JP2015523019A - Lteにおけるニューキャリアタイプにおけるトランスポートブロックサイズ判断 - Google Patents

Lteにおけるニューキャリアタイプにおけるトランスポートブロックサイズ判断 Download PDF

Info

Publication number
JP2015523019A
JP2015523019A JP2015517341A JP2015517341A JP2015523019A JP 2015523019 A JP2015523019 A JP 2015523019A JP 2015517341 A JP2015517341 A JP 2015517341A JP 2015517341 A JP2015517341 A JP 2015517341A JP 2015523019 A JP2015523019 A JP 2015523019A
Authority
JP
Japan
Prior art keywords
tbs
carrier type
scheme
signal
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015517341A
Other languages
English (en)
Other versions
JP6174133B2 (ja
Inventor
チェン、ワンシ
ルオ、タオ
ガール、ピーター
シュ、ハオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2015523019A publication Critical patent/JP2015523019A/ja
Application granted granted Critical
Publication of JP6174133B2 publication Critical patent/JP6174133B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • H04L1/0035Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter evaluation of received explicit signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0039Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver other detection of signalling, e.g. detection of TFCI explicit signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ワイヤレス通信のための方法、装置、およびコンピュータプログラム製品が提供される。本装置は、信号を受信するためのキャリアタイプを検出し、検出されたキャリアタイプに基づいてトランスポートブロックサイズ(TBS)を判断し、判断されたTBSに従って信号を受信する。本装置は、さらに、信号を受信するためのキャリアタイプを検出し、検出されたキャリアタイプに基づいてチャネル品質情報(CQI)を判断し、CQIを送信する。本装置はまた、信号を送信するためのキャリアタイプを判断し、キャリアタイプに基づいてトランスポートブロックサイズ(TBS)を判断し、判断されたキャリアタイプとTBSとに従って信号を送信する。本装置は、さらに、信号を送信するためのキャリアタイプを判断し、判断されたキャリアタイプに従って信号を送信し、キャリアタイプに基づいてユーザ機器(UE)からチャネル品質情報(CQI)を受信する。【選択図】図13

Description

関連出願
関連出願の相互参照
[0001] 本出願は、「TRANSPORT BLOCK SIZE DETERMINATION IN NEW CARRIER TYPE IN LTE」と題し2012年6月12日に出願された米国仮出願第61/658,809号、および「TRANSPORT BLOCK SIZE DETERMINATION IN NEW CARRIER TYPE IN LTE」と題し2013年6月10日に出願された米国特許出願第13/914,444号の利益を主張するもので、これら全てが参照によって明確に本明細書に組み込まれる。
[0002] 本開示は一般に通信システムに関し、より詳細には、LTE通信システムのニューキャリアタイプにおいてトランスポートブロックサイズを判断することに関する。
[0003] ワイヤレス通信システムは、電話、ビデオ、データ、メッセージング、およびブロードキャストなどの様々な電気通信サービスを提供するために広く展開されている。典型的なワイヤレス通信システムは、利用可能なシステムリソース(例えば、帯域幅、送信電力)を共有することによって複数のユーザとの通信をサポートすることが可能な多元接続技術を採用し得る。そのような多元接続技術の例としては、符号分割多元接続(CDMA)システム、時分割多元接続(TDMA)システム、周波数分割多元接続(FDMA)システム、直交周波数分割多元接続(OFDMA)システム、シングルキャリア周波数分割多元接続(SC−FDMA)システム、および時分割同期符号分割多元接続(TD−SCDMA)システムがある。
[0004] これら多元接続技術は、異なるワイヤレスデバイスが都市、国家、地域、さらには地球規模で通信することを可能にする共通プロトコルを提供するために、様々な電気通信規格において採用されている。新生の電気通信規格の例は、ロングタームエボリューション(LTE:Long Term Evolution)である。LTEは、第3世代パートナーシッププロジェクト(3GPP:3rd Generation Partnership Project)によって公表されたユニバーサルモバイルテレコミュニケーションシステム(UMTS:Universal Mobile Telecommunication System)モバイル規格の拡張セットである。LTEは、スペクトル効率を改善することによってモバイルブロードバンドインターネットアクセスをより良くサポートし、コストを下げ、サービスを改善し、新しいスペクトルを利用し、また、ダウンリンク(DL)上ではOFDMAを使用し、アップリンク(UL)上ではSC−FDMAを使用し、多入力多出力(MIMO)アンテナ技術を使用して他のオープン規格とより良く統合するように設計されている。しかしながら、モバイルブロードバンドアクセスに対する需要が増加し続けるにつれて、LTE技術のさらなる改善が必要である。好ましくは、これら改善は、他の多元接続技術と、これら技術を採用する電気通信規格とに適用可能であるべきである。
[0005] 本開示の一態様では、ワイヤレス通信のための方法、装置、およびコンピュータプログラム製品が提供される。本装置は、信号を受信するためのキャリアタイプを検出し、検出されたキャリアタイプに基づいてトランスポートブロックサイズ(TBS)を判断し、判断されたTBSに従って信号を受信する。
[0006] 本開示の別の態様では、本装置が、信号を受信するためのキャリアタイプを検出し、検出されたキャリアタイプに基づいてチャネル品質情報(CQI)を判断し、CQIを送信する。
[0007] 本開示のさらなる態様では、本装置が、信号を送信するためのキャリアタイプを判断し、キャリアタイプに基づいてトランスポートブロックサイズ(TBS)を判断し、判断されたキャリアタイプとTBSとに従って信号を送信する。
[0008] 本開示のまた別の態様では、本装置が、信号を送信するためのキャリアタイプを判断し、判断されたキャリアタイプに従って信号を送信し、キャリアタイプに基づいてユーザ機器(UE)からチャネル品質情報(CQI)を受信する。
ネットワークアーキテクチャの一例を示す図。 アクセスネットワークの一例を示す図。 LTEにおけるDLフレーム構造の一例を示す図。 LTEにおけるULフレーム構造の一例を示す図。 ユーザプレーンおよび制御プレーンのための無線プロトコルアーキテクチャの一例を示す図。 アクセスネットワーク中の発展型ノードBおよびユーザ機器の一例を示す図。 異種ネットワーク中の範囲拡大セルラー領域を示す図。 ワイヤレス通信の方法のフローチャート。 ワイヤレス通信の方法のフローチャート。 ワイヤレス通信の方法のフローチャート。 ワイヤレス通信の方法のフローチャート。 例示的な装置中の異なるモジュール/手段/構成要素間のデータフローを示す概念データフロー図。 例示的な装置中の異なるモジュール/手段/構成要素間のデータフローを示す概念データフロー図。 処理システムを採用する装置のためのハードウェア実装形態の一例を示す図。 処理システムを採用する装置のためのハードウェア実装形態の一例を示す図。
詳細な説明
[0024] 添付の図面に関して以下に示す発明を実施するための形態は、様々な構成を説明するものであり、本明細書で説明する概念が実施され得る唯一の構成を表すものではない。発明を実施するための形態は、様々な概念の完全な理解を与えるための具体的な詳細を含む。但し、これら概念はこれらの具体的な詳細なしに実施され得ることが当業者には明らかであろう。いくつかの例では、そのような概念を不明瞭にしないように、よく知られている構造および構成要素をブロック図の形式で示す。
[0025] 次に、様々な装置および方法に関して電気通信システムのいくつかの態様を提示する。これら装置および方法について、以下の詳細な説明において説明し、(「要素」と総称される)様々なブロック、モジュール、構成要素、回路、ステップ、プロセス、アルゴリズムなどによって添付の図面に示す。これら要素は、電子ハードウェア、コンピュータソフトウェア、またはそれらの任意の組合せを使用して実装され得る。そのような要素をハードウェアとして実装するか、ソフトウェアとして実装するかは、特定の適用例および全体的なシステムに課された設計制約に依存する。
[0026] 例として、要素、または要素の任意の部分、または要素の任意の組合せは、1つまたは複数のプロセッサを含む「処理システム」を用いて実装され得る。プロセッサの例としては、マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理デバイス(PLD)、状態機械、ゲート論理、個別ハードウェア回路、および本開示全体にわたって説明する様々な機能を行うように構成された他の好適なハードウェアがある。処理システム中の1つまたは複数のプロセッサはソフトウェアを実行し得る。ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語などの名称にかかわらず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行ファイル、実行スレッド、プロシージャ、関数などを意味すると広く解釈されたい。
[0027] 従って、1つまたは複数の例示的な実施形態では、説明する機能が、ハードウェア、ソフトウェア、ファームウェア、またはそれらの任意の組合せで実装され得る。ソフトウェアで実装した場合、機能は、コンピュータ可読媒体上に記憶されるか、あるいはコンピュータ可読媒体上に1つまたは複数の命令またはコードとして符号化され得る。コンピュータ可読媒体はコンピュータ記憶媒体を含む。記憶媒体は、コンピュータによってアクセスされ得る任意の利用可能な媒体であり得る。限定ではなく例として、そのようなコンピュータ可読媒体は、RAM、ROM、EEPROM(登録商標)、CD−ROMまたは他の光ディスクストレージ、磁気ディスクストレージまたは他の磁気ストレージデバイス、あるいは命令またはデータ構造の形態の所望のプログラムコードを搬送または記憶するために使用され得、コンピュータによってアクセスされ得る、任意の他の媒体を備えることができる。本明細書で使用するディスク(disk)およびディスク(disc)は、コンパクトディスク(disc)(CD)、レーザーディスク(登録商標)(disc)、光ディスク(disc)、デジタル多用途ディスク(disc)(DVD)、フロッピー(登録商標)ディスク(disk)およびBlu−ray(登録商標)ディスク(disc)を含み、この場合、ディスク(disk)は、通常、データを磁気的に再生し、ディスク(disc)はデータをレーザーで光学的に再生する。上記の組合せもコンピュータ可読媒体の範囲内に含めるべきである。
[0028] 図1は、LTEネットワークアーキテクチャ100を示す図である。LTEネットワークアーキテクチャ100は発展型パケットシステム(EPS:Evolved Packet System)100と呼ばれることがある。EPS100は、1つまたは複数のユーザ機器(UE)102と、発展型UMTS地上波無線アクセスネットワーク(E−UTRAN:Evolved UMTS Terrestrial Radio Access Network)104と、発展型パケットコア(EPC:Evolved Packet Core)110と、ホーム加入者サーバ(HSS:Home Subscriber Server)120と、事業者のIPサービス122とを含み得る。EPSは他のアクセスネットワークと相互接続できるが、簡単のために、それらのエンティティ/インターフェースは図示していない。図示のように、EPSはパケット交換サービスを提供するが、当業者なら容易に諒解するように、本開示全体にわたって提示する様々な概念は、回線交換サービスを提供するネットワークに拡張され得る。
[0029] E−UTRANは、発展型ノードB(eNB)106と他のeNB108とを含む。eNB106は、UE102に対してユーザプレーンプロトコル終端と制御プレーンプロトコル終端とを与える。eNB106は、バックホール(例えば、X2インターフェース)を介して他のeNB108に接続され得る。eNB106は、基地局、トランシーバ基地局、無線基地局、無線トランシーバ、トランシーバ機能、基本サービスセット(BSS:basic service set)、拡張サービスセット(ESS:extended service set)、または何らかの他の好適な用語で呼ばれることもある。eNB106は、UE102にEPC110へのアクセスポイントを与える。UE102の例としては、セルラーフォン、スマートフォン、セッション開始プロトコル(SIP:session initiation protocol)電話、ラップトップ、携帯情報端末(PDA)、衛星無線、全地球測位システム、マルチメディアデバイス、ビデオデバイス、デジタルオーディオプレーヤ(例えば、MP3プレーヤ)、カメラ、ゲーム機、または任意の他の同様の機能デバイスがある。UE102は、当業者によって、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、または何らかの他の好適な用語で呼ばれることもある。
[0030] eNB106はS1インターフェースによってEPC110に接続される。EPC110は、モビリティ管理エンティティ(MME:Mobility Management Entity)112と、他のMME114と、サービングゲートウェイ116と、パケットデータネットワーク(PDN:Packet Data Network)ゲートウェイ118とを含む。MME112は、UE102とEPC110との間のシグナリングを処理する制御ノードである。概して、MME112はベアラおよび接続管理を行う。全てのユーザIPパケットはサービングゲートウェイ116を通して転送され、サービングゲートウェイ116自体はPDNゲートウェイ118に接続される。PDNゲートウェイ118はUEのIPアドレス割振り並びに他の機能を与える。PDNゲートウェイ118は事業者のIPサービス122に接続される。事業者のIPサービス122は、インターネットと、イントラネットと、IPマルチメディアサブシステム(IMS:IP Multimedia Subsystem)と、PSストリーミングサービス(PSS:PS Streaming Service)とを含み得る。
[0031] 図2は、LTEネットワークアーキテクチャにおけるアクセスネットワーク200の一例を示す図である。この例では、アクセスネットワーク200が、いくつかのセルラー領域(セル)202に分割される。1つまたは複数のより低い電力クラスのeNB208は、セル202のうちの1つまたは複数と重複するセルラー領域210を有し得る。より低い電力クラスのeNB208は、フェムトセル(例えば、ホームeNB(HeNB))、ピコセル、マイクロセル、またはリモートラジオヘッド(RRH: remote radio head)であり得る。マクロeNB204は各々、該当のセル202に割り当てられ、セル202中の全てのUE206にEPC110へのアクセスポイントを与えるように構成される。アクセスネットワーク200のこの例には集中コントローラはないが、代替構成では集中コントローラが使用され得る。eNB204は、無線ベアラ制御、承認制御、モビリティ制御、スケジューリング、セキュリティ、およびサービングゲートウェイ116への接続性を含む、全ての無線関係機能を担う。
[0032] アクセスネットワーク200によって採用される変調および多元接続方式は、展開されている特定の電気通信規格に応じて異なり得る。LTE適用例では、周波数分割複信(FDD:frequency division duplexing)と時分割複信(TDD:time division duplexing)の両方をサポートするために、OFDMがDL上で使用され、SC−FDMAがUL上で使用される。当業者なら以下の詳細な説明から容易に諒解するように、本明細書で提示する様々な概念は、LTE適用例に好適である。但し、これら概念は、他の変調および多元接続技法を採用する他の電気通信規格に容易に拡張され得る。例として、これら概念は、エボリューションデータオプティマイズド(EV−DO:Evolution-Data Optimized)またはウルトラモバイルブロードバンド(UMB:Ultra Mobile Broadband)に拡張され得る。EV−DOおよびUMBは、CDMA2000規格ファミリーの一部として第3世代パートナーシッププロジェクト2(3GPP2:3rd Generation Partnership Project 2)によって公表されたエアインターフェース規格であり、CDMAを利用して移動局にブロードバンドインターネットアクセスを提供する。これら概念はまた、広帯域CDMA(W−CDMA(登録商標))、並びにTD−SCDMA、TDMAを採用するモバイル通信用グローバルシステム(GSM(登録商標):Global System for Mobile Communications)、発展型UTRA(E−UTRA:Evolved UTRA)、IEEE802.11(Wi−Fi(登録商標))、IEEE802.16(WiMAX(登録商標))、IEEE802.20、およびOFDMAを採用するFlash−OFDMなど、CDMAの他の変形態を採用するユニバーサル地上波無線アクセス(UTRA:Universal Terrestrial Radio Access)に拡張され得る。UTRA、E−UTRA、UMTS、LTEおよびGSMは、3GPP団体からの文書に記載されている。CDMA2000およびUMBは、3GPP2団体からの文書に記載されている。採用される実際のワイヤレス通信規格および多元接続
技術は、特定の適用例およびシステムに課された全体的な設計制約に依存することになる。
[0033] eNB204は、MIMO技術をサポートする複数のアンテナを有し得る。MIMO技術の使用により、eNB204は、空間多重化、ビームフォーミング、および送信ダイバーシティをサポートするために空間領域を活用することが可能になる。空間多重化は、データの異なるストリームを同じ周波数上で同時に送信するために使用され得る。データストリームは、データレートを増加させるために単一のUE206に送信されるか、または全体的なシステム容量を増加させるために複数のUE206に送信され得る。これは、各データストリームを空間的にプリコードし(すなわち、振幅および位相のスケーリングを適用し)、次いでDL上で複数の送信アンテナを通して空間的にプリコードされた各ストリームを送信することによって達成される。空間的にプリコードされたデータストリームは、異なる空間シグナチャとともに(1つまたは複数の)UE206に到着し、これにより、(1つまたは複数の)UE206の各々がそのUE206に宛てられた1つまたは複数のデータストリームを復元することが可能になる。UL上で、各UE206は、空間的にプリコードされたデータストリームを送信し、これにより、eNB204は、空間的にプリコードされた各データストリームのソースを識別することが可能になる。
[0034] 空間多重化は、概ね、チャネル状態が良好であるときに使用される。チャネル状態があまり良好でないときは、送信エネルギーを1つまたは複数の方向に集中させるためにビームフォーミングが使用され得る。これは、複数のアンテナを通して送信するためのデータを空間的にプリコードすることによって達成され得る。セルのエッジにおいて良好なカバレージを達成するために、送信ダイバーシティと組み合わせてシングルストリームビームフォーミング送信が使用され得る。
[0035] 以下の詳細な説明では、DL上でOFDMをサポートするMIMOシステムを参照しながらアクセスネットワークの様々な態様について説明する。OFDMは、OFDMシンボル内のいくつかのサブキャリアを介してデータを変調するスペクトル拡散技法である。サブキャリアは正確な周波数で離間する。離間は、受信機がサブキャリアからデータを復元することを可能にする「直交性(orthogonality)」を与える。時間領域では、OFDMシンボル間干渉をなくすために、ガードインターバル(例えば、サイクリックプレフィックス)が各OFDMシンボルに追加され得る。ULは、高いピーク対平均電力比(PAPR:peak-to-average power ratio)を補償するために、SC−FDMAをDFT拡散OFDM信号の形態で使用し得る。
[0036] 図3は、LTEにおけるDLフレーム構造の一例を示す図300である。フレーム(10ms)は、等しいサイズの10個のサブフレームに分割され得る。各サブフレームは、2つの連続するタイムスロットを含み得る。2つのタイムスロットを表すためにリソースグリッドが使用され得、各タイムスロットはリソースブロックを含む。リソースグリッドは複数のリソース要素に分割される。LTEでは、リソースブロックが、周波数領域中に12個の連続サブキャリアを含んでおり、各OFDMシンボル中のノーマルサイクリックプレフィックスについて、時間領域中に7個の連続OFDMシンボル、または84個のリソース要素を含んでいる。拡張サイクリックプレフィックスについて、リソースブロックは、時間領域中に6個の連続OFDMシンボルを含んでおり、72個のリソース要素を有する。R302、304として示されるリソース要素のいくつかはDL基準信号(DL−RS:DL reference signal)を含む。DL−RSは、セル固有RS(CRS:Cell-specific RS)(共通RS(common RS)と呼ばれることもある)302と、UE固有RS(UE−RS:UE-specific RS)304とを含む。UE−RS304は、対応する物理DL共有チャネル(PDSCH:physical DL shared channel)がマッピングされるリソースブロック上のみで送信される。各リソース要素によって搬送されるビット数は変調方式に依存する。すなわち、UEが受信するリソースブロックが多いほど、また変調方式が高いほど、UEのデータレートは高くなる。
[0037] 図4は、LTEにおけるULフレーム構造の例を示す図400である。ULのための利用可能なリソースブロックは、データセクションと制御セクションとに区分され得る。制御セクションは、システム帯域幅の2つのエッジにおいて形成され得、構成可能なサイズを有し得る。制御セクション中のリソースブロックは、制御情報を送信するためにUEに割り当てられ得る。データセクションは、制御セクション中に含まれない全てのリソースブロックを含み得る。ULフレーム構造は、データセクション中の連続するサブキャリアのすべてを単一のUEに割り当てることを可能にし得る連続サブキャリアを含むデータセクションを生じる。
[0038] UEには、eNBに制御情報を送信するために、制御セクション中のリソースブロック410a、410bが割り当てられ得る。UEには、eNBにデータを送信するために、データセクション中のリソースブロック420a、420bも割り当てられ得る。UEは、制御セクション中の割り当てられたリソースブロック上の物理UL制御チャネル(PUCCH:physical UL control channel)中で制御情報を送信し得る。UEは、データセクション中の割り当てられたリソースブロック上の物理UL共有チャネル(PUSCH:physical UL shared channel)中でデータのみまたはデータと制御情報の両方を送信し得る。UL送信は、サブフレームの両方のスロットにわたり得、周波数上でホッピングし得る。
[0039] リソースブロックのセットが、初期システムアクセスを行い、物理ランダムアクセスチャネル(PRACH:physical random access channel)430中でUL同期を達成するために使用され得る。PRACH430は、ランダムシーケンスを搬送し、いかなるULデータ/シグナリングも搬送することができない。各ランダムアクセスプリアンブルは、6つの連続するリソースブロックに対応する帯域幅を占有する。開始周波数はネットワークによって指定される。すなわち、ランダムアクセスプリアンブルの送信は、ある時間リソースおよび周波数リソースに制限される。周波数ホッピングはPRACHにはない。PRACH試みは単一のサブフレーム(1ms)中でまたは少数の連続サブフレームのシーケンス中で搬送され、UEは、フレーム(10ms)ごとに単一のPRACH試みだけを行うことができる。
[0040] 図5は、LTEにおけるユーザプレーンおよび制御プレーンのための無線プロトコルアーキテクチャの一例を示す図500である。UEおよびeNBのための無線プロトコルアーキテクチャは、レイヤ1と、レイヤ2と、レイヤ3との3つのレイヤとともに示されている。レイヤ1(L1レイヤ)は最下位レイヤであり、様々な物理レイヤ信号処理機能を実装する。L1レイヤを本明細書では物理レイヤ506と呼ぶ。レイヤ2(L2レイヤ)508は、物理レイヤ506の上にあり、物理レイヤ506を介したUEとeNBとの間のリンクを担う。
[0041] ユーザプレーンでは、L2レイヤ508が、ネットワーク側のeNBにおいて終端される、媒体アクセス制御(MAC:media access control)サブレイヤ510と、無線リンク制御(RLC:radio link control)サブレイヤ512と、パケットデータコンバージェンスプロトコル(PDCP:packet data convergence protocol)514サブレイヤとを含む。図示されていないが、UEは、ネットワーク側のPDNゲートウェイ118において終端されるネットワークレイヤ(例えば、IPレイヤ)と、接続の他端(例えば、ファーエンドUE、サーバなど)において終端されるアプリケーションレイヤとを含むL2レイヤ508の上にいくつかの上位レイヤを有し得る。
[0042] PDCPサブレイヤ514は、異なる無線ベアラと論理チャネルとの間で多重化を行う。PDCPサブレイヤ514はまた、無線送信オーバーヘッドを低減するために上位レイヤデータパケットのヘッダ圧縮と、データパケットを暗号化することによるセキュリティと、UEに対するeNB間のハンドオーバサポートとを与える。RLCサブレイヤ512は、上位レイヤデータパケットのセグメンテーションおよび再統合と、紛失データパケットの再送信と、ハイブリッド自動再送要求(HARQ:hybrid automatic repeat request)による、順序が乱れた受信を補正するデータパケットの並べ替えとを行う。MACサブレイヤ510は、論理チャネルとトランスポートチャネルとの間の多重化を行う。MACサブレイヤ510はまた、UEの間で1つのセル中の様々な無線リソース(例えば、リソースブロック)を割り振ることを担う。MACサブレイヤ510はまたHARQ動作を担う。
[0043] 制御プレーンでは、UEおよびeNBのための無線プロトコルアーキテクチャが、制御プレーンのためのヘッダ圧縮機能がないことを除いて、物理レイヤ506およびL2レイヤ508について実質的に同じである。制御プレーンはまた、レイヤ3(L3レイヤ)中に無線リソース制御(RRC:radio resource control)サブレイヤ516を含む。RRCサブレイヤ516は、無線リソース(すなわち、無線ベアラ)を取得することと、eNBとUEとの間のRRCシグナリングを使用して下位レイヤを構成することとを担う。
[0044] 図6は、アクセスネットワーク中でUE650と通信しているeNB610のブロック図である。DLでは、コアネットワークからの上位レイヤパケットが、コントローラ/プロセッサ675に与えられる。コントローラ/プロセッサ675は、L2レイヤの機能を実装する。DLでは、コントローラ/プロセッサ675が、様々な優先度メトリックに基づいてヘッダ圧縮と、暗号化と、パケットのセグメント化および並べ替えと、論理チャネルとトランスポートチャネルとの間の多重化と、UE650への無線リソース割振りとを行う。コントローラ/プロセッサ675はまた、HARQ動作と、紛失パケットの再送信と、UE650へのシグナリングとを担う。
[0045] 送信(TX)プロセッサ616は、L1レイヤ(すなわち、物理レイヤ)のための様々な信号処理機能を実装する。信号処理機能は、UE650における前方誤り訂正(FEC:forward error correction)と、様々な変調方式(例えば、2位相シフトキーイング(BPSK:binary phase-shift keying)、4位相シフトキーイング(QPSK:quadrature phase-shift keying)、M位相シフトキーイング(M−PSK:M-phase-shift keying)、多値直交振幅変調(M−QAM:M-quadrature amplitude modulation))に基づいた信号コンスタレーションへのマッピングとを可能にするために、コーディングとインターリービングとを含む。次いで、符号化され変調されたシンボルは並列ストリームに分割される。各ストリームは、次いでOFDMサブキャリアにマッピングされ、時間領域および/または周波数領域中で基準信号(例えば、パイロット)と多重化され、次いで逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)を使用して互いに合成されて、時間領域OFDMシンボルストリームを搬送する物理チャネルを生成する。OFDMストリームは、複数の空間ストリームを生成するために空間的にプリコードされる。チャネル推定器674からのチャネル推定値は、符号化および変調方式を判断するために、並びに空間処理のために使用され得る。チャネル推定値は、UE650によって送信される基準信号および/またはチャネル状態フィードバックから導出され得る。次いで、各空間ストリームは、別個の送信機618TXを介して異なるアンテナ620に与えられる。各送信機618TXは、送信のために該当の空間ストリームでRFキャリアを変調する。
[0046] UE650において、各受信機654RXは、その該当のアンテナ652を通して信号を受信する。各受信機654RXは、RFキャリア上に変調された情報を復元し、受信(RX)プロセッサ656に情報を与える。RXプロセッサ656は、L1レイヤの様々な信号処理機能を実装する。RXプロセッサ656は、UE650に宛てられた任意の空間ストリームを復元するために、情報に対して空間処理を行う。複数の空間ストリームがUE650に宛てられた場合、それらはRXプロセッサ656によって単一のOFDMシンボルストリームに合成され得る。RXプロセッサ656は、次いで高速フーリエ変換(FFT:Fast Fourier Transform)を使用してOFDMシンボルストリームを時間領域から周波数領域に変換する。周波数領域信号は、OFDM信号のサブキャリアごとに別々のOFDMシンボルストリームを備える。各サブキャリア上のシンボルと基準信号とは、eNB610によって送信される、可能性が最も高い信号のコンスタレーションポイントを判断することによって復元され、復調される。これらの軟判定は、チャネル推定器658によって計算されるチャネル推定値に基づき得る。軟判定は、次いで、物理チャネル上でeNB610によって最初に送信されたデータおよび制御信号を復元するために復号され、デインターリーブされる。データおよび制御信号は、次いで、コントローラ/プロセッサ659に与えられる。
[0047] コントローラ/プロセッサ659はL2レイヤを実装する。コントローラ/プロセッサは、プログラムコードとデータとを記憶するメモリ660に関連し得る。メモリ660はコンピュータ可読媒体と呼ばれることがある。ULでは、コントローラ/プロセッサ659が、コアネットワークからの上位レイヤパケットを復元するために、トランスポートチャネルと論理チャネルとの間の多重分離と、パケットリアセンブリと、復号(decipher)と、ヘッダ復元(decompression)と、制御信号処理とを行う。上位レイヤパケットは、次いで、L2レイヤの上の全てのプロトコルレイヤを表すデータシンク662に与えられる。また、様々な制御信号がL3処理のためにデータシンク662に与えられ得る。コントローラ/プロセッサ659はまた、HARQ動作をサポートするために肯定応答(ACK)および/または否定応答(NACK)プロトコルを使用した誤り検出を担う。
[0048] ULでは、データソース667が、コントローラ/プロセッサ659に上位レイヤパケットを与えるために使用される。データソース667は、L2レイヤの上の全てのプロトコルレイヤを表す。eNB610によるDL送信に関して説明した機能と同様に、コントローラ/プロセッサ659は、ヘッダ圧縮と、暗号化と、パケットのセグメント化および並べ替えと、eNB610による無線リソース割振りに基づいた論理チャネルとトランスポートチャネルとの間の多重化とを行うことによって、ユーザプレーンおよび制御プレーンのためのL2レイヤを実装する。コントローラ/プロセッサ659はまた、HARQ動作、紛失パケットの再送信、およびeNB610へのシグナリングを担う。
[0049] eNB610によって送信される基準信号またはフィードバックからの、チャネル推定器658によって導出されるチャネル推定値は、適切な符号化および変調方式を選択することと、空間処理を可能にすることとを行うために、TXプロセッサ668によって使用され得る。TXプロセッサ668によって生成される空間ストリームは、別個の送信機654TXを介して異なるアンテナ652に与えられる。各送信機654TXは、送信のために該当の空間ストリームでRFキャリアを変調する。
[0050] UL送信は、UE650における受信機機能に関して説明した方法と同様の方法でeNB610において処理される。各受信機618RXは、その該当のアンテナ620を通して信号を受信する。各受信機618RXは、RFキャリア上で変調された情報を復元し、RXプロセッサ670に情報を与える。RXプロセッサ670はL1レイヤを実装し得る。
[0051] コントローラ/プロセッサ675はL2レイヤを実装する。コントローラ/プロセッサ675は、プログラムコードとデータとを記憶するメモリ676に関連し得る。メモリ676は、コンピュータ可読媒体と呼ばれることがある。ULでは、コントローラ/プロセッサ675が、UE650からの上位レイヤパケットを復元するために、トランスポートチャネルと論理チャネルとの間の多重分離と、パケットリアセンブリと、復号と、ヘッダ復元と、制御信号処理とを行う。コントローラ/プロセッサ675からの上位レイヤパケットはコアネットワークに与えられ得る。コントローラ/プロセッサ675はまた、HARQ動作をサポートするためにACKおよび/またはNACKプロトコルを使用した誤り検出を担う。
[0052] 図7は、異種ネットワーク中の範囲拡大セルラー領域(range expanded cellular region)を示す図700である。RRH710bなどのより低い電力クラスのeNBは、RRH710bとマクロeNB710aとの間の拡張セル間干渉協調(enhanced inter-cell interference coordination)と、UE720によって行われる干渉消去(interference cancelation)とを通して、セルラー領域702から拡大された範囲拡大セルラー領域703を有し得る。拡張セル間干渉協調において、RRH710bは、マクロeNB710aからUE720の干渉状態に関する情報を受信する。この情報により、RRH710bは、範囲拡大セルラー領域703中のUE720をサービスし、UE720が範囲拡大セルラー領域703に入るとき、マクロeNB710aからのUE720のハンドオフを受け入れることが可能になる。
[0053] LTEリリース8、9、または10(Rel−8/9/10)では、ダウンリンクデータ送信およびアップリンクデータ送信のためのトランスポートブロックサイズ(TBS)が、1)リソース割振りサイズ(NPRB’)と、2)変調およびコーディング方式(MCS:modulation and coding scheme)インデックスとの2つのファクタに基づいて判断される。
[0054] リソース割振りサイズNPRB’は、20MHzでは最高100個のリソースブロック(RB)であり得る。リソース割振りサイズはインデックスNPRBにマッピングされ得る。通常ダウンリンクサブフレームの場合、NPRB=NPRB’である。時分割複信(TDD)における特殊サブフレームの場合、特殊サブフレームのダウンリンクパイロットタイムスロット(DwPTS)中のOFDMシンボルの数が通常ダウンリンクサブフレームの数よりも少ない、すなわち、NPRB=max{|NPRB’x0.75|,1}であるので、0.75の調整ファクタが適用され得る。新しい特殊サブフレーム構成により、LTEリリース11(Rel−11)において、1よりも小さい値を有する別の調整ファクタが与えられ得る。
[0055] MCSインデックスは、0から26にわたるTBSインデックス(ITBS)にマッピングされ得る。リソース割振りサイズおよびMCSインデックスは、例えば、半永続的スケジューリング(SPS)の場合、SPSアクティブ化PDCCHに基づいて、ダウンリンク(DL)許可および/またはアップリンク(UL)許可に基づいて判断され得る。
[0056] ITBSによってインデックス付けされた行とNPRBによってインデックス付けされた列とをもつTBSテーブルが定義され得る。将来の互換性のために、TBSテーブルは、最高110個のRBのNPRBを有し得る。TBSテーブルは、1)最高コードレートが0.92の近くに選択される(例えば、コーディングレートが0.93以上である場合、UEはPDSCH復号をスキップし得る)、2)TBSテーブル設計がCQI MCS値に基づく、並びに3)制御のためのn=3つのOFDMシンボル、2つのアンテナ、および物理リソースブロックごとに120個のリソース要素(120RE/PRB)を仮定してMCSから計算されたTBSに基づいて構成され得る。従って、単一のMCSテーブルが、Txアンテナの数、PCFICH(n)、およびサイクリックプレフィックス(CP)サイズに対して不変である。以下の表1にTBSテーブルの一例を示す。
Figure 2015523019
[0057] CQIインデックスは、以下のファクタ、1)サブフレームの最初の3つのOFDMシンボルが制御シグナリングによって占有される、2)1次同期信号または2次同期信号あるいはPBCHによって使用されるリソース要素(RE)がない、3)非MBSFNサブフレームのサイクリックプレフィックス(CP)長、4)冗長バージョン0、5)チャネル状態情報基準信号(CSI−RS:channel state information reference signal)と0電力CSI−RSとのために割り振られたREがない、6)PRSのために割り振られたREがない、および7)他のファクタ(例えば、あるPDSCH送信方式またはCRSベースのPDSCHのための一定のトラフィック対パイロット比)に基づいて導出され得る。
[0058] LTE Rel−8/9/10では、PDCCHが、サブフレーム中の最初のいくつかのシンボル中にある。PDCCHは、システム帯域幅全体にわたって完全に分散され得る。PDCCHはPDSCHと時分割多重化され得る。事実上、サブフレームは、制御領域(control region)とデータ領域(data region)とに分割される。
[0059] LTE Rel−11では、新しい制御シグナリング(例えば、拡張PDCCH(ePDCCH))が与えられ得る。サブフレーム中の最初のいくつかの制御シンボルを占有するレガシーPDCCHとは異なり、ePDCCHは、PDSCHと同様にデータ領域を占有する。ePDCCHメッセージは、第1のスロットと第2のスロットの両方(例えば、周波数分割多重化(FDM)ベースのePDCCH)にわたる。
[0060] LTE Rel−11およびそれ以降では、ニューキャリアタイプ(NCT)が与えられ得る。NCTは、必ずしも後方互換性があるとは限らない。NCTでは、CRSが、サブフレームのサブセット中にのみ存在(例えば、5つのサブフレームごとに存在)し得る。CRSは、1ポートのみに限定され得、システム帯域幅のサブセット中にのみ(例えば、100個のRBのシステム帯域幅の25個のRB中にのみ)存在し得る。これは、DLオーバーヘッドを低減し、eNBなどのためのエネルギー節約を提供する。
[0061] LTE Rel−11では、NCTが、キャリアアグリゲーションの一部として後方互換性のあるキャリアに関連し得る。LTE Rel−11では、NCTのキャリアがスタンドアロンキャリアでないことがある。しかしながら、この制約は、将来のリリースで、NCTのキャリアがスタンドアロンキャリアであり得るように緩和され得る。NCTは、全てのサブフレーム中ではないとしても、少なくともいくつかのサブフレーム中でレガシー制御領域(legacy control region)を有しないことがある。NCTは、必要な制御シグナリングまたは別のキャリアからの制御シグナリングのためのePDCCH(および潜在的にePCFICH/ePHICHなど)に完全に依拠し得る。
[0062] LTE Rel−12およびそれ以降では、復調基準信号(DM−RS:demodulation reference signal)バンドリングが行われ得る。これは、DM−RSが、UEのためのPDSCHに割り当てられたRBのサブセット中に存在し、および/またはUEのためのPDSCHを割り当てられたサブフレームのサブセット中に存在する場合に適用され得る。あるサブフレームのDM−RSが別のサブフレームのために使用されること、またはあるRBのDM−RSが別のRBのために使用されることなどがあり得る。これは、チャネルコヒーレンス時間および/またはコヒーレンス帯域幅が十分に大きい場合に妥当であり得る。DM−RSバンドリングが行われたとき、DM−RSオーバーヘッドが低減される。オーバーヘッドは、いくつかのサブフレームおよび/またはいくつかのRBについて0であり得る。
[0063] NCTにおいてTBSを判断することに関して問題が生じる。例えば、TBS判断のために所定の数のRE/PRBが仮定されるとき、NCTはリンク非効率性に影響を及ぼし得る。従って、NCTにおいてTBSをより効率的に判断するためのソリューションが提供される。
[0064] 例えば、TBSを判断するとき、120RE/PRBの仮定は、NCTに対して控えめすぎることがある。CRS、CSI−RSがないサブフレーム、およびDM−RSのための0、12または24RE/PRBのいずれかの場合、ノーマルCPのためのPDSCHのために利用可能なRE/PRBの数は、次のように計算され得る。
Figure 2015523019
Figure 2015523019
Figure 2015523019
[0065] 上記の計算を120RE/PRBの仮定された場合と比較すると、20〜40%の差が実現される。
[0066] その結果、120RE/PRBを仮定する0.92の元の最大コーディングレートは、今度は、1)0.92*120/168=0.66、2)0.92*120/156=0.71、または3)0.92*120/144=0.77の最大コーディングレートに対応する。これにより、より高いコーディングレートがサポートされ得るときにリンク非効率性が生じる。
[0067] 同様に、NCTにおけるCQI導出について問題が生じる。例えば、NCTのための3つの制御シンボルの仮定は適切でないことがある。しかしながら、可能なソリューションは、eNBが、仮定された数のRE/PRBに対する実際の数のRE/PRBに基づいてCQI値を調整することによってその影響を緩和することである。
[0068] (例えば、上述したように)NCTにおける非効率的なTBS判断を解決するのを助けるために、レガシー制御領域および/または(少なくともいくつかのサブフレームにおける)CRSの不在(absence)並びに/あるいはDM−RSオーバーヘッドを考慮するために、1よりも大きい値を有する調整ファクタが与えられ得る。CP長、サブフレームタイプ、0、12個または24個のDM−RS REなどにかかわらず、単一のファクタが与えられ得る。
[0069] 2つ以上の調整ファクタが与えられることもある。例えば、1つのファクタがランク1または2PDSCHのために与えられ、別のファクタがランク3以上のために与えられることなどがあり得る。別の例では、1つのファクタが通常ダウンリンクサブフレームのために与えられ得、1つまたは複数のファクタが、特殊サブフレーム構成に潜在的に依存するTDDにおける特殊サブフレームのために与えられ得る。これは、レガシー制御/CRSを除去する影響が、通常サブフレームおよび特殊サブフレーム構成について異なり得るからである。別の例では、1つのファクタが、チャネル状態情報基準信号(CSI−RS)を含んでいるダウンリンクサブフレームのために与えられ得、1つまたは複数のファクタが、CSI−RSを含んでいないサブフレームのために与えられ得る。
[0070] 特に、特殊サブフレームが6つのダウンリンクパイロットタイムスロット(DwPTS)シンボルを有する場合、2つのレガシー制御シンボルを除去することにより、PDSCHのためのREの数が概ね(4つのシンボルから6つのシンボルまで)50%増加することになる。一方、特殊サブフレームが12個のDwPTSシンボルを有する場合、レガシー制御領域を除去することにより、(10個のシンボルから12個のシンボルまで)約20%だけPDSCH REの数が増加する。
[0071] 調整ファクタはダウンリンクデータ送信に適用可能であり得る。また、新しい調整ファクタがアップリンクデータ送信のために定義されることもある。一例では、PUSCHのためのDM−RSがバンドルされた(すなわち、DM−RSが、サブフレームおよび/またはRBのサブセット中にのみ存在する)場合、新しい調整ファクタがアップリンクデータ送信のために実装され得る。アップリンクのための調整ファクタは、ダウンリンクのための調整ファクタと比較して、別様に定義され得る。
[0072] 調整ファクタは、全てのMCS値、全ての数のレイヤなどに適用可能であり得る。しかしながら、調整ファクタは、MCSのサブセットのためにのみ、例えば、64QAMのためにのみ有効化されることもある。
[0073] 調整ファクタの適用可能性は、全てのダウンリンク制御情報(DCI:downlink control information)フォーマット、探索空間(共通対UE固有)、サブフレーム(例えば、CRSサブフレーム対CRSなしサブフレーム)、制御チャネルタイプ(PDCCH対ePDCCH)、PDSCHタイプ(例えば、ブロードキャスト対ユニキャスト)などのためのものである。調整ファクタは、上述したファクタのサブセットのみに、特にフォールバック動作に適用可能であり得る。例えば、調整ファクタは、ユニキャストにのみ適用可能であるが、ブロードキャストに適用可能でないことがあり得、UE固有探索空間(UE-specific search space)によってスケジュールされたPDSCHにのみ適用可能であるが、共通探索空間(common search space)によってスケジュールされたPDSCHに適用可能でないことがあり得、またはCRSなしサブフレームにのみ適用可能であるが、CRSサブフレームに適用可能でないことなどがあり得る。
[0074] 調整ファクタは、NPRB’からNPRBへのマッピングを変更することによって適用され得る。例えば、NPRB=min{ceiling(α*NPRB’),110}、例えば、α=1.2であり、ここで、NPRB’は、割り当てられるリソース割振りサイズである。
[0075] 代替的に、調整ファクタは、直接、TBSサイズを変更することによって適用され得る。例えば、TBS=ceiling(f(ITBS,NPRB)*α/8)*8であり、ここで、数8は、TBSがバイト単位であることを保証する。任意の他の単位について、異なる数が使用され得る。
[0076] 代替的に、新しいTBSテーブルが定義され得る。例えば、新しい数のRE/PRBペアを考慮して、QPSK対16QAMと16QAM対64QAMとピークレート処理との間の追加の遷移TBSサイズが与えられ得る。この手法はピークレートを増加させる。
[0077] 現在、レイヤごとの最大TBSサイズは75,376である。0.92の最大コーディングレート、ePDCCHのための1つのRB、64QAM、および20MHz(100個のRB)を仮定すると、レイヤごとの調整される最大TBSは、次のように計算され得る。1) 0個のDM−RS REの場合:最大TBS=0.92(最大コーディングレート)*(100−1)(RB)*6(変調次数)*(14*12)=91,808。これは、現在の最大値75,376から21.8%の増加である。
[0078] 2) ランク1またはランク2PDSCH(12個のDM−RS RE)の場合:最大TBS=0.92(最大コーディングレート)*(100−1)(RB)*6(変調次数)*(14*12−12)=85,250。これは、現在の最大値75,376から13.1%の増加である。
[0079] 3) ランク3以上のPDSCH(24個のDM−RS RE)の場合:最大TBS=0.92*(100−1)*6*(14*12−24)=78,693。これは、現在の最大値75,376から4.4%の増加である。
[0080] 調整ファクタは、手法の組合せを実装することによって適用され得る。例えば、調整ファクタを適用するための複数の手法が存在するとき、UEは、どの手法を使用すべきかを通知され得る。別の例では、使用すべき第1の手法があらかじめ定義される。従って、MCSおよび/またはリソース割振りサイズが一定のしきい値に達したとき、第2の手法が使用され得る。そうでない場合、第1の手法が使用される。
[0081] 調整ファクタを適用することは、全てのUEのために自動的に有効化され得る。例えば、キャリアがNCTであることを検出すると、UEは、UE固有探索空間における全てのユニキャストトラフィックスケジューリングのための新しい調整ファクタに基づいてTBSを判断し得る。代替的に、調整ファクタを適用することは、シグナリングによってUEのために有効化され得る。例えば、有効化信号(enabling signal)は、RRC信号またはePDCCHを介した動的信号(例えば、1または2ビット情報フィールド)であり得る。
[0082] TBSは、マルチレイヤ送信を考慮するように調整され得る。ITBSとNPRBとの組合せはレイヤ単位TBSを判断し得る。トランスポートブロックごとのマルチレイヤ送信(2つ、3つまたは4つのレイヤ)の場合、TBSは、シングルレイヤTBSおよびレイヤの数(例えば、ほぼシングルレイヤTBS*レイヤの数)に基づいて導出され得る。
[0083] 調整ファクタは、シングルレイヤTBS判断に影響を及ぼし得る(マルチレイヤTBS判断に暗黙的に影響を及ぼす)。潜在的に、例えば、より高いピークレートについて、新しいテーブルエントリが与えられ得る。
[0084] 代替的に、調整ファクタはマルチレイヤTBS判断に直接影響を及ぼし得る。例えば、TBSは、TBS=シングルレイヤTBS*レイヤの数*βのように計算され得、ここで、βは調整ファクタである。
[0085] 低コストUEの場合、調整ファクタ(スケーリングファクタ)は適用されないことがある。言い換えれば、新しいスケーリングファクタはUEカテゴリー依存であり得る。さらに、新しいTBSテーブルは低コストUEによって別個に定義され得る。例えば、新しいTBSテーブルは、TBSサイズが、2つの列をインデックス付けする1ビットによってインデックス付けされ得、QPSKと低コストUEの対応するトラフィックニーズとを仮定して最適化され得る場合、ブロードキャストメッセージのためのTBSルックアップテーブルと同じメカニズムに従い得る。
[0086] 開始PDSCHシンボルは0から開始しないことがある。例えば、開始PDSCHシンボルは、同じキャリア周波数におけるレガシーキャリアタイプとニューキャリアタイプとの共存を考慮して第1のスロットの第4のシンボルから開始し得る。そのような場合、調整ファクタは適用されないことがある。代替的に、開始PDSCHシンボルを考慮に入れることによって、異なる調整ファクタが適用され得る。
[0087] キャリアアグリゲーションの場合、調整されたTBS動作は独立して動作させられ得る。調整値、調整ファクタの(1つまたは複数の)実効値などを有効化すべきかどうかの動作は独立して行われ得る。例えば、レガシーキャリアタイプのコンポーネントキャリアは調整ファクタなしに与えられ得るが、ニューキャリアタイプをもつコンポーネントキャリアは調整ファクタを与えられ得る。CQI判断の場合、UEはレガシー制御領域の不在を仮定し得る。
[0088] 一態様では、UEが、明示的または暗黙的方法でレガシーキャリアタイプ対ニューキャリアタイプを判断し得る。明示的判断は、サービングセルまたは異なるセルからの明示的シグナリングに基づき得る。明示的シグナリングはブロードキャストメッセージまたはユニキャストメッセージであり得る。明示的判断の一例では、キャリアアグリゲーションにおける2次セルがニューキャリアタイプであるという指示をキャリアアグリゲーションにおけるUEが受信し得る。明示的判断の別の例では、セルがレガシーキャリアタイプであるか、ニューキャリアタイプであるかを示すために、PBCH中に情報フィールドが存在し得る。暗黙的判断は、レガシーキャリアタイプとニューキャリアタイプとに関連する異なる物理レイヤ特性に基づき得る。暗黙的判断の一例では、ニューキャリアタイプの1次同期信号(PSS:primary synchronization signal)および/または2次同期信号(SSS:secondary synchronization signal)が、レガシーキャリアタイプと比較して別様に位置し得る。その結果、UEは、PSSおよび/またはSSSの異なる構成を検出することによって、セルがレガシーキャリアタイプであるか、ニューキャリアタイプであるかを判断し得る。暗黙的判断の別の例では、ニューキャリアタイプが、レガシーキャリアタイプにおけるレガシーPBCH設計とは異なる、新しいPBCH設計を搬送し得る。その結果、UEは、新しいPBCH設計が検出された場合、セルがニューキャリアタイプであると判断し得る。暗黙的判断のさらに別の例では、CRSが、ニューキャリアタイプにおいて少なくとも時間的に間引かれ(decimated)得る(例えば、5つのサブフレームごとに送信されるだけであり得る)。従って、UEは、セルのCRSが間引かれるべきであると判断された場合、セルがニューキャリアタイプであると判断し得る。
[0089] 図8は、ワイヤレス通信の方法のフローチャート800である。本方法はUEによって行われ得る。ステップ802において、UEは、信号を受信するためのキャリアタイプを検出(例えば、判断)する。一例では、UEが、上述の段落で説明した技法のうちの1つまたは複数を使用してキャリアタイプを検出し得る。ステップ804において、UEは、検出されたキャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断する。ステップ806において、UEは、判断されたTBSに従って信号を受信する。
[0090] TBSは、第1の検出されたキャリアタイプのための第1の方式に基づいて判断され、第2の検出されたキャリアタイプのための第2の方式に基づいて判断され得る。第1の方式は少なくとも第1のTBSルックアップテーブルを含み得、第2の方式は、第1のTBSルックアップテーブルとは異なる少なくとも第2のTBSルックアップテーブルを含み得る。第1の検出されたキャリアタイプはレガシーキャリアタイプ(例えば、LTE Rel−8/9/10キャリアタイプ)であり得る。第2の検出されたキャリアタイプはニューキャリアタイプ(NCT)(例えば、LTE Rel−11またはそれ以降のキャリアタイプ)であり得る。
[0091] TBS判断のための第2の方式は、第2のキャリアタイプのセル中の全てのユーザ機器(UE)のために自動的に有効化され得る。代替的に、TBS判断のための第2の方式は、第2のキャリアタイプのセル中の信号を介して有効化され得る。有効化信号はユーザ機器(UE)固有信号またはセル固有信号であり得る。
[0092] 検出されたキャリアタイプに少なくとも部分的に基づいてTBSを判断することは、セル中の同じサブフレームタイプのための少なくとも2つの異なるTBS方式に基づいてTBS方式を判断することを含み得る。サブフレームタイプは、通常ダウンリンクサブフレーム、通常アップリンクサブフレーム、または特殊サブフレームのうちの少なくとも1つであり得、特殊サブフレームはダウンリンク送信とアップリンク送信の両方を含む。TBS方式を判断することは、ダウンリンク制御情報(DCI)フォーマット、制御チャネルタイプ、ダウンリンク制御チャネルを介して動的に受信された信号、物理ダウンリンクスケジューリングチャネル(PDSCH:physical downlink scheduling channel)タイプ、PDSCHの変調次数、信号がユニキャスト信号であるか、マルチキャスト信号であるか、PDSCHがユーザ機器(UE)固有探索空間によってスケジュールされるか、共通探索空間によってスケジュールされるか、またはサブフレームが共通基準信号(CRS:common reference signal)を含んでいるかどうかのうちの少なくとも1つにさらに基づき得る。
[0093] 上述したように、第1のTBS方式がリソース割振りサイズと変調およびコーディング方式(MCS)値とに基づき得、第2のTBS方式が、リソース割振りサイズと、MCS値と、調整ファクタとに基づき得る。調整ファクタは1よりも大きくなり得る。第2のTBS方式は、調整ファクタに従って、割り当てられるリソース割振りサイズを調整することと、調整されたリソース割振りサイズとMCS値とに従ってTBSを判断することとを含み得る。代替的に、第2のTBS方式は、リソース割振りサイズとMCS値とに従って第1のTBSを判断することと、判断された第1のTBSに調整ファクタを適用することによって、調整されるTBSを計算することとを含み得る。
[0094] 図9は、ワイヤレス通信の方法のフローチャート900である。本方法はUEによって行われ得る。ステップ902において、UEは、信号を受信するためのキャリアタイプを検出する。一例では、UEが、上述した技法のうちの1つまたは複数を使用してキャリアタイプを検出し得る。ステップ904において、UEは、検出されたキャリアタイプに少なくとも部分的に基づいてチャネル品質情報(CQI)を判断する。ステップ906において、UEはCQIを送信する。
[0095] CQIは、第1の検出されたキャリアタイプのためのオーバーヘッド仮定の第1のセットに基づいて判断され、第2の検出されたキャリアタイプのためのオーバーヘッド仮定の第2のセットに基づいて判断され得る。オーバーヘッド仮定の第1のセットとオーバーヘッド仮定の第2のセットとの間の差は、ダウンリンク制御シグナリングまたは共通基準信号のうちの少なくとも1つを含み得る。オーバーヘッド仮定の第2のセットはサブフレームタイプに基づいて判断され得る。
[0096] キャリアタイプはニューキャリアタイプ(例えば、LTE Rel−11またはそれ以降のキャリアタイプ)であり得る。CQIは、制御シグナリングによって占有されない、ニューキャリアタイプのサブフレームの最初の3つのシンボルに基づいて判断され得る。
[0097] 図10は、ワイヤレス通信の方法のフローチャート1000である。本方法はeNBによって行われ得る。ステップ1002において、eNBは、信号を送信するためのキャリアタイプを判断する。ステップ1004において、eNBは、キャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断する。ステップ1006において、eNBは、判断されたキャリアタイプとTBSとに従って信号を送信する。
[0098] TBSは、第1のキャリアタイプのための第1の方式に基づいて判断され、第2のキャリアタイプのための第2の方式に基づいて判断され得る。第1の方式は少なくとも第1のTBSルックアップテーブルを含み得、第2の方式は、第1のTBSルックアップテーブルとは異なる少なくとも第2のTBSルックアップテーブルを含み得る。第1のキャリアタイプはレガシーキャリアタイプ(例えば、LTE Rel−8/9/10キャリアタイプ)であり得る。第2のキャリアタイプはニューキャリアタイプ(NCT)(例えば、LTE Rel−11またはそれ以降のキャリアタイプ)であり得る。TBS判断のための第2の方式は、第2のキャリアタイプのセル中の全てのユーザ機器(UE)のために自動的に有効化され得る。
[0099] eNBは、ユーザ機器(UE)においてTBS判断のための第2の方式を有効化するために第2のキャリアタイプのセル中の信号を送信し得る。有効化信号はユーザ機器(UE)固有信号またはセル固有信号であり得る。
[00100] キャリアタイプに少なくとも部分的に基づいてTBSを判断することは、セル中の同じサブフレームタイプのための少なくとも2つの異なるTBS方式に基づいてTBS方式を判断することを含み得る。サブフレームタイプは、通常ダウンリンクサブフレーム、通常アップリンクサブフレーム、または特殊サブフレームのうちの少なくとも1つであり得、特殊サブフレームはダウンリンク送信とアップリンク送信の両方を含む。TBS方式を判断することは、ダウンリンク制御情報(DCI)フォーマット、制御チャネルタイプ、ダウンリンク制御チャネルを介して動的に受信された信号、物理ダウンリンクスケジューリングチャネル(PDSCH)タイプ、PDSCHの変調次数、信号がユニキャスト信号であるか、マルチキャスト信号であるか、PDSCHがユーザ機器(UE)固有探索空間によってスケジュールされるか、共通探索空間によってスケジュールされるか、またはサブフレームが共通基準信号(CRS)を含んでいるかどうかのうちの少なくとも1つにさらに基づき得る。
[00101] 第1のTBS方式がリソース割振りサイズと変調およびコーディング方式(MCS)値とに基づき得る。第2のTBS方式が、上述したように、リソース割振りサイズと、MCS値と、調整ファクタとに基づき得る。調整ファクタは1よりも大きくなり得る。第2のTBS方式は、調整ファクタに従って、割り当てられるリソース割振りサイズを調整することと、調整されたリソース割振りサイズとMCS値とに従ってTBSを判断することとを含み得る。代替的に、第2のTBS方式は、リソース割振りサイズとMCS値とに従って第1のTBSを判断することと、判断された第1のTBSに調整ファクタを適用することによって、調整されるTBSを計算することとを含み得る。
[00102] 図11は、ワイヤレス通信の方法のフローチャート1100である。本方法はeNBによって行われ得る。ステップ1102において、eNBは、信号を送信するためのキャリアタイプを判断する。ステップ1104において、eNBは、判断されたキャリアタイプに従って信号を送信する。ステップ1106において、eNBは、キャリアタイプに少なくとも部分的に基づいてユーザ機器(UE)からチャネル品質情報(CQI)を受信する。
[00103] CQIは、第1のキャリアタイプのためのオーバーヘッド仮定の第1のセットに基づき、第2のキャリアタイプのためのオーバーヘッド仮定の第2のセットに基づき得る。オーバーヘッド仮定の第1のセットとオーバーヘッド仮定の第2のセットとの間の差は、ダウンリンク制御シグナリングまたは共通基準信号のうちの少なくとも1つを含み得る。オーバーヘッド仮定の第2のセットはサブフレームタイプに基づいて判断され得る。
[00104] キャリアタイプはニューキャリアタイプ(例えば、LTE Rel−11またはそれ以降のキャリアタイプ)であり得る。さらに、ニューキャリアタイプのサブフレームの最初の3つのシンボルが制御シグナリングによって占有されないことがある。
[00105] 図12は、例示的な装置1202中の異なるモジュール/手段/構成要素間のデータフローを示す概念データフロー図1200である。本装置はUEであり得る。本装置は、受信モジュール1204と、キャリアタイプ検出モジュール1206と、トランスポートブロックサイズ判断モジュール1208と、チャネル品質情報判断モジュール1210と、送信モジュール1212とを含む。
[00106] キャリアタイプ検出モジュール1206は、信号を受信するためのキャリアタイプを検出する。一例では、キャリアタイプ検出モジュール1206が、上述した技法のうちの1つまたは複数を使用してキャリアタイプを検出し得る。トランスポートブロックサイズ判断モジュール1208は、検出されたキャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断する。受信モジュール1204は、判断されたTBSに従って信号を受信する。
[00107] TBSは、第1の検出されたキャリアタイプのための第1の方式に基づいて判断され、第2の検出されたキャリアタイプのための第2の方式に基づいて判断され得る。第1の方式は少なくとも第1のTBSルックアップテーブルを含み得、第2の方式は、第1のTBSルックアップテーブルとは異なる少なくとも第2のTBSルックアップテーブルを含み得る。第1の検出されたキャリアタイプはレガシーキャリアタイプ(例えば、LTE Rel−8/9/10キャリアタイプ)であり得る。第2の検出されたキャリアタイプはニューキャリアタイプ(NCT)(例えば、LTE Rel−11またはそれ以降のキャリアタイプ)であり得る。
[00108] TBS判断のための第2の方式は、第2のキャリアタイプのセル中の全てのユーザ機器(UE)のために自動的に有効化され得る。代替的に、TBS判断のための第2の方式は、第2のキャリアタイプのセル中の、受信モジュール1204によって受信された信号を介して有効化され得る。有効化信号はユーザ機器(UE)固有信号またはセル固有信号であり得る。
[00109] 検出されたキャリアタイプに少なくとも部分的に基づいてTBSを判断することは、セル中の同じサブフレームタイプのための少なくとも2つの異なるTBS方式に基づいてTBS方式を判断することを含み得る。サブフレームタイプは、通常ダウンリンクサブフレーム、通常アップリンクサブフレーム、または特殊サブフレームのうちの少なくとも1つであり得、特殊サブフレームはダウンリンク送信とアップリンク送信の両方を含む。TBS方式を判断することは、ダウンリンク制御情報(DCI)フォーマット、制御チャネルタイプ、ダウンリンク制御チャネルを介して動的に受信された信号、物理ダウンリンクスケジューリングチャネル(PDSCH)タイプ、PDSCHの変調次数、信号がユニキャスト信号であるか、マルチキャスト信号であるか、PDSCHがユーザ機器(UE)固有探索空間によってスケジュールされるか、共通探索空間によってスケジュールされるか、またはサブフレームが共通基準信号(CRS)を含んでいるかどうかのうちの少なくとも1つにさらに基づき得る。
[00110] 上述したように、第1のTBS方式がリソース割振りサイズと変調およびコーディング方式(MCS)値とに基づき得、第2のTBS方式が、リソース割振りサイズと、MCS値と、調整ファクタとに基づき得る。調整ファクタは1よりも大きくなり得る。第2のTBS方式は、調整ファクタに従って、割り当てられるリソース割振りサイズを調整することと、調整されたリソース割振りサイズとMCS値とに従ってTBSを判断することとを含み得る。代替的に、第2のTBS方式は、リソース割振りサイズとMCS値とに従って第1のTBSを判断することと、判断された第1のTBSに調整ファクタを適用することによって、調整されるTBSを計算することとを含み得る。
[00111] 受信モジュール1204は、信号を受信するためのキャリアタイプを検出し得る。一例では、受信モジュール1204が、上述した技法のうちの1つまたは複数を使用してキャリアタイプを検出し得る。チャネル品質情報判断モジュール1210は、検出されたキャリアタイプに少なくとも部分的に基づいてチャネル品質情報(CQI)を判断し得る。送信モジュール1212はCQIをeNB1250に送信し得る。
[00112] CQIは、第1の検出されたキャリアタイプのためのオーバーヘッド仮定の第1のセットに基づいて判断され、第2の検出されたキャリアタイプのためのオーバーヘッド仮定の第2のセットに基づいて判断され得る。オーバーヘッド仮定の第1のセットとオーバーヘッド仮定の第2のセットとの間の差は、ダウンリンク制御シグナリングまたは共通基準信号のうちの少なくとも1つを含み得る。オーバーヘッド仮定の第2のセットはサブフレームタイプに基づいて判断され得る。
[00113] キャリアタイプはニューキャリアタイプ(例えば、LTE Rel−11またはそれ以降のキャリアタイプ)であり得る。CQIは、制御シグナリングによって占有されない、ニューキャリアタイプのサブフレームの最初の3つのシンボルに基づいて判断され得る。
[00114] 図13は、例示的な装置1302中の異なるモジュール/手段/構成要素間のデータフローを示す概念データフロー図1300である。本装置はeNBであり得る。本装置は、受信モジュール1304と、キャリアタイプ判断モジュール1306と、トランスポートブロックサイズ判断モジュール1308と、チャネル品質情報処理モジュール1310と、送信モジュール1312とを含む。
[00115] キャリアタイプ判断モジュール1306は、信号を送信するためのキャリアタイプを判断し得る。トランスポートブロックサイズ判断モジュール1308は、キャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断し得る。送信モジュール1312は、判断されたキャリアタイプとTBSとに従って信号を送信し得る。
[00116] TBSは、第1のキャリアタイプのための第1の方式に基づいて判断され、第2のキャリアタイプのための第2の方式に基づいて判断され得る。第1の方式は少なくとも第1のTBSルックアップテーブルを含み得、第2の方式は、第1のTBSルックアップテーブルとは異なる少なくとも第2のTBSルックアップテーブルを含み得る。第1のキャリアタイプはレガシーキャリアタイプ(例えば、LTE Rel−8/9/10キャリアタイプ)であり得る。第2のキャリアタイプはニューキャリアタイプ(NCT)(例えば、LTE Rel−11またはそれ以降のキャリアタイプ)であり得る。TBS判断のための第2の方式は、第2のキャリアタイプのセル中の全てのユーザ機器(UE)1350のために自動的に有効化され得る。
[00117] 送信モジュール1312は、ユーザ機器(UE)1350においてTBS判断のための第2の方式を有効化するために第2のキャリアタイプのセル中の信号を送信し得る。有効化信号はUE固有信号またはセル固有信号であり得る。
[00118] キャリアタイプに少なくとも部分的に基づいてTBSを判断することは、セル中の同じサブフレームタイプのための少なくとも2つの異なるTBS方式に基づいてTBS方式を判断することを含み得る。サブフレームタイプは、通常ダウンリンクサブフレーム、通常アップリンクサブフレーム、または特殊サブフレームのうちの少なくとも1つであり得、特殊サブフレームはダウンリンク送信とアップリンク送信の両方を含む。TBS方式を判断することは、ダウンリンク制御情報(DCI)フォーマット、制御チャネルタイプ、ダウンリンク制御チャネルを介して動的に受信された信号、物理ダウンリンクスケジューリングチャネル(PDSCH)タイプ、PDSCHの変調次数、信号がユニキャスト信号であるか、マルチキャスト信号であるか、PDSCHがユーザ機器(UE)固有探索空間によってスケジュールされるか、共通探索空間によってスケジュールされるか、またはサブフレームが共通基準信号(CRS)を含んでいるかどうかのうちの少なくとも1つにさらに基づき得る。
[00119] 第1のTBS方式がリソース割振りサイズと変調およびコーディング方式(MCS)値とに基づき得る。第2のTBS方式が、上述したように、リソース割振りサイズと、MCS値と、調整ファクタとに基づき得る。調整ファクタは1よりも大きくなり得る。第2のTBS方式は、調整ファクタに従って、割り当てられるリソース割振りサイズを調整することと、調整されたリソース割振りサイズとMCS値とに従ってTBSを判断することとを含み得る。代替的に、第2のTBS方式は、リソース割振りサイズとMCS値とに従って第1のTBSを判断することと、判断された第1のTBSに調整ファクタを適用することによって、調整されるTBSを計算することとを含み得る。
[00120] キャリアタイプ判断モジュール1306は、信号を送信するためのキャリアタイプを判断し得る。送信モジュール1312は、判断されたキャリアタイプに従って信号を送信し得る。その後、チャネル品質情報処理モジュール1310は、キャリアタイプに少なくとも部分的に基づいて、ユーザ機器(UE)1350から受信モジュール1304を介してチャネル品質情報(CQI)を受信し得る。
[00121] CQIは、第1のキャリアタイプのためのオーバーヘッド仮定の第1のセットに基づき、第2のキャリアタイプのためのオーバーヘッド仮定の第2のセットに基づき得る。オーバーヘッド仮定の第1のセットとオーバーヘッド仮定の第2のセットとの間の差は、ダウンリンク制御シグナリングまたは共通基準信号のうちの少なくとも1つを含み得る。オーバーヘッド仮定の第2のセットはサブフレームタイプに基づいて判断され得る。
[00122] キャリアタイプはニューキャリアタイプ(例えば、LTE Rel−11またはそれ以降のキャリアタイプ)であり得る。さらに、ニューキャリアタイプのサブフレームの最初の3つのシンボルが制御シグナリングによって占有されないことがある。
[00123] 本装置は、図8〜図11の上述のフローチャート中のアルゴリズムのステップの各々を行う追加のモジュールを含み得る。従って、図8〜図11の上述のフローチャート中の各ステップは1つのモジュールによって行われ得、本装置は、それらのモジュールのうちの1つまたは複数を含み得る。それらのモジュールは、述べられたプロセス/アルゴリズムを行うように特に構成された1つまたは複数のハードウェア構成要素であるか、述べられたプロセス/アルゴリズムを行うように構成されたプロセッサによって実装されるか、プロセッサによる実装のためにコンピュータ可読媒体内に記憶されるか、またはそれらの何らかの組合せであり得る。
[00124] 図14は、処理システム1414を採用する装置1202’のためのハードウェア実装形態の一例を示す図1400である。処理システム1414は、バス1424によって概略的に表されるバスアーキテクチャを用いて実装され得る。バス1424は、処理システム1414の特定の適用例および全体的な設計制約に応じて、任意の数の相互接続バスおよびブリッジを含み得る。バス1424は、プロセッサ1404によって表される1つまたは複数のプロセッサおよび/またはハードウェアモジュールと、モジュール1204、1206、1208、1210、1212と、コンピュータ可読媒体1406とを含む様々な回路を互いにリンクする。バス1424はまた、タイミングソース、周辺機器、電圧調整器、および電力管理回路など、様々な他の回路をリンクし得るが、これら回路は当技術分野においてよく知られており、従って、これ以上説明しない。
[00125] 処理システム1414はトランシーバ1410に結合され得る。トランシーバ1410は1つまたは複数のアンテナ1420に結合される。トランシーバ1410は、伝送媒体を介して様々な他の装置と通信するための手段を与える。処理システム1414は、コンピュータ可読媒体1406に結合されたプロセッサ1404を含む。プロセッサ1404は、コンピュータ可読媒体1406に記憶されたソフトウェアの実行を含む一般的な処理を担う。ソフトウェアは、プロセッサ1404によって実行されたとき、処理システム1414に、特定の装置のための上述した様々な機能を行わせる。コンピュータ可読媒体1406はまた、ソフトウェアを実行するときにプロセッサ1404によって操作されるデータを記憶するために使用され得る。処理システムは、モジュール1204、1206、1208、1210および1212のうちの少なくとも1つをさらに含む。それらのモジュールは、プロセッサ1404中で動作するか、コンピュータ可読媒体1406中に常駐する/記憶されたソフトウェアモジュールであるか、プロセッサ1404に結合された1つまたは複数のハードウェアモジュールであるか、またはそれらの何らかの組合せであり得る。処理システム1414は、UE650の構成要素であり得、メモリ660、および/またはTXプロセッサ668と、RXプロセッサ656と、コントローラ/プロセッサ659とのうちの少なくとも1つを含み得る。
[00126] 一構成では、ワイヤレス通信のための装置1202/1202’が、信号を受信するためのキャリアタイプを検出するための手段と、検出されたキャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断するための手段と、判断されたTBSに従って信号を受信するための手段と、検出されたキャリアタイプに少なくとも部分的に基づいてチャネル品質情報(CQI)を判断するための手段と、CQIを送信するための手段とを含む。
[00127] 上述の手段は、上述の手段によって具陳された機能を行うように構成された、装置1202、および/または装置1202’の処理システム1414の上述のモジュールのうちの1つまたは複数であり得る。上述したように、処理システム1414は、TXプロセッサ668と、RXプロセッサ656と、コントローラ/プロセッサ659とを含み得る。従って、一構成では、上述の手段が、上述の手段によって具陳された機能を行うように構成された、TXプロセッサ668と、RXプロセッサ656と、コントローラ/プロセッサ659とであり得る。
[00128] 図15は、処理システム1514を採用する装置1302’のためのハードウェア実装形態の一例を示す図1500である。処理システム1514は、バス1524によって概略的に表されるバスアーキテクチャを用いて実装され得る。バス1524は、処理システム1514の特定の適用例および全体的な設計制約に応じて、任意の数の相互接続バスおよびブリッジを含み得る。バス1524は、プロセッサ1504によって表される1つまたは複数のプロセッサおよび/またはハードウェアモジュールと、モジュール1304、1306、1308、1310、および1312と、コンピュータ可読媒体1506とを含む様々な回路を互いにリンクする。バス1524はまた、タイミングソース、周辺機器、電圧調整器、および電力管理回路など、様々な他の回路をリンクし得るが、これら回路は当技術分野においてよく知られており、従って、これ以上説明しない。
[00129] 処理システム1514はトランシーバ1510に結合され得る。トランシーバ1510は1つまたは複数のアンテナ1520に結合される。トランシーバ1510は、伝送媒体を介して様々な他の装置と通信するための手段を与える。処理システム1514は、コンピュータ可読媒体1506に結合されたプロセッサ1504を含む。プロセッサ1504は、コンピュータ可読媒体1506に記憶されたソフトウェアの実行を含む一般的な処理を担う。ソフトウェアは、プロセッサ1504によって実行されたとき、処理システム1514に、特定の装置のための上述した様々な機能を行わせる。コンピュータ可読媒体1506はまた、ソフトウェアを実行するときにプロセッサ1504によって操作されるデータを記憶するために使用され得る。処理システムは、モジュール1304、1306、1308、1310、および1312のうちの少なくとも1つをさらに含む。それらのモジュールは、プロセッサ1504中で動作するか、コンピュータ可読媒体1506中に常駐する/記憶されたソフトウェアモジュールであるか、プロセッサ1504に結合された1つまたは複数のハードウェアモジュールであるか、またはそれらの何らかの組合せであり得る。処理システム1514は、eNB610の構成要素であり得、メモリ676、および/またはTXプロセッサ616と、RXプロセッサ670と、コントローラ/プロセッサ675とのうちの少なくとも1つを含み得る。
[00130] 一構成では、ワイヤレス通信のための装置1302/1302’が、信号を送信するためのキャリアタイプを判断するための手段と、キャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断するための手段と、判断されたキャリアタイプとTBSとに従って信号を送信するための手段と、判断されたキャリアタイプに従って信号を送信するための手段と、キャリアタイプに少なくとも部分的に基づいてユーザ機器(UE)からチャネル品質情報(CQI)を受信するための手段とを含む。
[00131] 上述の手段は、上述の手段によって具陳された機能を行うように構成された、装置1302、および/または装置1302’の処理システム1514の上述のモジュールのうちの1つまたは複数であり得る。上述したように、処理システム1514は、TXプロセッサ616と、RXプロセッサ670と、コントローラ/プロセッサ675とを含み得る。従って、一構成では、上述の手段が、上述の手段によって具陳された機能を行うように構成された、TXプロセッサ616と、RXプロセッサ670と、コントローラ/プロセッサ675とであり得る。
[00132] 開示したプロセスにおけるステップの特定の順序または階層は、例示的な手法の一例であることを理解されたい。設計上の選好に基づいて、プロセス中のステップの特定の順序または階層は再構成され得ることを理解されたい。さらに、いくつかのステップは組み合わせられるかまたは省略され得る。添付の方法クレームは、様々なステップの要素を例示的な順序で提示したものであり、提示された特定の順序または階層に限定されるものではない。
[00133] 以上の説明は、本明細書で説明した様々な態様を当業者が実施できるようにするために与えたものである。これら態様への様々な変更は当業者には容易に明らかであり、本明細書で定義された一般的原理は他の態様に適用され得る。従って、特許請求の範囲は、本明細書に示された態様に限定されるものではなく、特許請求の言い回しに矛盾しない全範囲を与えられるべきであり、単数形の要素への言及は、そのように明記されていない限り、「唯一無二の」を意味するものではなく、「1つまたは複数の」を意味するものである。別段に明記されていない限り、「いくつかの」という語は「1つまたは複数の」を表す。特許請求の範囲を含めて、本明細書で使用される場合、2つ以上の項目の列挙中で使用されるとき、「および/または」という語は、列挙された項目のうちのいずれか1つが単独で採用され得ること、または列挙された項目のうちの2つ以上の任意の組合せが採用され得ることを意味する。例えば、組成が、構成要素A、B、および/またはCを含んでいると記述されている場合、その組成は、Aのみ、Bのみ、Cのみ、AとBの組合せ、AとCの組合せ、BとCの組合せ、またはAとBとCの組合せを含んでいることがある。また、特許請求の範囲を含めて、本明細書で使用される場合、「のうちの少なくとも1つ」で終わる項目の列挙中で使用される「または」は、例えば、「A、B、またはCのうちの少なくとも1つ」の列挙が、AまたはBまたはC、またはABまたはACまたはBCまたはABC(すなわち、AおよびBおよびC)を意味するような選言的列挙を示す。
[00134] 当業者に知られている、または後に知られることになる、本開示全体にわたって説明した様々な態様の要素の全ての構造的および機能的均等物は、参照により本明細書に明確に組み込まれ、特許請求の範囲に包含されるものである。さらに、本明細書で開示されたいかなることも、そのような開示が特許請求の範囲に明示的に具陳されているかどうかにかかわらず、公に供するものではない。いかなるクレーム要素も、その要素が「ための手段」という句を使用して明示的に具陳されていない限り、ミーンズプラスファンクションとして解釈されるべきではない。
[0069] 2つ以上の調整ファクタが与えられることもある。例えば、1つのファクタがランク1または2PDSCHのために与えられることがあり得、別のファクタがランク3以上のために与えられることなどがあり得る。別の例では、1つのファクタが通常ダウンリンクサブフレームのために与えられ得、1つまたは複数のファクタが、特殊サブフレーム構成に潜在的に依存するTDDにおける特殊サブフレームのために与えられ得る。これは、レガシー制御/CRSを除去する影響が、通常サブフレームおよび特殊サブフレーム構成について異なり得るからである。別の例では、1つのファクタが、チャネル状態情報基準信号(CSI−RS)を含んでいるダウンリンクサブフレームのために与えられ得、1つまたは複数のファクタが、CSI−RSを含んでいないサブフレームのために与えられ得る。
[00134] 当業者に知られている、または後に知られることになる、本開示全体にわたって説明した様々な態様の要素の全ての構造的および機能的均等物は、参照により本明細書に明確に組み込まれ、特許請求の範囲に包含されるものである。さらに、本明細書で開示されたいかなることも、そのような開示が特許請求の範囲に明示的に具陳されているかどうかにかかわらず、公に供するものではない。いかなるクレーム要素も、その要素が「ための手段」という句を使用して明示的に具陳されていない限り、ミーンズプラスファンクションとして解釈されるべきではない。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[C1] 信号を受信するためのキャリアタイプを検出することと、
前記検出されたキャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断することと、
前記判断されたTBSに従って前記信号を受信することと
を備える、ワイヤレス通信の方法。
[C2] 前記TBSが、第1の検出されたキャリアタイプのための第1の方式に基づいて判断され、第2の検出されたキャリアタイプのための第2の方式に基づいて判断される、C1に記載の方法。
[C3]
前記第1の方式が少なくとも第1のTBSルックアップテーブルを備え、前記第2の方式が、前記第1のTBSルックアップテーブルとは異なる少なくとも第2のTBSルックアップテーブルを備える、C2に記載の方法。
[C4] 前記第1の検出されたキャリアタイプがレガシーキャリアタイプであり、前記第2の検出されたキャリアタイプがニューキャリアタイプである、C2に記載の方法。
[C5] TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の全てのユーザ機器(UE)のために自動的に有効化される、C2に記載の方法。
[C6] TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の信号を介して有効化される、C2に記載の方法。
[C7] 有効化信号がユーザ機器(UE)固有信号またはセル固有信号である、C6に記載の方法。
[C8] 前記検出されたキャリアタイプに少なくとも部分的に基づいて前記TBSを前記判断することが、セル中の同じサブフレームタイプのための少なくとも2つの異なるTBS方式に基づいてTBS方式を判断することをさらに備える、C1に記載の方法。
[C9] 前記サブフレームタイプが、
通常ダウンリンクサブフレーム、
通常アップリンクサブフレーム、または
ダウンリンク送信とアップリンク送信の両方を備える特殊サブフレーム
のうちの少なくとも1つを備える、C8に記載の方法。
[C10] 前記TBS方式を前記判断することは、
ダウンリンク制御情報(DCI)フォーマット、
制御チャネルタイプ、
ダウンリンク制御チャネルを介して動的に受信された信号、
物理ダウンリンクスケジューリングチャネル(PDSCH)タイプ、
前記PDSCHの変調次数、
前記信号がユニキャスト信号であるか、マルチキャスト信号であるか、
前記PDSCHがユーザ機器(UE)固有探索空間によってスケジュールされるか、共通探索空間によってスケジュールされるか、または
サブフレームが共通基準信号(CRS)を含んでいるかどうか
のうちの少なくとも1つにさらに基づく、C8に記載の方法。
[C11] 第1のTBS方式がリソース割振りサイズと変調およびコーディング方式(MCS)値とに基づき、第2のTBS方式が、前記リソース割振りサイズと、前記MCS値と、調整ファクタとに基づく、C8に記載の方法。
[C12] 前記調整ファクタが1よりも大きい、C11に記載の方法。
[C13] 前記第2のTBS方式が、
前記調整ファクタに従って、割り当てられるリソース割振りサイズを調整することと、
前記調整されたリソース割振りサイズと前記MCS値とに従って前記TBSを判断することと
を備える、C11に記載の方法。
[C14] 前記第2のTBS方式が、
前記リソース割振りサイズと前記MCS値とに従って第1のTBSを判断することと、
前記判断された第1のTBSに前記調整ファクタを適用することによって、調整されるTBSを計算することと
を備える、C11に記載の方法。
[C15] 信号を受信するためのキャリアタイプを検出することと、
前記検出されたキャリアタイプに少なくとも部分的に基づいてチャネル品質情報(CQI)を判断することと、
前記CQIを送信することと
を備える、ワイヤレス通信の方法。
[C16] 前記CQIが、第1の検出されたキャリアタイプのためのオーバーヘッド仮定の第1のセットに基づいて判断され、第2の検出されたキャリアタイプのためのオーバーヘッド仮定の第2のセットに基づいて判断される、C15に記載の方法。
[C17] オーバーヘッド仮定の前記第1のセットとオーバーヘッド仮定の前記第2のセットとの間の差が、ダウンリンク制御シグナリングまたは共通基準信号のうちの少なくとも1つを備える、C16に記載の方法。
[C18] オーバーヘッド仮定の前記第2のセットがサブフレームタイプに基づいて判断される、C16に記載の方法。
[C19] 前記キャリアタイプがニューキャリアタイプであり、前記CQIが、制御シグナリングによって占有されない、前記ニューキャリアタイプのサブフレームの最初の3つのシンボルに基づいて判断される、C16に記載の方法。
[C20] 信号を送信するためのキャリアタイプを判断することと、
前記キャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断することと、
前記判断されたキャリアタイプとTBSとに従って前記信号を送信することと
を備える、ワイヤレス通信の方法。
[C21] 前記TBSが、第1のキャリアタイプのための第1の方式に基づいて判断され、第2のキャリアタイプのための第2の方式に基づいて判断される、C20に記載の方法。
[C22] 前記第1の方式が少なくとも第1のTBSルックアップテーブルを備え、前記第2の方式が、前記第1のTBSルックアップテーブルとは異なる少なくとも第2のTBSルックアップテーブルを備える、C21に記載の方法。
[C23] 前記第1のキャリアタイプがレガシーキャリアタイプであり、前記第2のキャリアタイプがニューキャリアタイプである、C21に記載の方法。
[C24] TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の全てのユーザ機器(UE)のために自動的に有効化される、C21に記載の方法。
[C25] ユーザ機器(UE)においてTBS判断のための前記第2の方式を有効化するために前記第2のキャリアタイプのセル中の信号を送信することをさらに備える、C21に記載の方法。
[C26] 有効化信号がユーザ機器(UE)固有信号またはセル固有信号である、C25に記載の方法。
[C27] 前記キャリアタイプに少なくとも部分的に基づいて前記TBSを前記判断することが、セル中の同じサブフレームタイプのための少なくとも2つの異なるTBS方式に基づいてTBS方式を判断することをさらに備える、C20に記載の方法。
[C28] 前記サブフレームタイプが、
通常ダウンリンクサブフレーム、
通常アップリンクサブフレーム、または
ダウンリンク送信とアップリンク送信の両方を備える特殊サブフレーム
のうちの少なくとも1つを備える、C27に記載の方法。
[C29] 前記TBS方式を前記判断することは、
ダウンリンク制御情報(DCI)フォーマット、
制御チャネルタイプ、
ダウンリンク制御チャネルを介して動的に受信された信号、
物理ダウンリンクスケジューリングチャネル(PDSCH)タイプ、
前記PDSCHの変調次数、
前記信号がユニキャスト信号であるか、マルチキャスト信号であるか、
前記PDSCHがユーザ機器(UE)固有探索空間によってスケジュールされるか、共通探索空間によってスケジュールされるか、または
サブフレームが共通基準信号(CRS)を含んでいるかどうか
のうちの少なくとも1つにさらに基づく、C27に記載の方法。
[C30] 第1のTBS方式がリソース割振りサイズと変調およびコーディング方式(MCS)値とに基づき、第2のTBS方式が、前記リソース割振りサイズと、前記MCS値と、調整ファクタとに基づく、C27に記載の方法。
[C31] 前記調整ファクタが1よりも大きい、C30に記載の方法。
[C32] 前記第2のTBS方式が、
前記調整ファクタに従って、割り当てられるリソース割振りサイズを調整することと、
前記調整されたリソース割振りサイズと前記MCS値とに従って前記TBSを判断することと
を備える、C30に記載の方法。
[C33] 前記第2のTBS方式が、
前記リソース割振りサイズと前記MCS値とに従って第1のTBSを判断することと、
前記判断された第1のTBSに前記調整ファクタを適用することによって、調整されるTBSを計算することと
を備える、C30に記載の方法。
[C34] 信号を送信するためのキャリアタイプを判断することと、
前記判断されたキャリアタイプに従って前記信号を送信することと、
前記キャリアタイプに少なくとも部分的に基づいてユーザ機器(UE)からチャネル品質情報(CQI)を受信することと
を備える、ワイヤレス通信の方法。
[C35] 前記CQIが、第1のキャリアタイプのためのオーバーヘッド仮定の第1のセットに基づき、第2のキャリアタイプのためのオーバーヘッド仮定の第2のセットに基づく、C34に記載の方法。
[C36] オーバーヘッド仮定の前記第1のセットとオーバーヘッド仮定の前記第2のセットとの間の差が、ダウンリンク制御シグナリングまたは共通基準信号のうちの少なくとも1つを備える、C34に記載の方法。
[C37] オーバーヘッド仮定の前記第2のセットがサブフレームタイプに基づいて判断される、C34に記載の方法。
[C38] 前記キャリアタイプがニューキャリアタイプであり、前記ニューキャリアタイプのサブフレームの最初の3つのシンボルが制御シグナリングによって占有されない、C34に記載の方法。
[C39] 信号を受信するためのキャリアタイプを検出するための手段と、
前記検出されたキャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断するための手段と、
前記判断されたTBSに従って前記信号を受信するための手段と
を備える、ワイヤレス通信のための装置。
[C40] 前記TBSが、第1の検出されたキャリアタイプのための第1の方式に基づいて判断され、第2の検出されたキャリアタイプのための第2の方式に基づいて判断される、C39に記載の装置。
[C41] 前記第1の方式が少なくとも第1のTBSルックアップテーブルを備え、前記第2の方式が、前記第1のTBSルックアップテーブルとは異なる少なくとも第2のTBSルックアップテーブルを備える、C40に記載の装置。
[C42] 前記第1の検出されたキャリアタイプがレガシーキャリアタイプであり、前記第2の検出されたキャリアタイプがニューキャリアタイプである、C40に記載の装置。
[C43] TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の全てのユーザ機器(UE)のために自動的に有効化される、C40に記載の装置。
[C44] TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の信号を介して有効化される、C40に記載の装置。
[C45] 有効化信号がユーザ機器(UE)固有信号またはセル固有信号である、C44に記載の装置。
[C46] 前記検出されたキャリアタイプに少なくとも部分的に基づいて前記TBSを判断するための前記手段が、セル中の同じサブフレームタイプのための少なくとも2つの異なるTBS方式に基づいてTBS方式を判断するように構成された、C39に記載の装置。
[C47] 前記サブフレームタイプが、
通常ダウンリンクサブフレーム、
通常アップリンクサブフレーム、または
ダウンリンク送信とアップリンク送信の両方を備える特殊サブフレーム
のうちの少なくとも1つを備える、C46に記載の装置。
[C48] 前記TBS方式を前記判断することは、
ダウンリンク制御情報(DCI)フォーマット、
制御チャネルタイプ、
ダウンリンク制御チャネルを介して動的に受信された信号、
物理ダウンリンクスケジューリングチャネル(PDSCH)タイプ、
前記PDSCHの変調次数、
前記信号がユニキャスト信号であるか、マルチキャスト信号であるか、
前記PDSCHがユーザ機器(UE)固有探索空間によってスケジュールされるか、共通探索空間によってスケジュールされるか、または
サブフレームが共通基準信号(CRS)を含んでいるかどうか
のうちの少なくとも1つにさらに基づく、C46に記載の装置。
[C49] 第1のTBS方式がリソース割振りサイズと変調およびコーディング方式(MCS)値とに基づき、第2のTBS方式が、前記リソース割振りサイズと、前記MCS値と、調整ファクタとに基づく、C46に記載の装置。
[C50] 前記調整ファクタが1よりも大きい、C49に記載の装置。
[C51] 前記第2のTBS方式について、前記TBSを判断するための前記手段が、
前記調整ファクタに従って、割り当てられるリソース割振りサイズを調整することと、
前記調整されたリソース割振りサイズと前記MCS値とに従って前記TBSを判断することと
を行うように構成された、C49に記載の装置。
[C52] 前記第2のTBS方式について、前記TBSを判断するための前記手段が、
前記リソース割振りサイズと前記MCS値とに従って第1のTBSを判断することと、
前記判断された第1のTBSに前記調整ファクタを適用することによって、調整されるTBSを計算することと
を行うように構成された、C49に記載の装置。
[C53] 信号を受信するためのキャリアタイプを検出するための手段と、
前記検出されたキャリアタイプに少なくとも部分的に基づいてチャネル品質情報(CQI)を判断するための手段と、
前記CQIを送信するための手段と
を備える、ワイヤレス通信のための装置。
[C54] 前記CQIが、第1の検出されたキャリアタイプのためのオーバーヘッド仮定の第1のセットに基づいて判断され、第2の検出されたキャリアタイプのためのオーバーヘッド仮定の第2のセットに基づいて判断される、C53に記載の装置。
[C55] オーバーヘッド仮定の前記第1のセットとオーバーヘッド仮定の前記第2のセットとの間の差が、ダウンリンク制御シグナリングまたは共通基準信号のうちの少なくとも1つを備える、C54に記載の装置。
[C56] オーバーヘッド仮定の前記第2のセットがサブフレームタイプに基づいて判断される、C54に記載の装置。
[C57] 前記キャリアタイプがニューキャリアタイプであり、前記CQIが、制御シグナリングによって占有されない、前記ニューキャリアタイプのサブフレームの最初の3つのシンボルに基づいて判断される、C54に記載の装置。
[C58] 信号を送信するためのキャリアタイプを判断するための手段と、
前記キャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断するための手段と、
前記判断されたキャリアタイプとTBSとに従って前記信号を送信するための手段と
を備える、ワイヤレス通信のための装置。
[C59] 前記TBSが、第1のキャリアタイプのための第1の方式に基づいて判断され、第2のキャリアタイプのための第2の方式に基づいて判断される、C58に記載の装置。
[C60] 前記第1の方式が少なくとも第1のTBSルックアップテーブルを備え、前記第2の方式が、前記第1のTBSルックアップテーブルとは異なる少なくとも第2のTBSルックアップテーブルを備える、C59に記載の装置。
[C61] 前記第1のキャリアタイプがレガシーキャリアタイプであり、前記第2のキャリアタイプがニューキャリアタイプである、C59に記載の装置。
[C62] TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の全てのユーザ機器(UE)のために自動的に有効化される、C59に記載の装置。
[C63] ユーザ機器(UE)においてTBS判断のための前記第2の方式を有効化するために前記第2のキャリアタイプのセル中の信号を送信するための手段をさらに備える、C59に記載の装置。
[C64] 有効化信号がユーザ機器(UE)固有信号またはセル固有信号である、C63に記載の装置。
[C65] 前記キャリアタイプに少なくとも部分的に基づいて前記TBSを判断するための前記手段が、セル中の同じサブフレームタイプのための少なくとも2つの異なるTBS方式に基づいてTBS方式を判断するように構成された、方法61に記載の装置。
[C66] 前記サブフレームタイプが、
通常ダウンリンクサブフレーム、
通常アップリンクサブフレーム、または
ダウンリンク送信とアップリンク送信の両方を備える特殊サブフレーム
のうちの少なくとも1つを備える、C65に記載の装置。
[C67] 前記TBS方式を前記判断することは、
ダウンリンク制御情報(DCI)フォーマット、
制御チャネルタイプ、
ダウンリンク制御チャネルを介して動的に受信された信号、
物理ダウンリンクスケジューリングチャネル(PDSCH)タイプ、
前記PDSCHの変調次数、
前記信号がユニキャスト信号であるか、マルチキャスト信号であるか、
前記PDSCHがユーザ機器(UE)固有探索空間によってスケジュールされるか、共通探索空間によってスケジュールされるか、または
サブフレームが共通基準信号(CRS)を含んでいるかどうか
のうちの少なくとも1つにさらに基づく、C65に記載の装置。
[C68] 第1のTBS方式がリソース割振りサイズと変調およびコーディング方式(MCS)値とに基づき、第2のTBS方式が、前記リソース割振りサイズと、前記MCS値と、調整ファクタとに基づく、C65に記載の装置。
[C69] 前記調整ファクタが1よりも大きい、C68に記載の装置。
[C70] 前記第2のTBS方式について、前記TBSを判断するための前記手段が、
前記調整ファクタに従って、割り当てられるリソース割振りサイズを調整することと、
前記調整されたリソース割振りサイズと前記MCS値とに従って前記TBSを判断することと
を行うように構成された、C68に記載の装置。
[C71] 前記第2のTBS方式について、前記TBSを判断するための前記手段が、
前記リソース割振りサイズと前記MCS値とに従って第1のTBSを判断することと、
前記判断された第1のTBSに前記調整ファクタを適用することによって、調整されるTBSを計算することと
を行うように構成された、C68に記載の装置。
[C72] 信号を送信するためのキャリアタイプを判断するための手段と、
前記判断されたキャリアタイプに従って前記信号を送信するための手段と、
前記キャリアタイプに少なくとも部分的に基づいてユーザ機器(UE)からチャネル品質情報(CQI)を受信するための手段と
を備える、ワイヤレス通信のための装置。
[C73] 前記CQIが、第1のキャリアタイプのためのオーバーヘッド仮定の第1のセットに基づき、第2のキャリアタイプのためのオーバーヘッド仮定の第2のセットに基づく、C72に記載の装置。
[C74] オーバーヘッド仮定の前記第1のセットとオーバーヘッド仮定の前記第2のセットとの間の差が、ダウンリンク制御シグナリングまたは共通基準信号のうちの少なくとも1つを備える、C72に記載の装置。
[C75] オーバーヘッド仮定の前記第2のセットがサブフレームタイプに基づいて判断される、C72に記載の装置。
[C76] 前記キャリアタイプがニューキャリアタイプであり、前記ニューキャリアタイプのサブフレームの最初の3つのシンボルが制御シグナリングによって占有されない、C72に記載の装置。
[C77] 信号を受信するためのキャリアタイプを検出することと、
前記検出されたキャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断することと、
前記判断されたTBSに従って前記信号を受信することと
を行うように構成された処理システム
を備える、ワイヤレス通信のための装置。
[C78] 前記TBSが、第1の検出されたキャリアタイプのための第1の方式に基づいて判断され、第2の検出されたキャリアタイプのための第2の方式に基づいて判断される、C77に記載の装置。
[C79] 前記第1の方式が少なくとも第1のTBSルックアップテーブルを備え、前記第2の方式が、前記第1のTBSルックアップテーブルとは異なる少なくとも第2のTBSルックアップテーブルを備える、C78に記載の装置。
[C80] 前記第1の検出されたキャリアタイプがレガシーキャリアタイプであり、前記第2の検出されたキャリアタイプがニューキャリアタイプである、C78に記載の装置。
[C81] TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の全てのユーザ機器(UE)のために自動的に有効化される、C78に記載の装置。
[C82] TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の信号を介して有効化される、C78に記載の装置。
[C83] 有効化信号がユーザ機器(UE)固有信号またはセル固有信号である、C82に記載の装置。
[C84] 前記検出されたキャリアタイプに少なくとも部分的に基づいて前記TBSを判断するように構成された前記処理システムが、セル中の同じサブフレームタイプのための少なくとも2つの異なるTBS方式に基づいてTBS方式を判断するようにさらに構成された、C77に記載の装置。
[C85] 前記サブフレームタイプが、
通常ダウンリンクサブフレーム、
通常アップリンクサブフレーム、または
ダウンリンク送信とアップリンク送信の両方を備える特殊サブフレーム
のうちの少なくとも1つを備える、C84に記載の装置。
[C86] 前記処理システムは、
ダウンリンク制御情報(DCI)フォーマット、
制御チャネルタイプ、
ダウンリンク制御チャネルを介して動的に受信された信号、
物理ダウンリンクスケジューリングチャネル(PDSCH)タイプ、
前記PDSCHの変調次数、
前記信号がユニキャスト信号であるか、マルチキャスト信号であるか、
前記PDSCHがユーザ機器(UE)固有探索空間によってスケジュールされるか、共通探索空間によってスケジュールされるか、または
サブフレームが共通基準信号(CRS)を含んでいるかどうか
のうちの少なくとも1つに基づいて前記TBS方式をさらに判断する、C84に記載の装置。
[C87] 第1のTBS方式がリソース割振りサイズと変調およびコーディング方式(MCS)値とに基づき、第2のTBS方式が、前記リソース割振りサイズと、前記MCS値と、調整ファクタとに基づく、C84に記載の装置。
[C88] 前記調整ファクタが1よりも大きい、C87に記載の装置。
[C89] 前記第2のTBS方式について、前記処理システムが、
前記調整ファクタに従って、割り当てられるリソース割振りサイズを調整することと、
前記調整されたリソース割振りサイズと前記MCS値とに従って前記TBSを判断することと
を行うように構成された、C87に記載の装置。
[C90] 前記第2のTBS方式について、前記処理システムが、
前記リソース割振りサイズと前記MCS値とに従って第1のTBSを判断することと、
前記判断された第1のTBSに前記調整ファクタを適用することによって、調整されるTBSを計算することと
を行うように構成された、C87に記載の装置。
[C91] 信号を受信するためのキャリアタイプを検出することと、
前記検出されたキャリアタイプに少なくとも部分的に基づいてチャネル品質情報(CQI)を判断することと、
前記CQIを送信することと
を行うように構成された処理システム
を備える、ワイヤレス通信のための装置。
[C92] 前記CQIが、第1の検出されたキャリアタイプのためのオーバーヘッド仮定の第1のセットに基づいて判断され、第2の検出されたキャリアタイプのためのオーバーヘッド仮定の第2のセットに基づいて判断される、C91に記載の装置。
[C93] オーバーヘッド仮定の前記第1のセットとオーバーヘッド仮定の前記第2のセットとの間の差が、ダウンリンク制御シグナリングまたは共通基準信号のうちの少なくとも1つを備える、C92に記載の装置。
[C94] オーバーヘッド仮定の前記第2のセットがサブフレームタイプに基づいて判断される、C92に記載の装置。
[C95] 前記キャリアタイプがニューキャリアタイプであり、前記CQIが、制御シグナリングによって占有されない、前記ニューキャリアタイプのサブフレームの最初の3つのシンボルに基づいて判断される、C92に記載の装置。
[C96] 信号を送信するためのキャリアタイプを判断することと、
前記キャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断することと、
前記判断されたキャリアタイプとTBSとに従って前記信号を送信することと
を行うように構成された処理システム
を備える、ワイヤレス通信のための装置。
[C97] 前記TBSが、第1のキャリアタイプのための第1の方式に基づいて判断され、第2のキャリアタイプのための第2の方式に基づいて判断される、C96に記載の装置。
[C98] 前記第1の方式が少なくとも第1のTBSルックアップテーブルを備え、前記第2の方式が、前記第1のTBSルックアップテーブルとは異なる少なくとも第2のTBSルックアップテーブルを備える、C97に記載の装置。
[C99] 前記第1のキャリアタイプがレガシーキャリアタイプであり、前記第2のキャリアタイプがニューキャリアタイプである、C97に記載の装置。
[C100] TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の全てのユーザ機器(UE)のために自動的に有効化される、C97に記載の装置。
[C101] 前記処理システムが、ユーザ機器(UE)においてTBS判断のための前記第2の方式を有効化するために前記第2のキャリアタイプのセル中の信号を送信するようにさらに構成された、C97に記載の装置。
[C102] 有効化信号がユーザ機器(UE)固有信号またはセル固有信号である、C101に記載の装置。
[C103] 前記キャリアタイプに少なくとも部分的に基づいて前記TBSを判断するように構成された前記処理システムが、セル中の同じサブフレームタイプのための少なくとも2つの異なるTBS方式に基づいてTBS方式を判断するようにさらに構成された、方法101に記載の装置。
[C104] 前記サブフレームタイプが、
通常ダウンリンクサブフレーム、
通常アップリンクサブフレーム、または
ダウンリンク送信とアップリンク送信の両方を備える特殊サブフレーム
のうちの少なくとも1つを備える、C103に記載の装置。
[C105] 前記処理システムは、
ダウンリンク制御情報(DCI)フォーマット、
制御チャネルタイプ、
ダウンリンク制御チャネルを介して動的に受信された信号、
物理ダウンリンクスケジューリングチャネル(PDSCH)タイプ、
前記PDSCHの変調次数、
前記信号がユニキャスト信号であるか、マルチキャスト信号であるか、
前記PDSCHがユーザ機器(UE)固有探索空間によってスケジュールされるか、共通探索空間によってスケジュールされるか、または
サブフレームが共通基準信号(CRS)を含んでいるかどうか
のうちの少なくとも1つに基づいて前記TBS方式をさらに判断する、C103に記載の装置。
[C106] 第1のTBS方式がリソース割振りサイズと変調およびコーディング方式(MCS)値とに基づき、第2のTBS方式が、前記リソース割振りサイズと、前記MCS値と、調整ファクタとに基づく、C103に記載の装置。
[C107] 前記調整ファクタが1よりも大きい、C106に記載の装置。
[C108] 前記第2のTBS方式について、前記処理システムが、
前記調整ファクタに従って、割り当てられるリソース割振りサイズを調整することと、
前記調整されたリソース割振りサイズと前記MCS値とに従って前記TBSを判断することと
を行うように構成された、C106に記載の装置。
[C109] 前記第2のTBS方式について、前記処理システムが、
前記リソース割振りサイズと前記MCS値とに従って第1のTBSを判断することと、
前記判断された第1のTBSに前記調整ファクタを適用することによって、調整されるTBSを計算することと
を行うように構成された、C106に記載の装置。
[C110] 信号を送信するためのキャリアタイプを判断することと、
前記判断されたキャリアタイプに従って前記信号を送信することと、
前記キャリアタイプに少なくとも部分的に基づいてユーザ機器(UE)からチャネル品質情報(CQI)を受信することと
を行うように構成された処理システム
を備える、ワイヤレス通信のための装置。
[C111] 前記CQIが、第1のキャリアタイプのためのオーバーヘッド仮定の第1のセットに基づき、第2のキャリアタイプのためのオーバーヘッド仮定の第2のセットに基づく、C110に記載の装置。
[C112] オーバーヘッド仮定の前記第1のセットとオーバーヘッド仮定の前記第2のセットとの間の差が、ダウンリンク制御シグナリングまたは共通基準信号のうちの少なくとも1つを備える、C110に記載の装置。
[C113] オーバーヘッド仮定の前記第2のセットがサブフレームタイプに基づいて判断される、C110に記載の装置。
[C114] 前記キャリアタイプがニューキャリアタイプであり、前記ニューキャリアタイプのサブフレームの最初の3つのシンボルが制御シグナリングによって占有されない、C110に記載の装置。
[C115] 信号を受信するためのキャリアタイプを検出することと、
前記検出されたキャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断することと、
前記判断されたTBSに従って前記信号を受信することと
を行うためのコードを備えるコンピュータ可読媒体
を備える、コンピュータプログラム製品。
[C116] 信号を受信するためのキャリアタイプを検出することと、
前記検出されたキャリアタイプに少なくとも部分的に基づいてチャネル品質情報(CQI)を判断することと、
前記CQIを送信することと
を行うためのコードを備えるコンピュータ可読媒体
を備える、コンピュータプログラム製品。
[C117] 信号を送信するためのキャリアタイプを判断することと、
前記キャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断することと、
前記判断されたキャリアタイプとTBSとに従って前記信号を送信することと
を行うためのコードを備えるコンピュータ可読媒体
を備える、コンピュータプログラム製品。
[C118] 信号を送信するためのキャリアタイプを判断することと、
前記判断されたキャリアタイプに従って前記信号を送信することと、
前記キャリアタイプに少なくとも部分的に基づいてユーザ機器(UE)からチャネル品質情報(CQI)を受信することと
を行うためのコードを備えるコンピュータ可読媒体
を備える、コンピュータプログラム製品。

Claims (118)

  1. 信号を受信するためのキャリアタイプを検出することと、
    前記検出されたキャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断することと、
    前記判断されたTBSに従って前記信号を受信することと
    を備える、ワイヤレス通信の方法。
  2. 前記TBSが、第1の検出されたキャリアタイプのための第1の方式に基づいて判断され、第2の検出されたキャリアタイプのための第2の方式に基づいて判断される、請求項1に記載の方法。
  3. 前記第1の方式が少なくとも第1のTBSルックアップテーブルを備え、前記第2の方式が、前記第1のTBSルックアップテーブルとは異なる少なくとも第2のTBSルックアップテーブルを備える、請求項2に記載の方法。
  4. 前記第1の検出されたキャリアタイプがレガシーキャリアタイプであり、前記第2の検出されたキャリアタイプがニューキャリアタイプである、請求項2に記載の方法。
  5. TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の全てのユーザ機器(UE)のために自動的に有効化される、請求項2に記載の方法。
  6. TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の信号を介して有効化される、請求項2に記載の方法。
  7. 有効化信号がユーザ機器(UE)固有信号またはセル固有信号である、請求項6に記載の方法。
  8. 前記検出されたキャリアタイプに少なくとも部分的に基づいて前記TBSを前記判断することが、セル中の同じサブフレームタイプのための少なくとも2つの異なるTBS方式に基づいてTBS方式を判断することをさらに備える、請求項1に記載の方法。
  9. 前記サブフレームタイプが、
    通常ダウンリンクサブフレーム、
    通常アップリンクサブフレーム、または
    ダウンリンク送信とアップリンク送信の両方を備える特殊サブフレーム
    のうちの少なくとも1つを備える、請求項8に記載の方法。
  10. 前記TBS方式を前記判断することは、
    ダウンリンク制御情報(DCI)フォーマット、
    制御チャネルタイプ、
    ダウンリンク制御チャネルを介して動的に受信された信号、
    物理ダウンリンクスケジューリングチャネル(PDSCH)タイプ、
    前記PDSCHの変調次数、
    前記信号がユニキャスト信号であるか、マルチキャスト信号であるか、
    前記PDSCHがユーザ機器(UE)固有探索空間によってスケジュールされるか、共通探索空間によってスケジュールされるか、または
    サブフレームが共通基準信号(CRS)を含んでいるかどうか
    のうちの少なくとも1つにさらに基づく、請求項8に記載の方法。
  11. 第1のTBS方式がリソース割振りサイズと変調およびコーディング方式(MCS)値とに基づき、第2のTBS方式が、前記リソース割振りサイズと、前記MCS値と、調整ファクタとに基づく、請求項8に記載の方法。
  12. 前記調整ファクタが1よりも大きい、請求項11に記載の方法。
  13. 前記第2のTBS方式が、
    前記調整ファクタに従って、割り当てられるリソース割振りサイズを調整することと、
    前記調整されたリソース割振りサイズと前記MCS値とに従って前記TBSを判断することと
    を備える、請求項11に記載の方法。
  14. 前記第2のTBS方式が、
    前記リソース割振りサイズと前記MCS値とに従って第1のTBSを判断することと、
    前記判断された第1のTBSに前記調整ファクタを適用することによって、調整されるTBSを計算することと
    を備える、請求項11に記載の方法。
  15. 信号を受信するためのキャリアタイプを検出することと、
    前記検出されたキャリアタイプに少なくとも部分的に基づいてチャネル品質情報(CQI)を判断することと、
    前記CQIを送信することと
    を備える、ワイヤレス通信の方法。
  16. 前記CQIが、第1の検出されたキャリアタイプのためのオーバーヘッド仮定の第1のセットに基づいて判断され、第2の検出されたキャリアタイプのためのオーバーヘッド仮定の第2のセットに基づいて判断される、請求項15に記載の方法。
  17. オーバーヘッド仮定の前記第1のセットとオーバーヘッド仮定の前記第2のセットとの間の差が、ダウンリンク制御シグナリングまたは共通基準信号のうちの少なくとも1つを備える、請求項16に記載の方法。
  18. オーバーヘッド仮定の前記第2のセットがサブフレームタイプに基づいて判断される、請求項16に記載の方法。
  19. 前記キャリアタイプがニューキャリアタイプであり、前記CQIが、制御シグナリングによって占有されない、前記ニューキャリアタイプのサブフレームの最初の3つのシンボルに基づいて判断される、請求項16に記載の方法。
  20. 信号を送信するためのキャリアタイプを判断することと、
    前記キャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断することと、
    前記判断されたキャリアタイプとTBSとに従って前記信号を送信することと
    を備える、ワイヤレス通信の方法。
  21. 前記TBSが、第1のキャリアタイプのための第1の方式に基づいて判断され、第2のキャリアタイプのための第2の方式に基づいて判断される、請求項20に記載の方法。
  22. 前記第1の方式が少なくとも第1のTBSルックアップテーブルを備え、前記第2の方式が、前記第1のTBSルックアップテーブルとは異なる少なくとも第2のTBSルックアップテーブルを備える、請求項21に記載の方法。
  23. 前記第1のキャリアタイプがレガシーキャリアタイプであり、前記第2のキャリアタイプがニューキャリアタイプである、請求項21に記載の方法。
  24. TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の全てのユーザ機器(UE)のために自動的に有効化される、請求項21に記載の方法。
  25. ユーザ機器(UE)においてTBS判断のための前記第2の方式を有効化するために前記第2のキャリアタイプのセル中の信号を送信することをさらに備える、請求項21に記載の方法。
  26. 有効化信号がユーザ機器(UE)固有信号またはセル固有信号である、請求項25に記載の方法。
  27. 前記キャリアタイプに少なくとも部分的に基づいて前記TBSを前記判断することが、セル中の同じサブフレームタイプのための少なくとも2つの異なるTBS方式に基づいてTBS方式を判断することをさらに備える、請求項20に記載の方法。
  28. 前記サブフレームタイプが、
    通常ダウンリンクサブフレーム、
    通常アップリンクサブフレーム、または
    ダウンリンク送信とアップリンク送信の両方を備える特殊サブフレーム
    のうちの少なくとも1つを備える、請求項27に記載の方法。
  29. 前記TBS方式を前記判断することは、
    ダウンリンク制御情報(DCI)フォーマット、
    制御チャネルタイプ、
    ダウンリンク制御チャネルを介して動的に受信された信号、
    物理ダウンリンクスケジューリングチャネル(PDSCH)タイプ、
    前記PDSCHの変調次数、
    前記信号がユニキャスト信号であるか、マルチキャスト信号であるか、
    前記PDSCHがユーザ機器(UE)固有探索空間によってスケジュールされるか、共通探索空間によってスケジュールされるか、または
    サブフレームが共通基準信号(CRS)を含んでいるかどうか
    のうちの少なくとも1つにさらに基づく、請求項27に記載の方法。
  30. 第1のTBS方式がリソース割振りサイズと変調およびコーディング方式(MCS)値とに基づき、第2のTBS方式が、前記リソース割振りサイズと、前記MCS値と、調整ファクタとに基づく、請求項27に記載の方法。
  31. 前記調整ファクタが1よりも大きい、請求項30に記載の方法。
  32. 前記第2のTBS方式が、
    前記調整ファクタに従って、割り当てられるリソース割振りサイズを調整することと、
    前記調整されたリソース割振りサイズと前記MCS値とに従って前記TBSを判断することと
    を備える、請求項30に記載の方法。
  33. 前記第2のTBS方式が、
    前記リソース割振りサイズと前記MCS値とに従って第1のTBSを判断することと、
    前記判断された第1のTBSに前記調整ファクタを適用することによって、調整されるTBSを計算することと
    を備える、請求項30に記載の方法。
  34. 信号を送信するためのキャリアタイプを判断することと、
    前記判断されたキャリアタイプに従って前記信号を送信することと、
    前記キャリアタイプに少なくとも部分的に基づいてユーザ機器(UE)からチャネル品質情報(CQI)を受信することと
    を備える、ワイヤレス通信の方法。
  35. 前記CQIが、第1のキャリアタイプのためのオーバーヘッド仮定の第1のセットに基づき、第2のキャリアタイプのためのオーバーヘッド仮定の第2のセットに基づく、請求項34に記載の方法。
  36. オーバーヘッド仮定の前記第1のセットとオーバーヘッド仮定の前記第2のセットとの間の差が、ダウンリンク制御シグナリングまたは共通基準信号のうちの少なくとも1つを備える、請求項34に記載の方法。
  37. オーバーヘッド仮定の前記第2のセットがサブフレームタイプに基づいて判断される、請求項34に記載の方法。
  38. 前記キャリアタイプがニューキャリアタイプであり、前記ニューキャリアタイプのサブフレームの最初の3つのシンボルが制御シグナリングによって占有されない、請求項34に記載の方法。
  39. 信号を受信するためのキャリアタイプを検出するための手段と、
    前記検出されたキャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断するための手段と、
    前記判断されたTBSに従って前記信号を受信するための手段と
    を備える、ワイヤレス通信のための装置。
  40. 前記TBSが、第1の検出されたキャリアタイプのための第1の方式に基づいて判断され、第2の検出されたキャリアタイプのための第2の方式に基づいて判断される、請求項39に記載の装置。
  41. 前記第1の方式が少なくとも第1のTBSルックアップテーブルを備え、前記第2の方式が、前記第1のTBSルックアップテーブルとは異なる少なくとも第2のTBSルックアップテーブルを備える、請求項40に記載の装置。
  42. 前記第1の検出されたキャリアタイプがレガシーキャリアタイプであり、前記第2の検出されたキャリアタイプがニューキャリアタイプである、請求項40に記載の装置。
  43. TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の全てのユーザ機器(UE)のために自動的に有効化される、請求項40に記載の装置。
  44. TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の信号を介して有効化される、請求項40に記載の装置。
  45. 有効化信号がユーザ機器(UE)固有信号またはセル固有信号である、請求項44に記載の装置。
  46. 前記検出されたキャリアタイプに少なくとも部分的に基づいて前記TBSを判断するための前記手段が、セル中の同じサブフレームタイプのための少なくとも2つの異なるTBS方式に基づいてTBS方式を判断するように構成された、請求項39に記載の装置。
  47. 前記サブフレームタイプが、
    通常ダウンリンクサブフレーム、
    通常アップリンクサブフレーム、または
    ダウンリンク送信とアップリンク送信の両方を備える特殊サブフレーム
    のうちの少なくとも1つを備える、請求項46に記載の装置。
  48. 前記TBS方式を前記判断することは、
    ダウンリンク制御情報(DCI)フォーマット、
    制御チャネルタイプ、
    ダウンリンク制御チャネルを介して動的に受信された信号、
    物理ダウンリンクスケジューリングチャネル(PDSCH)タイプ、
    前記PDSCHの変調次数、
    前記信号がユニキャスト信号であるか、マルチキャスト信号であるか、
    前記PDSCHがユーザ機器(UE)固有探索空間によってスケジュールされるか、共通探索空間によってスケジュールされるか、または
    サブフレームが共通基準信号(CRS)を含んでいるかどうか
    のうちの少なくとも1つにさらに基づく、請求項46に記載の装置。
  49. 第1のTBS方式がリソース割振りサイズと変調およびコーディング方式(MCS)値とに基づき、第2のTBS方式が、前記リソース割振りサイズと、前記MCS値と、調整ファクタとに基づく、請求項46に記載の装置。
  50. 前記調整ファクタが1よりも大きい、請求項49に記載の装置。
  51. 前記第2のTBS方式について、前記TBSを判断するための前記手段が、
    前記調整ファクタに従って、割り当てられるリソース割振りサイズを調整することと、
    前記調整されたリソース割振りサイズと前記MCS値とに従って前記TBSを判断することと
    を行うように構成された、請求項49に記載の装置。
  52. 前記第2のTBS方式について、前記TBSを判断するための前記手段が、
    前記リソース割振りサイズと前記MCS値とに従って第1のTBSを判断することと、
    前記判断された第1のTBSに前記調整ファクタを適用することによって、調整されるTBSを計算することと
    を行うように構成された、請求項49に記載の装置。
  53. 信号を受信するためのキャリアタイプを検出するための手段と、
    前記検出されたキャリアタイプに少なくとも部分的に基づいてチャネル品質情報(CQI)を判断するための手段と、
    前記CQIを送信するための手段と
    を備える、ワイヤレス通信のための装置。
  54. 前記CQIが、第1の検出されたキャリアタイプのためのオーバーヘッド仮定の第1のセットに基づいて判断され、第2の検出されたキャリアタイプのためのオーバーヘッド仮定の第2のセットに基づいて判断される、請求項53に記載の装置。
  55. オーバーヘッド仮定の前記第1のセットとオーバーヘッド仮定の前記第2のセットとの間の差が、ダウンリンク制御シグナリングまたは共通基準信号のうちの少なくとも1つを備える、請求項54に記載の装置。
  56. オーバーヘッド仮定の前記第2のセットがサブフレームタイプに基づいて判断される、請求項54に記載の装置。
  57. 前記キャリアタイプがニューキャリアタイプであり、前記CQIが、制御シグナリングによって占有されない、前記ニューキャリアタイプのサブフレームの最初の3つのシンボルに基づいて判断される、請求項54に記載の装置。
  58. 信号を送信するためのキャリアタイプを判断するための手段と、
    前記キャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断するための手段と、
    前記判断されたキャリアタイプとTBSとに従って前記信号を送信するための手段と
    を備える、ワイヤレス通信のための装置。
  59. 前記TBSが、第1のキャリアタイプのための第1の方式に基づいて判断され、第2のキャリアタイプのための第2の方式に基づいて判断される、請求項58に記載の装置。
  60. 前記第1の方式が少なくとも第1のTBSルックアップテーブルを備え、前記第2の方式が、前記第1のTBSルックアップテーブルとは異なる少なくとも第2のTBSルックアップテーブルを備える、請求項59に記載の装置。
  61. 前記第1のキャリアタイプがレガシーキャリアタイプであり、前記第2のキャリアタイプがニューキャリアタイプである、請求項59に記載の装置。
  62. TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の全てのユーザ機器(UE)のために自動的に有効化される、請求項59に記載の装置。
  63. ユーザ機器(UE)においてTBS判断のための前記第2の方式を有効化するために前記第2のキャリアタイプのセル中の信号を送信するための手段をさらに備える、請求項59に記載の装置。
  64. 有効化信号がユーザ機器(UE)固有信号またはセル固有信号である、請求項63に記載の装置。
  65. 前記キャリアタイプに少なくとも部分的に基づいて前記TBSを判断するための前記手段が、セル中の同じサブフレームタイプのための少なくとも2つの異なるTBS方式に基づいてTBS方式を判断するように構成された、方法61に記載の装置。
  66. 前記サブフレームタイプが、
    通常ダウンリンクサブフレーム、
    通常アップリンクサブフレーム、または
    ダウンリンク送信とアップリンク送信の両方を備える特殊サブフレーム
    のうちの少なくとも1つを備える、請求項65に記載の装置。
  67. 前記TBS方式を前記判断することは、
    ダウンリンク制御情報(DCI)フォーマット、
    制御チャネルタイプ、
    ダウンリンク制御チャネルを介して動的に受信された信号、
    物理ダウンリンクスケジューリングチャネル(PDSCH)タイプ、
    前記PDSCHの変調次数、
    前記信号がユニキャスト信号であるか、マルチキャスト信号であるか、
    前記PDSCHがユーザ機器(UE)固有探索空間によってスケジュールされるか、共通探索空間によってスケジュールされるか、または
    サブフレームが共通基準信号(CRS)を含んでいるかどうか
    のうちの少なくとも1つにさらに基づく、請求項65に記載の装置。
  68. 第1のTBS方式がリソース割振りサイズと変調およびコーディング方式(MCS)値とに基づき、第2のTBS方式が、前記リソース割振りサイズと、前記MCS値と、調整ファクタとに基づく、請求項65に記載の装置。
  69. 前記調整ファクタが1よりも大きい、請求項68に記載の装置。
  70. 前記第2のTBS方式について、前記TBSを判断するための前記手段が、
    前記調整ファクタに従って、割り当てられるリソース割振りサイズを調整することと、
    前記調整されたリソース割振りサイズと前記MCS値とに従って前記TBSを判断することと
    を行うように構成された、請求項68に記載の装置。
  71. 前記第2のTBS方式について、前記TBSを判断するための前記手段が、
    前記リソース割振りサイズと前記MCS値とに従って第1のTBSを判断することと、
    前記判断された第1のTBSに前記調整ファクタを適用することによって、調整されるTBSを計算することと
    を行うように構成された、請求項68に記載の装置。
  72. 信号を送信するためのキャリアタイプを判断するための手段と、
    前記判断されたキャリアタイプに従って前記信号を送信するための手段と、
    前記キャリアタイプに少なくとも部分的に基づいてユーザ機器(UE)からチャネル品質情報(CQI)を受信するための手段と
    を備える、ワイヤレス通信のための装置。
  73. 前記CQIが、第1のキャリアタイプのためのオーバーヘッド仮定の第1のセットに基づき、第2のキャリアタイプのためのオーバーヘッド仮定の第2のセットに基づく、請求項72に記載の装置。
  74. オーバーヘッド仮定の前記第1のセットとオーバーヘッド仮定の前記第2のセットとの間の差が、ダウンリンク制御シグナリングまたは共通基準信号のうちの少なくとも1つを備える、請求項72に記載の装置。
  75. オーバーヘッド仮定の前記第2のセットがサブフレームタイプに基づいて判断される、請求項72に記載の装置。
  76. 前記キャリアタイプがニューキャリアタイプであり、前記ニューキャリアタイプのサブフレームの最初の3つのシンボルが制御シグナリングによって占有されない、請求項72に記載の装置。
  77. 信号を受信するためのキャリアタイプを検出することと、
    前記検出されたキャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断することと、
    前記判断されたTBSに従って前記信号を受信することと
    を行うように構成された処理システム
    を備える、ワイヤレス通信のための装置。
  78. 前記TBSが、第1の検出されたキャリアタイプのための第1の方式に基づいて判断され、第2の検出されたキャリアタイプのための第2の方式に基づいて判断される、請求項77に記載の装置。
  79. 前記第1の方式が少なくとも第1のTBSルックアップテーブルを備え、前記第2の方式が、前記第1のTBSルックアップテーブルとは異なる少なくとも第2のTBSルックアップテーブルを備える、請求項78に記載の装置。
  80. 前記第1の検出されたキャリアタイプがレガシーキャリアタイプであり、前記第2の検出されたキャリアタイプがニューキャリアタイプである、請求項78に記載の装置。
  81. TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の全てのユーザ機器(UE)のために自動的に有効化される、請求項78に記載の装置。
  82. TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の信号を介して有効化される、請求項78に記載の装置。
  83. 有効化信号がユーザ機器(UE)固有信号またはセル固有信号である、請求項82に記載の装置。
  84. 前記検出されたキャリアタイプに少なくとも部分的に基づいて前記TBSを判断するように構成された前記処理システムが、セル中の同じサブフレームタイプのための少なくとも2つの異なるTBS方式に基づいてTBS方式を判断するようにさらに構成された、請求項77に記載の装置。
  85. 前記サブフレームタイプが、
    通常ダウンリンクサブフレーム、
    通常アップリンクサブフレーム、または
    ダウンリンク送信とアップリンク送信の両方を備える特殊サブフレーム
    のうちの少なくとも1つを備える、請求項84に記載の装置。
  86. 前記処理システムは、
    ダウンリンク制御情報(DCI)フォーマット、
    制御チャネルタイプ、
    ダウンリンク制御チャネルを介して動的に受信された信号、
    物理ダウンリンクスケジューリングチャネル(PDSCH)タイプ、
    前記PDSCHの変調次数、
    前記信号がユニキャスト信号であるか、マルチキャスト信号であるか、
    前記PDSCHがユーザ機器(UE)固有探索空間によってスケジュールされるか、共通探索空間によってスケジュールされるか、または
    サブフレームが共通基準信号(CRS)を含んでいるかどうか
    のうちの少なくとも1つに基づいて前記TBS方式をさらに判断する、請求項84に記載の装置。
  87. 第1のTBS方式がリソース割振りサイズと変調およびコーディング方式(MCS)値とに基づき、第2のTBS方式が、前記リソース割振りサイズと、前記MCS値と、調整ファクタとに基づく、請求項84に記載の装置。
  88. 前記調整ファクタが1よりも大きい、請求項87に記載の装置。
  89. 前記第2のTBS方式について、前記処理システムが、
    前記調整ファクタに従って、割り当てられるリソース割振りサイズを調整することと、
    前記調整されたリソース割振りサイズと前記MCS値とに従って前記TBSを判断することと
    を行うように構成された、請求項87に記載の装置。
  90. 前記第2のTBS方式について、前記処理システムが、
    前記リソース割振りサイズと前記MCS値とに従って第1のTBSを判断することと、
    前記判断された第1のTBSに前記調整ファクタを適用することによって、調整されるTBSを計算することと
    を行うように構成された、請求項87に記載の装置。
  91. 信号を受信するためのキャリアタイプを検出することと、
    前記検出されたキャリアタイプに少なくとも部分的に基づいてチャネル品質情報(CQI)を判断することと、
    前記CQIを送信することと
    を行うように構成された処理システム
    を備える、ワイヤレス通信のための装置。
  92. 前記CQIが、第1の検出されたキャリアタイプのためのオーバーヘッド仮定の第1のセットに基づいて判断され、第2の検出されたキャリアタイプのためのオーバーヘッド仮定の第2のセットに基づいて判断される、請求項91に記載の装置。
  93. オーバーヘッド仮定の前記第1のセットとオーバーヘッド仮定の前記第2のセットとの間の差が、ダウンリンク制御シグナリングまたは共通基準信号のうちの少なくとも1つを備える、請求項92に記載の装置。
  94. オーバーヘッド仮定の前記第2のセットがサブフレームタイプに基づいて判断される、請求項92に記載の装置。
  95. 前記キャリアタイプがニューキャリアタイプであり、前記CQIが、制御シグナリングによって占有されない、前記ニューキャリアタイプのサブフレームの最初の3つのシンボルに基づいて判断される、請求項92に記載の装置。
  96. 信号を送信するためのキャリアタイプを判断することと、
    前記キャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断することと、
    前記判断されたキャリアタイプとTBSとに従って前記信号を送信することと
    を行うように構成された処理システム
    を備える、ワイヤレス通信のための装置。
  97. 前記TBSが、第1のキャリアタイプのための第1の方式に基づいて判断され、第2のキャリアタイプのための第2の方式に基づいて判断される、請求項96に記載の装置。
  98. 前記第1の方式が少なくとも第1のTBSルックアップテーブルを備え、前記第2の方式が、前記第1のTBSルックアップテーブルとは異なる少なくとも第2のTBSルックアップテーブルを備える、請求項97に記載の装置。
  99. 前記第1のキャリアタイプがレガシーキャリアタイプであり、前記第2のキャリアタイプがニューキャリアタイプである、請求項97に記載の装置。
  100. TBS判断のための前記第2の方式が、前記第2のキャリアタイプのセル中の全てのユーザ機器(UE)のために自動的に有効化される、請求項97に記載の装置。
  101. 前記処理システムが、ユーザ機器(UE)においてTBS判断のための前記第2の方式を有効化するために前記第2のキャリアタイプのセル中の信号を送信するようにさらに構成された、請求項97に記載の装置。
  102. 有効化信号がユーザ機器(UE)固有信号またはセル固有信号である、請求項101に記載の装置。
  103. 前記キャリアタイプに少なくとも部分的に基づいて前記TBSを判断するように構成された前記処理システムが、セル中の同じサブフレームタイプのための少なくとも2つの異なるTBS方式に基づいてTBS方式を判断するようにさらに構成された、方法101に記載の装置。
  104. 前記サブフレームタイプが、
    通常ダウンリンクサブフレーム、
    通常アップリンクサブフレーム、または
    ダウンリンク送信とアップリンク送信の両方を備える特殊サブフレーム
    のうちの少なくとも1つを備える、請求項103に記載の装置。
  105. 前記処理システムは、
    ダウンリンク制御情報(DCI)フォーマット、
    制御チャネルタイプ、
    ダウンリンク制御チャネルを介して動的に受信された信号、
    物理ダウンリンクスケジューリングチャネル(PDSCH)タイプ、
    前記PDSCHの変調次数、
    前記信号がユニキャスト信号であるか、マルチキャスト信号であるか、
    前記PDSCHがユーザ機器(UE)固有探索空間によってスケジュールされるか、共通探索空間によってスケジュールされるか、または
    サブフレームが共通基準信号(CRS)を含んでいるかどうか
    のうちの少なくとも1つに基づいて前記TBS方式をさらに判断する、請求項103に記載の装置。
  106. 第1のTBS方式がリソース割振りサイズと変調およびコーディング方式(MCS)値とに基づき、第2のTBS方式が、前記リソース割振りサイズと、前記MCS値と、調整ファクタとに基づく、請求項103に記載の装置。
  107. 前記調整ファクタが1よりも大きい、請求項106に記載の装置。
  108. 前記第2のTBS方式について、前記処理システムが、
    前記調整ファクタに従って、割り当てられるリソース割振りサイズを調整することと、
    前記調整されたリソース割振りサイズと前記MCS値とに従って前記TBSを判断することと
    を行うように構成された、請求項106に記載の装置。
  109. 前記第2のTBS方式について、前記処理システムが、
    前記リソース割振りサイズと前記MCS値とに従って第1のTBSを判断することと、
    前記判断された第1のTBSに前記調整ファクタを適用することによって、調整されるTBSを計算することと
    を行うように構成された、請求項106に記載の装置。
  110. 信号を送信するためのキャリアタイプを判断することと、
    前記判断されたキャリアタイプに従って前記信号を送信することと、
    前記キャリアタイプに少なくとも部分的に基づいてユーザ機器(UE)からチャネル品質情報(CQI)を受信することと
    を行うように構成された処理システム
    を備える、ワイヤレス通信のための装置。
  111. 前記CQIが、第1のキャリアタイプのためのオーバーヘッド仮定の第1のセットに基づき、第2のキャリアタイプのためのオーバーヘッド仮定の第2のセットに基づく、請求項110に記載の装置。
  112. オーバーヘッド仮定の前記第1のセットとオーバーヘッド仮定の前記第2のセットとの間の差が、ダウンリンク制御シグナリングまたは共通基準信号のうちの少なくとも1つを備える、請求項110に記載の装置。
  113. オーバーヘッド仮定の前記第2のセットがサブフレームタイプに基づいて判断される、請求項110に記載の装置。
  114. 前記キャリアタイプがニューキャリアタイプであり、前記ニューキャリアタイプのサブフレームの最初の3つのシンボルが制御シグナリングによって占有されない、請求項110に記載の装置。
  115. 信号を受信するためのキャリアタイプを検出することと、
    前記検出されたキャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断することと、
    前記判断されたTBSに従って前記信号を受信することと
    を行うためのコードを備えるコンピュータ可読媒体
    を備える、コンピュータプログラム製品。
  116. 信号を受信するためのキャリアタイプを検出することと、
    前記検出されたキャリアタイプに少なくとも部分的に基づいてチャネル品質情報(CQI)を判断することと、
    前記CQIを送信することと
    を行うためのコードを備えるコンピュータ可読媒体
    を備える、コンピュータプログラム製品。
  117. 信号を送信するためのキャリアタイプを判断することと、
    前記キャリアタイプに少なくとも部分的に基づいてトランスポートブロックサイズ(TBS)を判断することと、
    前記判断されたキャリアタイプとTBSとに従って前記信号を送信することと
    を行うためのコードを備えるコンピュータ可読媒体
    を備える、コンピュータプログラム製品。
  118. 信号を送信するためのキャリアタイプを判断することと、
    前記判断されたキャリアタイプに従って前記信号を送信することと、
    前記キャリアタイプに少なくとも部分的に基づいてユーザ機器(UE)からチャネル品質情報(CQI)を受信することと
    を行うためのコードを備えるコンピュータ可読媒体
    を備える、コンピュータプログラム製品。
JP2015517341A 2012-06-12 2013-06-11 Lteにおけるニューキャリアタイプにおけるトランスポートブロックサイズ判断 Active JP6174133B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261658809P 2012-06-12 2012-06-12
US61/658,809 2012-06-12
US13/914,444 2013-06-10
US13/914,444 US9763246B2 (en) 2012-06-12 2013-06-10 Transport block size determination in new carrier type in LTE
PCT/US2013/045085 WO2013188340A2 (en) 2012-06-12 2013-06-11 Transport block size determination in new carrier type in lte

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017096652A Division JP6676579B2 (ja) 2012-06-12 2017-05-15 Lteにおけるニューキャリアタイプにおけるトランスポートブロックサイズ判断

Publications (2)

Publication Number Publication Date
JP2015523019A true JP2015523019A (ja) 2015-08-06
JP6174133B2 JP6174133B2 (ja) 2017-08-02

Family

ID=49715260

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015517341A Active JP6174133B2 (ja) 2012-06-12 2013-06-11 Lteにおけるニューキャリアタイプにおけるトランスポートブロックサイズ判断
JP2017096652A Active JP6676579B2 (ja) 2012-06-12 2017-05-15 Lteにおけるニューキャリアタイプにおけるトランスポートブロックサイズ判断

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017096652A Active JP6676579B2 (ja) 2012-06-12 2017-05-15 Lteにおけるニューキャリアタイプにおけるトランスポートブロックサイズ判断

Country Status (5)

Country Link
US (1) US9763246B2 (ja)
JP (2) JP6174133B2 (ja)
KR (2) KR102189917B1 (ja)
CN (2) CN104365053B (ja)
WO (1) WO2013188340A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431777A (zh) * 2017-03-20 2019-11-08 瑞典爱立信有限公司 用于确定传输数据块大小的方法和节点
JP2020516098A (ja) * 2017-01-05 2020-05-28 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. データ伝送方法及び通信デバイス

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104145523B (zh) * 2012-08-03 2018-01-23 华为技术有限公司 信息传输方法及终端、基站
US9516659B2 (en) * 2012-12-06 2016-12-06 Intel Corporation Carrier type (NCT) information embedded in synchronization signal
CN103944855B (zh) * 2013-01-18 2018-08-17 中兴通讯股份有限公司 调制处理方法及装置
US9692495B2 (en) 2013-04-05 2017-06-27 Qualcomm Incorporated Control channel overhead assumptions for deriving CSI feedback
US9827048B2 (en) 2013-11-22 2017-11-28 Spinal Generations, Llc Integrated surgical implant delivery system and method
US10653499B2 (en) 2013-11-22 2020-05-19 Spinal Generations, Llc Integrated surgical implant delivery system and method
US10552574B2 (en) * 2013-11-22 2020-02-04 Spinal Generations, Llc System and method for identifying a medical device
CN110519017B (zh) * 2014-03-21 2022-05-31 株式会社Kt 确定传输块大小的方法和其设备
US10075309B2 (en) * 2014-04-25 2018-09-11 Qualcomm Incorporated Modulation coding scheme (MCS) indication in LTE uplink
WO2016018079A1 (ko) * 2014-08-01 2016-02-04 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2016122756A1 (en) * 2015-01-29 2016-08-04 Intel IP Corporation Device and method for effective use of unlicensed spectrum
CN107438973B (zh) * 2015-04-10 2021-06-25 Lg 电子株式会社 接收pdsch的方法和无线装置
US9893906B2 (en) * 2015-08-31 2018-02-13 Intel IP Corporation Multicast negative acknowledgements using high-energy long-training fields for feedback
CN108353285B (zh) * 2015-10-16 2021-02-05 华为技术有限公司 一种确定传输块大小的方法用户设备和基站
US10348466B2 (en) 2015-11-03 2019-07-09 Qualcomm Incorporated Transport block segmentation and signaling
CN106961318B (zh) 2016-01-11 2020-07-10 中兴通讯股份有限公司 一种确定编码调制参数的方法、装置和系统
US10009152B2 (en) * 2016-03-04 2018-06-26 Huawei Technologies Co., Ltd. System and method for rate-less multiple access
EP3442256A4 (en) * 2016-04-08 2019-11-06 NTT DoCoMo, Inc. USER DEVICE AND WIRELESS COMMUNICATION PROCESS
JP7030687B2 (ja) * 2016-04-08 2022-03-07 株式会社Nttドコモ 端末、基地局及び無線通信方法
CN107453852B (zh) * 2016-05-31 2020-05-15 电信科学技术研究院 一种子帧类型通知、确定方法及装置
CN107733560B (zh) * 2016-08-12 2022-08-02 中兴通讯股份有限公司 数据分割方法、装置及终端
US10848264B2 (en) * 2016-09-23 2020-11-24 Telefonaktiebolaget Lm Ericsson (Publ) Transmitting data from a first to second communication device using two different modulation/coding schemes
EP3520289B1 (en) * 2016-09-30 2021-05-26 Telefonaktiebolaget LM Ericsson (PUBL) Transport block size determination for short transmission time interval
CN109120375B (zh) * 2017-06-23 2022-07-12 三星电子株式会社 使用调制、编码方案和传输块大小的无线通信方法和设备
US10116484B1 (en) * 2017-07-21 2018-10-30 Qualcomm Incorporated Techniques and apparatuses for odd-exponent quadrature amplitude modulation
CN109392022B (zh) * 2017-08-11 2022-04-05 华为技术有限公司 传输数据的方法、终端设备和网络设备
US10707988B2 (en) * 2017-09-11 2020-07-07 Mediatek Singapore Pte. Ltd Transport block size determination in mobile communications
CN107404378B (zh) * 2017-09-15 2020-02-14 成都华为技术有限公司 一种数据传输方法及装置
JP6577160B2 (ja) 2017-09-28 2019-09-18 株式会社フジミインコーポレーテッド 水酸化アルミニウム被覆炭化珪素粒子粉体の製造方法、ならびに当該粉体および分散媒を含む分散体の製造方法
WO2019191973A1 (en) * 2018-04-04 2019-10-10 Zte Corporation Methods, apparatus and systems for determining transport block size in wireless communications
US11470591B2 (en) * 2018-05-10 2022-10-11 Qualcomm Incorporated Direct transport block size specification
US11196512B2 (en) * 2018-06-29 2021-12-07 Qualcomm Incorporated Resolving decodability for subsequent transmissions whose throughput exceeds a threshold
US11464007B2 (en) * 2018-07-17 2022-10-04 Lg Electronics Inc. Method and device for determining TBS in NR V2X
KR20200018138A (ko) * 2018-08-10 2020-02-19 삼성전자주식회사 무선 통신 시스템에서 비직교 다중접속을 위한 비승인 전송 방법 및 장치
CN111436144B (zh) 2019-01-11 2023-06-06 华为技术有限公司 一种确定传输块大小的方法及装置
WO2020143840A1 (zh) * 2019-01-11 2020-07-16 华为技术有限公司 一种确定传输块大小的方法及装置
WO2020199588A1 (zh) * 2019-03-29 2020-10-08 华为技术有限公司 一种tbs的确定方法及装置
WO2020199044A1 (zh) * 2019-03-29 2020-10-08 华为技术有限公司 一种tbs的确定方法及装置
CN115606276A (zh) * 2020-09-04 2023-01-13 北京小米移动软件有限公司(Cn) 传输块大小配置方法、装置及存储介质
CN114449544A (zh) * 2020-10-30 2022-05-06 维沃移动通信有限公司 信道监听方法、装置及终端
CN115694721A (zh) * 2021-07-29 2023-02-03 华为技术有限公司 通信方法及装置
CN113784356B (zh) * 2021-10-27 2023-08-08 哲库科技(北京)有限公司 一种通信参数的确定方法、装置、设备以及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011047253A1 (en) * 2009-10-15 2011-04-21 Qualcomm Incorporated Methods and apparatus for transport block size determination applying an adjustment factor
CN102448122A (zh) * 2011-12-30 2012-05-09 中兴通讯股份有限公司 一种确定子帧中传输块大小的方法和基站

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8429502B2 (en) 2005-11-16 2013-04-23 Qualcomm Incorporated Frame format for millimeter-wave systems
EP2294772B1 (en) 2008-04-08 2016-01-06 Marvell World Trade Ltd. Physical layer frame format for wideband wireless communications systems
CN101651515B (zh) 2008-08-15 2012-12-12 电信科学技术研究院 自适应调制和编码方法、系统及装置
CN101932024A (zh) * 2009-06-24 2010-12-29 华为技术有限公司 下行控制信息发送方法和装置
US8498273B2 (en) 2009-08-06 2013-07-30 Telefonaktiebolaget L M Ericsson (Publ) Management of uplink resources in multi-carrier CDMA system
CN101615984B (zh) * 2009-08-07 2013-03-27 中兴通讯股份有限公司 载波聚合下周期性cqi反馈的方法和装置
EP2306782A1 (en) 2009-10-01 2011-04-06 Nokia Siemens Networks Oy LTE-Advanced coupling between PCFICH and associated PDSCH for cross-component carrier scheduling
CN102014475B (zh) * 2010-01-08 2012-01-04 华为技术有限公司 资源映射、码分复用方法及装置
US8837526B2 (en) * 2010-01-11 2014-09-16 Htc Corporation Carrier indication method for wireless communication system and related communication device
EP2564533B1 (en) 2010-04-30 2021-03-03 Nokia Technologies Oy Aperiodic cqi/pmi request in carrier aggregation
US8953517B2 (en) * 2010-06-23 2015-02-10 Futurewei Technologies, Inc. System and method for adapting code rate
US9614654B2 (en) 2011-10-03 2017-04-04 Qualcomm Incorporated Adaptive control channel design for balancing data payload size and decoding time
US8634323B2 (en) 2011-10-14 2014-01-21 Qualcomm Incorporated Apparatuses and methods for facilitating simulcasting and de-simulcasting with a plurality of base stations
TW201332310A (zh) * 2011-12-23 2013-08-01 Innovative Sonic Corp 無線通訊系統中加入新載波後的cqi回報方法和裝置
US8606286B2 (en) * 2012-01-16 2013-12-10 Blackberry Limited E-PDCCH design for reducing blind decoding
WO2013114419A1 (en) * 2012-01-30 2013-08-08 Nec Corporation Radio communication system and communication control method
US9247542B2 (en) * 2012-01-31 2016-01-26 Apple Inc. Methods and apparatus for efficient spectral usage in extensible carrier deployments
EP2829140B1 (en) * 2012-03-19 2018-05-16 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatus in a wireless communication system for transmitting and receiving user data on a non-legacy carrier
US9198181B2 (en) * 2012-03-19 2015-11-24 Blackberry Limited Enhanced common downlink control channels
WO2013176827A1 (en) * 2012-05-19 2013-11-28 Motorola Mobility Llc Method and apparatus for transport block signaling in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011047253A1 (en) * 2009-10-15 2011-04-21 Qualcomm Incorporated Methods and apparatus for transport block size determination applying an adjustment factor
JP2013509037A (ja) * 2009-10-15 2013-03-07 クゥアルコム・インコーポレイテッド 調節ファクタを適用する伝送ブロック・サイズ決定のための方法および装置
CN102448122A (zh) * 2011-12-30 2012-05-09 中兴通讯股份有限公司 一种确定子帧中传输块大小的方法和基站
JP2015510300A (ja) * 2011-12-30 2015-04-02 ゼットティイー コーポレーションZte Corporation サブフレームにおける伝送ブロックのサイズを確定する方法及び基地局

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020516098A (ja) * 2017-01-05 2020-05-28 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. データ伝送方法及び通信デバイス
US11489617B2 (en) 2017-01-05 2022-11-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and communication device
CN110431777A (zh) * 2017-03-20 2019-11-08 瑞典爱立信有限公司 用于确定传输数据块大小的方法和节点
JP2020515146A (ja) * 2017-03-20 2020-05-21 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 伝送データブロックサイズを判定するための方法およびノード
US11290227B2 (en) 2017-03-20 2022-03-29 Telefonaktiebolaget Lm Ericsson (Publ) Methods and nodes for determining a transmission data block size

Also Published As

Publication number Publication date
CN104365053A (zh) 2015-02-18
WO2013188340A3 (en) 2014-02-06
US20130329661A1 (en) 2013-12-12
CN104365053B (zh) 2018-07-31
KR102189917B1 (ko) 2020-12-11
CN108964841B (zh) 2021-08-13
JP2017188916A (ja) 2017-10-12
KR20200020021A (ko) 2020-02-25
WO2013188340A2 (en) 2013-12-19
KR102154111B1 (ko) 2020-09-09
KR20150023701A (ko) 2015-03-05
CN108964841A (zh) 2018-12-07
JP6676579B2 (ja) 2020-04-08
US9763246B2 (en) 2017-09-12
JP6174133B2 (ja) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6676579B2 (ja) Lteにおけるニューキャリアタイプにおけるトランスポートブロックサイズ判断
JP6755788B2 (ja) Lte−aにおける時間追跡のための改善された基準信号設計
JP6517413B2 (ja) Lteにおいてepdcchを用いたキャリアアグリゲーションにおいてクロスキャリアスケジューリングを管理すること
JP6388969B2 (ja) アップリンク送信モード構成を改善するための方法および装置
JP6449406B2 (ja) Lteにおけるニューキャリアタイプ中の基準信号電力影響判断
JP6165835B2 (ja) 仮想セル識別子のシグナリングおよびフォールバック動作
JP6336978B2 (ja) 多地点協調(CoMP)通信のための方法および装置
JP6449150B2 (ja) 多地点協調(CoMP)動作とキャリアアグリゲーション(CA)とのジョイントサポートのための技法
TWI466482B (zh) 用於改善認可/否定認可回饋的方法和裝置
JP5628440B2 (ja) ミューティングを用いるレートマッチングのための方法および装置
JP6104938B2 (ja) ワイヤレスネットワークのための割当て依存ダウンリンクチャネル処理のための方法および装置
JP6189425B2 (ja) バースト的干渉でのレート予測を向上させるためのフィードバック
JP6316797B2 (ja) 多地点協調送信のためのフォーマット依存電力制御
TWI688292B (zh) 用於容許處理的方法和裝置
JP6545683B2 (ja) ネットワーク支援干渉消去シグナリング
JP6576920B2 (ja) アップリンク/ダウンリンクサブフレーム構成のクロスキャリアインジケーション
JP2017514366A (ja) Ul dm−rsオーバーヘッド低減のための方法および装置
JP2015525544A (ja) ユーザ機器を支援するためのネットワーク情報
JP6254145B2 (ja) ローカル切断後のpdnへの再接続前のepsベアラ同期の実行
JP2015517763A (ja) 多地点協調動作のためのアップリンクチャネルとのサウンディング基準信号のインタラクション
JP6464092B2 (ja) 分散型周波数同期を可能にするための方法および装置
JP6462573B2 (ja) Lteにおけるpmch/prsおよびepdcchの処理
JP2017512016A (ja) Lteにおける新しいtdd構成およびeimta
JP2015515223A (ja) 広域ネットワークにおけるピアツーピアリンクのオポチュニスティックスケジューリングのための方法および装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170705

R150 Certificate of patent or registration of utility model

Ref document number: 6174133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250