JP2016006340A - 転がり軸受 - Google Patents

転がり軸受 Download PDF

Info

Publication number
JP2016006340A
JP2016006340A JP2014127302A JP2014127302A JP2016006340A JP 2016006340 A JP2016006340 A JP 2016006340A JP 2014127302 A JP2014127302 A JP 2014127302A JP 2014127302 A JP2014127302 A JP 2014127302A JP 2016006340 A JP2016006340 A JP 2016006340A
Authority
JP
Japan
Prior art keywords
bearing
steel
area ratio
rolling
rolling bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014127302A
Other languages
English (en)
Inventor
一輝 田村
Kazuki Tamura
一輝 田村
秀幸 飛鷹
Hideyuki Tobitaka
秀幸 飛鷹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2014127302A priority Critical patent/JP2016006340A/ja
Publication of JP2016006340A publication Critical patent/JP2016006340A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】汎用の軸受鋼を用い、長時間の浸炭窒化処理も不要であり低コストでありながらも、耐割れ性に優れ、かつ、異物及び水混入下で、高荷重が加わる用途でも長寿命となる転がり軸受を提供する。【解決手段】内輪及び外輪の少なくとも一方が軸受鋼製で、高周波熱処理が施されており、極値統計法によって予測される最大の酸化物系介在物が40μm以下であり、軌道面の表面の残留オーステナイト量が15〜37体積%であり、かつ、反軌道面の表面の炭化物面積率が1.5〜10%である転がり軸受。【選択図】図1

Description

本発明は転がり軸受に関し、より詳細には、水や異物が混入するような環境下で使用される外輪外径が180mm以上である大型の転がり軸受に関する。
建設機械や鉄鋼用圧延機等に使用される転がり軸受は、外輪外径が180mm以上の大型であり、低速回転で高荷重が負荷される。また、水や異物が混入しやすい環境で使用される。具体的には、鉄鋼用圧延機のロールネック軸受には、圧延時の重荷重・衝撃・振動等が作用するため、はめあい面における滑りによってクリープが発生する。また、圧延機用軸受には鉄粉塵等の固体異物や圧延水が混入し易い。クリープに対処するために、ロールネック軸受はしめしろが十分に確保された状態で使用されることが多く、長時間の運転ではく離等の表面損傷が発生した際、しめしろに起因する高フープ応力が損傷部に集中して割れが発生することがある。また、固体異物や圧延水の混入により、比較的短寿命の表面疲労も問題になっている。
潤滑剤に異物が混入した場合の転がり疲れ寿命の低下は、潤滑油中の異物(硬質の粒子)が転がり接触部に噛み込んで生じる圧痕縁の応力集中によって起こる。対策として表面の硬度を高くすることが行われており、残留オーステナイト量を制御することにより圧痕縁の応力集中を緩和する方法で行うことができる。
一方、潤滑剤に水が混入した場合の転がり疲れ寿命の低下は、以下に示す理由で起こるが知られている。転動体が軌道面に接触して荷重が加わるとき、軌道面は深さ方向に弾性変形を生じ、接触面近傍には引張り応力が生じる。引張り応力が作用する表面に酸化物系介在物と水が存在すると、酸化物系介在物と金属母相との間に隙間が生じ、その隙間に水が浸入して腐食反応が起こる。これによって酸化物系介在物周辺での応力集中が大きくなり、クラックの発生を招き、転がり疲労寿命を低下させる。
そのため、異物や水が混入する環境で使用される軸受には、亀裂の起点となる非金属系介在物を減少して応力集中を小さくする対策が採られている(例えば、特許文献1、2参照)。
特開平6−117438号公報 特開平6−129436号公報
ところで、軸受の内外輪には、軸受鋼を炉加熱すぶ焼入れしたものが広く使用されているが、異物混入潤滑環境下で使用される軸受では、残留オーステナイト量の増加が必要であり、そのための手段として固溶炭素量の増加を目的として高温からの焼入れが行われる。しかし、この方法では部品の心部まで高温に曝されるため、部品全体の固溶炭素量が多くなり、割れ強度が通常ずぶ焼入れ品に比べて劣化する。軸受鋼に浸炭窒化を施して表面のみ残留オーステナイト量を増加させることも行われているが、この場合も、割れの起点は表面であることが多いことから、同様の理由にて割れ特性の向上は難しい。そのため、割れが懸念される用途では、CrやNi、Mo等を含有して焼入れ性を確保した低中炭素鋼(C:0.1〜0.4質量%)を用い、浸炭窒化処理することにより軸受として必要な硬さと耐割れ性を確保している。しかし、浸炭窒化処理では、表面から炭素を部品内部に侵入させるため、拡散距離は処理時間の1/2乗に比例するため、処理時間が長くなり易く、熱処理コストの増大を招き易い。そのため、浸炭窒化温度を高温化することにより処理時間の短縮を図っているが、限界がある。
一方、水の混入によるはく離を考えた場合、低炭素鋼を使用する浸炭軸受は、高炭素鋼を使用する標準的なずぶ焼鋼に比べて不利になる場合が多い。これは、低炭素鋼は高炭素鋼よりも高清浄度化が難しいことに起因する。そのため、中炭素鋼または低炭素鋼で水混入型の表面疲労寿命を向上させるためには、通常の軸受鋼で行われている真空脱ガス以外に、特殊な溶解法を行って材料清浄度の向上を図る必要がある。
特許文献1では、低炭素鋼を浸炭窒化処理しており、特許文献2でも浸炭窒化処理を施している。このように、従来では、耐割れ性、水や固体異物混入下での長寿命を満足させるためには、特殊溶解した中炭素鋼あるいは低炭素鋼を軌道輪素材として用い、長時間の浸炭を施す必要があり、低コストでの提供が無難しいという問題があった。
そこで本発明は、汎用の軸受鋼を用い、長時間の浸炭窒化処理も不要であり低コストでありながらも、耐割れ性に優れ、かつ、異物及び水混入下で、高荷重が加わる用途でも長寿命となる転がり軸受を提供することを目的とする。
上記課題を解決するために本発明は、下記の転がり軸受を提供する。
(1)内輪及び外輪の少なくとも一方が軸受鋼製で、高周波熱処理が施されており、極値統計法によって予測される最大の酸化物系介在物が40μm以下であり、軌道面の表面の残留オーステナイト量が15〜37体積%であり、かつ、反軌道面の表面の炭化物面積率が1.5〜10%であることを特徴とする転がり軸受。
(2)軌道面の表面の炭化物面積率が1.5〜6%であり、かつ、前記反軌道面の表面の面積率よりも小さく、反軌道面の表面硬さがHV517以上であることを特徴とする上記(1)記載の転がり軸受。
本発明によれば、汎用の軸受鋼を用い、長時間の浸炭窒化処理も不要であり低コストでありながらも、耐割れ性に優れ、かつ、異物及び水混入下で、高荷重が加わる用途でも長寿命となる転がり軸受を提供することができ、特に建設機械や鉄鋼用圧延機等に使用される大型軸受として有用である。
本発明の転がり軸受の一例である、円筒ころ軸受を示す断面図である。 介在物予測最大径と、水混入潤滑下におけるL10寿命との関係を示すグラフである。 残留オーステナイト体積分率と、異物混入潤滑下におけるL10寿命との関係を示すグラフである。 炭化物面積率と、残留オーステナイト体積分率との関係を示すグラフである。 炭化物面積率と、ビッカース硬度との関係を示すグラフである。 炭化物面積率と、抗折強度比との関係を示すグラフである。
以下、図面を参照して本発明を詳細に説明する。
本発明の転がり軸受は、後述するように、水や異物が混入した場合でも長寿命を示すことから、建設機械や鉄鋼用圧延機等に使用される大型の転がり軸受として有用である。例えば、図1は円筒ころ軸受を示す断面図であるが、外周面に内輪軌道面1aを有する内輪1と、外周面に外輪軌道面2aを有する外輪2と、両軌道面1a,2a間に転動自在に配された複数の円筒ころ3と、円筒ころ3を保持する保持器4とを備えており、両軌道面1a,2aと円筒ころ3の転動面3aとの潤滑が、グリースや潤滑油等の潤滑剤(図示せず)により行われている。
本発明では、円筒ころ軸受の内輪1及び外輪2の少なくとも一方、好ましくは両方を、SUJ2やSUJ3、100CrMnSi6−4等の汎用の軸受鋼製とする。軸受鋼は、浸炭鋼に比べて清浄度が高く、水混入に起因するはく離寿命を向上させる効果がある。
また、各軌道面1a、2a、更には図中の符号5、6、7、8で示される各表面に高周波熱処理を施して硬化層を形成する。その際、部位別の温度制御による組織制御を行い、各軌道面1a、2aに対して表面の残留オーステナイト量を増加させる。高周波熱処理時、鋼材の温度が高くなると、時間経過により炭化物中の炭素が鉄の格子中に拡散し、固溶炭素量が増えることでMs点が下がる。そのため、高周波熱処理時に適切な出力と加熱時間とを調整することにより、転がり疲労を受ける各軌道面1a、2aの表面の残留オーステナイト量を制御し、異物混入に起因するはく離寿命を向上させる。本発明では、高周波熱処理により、各軌道面1a、2aの表面の残留オーステナイト量を15〜37体積%、好ましくは18体積%以上、より好ましくは25体積%以上に調整する。
また、軌道面1a,2a以外の部分、特に軸との嵌め合い面である反軌道面(図中の符号5)に対しては、高周波夏処理時の基地への固溶炭素量を調整することで、耐割れ性を付与できる。本発明では、この反軌道面5の表面の炭化物面積率を1.5〜10%、好ましくは5%以上とする。
高周波熱処理では、処理面に高周波電源に接続したコイルを対向配置し、コイルへの高周波出力により処理面の加熱状態を制御することができるため、部位別に硬化状態を制御することができる。
また、極値統計法により予測される存在する最大の酸化物系介在物が40μm以下、好ましくは33μm以下、更に好ましくは22μm以下とする。極値統計法は、正規分布、指数分布、対数分布等に従う集合に対して最大値及び最小値等の極値を予測する手法であり、鋼材中に含まれる介在物の最大径を予測する手法として非常に有効であることが知られている(「金属疲労 微小欠陥と介在物の影響」村上敬宣著、養賢堂(1993))。また、転がり軸受の介在物起点型剥離においては、極値統計法で予測した最大介在物径と転動疲労寿命には良い相関が見られることが知られている(長尾ら、Sanyo Technical Report,Vol.12,No.1,pp38(2005)).
極値統計を行う際には、日本トライボロジー学会の「軸受鋼における介在物の評価研究会」の提案に従う。即ち、鋼材断面の観察面積100mmに存在する最大の酸化物系介在物を求め、それを鋼材の30箇所の断面にて実施して、それぞれの観察断面における最大の酸化物系介在物を求め、小さい介在物から順に極値統計グラフにプロットし、最小二乗法を用いて最大介在物分布曲線を求める。そして、同曲線から、面積30000mmに存在する最大の酸化物系介在物を求める。尚、介在物は、近似的に長方形と仮定して求め、その面積(長径D×短径d)の平方根を求めることで酸化物系介在物の粒径とする。
このように、酸化物系介在物が微細であると、基地との隙間が無くなり、転がり疲労を受けても介在物が応力集中源とならず、寿命向上に効果的となる。
本発明では上記の規定に加えて、各軌道面1a、2aの表面の炭化物面積率が1.5〜6%であり、かつ、上記した反軌道面5の表面の炭化物面積率よりも小さいことが好ましい。各軌道面1a、2aは、残留オーステナイト量を上記のように確保するために、炭化物面積率を少なくする必要があり、更には残留オーステナイト増加による寸法安定性劣化という負の要因をできるだけ低減させることが好ましいため、表面の炭化物面積率を反軌道面5の表面の炭化物面積率よりも小さくする。
また、反軌道面5の表面硬さをHV517以上にすることが好ましく、これによりフレッチング摩耗を防止することができる。
更には、各軌道面1a、2aの表面硬さをHV650以上とすることが好ましい。表面硬度は高い面圧が作用する転がり軸受に必要な基本特性であり、HV650以上であれば特に問題が生じないことが知られている。本発明で用いるSUJ2のような高炭素鋼を高周波熱処理することにより、この硬度が容易に得られる。また、HV550以上の有効硬化層深さ(Y)が0.07・Dw(玉直径)よりも薄い場合、心部のせん断応力に耐えられず早期破壊する可能性があるため、Y>0.07・Dwとすることが好ましい。尚、心部の硬さとしてはHV500〜650が好ましい。上記したように、反軌道面の表面硬さはHV517以上が好ましいが、そのためには心部の硬さをHV500以上にすることが望ましい。また、特に心部の硬さがHV700以上になると、焼割れを起こすことが懸念される。
以下に、上記した各規定値による効果を確認するために、実施例及び比較例を挙げて説明する。
(実施例1〜3、比較例1〜2)
呼び番号NU2326を想定して、表1に示す鋼材を用い、熱処理を施して内輪を作製した。先ず、清浄度の異なるSUJ2、SUJ3または100CrMnSi6−4を旋削して粗加工した後、高周波熱処理を施して軌道輪に硬化層を形成した。その後、焼戻しを行い、切削加工して内輪完成寸法(内径:130mm、外径:167mm、幅:93mm)に仕上げた。また、比較のために、比較例1では一般浸炭鋼であるSCR420を用い、粗加工後、浸炭焼入焼戻処理を行い、比較例2ではSUJ2を用い、粗加工後、炉加熱焼入焼戻処理を行った。そして、作製した内輪を、外輪及び転動体とともに組み込み、試験軸受(呼び番号NU2326)とし、下記条件にて水混入潤滑試験及び異物混入潤滑試験を行った。結果を表1に、水混入試験結果については比較例1の寿命に対する相対値にて、異物混入試験結果については比較例2の寿命に対する相対値にて示す。
<水混入潤滑試験条件>
・軸受名番:NU2326
・荷重:20ton(P/=0.23)
・潤滑条件:#68タービンオイル 油浴 水混入量60cc/hr
<異物混入潤滑試験条件>
・軸受名番:NU2326
・荷重:20ton(P/=0.23)
・潤滑条件:#68タービンオイル 油浴
・異物:異物の代替として、内輪の軌道面に幅方向中央にロックウェル圧痕8点形成
また、表1には、熱処理品質(極値統計法による最大の酸化物系介在物の大きさ(介在物予測最大径)、軌道面の表面の残留オーステナイト量(γR)、軌道面の表面の炭化物面積率、反軌道面の表面の炭化物面積率、内輪圧砕強度比)を示す。
Figure 2016006340
比較例1の浸炭鋼は、表面の残留オーステナイト量の多さから、異物混入潤滑下における寿命は実施例と同等であるが、水混入潤滑下では実施例よりも劣る。また、比較例2は、介在物予測最大径の小ささから水混入潤滑環境下における寿命は実施例と同等であるが、異物混入潤滑下における寿命は実施例よりも劣る。実施例は両者の利点が共存するため、何れの潤滑下でも長寿命を確保できることがわかる。また、本実験のみからは、極値統計法による最大の酸化物系介在物の大きさを33μm以下、軌道面の表面の残留オーステナイト量を18体積%以下にすることにより、寿命を大幅に延長できることがわかる。
また、内輪の圧砕強度比は比較例2に対する相対値であるが、実施例及び比較例1はともに比較例2よりも高強度であり、実施例と比較例1とでは同等の強度であるといえる。実施例において、反軌道面の表面の炭化物面積率を測定したところ、5%以上であり、反軌道面の表面の炭化物面積率よりも小さくなっている。
(実施例4〜10、比較例3)
清浄度の異なる鋼材を用い、粗加工した後、実施例では高周波熱処理(IH)を施し、その後焼戻し、研削加工して呼び番号51305軸受用の内輪(内径:25mm、外径52mm、幅18mm)を作製した。比較例3では、浸炭焼入焼戻を行った。このようにして表2のように介在物予測最大径の異なる内輪を作製した。そして、軸受を組み立て、下記条件にて水混入潤滑試験を行った。結果を表2に、比較例3のL10寿命に対する相対値にて示す。また、図2に、この寿命比と、介在物予測最大径との関係を示す。
<水混入潤滑試験条件>
・軸受名番:51305
・面圧:3.2GPa
・試験面:研磨面
・潤滑条件:VG10 油浴 水混入量30cc/hr
Figure 2016006340
表2及び図2から、介在物予測最大径が40μm以下のときに、寿命比2倍以上を確保できることがわかる。特に、介在物予測最大径が22μm以下であれば、寿命比2.7倍以上を確保できるため、更に望ましい。
(実施例11〜18、比較例4)
実施例では、粗加工した後、出力条件を変えて高周波熱処理(IH)を施し、その後焼戻し、研削加工して呼び番号51305軸受用の内輪(内径:25mm、外径52mm、幅18mm)を作製した。比較例4では、炉加熱ずぶ焼入焼戻を行った。このようにして表3に示すように軌道面の表面の残留オーステナイト量の異なる内径を作製した。そして、軸受を組み立て、下記条件にて異物混入潤滑試験を行った。結果を表3に、比較例4のL10寿命に対する相対値にて示す。また、図3に、この寿命比と、残留オーステナイト量との関係を示す。
<異物混入潤滑試験条件>
・軸受名番:51305
・荷重:4.2GPa
・試験面:研磨面
・潤滑条件:#68タービンオイル 油浴
Figure 2016006340
表3及び図3から、軌道面の表面の残留オーステナイト量が15体積%以上のときに、寿命比2倍以上を確保できることがわかる。特に、軌道面の表面の残留オーステナイト量が25体積%以上であれば、寿命比3倍以上を確保できるため、更に望ましい。
(実施例19〜23、比較例5〜10)
SUJ2製の内輪(内径:130mm、外径167mm、幅93mm)を種々の出力条件にて高周波熱処理を行い、表4に示す軌道面の表面の残留オーステナイト量及び炭化物面積率とした。また、図4に、軌道面の表面の炭化物面積率と残留オーステナイト量との関係を示す。
Figure 2016006340
表4及び図4から、軌道面の表面の炭化物面積率が6%以下であれば、表面の残留オーステナイト量を15体積%以上にすることができ、図3に示すように異物混入潤滑下でのL10寿命を確保することができる。
(実施例24〜31、比較例11〜13)
SUJ2製の内輪(内径:130mm、外径167mm、幅93mm)を種々の出力条件にて高周波熱処理を行い、表5に示す反軌道面の表面の炭化物面積率及び表面硬さ(ビッカース硬度)とした。また、図5に、反軌道面の表面の炭化物面積率とビッカース硬度との関係を示す。
Figure 2016006340
表5及び図5から、反軌道面の表面の炭化物面積率が10%以下であれば、表面のビッカース硬度HV500以上を確保することができ、フレッチング摩耗を防止することができる。
(実施例32〜42、比較例14〜15)
反軌道面の表面の炭化物面積率の耐割れ性を評価するために、次の試験を行った。直径12.8mmの軸受鋼からなる丸棒に、その長手方向中央部の円周上に1.5Rの溝を付与した。溝深さは0.75mm、溝の幅は2.6mmである。その後、周波数10kHzにて高周波焼入れを行い、試験片を作製した。その際、出力条件を種々変更して、表6に示す表面の炭化物表面率とした。また、比較例15では、高周波焼入れではなく、炉加熱ずぶ焼入れを行った。
そして、各試験片にいついて下記条件にて抗折試験を行い、比較例15に対する強度比を求めた。また、図6に、表面の炭化物面積率と抗折強度比との関係を示す。尚、何れの試験片も、R溝底の中心から亀裂が発生すると同時に、亀裂は停止することなく試験片の破断に至ることを確認している。
Figure 2016006340
表6及び図6から、表面の炭化物面積率が1.5%以上であれば、比較例15のずぶ焼焼入れ品よりも耐割れ性に優れ、特に5%以上では1.5倍以上の抗折強度が確保される。
1 内輪
1a 内輪軌道面
2 外輪
2a 外輪軌道面
3 円筒ころ
4 保持器

Claims (2)

  1. 内輪及び外輪の少なくとも一方が軸受鋼製で、高周波熱処理が施されており、極値統計法によって予測される最大の酸化物系介在物が40μm以下であり、軌道面の表面の残留オーステナイト量が15〜37体積%であり、かつ、反軌道面の表面の炭化物面積率が1.5〜10%であることを特徴とする転がり軸受。
  2. 軌道面の表面の炭化物面積率が1.5〜6%であり、かつ、前記反軌道面の表面の面積率よりも小さく、反軌道面の表面硬さがHV517以上であることを特徴とする請求項1記載の転がり軸受。
JP2014127302A 2014-06-20 2014-06-20 転がり軸受 Pending JP2016006340A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014127302A JP2016006340A (ja) 2014-06-20 2014-06-20 転がり軸受

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014127302A JP2016006340A (ja) 2014-06-20 2014-06-20 転がり軸受

Publications (1)

Publication Number Publication Date
JP2016006340A true JP2016006340A (ja) 2016-01-14

Family

ID=55224868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014127302A Pending JP2016006340A (ja) 2014-06-20 2014-06-20 転がり軸受

Country Status (1)

Country Link
JP (1) JP2016006340A (ja)

Similar Documents

Publication Publication Date Title
JP5194532B2 (ja) 転がり軸受
JP5895493B2 (ja) 転がり軸受の製造方法、高周波熱処理装置
JP2010196107A (ja) 転がり軸受
JP2885829B2 (ja) 転がり軸受
JP2014020538A (ja) 転がり軸受、転がり軸受の製造方法、高周波熱処理装置
JP2014088893A (ja) 転がり軸受及びその製造方法
JP4114218B2 (ja) 転がり軸受
JP5298683B2 (ja) 転がり軸受及びその製造方法
JP5163183B2 (ja) 転がり軸受
JP2010025311A (ja) 転がり軸受及びその製造方法
JP2014122378A (ja) 転がり軸受
JP2013249500A (ja) 転がり軸受
JP5998631B2 (ja) 転がり軸受
JP2013160314A (ja) 転がり軸受
JP2013238274A (ja) ラジアル転がり軸受用内輪およびその製造方法
JP2006328514A (ja) 転がり支持装置
JP2016006340A (ja) 転がり軸受
JP5857433B2 (ja) 転がり案内装置の製造方法
JP2006045591A (ja) 円すいころ軸受
JP2012241862A (ja) 転がり軸受
JP2016069695A (ja) 転がり軸受
JP2009191942A (ja) 転がり軸受
JP2009174656A (ja) 転がり軸受
JP2006138376A (ja) ラジアルニードルころ軸受
JP2014047403A (ja) 転がり軸受