-06-10 2022-12-19 티디케이가부시기가이샤 압분 자심 및 전자 부품
KR20220166740A (ko) 2021-06-10 2022-12-19 티디케이가부시기가이샤 압분 자심 및 전자 부품
KR102708861B1 (ko) * 2021-06-10 2024-09-24 티디케이가부시기가이샤 압분 자심 및 전자 부품
KR102708860B1 (ko) * 2021-06-10 2024-09-24 티디케이가부시기가이샤 압분 자심 및 전자 부품

Also Published As

Publication number Publication date
JP6330517B2 (ja) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6330517B2 (ja) 圧粉磁心用前駆体、圧粉磁心、および電子部品
JP2017107935A (ja) 圧粉磁心および磁性素子
JP5924480B2 (ja) 磁性粉末材料、その磁性粉末材料を含む低損失複合磁性材料、及びその低損失複合磁性材料を含む磁性素子
JP6427862B2 (ja) 圧粉磁心、その製造方法、該圧粉磁心を用いたインダクタンス素子および回転電機
JP4748397B2 (ja) リアクトル及びリアクトル用軟磁性複合材料
JP2008147403A (ja) 軟磁性複合材料
JP2013145866A (ja) 軟磁性合金粉末、圧粉体、圧粉磁芯および磁性素子
JPWO2020145047A1 (ja) 圧粉磁心の製造方法、圧粉磁心、コイル部品および造粒粉
JP4692859B2 (ja) リアクトル
JP6117504B2 (ja) 磁性コアの製造方法
JP2007200962A (ja) 複合材料、磁心、線輪部品、および複合材料の製造方法
JP2010222670A (ja) 複合磁性材料
JP5660164B2 (ja) 軟磁性複合材料の製造方法
JP6229166B2 (ja) インダクタ用複合磁性材料とその製造方法
JP5187599B2 (ja) 軟磁性複合材料、及びリアクトル用コア
JP2011049568A (ja) 圧粉磁心および磁性素子
JP2011049586A (ja) リアクトル
JP5700298B2 (ja) リアクトル、軟磁性複合材料、及び昇圧回路
JP5945994B2 (ja) 軟磁性複合材料、及びリアクトル
JP2015012273A (ja) 圧粉磁心および電子部品
JP2012199580A (ja) 軟磁性複合材料の製造方法
JP2015062245A (ja) 軟磁性複合材料
JP2019073748A (ja) 磁性材料の製造方法、圧粉磁心の製造方法、コイル部品の製造方法、圧粉磁心およびコイル部品
JP2006100292A (ja) 粉末磁性体コアの製造方法及びそれを用いてなる粉末磁性体コア
JP6502173B2 (ja) リアクトル装置および電気・電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180313

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R150 Certificate of patent or registration of utility model

Ref document number: 6330517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150