JP2015522238A - 過渡電圧回路保護のためのクローバーデバイス - Google Patents

過渡電圧回路保護のためのクローバーデバイス Download PDF

Info

Publication number
JP2015522238A
JP2015522238A JP2015520688A JP2015520688A JP2015522238A JP 2015522238 A JP2015522238 A JP 2015522238A JP 2015520688 A JP2015520688 A JP 2015520688A JP 2015520688 A JP2015520688 A JP 2015520688A JP 2015522238 A JP2015522238 A JP 2015522238A
Authority
JP
Japan
Prior art keywords
emitter
diode
circuit protection
clover
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015520688A
Other languages
English (en)
Other versions
JP6396294B2 (ja
Inventor
シェン、アダー
クオ、イーサン
チャン、ティン−ファン
Original Assignee
リテルヒューズ・インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リテルヒューズ・インク filed Critical リテルヒューズ・インク
Publication of JP2015522238A publication Critical patent/JP2015522238A/ja
Application granted granted Critical
Publication of JP6396294B2 publication Critical patent/JP6396294B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0259Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements
    • H01L27/0262Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements including a PNP transistor and a NPN transistor, wherein each of said transistors has its base coupled to the collector of the other transistor, e.g. silicon controlled rectifier [SCR] devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/005Emergency protective circuit arrangements for limiting excess current or voltage without disconnection avoiding undesired transient conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/043Protection of over-voltage protection device by short-circuiting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/044Physical layout, materials not provided for elsewhere

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

概して電子デバイスを過渡現象から保護するためのクローバーデバイスを含む回路保護部品を開示する。この回路保護部品は、ステアリング・ダイオード・ブリッジと、ステアリング・ダイオード・ブリッジと電気的に接続されるクローバーデバイスとを含み得る。クローバーデバイスは第1の層に形成されたベースとエミッタとを有することができ、第1の層はブレークダウン電圧を規定し、前記ブレークダウン電圧を超えるときに電流が前記エミッタの下を通り前記エミッタ内に形成された穴を通って前記デバイスの外に流れることを可能とする。【選択図】図1

Description

発明の詳細な説明
(関係する出願)
本出願は、2012年7月5日に出願された米国仮出願第61/668326号に基づく優先権を主張する。
本開示は、概して回路保護装置の分野に関し、より詳細には落雷又は電源回路等により生じ得る過渡電圧からの回路部品の保護に関する。
回路内での電圧又は電流の望ましくない変化は、一般に「過渡現象」と呼ばれている。過渡現象は様々な原因により生じ得る。例えば、落雷は、回路内において望ましくない過渡現象の原因となり得る。さらに、過渡現象は様々な形で出現し得る。より具体的には、過渡現象は回路内における定常状態の電圧又は電流の状態に複数の異なる変化をもたらし得る。さらに、過渡現象電流及び電圧の波形及び振幅も変化し得る。過渡現象はしばしば回路内での望ましくない電圧及び/または電流のスパイク、回路部品への損傷を引き起こし得る。
過渡現象から回路を保護することは、可能性のある過渡現象の発生源と保護すべき回路との間にある種の保護部品(又は部品)を設置することを伴うことが多い。保護部品はその回路において電流及び電圧を安全なレベルにまで制限する役割を果たす。半導体デバイスは一定のクランピング電圧及び漏れ電流特性を有することが多いという事実により、いくつかの保護部品は半導体デバイスを使用する。
実際に、半導体デバイスを利用する保護部品は、任意の過渡電圧を所定のレベルに急速に制限するように構成され得る。しかし、半導体接合の容量は、電圧とともに変化する。このように、過渡現象から回路を保護することは保護部品の容量の増加という犠牲を払ってなし得る。例えば、非常に高速度の加入電話回線(VDSL)等のいくつかの回路は、容量レベルが増加することによりデータ損失を生じ得る。したがって、いくつかの保護部品は、過渡現象を軽減することによる容量の増加のために保護される回路内でのデータ損失を引き起こし得る。
さらに、いくつかの半導体デバイスの抵抗も電圧とともに変化する。このように過渡現象から回路を保護することは、抵抗を変化させるという犠牲を伴うことがあり、このことは回路内で電流に悪影響を及ぼし得る。さらに、いくつかの半導体デバイスは電力消費のサイクルが多すぎるために損傷することがあり、その結果保護部品の早期故障をもたらす。
したがって、過渡現象の電圧を適切なレベルまで急速にクランプし、大電流に繰り返しさらされることに耐えられ、保護しようとする回路の容量を大きくは変化させないことが可能な保護部品の必要性が存在する。
本開示により電子デバイスを過渡現象から保護するための回路保護部品が提供される。この回路保護部品は、ステアリング・ダイオード・ブリッジと、ステアリング・ダイオード・ブリッジに電気的に接続されるクローバーデバイスを含み得る。このクローバーデバイスは第1の層に形成されるベースとエミッタとを有し得て、この第1の層はブレークダウン電圧を規定し、ブレークダウン電圧を超えるときに電流がエミッタの下を通りエミッタ内に形成された穴を通ってデバイスの外へ流れることを可能とする。
いくつかの実施形態では、回路保護部品のためのクローバーデバイスは、前記基板の下部の領域に形成された拡散層、基板に形成されたベースと、ベースに形成された、中に穴を有するエミッタとを具備することができ、前記クローバーデバイスはブレークダウン電圧を有し、前記ブレークダウン電圧を超えるときに電流が前記エミッタの下を通り前記エミッタ内に形成された穴を通り前記デバイスの外に流れることを可能とする。
クローバーデバイスの追加の実施形態は、基板に形成されたエピタキシャル層と、エピタキシャル層に形成されたベースと、ベースに形成された、中に穴を有するエミッタとを具備することができ、クローバーデバイスはブレークダウン電圧を有し、ブレークダウン電圧を超えるときに電流がエミッタの下を通りエミッタ内に形成された穴を通りデバイスの外に流れることを可能とする。
一例として、添付される図面を参照して、開示されるデバイスの特定の実施形態がここで説明される。
図1は外部の伝送線をデータ線に接続する回路のブロック図である。
図2は従来の回路保護部品のブロック図である。
図3は例示的な回路保護部品のブロック図である。
図4は例示的なクローバー保護デバイスのブロック図である。
図5A−5Cは他の例示的クローバー保護デバイスのブロック図である。
図6はクローバー保護デバイスの例示的な電圧応答のブロック図である。
図7−9は本開示の少なくともいくつかの実施形態により構成されたクローバー保護デバイスの例示的なドーピングプロファイルブロック図である。
本発明について添付する図面を参照して以下にさらに充分な説明がなされ、本発明の好ましい実施形態が示される。しかし、本発明は、多くの異なる形で具体化されることが可能であり、ここで示された実施形態に限定されるものとして解釈されるべきではない。むしろ、これらの実施形態は、本開示が完全で完成したものであり本発明の範囲が当業者に充分に伝わるように提供される。図面において、全体を通して同じ参照番号は同じ要素を指している。
図1は、本開示の様々な実施形態により構成された回路100のブロック図の例を示す。示されるように、この回路100は、コンデンサ型変圧器回路130を介して接続されたデータ線120と外部の伝送線110とを含む。以下に回路100を説明するにあたり、参照用に伝送線側102とデータ線側104が表示される。示されるように、コンデンサ型変圧器回路130は、変圧器132、134と、コンデンサ136、138とを含む。一般に、コンデンサ型変圧器回路130は、外部の伝送線110からデータ線120へ電圧信号を変換し又はフィルタをかけて伝達するように動作する。例えば、データ線120はVDSLであり得るし、外部の伝送線はVDSL回線を外部の施設に(例えば、中央通信事業者(central transmission office)、インタネットサービスプロバイダ等)に接続し得る。
動作の間、外部の伝送線110は、例えば、落雷、パワークロス(power cross)、パワーインダクション(power induction)等の広範囲の電気的干渉にさらされることがあり、これらすべての結果として伝送線側102における過渡電圧が生じ得る。回路100を過渡電圧から保護するために、回路保護部品は伝送線側102に接続されることが多い。例えば、図1は、外部の伝送線110に接続されたガス放電管140を示している。一般に、ガス放電管140は、ガス放電管140内に含まれるプラズマ気体により過渡電圧を消散するように動作する。このガス放電管140は、「放電開始電圧」と呼ばれることがある最大電圧を有する。「この放電開始電圧を超えると、ガス放電管140内の気体がイオン化し、これに起因してガス放電管140が電流を流すようになりこれにより過渡電流をアースにそらすことができる。外部の伝送線110及び関係する回路が過渡電圧に確実に耐えることができるようにするために様々な規格が存在する。例えば、テルコーディア(Telecordia)規格GR−1089は、外部の伝送線を試験し得る様々なサージ電圧条件を一覧表にしている。
後で理解されるように、ガス放電管140が任意の過渡電圧をアースにそらす間に、伝送線側102内の定常状態の電圧及び/または電流への変化は、(コンデンサ型変圧器回路130を介して)データ線側104へ伝えられる。さらに、データ線側104に伝えられた過渡現象は、持続時間はずっと短いが電流値は大きいことがある。より具体的には、変圧器132、134のコアが過渡電圧により飽和するため、変圧器132、134における電流が上昇する。この結果、データ線側104に伝わる過渡電圧では、伝送線側102における元の過渡電圧の場合よりも大きな電流が生じることになる。したがって、データ線側104における過渡電圧は伝送線側102の波形とは異なる波形を有し、伝送線側102の電流よりも大きな電流が流れることになる。例えば、伝送線側102における典型的な過渡電圧は、数百マイクロ秒のパルス幅を有し得る。データ線側104に伝えられたこの過渡電圧は、1マイクロ秒未満のパルス幅を有し得るが、数百アンペアの電流が生じ得る。
そして、データ線側104は、回路保護部品150をも含み得る。この回路保護部品150(以下に詳細に記述する)は、伝送線側102から伝えられた過渡電圧からデータ線側104を保護するように構成され得る。上述のように、半導体デバイスは、それらの適切に定義されたクランピング電圧及び低い漏れ電流により、回路保護部品150を形成するのに使用されることがよくある。しかし、半導体接合の容量は、空乏層の幅が印加電圧と共に増加するにつれて電圧と共に変化する。
図2は、従来の回路保護部品200のブロック図を示す。説明されるように、この回路保護部品200は、ステアリング・ダイオード・ブリッジ210と直列に接続されるアバランシェダイオード202を含む。このステアリング・ダイオード・ブリッジ210は、4つのダイオード212、214、216、及び218を含む。一般に、回路保護部品200は、端子222、224を介して保護すべき回路に接続され得る。さらに、回路保護部品200の容量は、端子226、228に印加され得るような外部のバイアスに基づいて調整され得る。このアバランシェダイオードは普通高い容量を有しているが、このステアリング・ダイオード・ブリッジ210は回路保護装置200の容量を効果的に下げる。なぜなら、データ線120に現れる容量は、アバランシェダイオード202ではなくステアリング・ダイオード・ブリッジ210の容量だからである。さらに、回路保護部品200の容量は、さらにダイオード212、214、216、及び218に逆バイアスをかけることにより減少させ得る。
回路保護部品200は、データ線120に適した高速電圧クランピング及び容量のレベルを提供し得るにもかかわらず、この回路保護部品200は、上記の過渡電圧の結果生じる大電流レベルに対処することができないことがある。より具体的にいえば、アバランシェダイオード202の内部抵抗による電圧降下は、アバランシェダイオード202の両端電圧がクランピング電圧よりも相当高い値まで上昇する原因となり得て、その結果データ線側104における部品に損傷を引き起こし得る。さらに、このアバランシェダイオード202は、電力消費のサイクルの数が大きすぎるために損傷することもあり得る。さらに具体的にいえば、繰り返しの過渡電圧(例えば、誘導される電力により生じ得る)は、アバランシェダイオード202を損傷させ得る。
図3は、本開示の様々な実施形態により構成された回路保護部品300のブロック図を示す。説明されるように、クローバーデバイス302は、ステアリング・ダイオード・ブリッジ310と直列に接続される。このステアリング・ダイオード・ブリッジ310は、ダイオード312、314、316、及び318を含む。クローバーデバイス302の様々な例を、特に図4および図5に関して後で説明する。一般に、回路保護部品300は、図1に示される回路保護部品150として構成され得る。例えば、回路保護部品300は、端子322、324を介してデータ線120と接続され得る。さらに、回路保護部品300の容量は、端子326と端子328において印加され得るような外部バイアスに基づいて調節され得る。このようなものとして、過渡現象が伝送線側102からデータ線側104に伝えられるときに、回路保護部品300が、より詳細にはクローバーデバイス302が、これらを抑圧し得る。
いくつかの例では、ダイオード312、314、316、及び318は、高抵抗エピタキシャル層(例えば、50−200Ω・cm)等)を用いて高濃度にドープされたN型基板上に形成され得る。選択的アノード領域がエピタキシャル層に拡散してダイオードが形成される。エピタキシャル層が低濃度にドープされるときは、この領域は電圧が印加されると急速に空乏化される。さらに、後で理解されるように、ダイオードの容量はエピタキシャル層の厚さにより決定され得る。いくつかの実施形態では、エピタキシャル層の厚さはダイオード312、314、316、及び318が所望の容量及び電圧オーバーシュート特性を有するように選ばれ得る。高濃度にドープされたアノードとカソードの間の低濃度にドープされた領域は、いくつかの例では、およそ5−15ミクロンの幅を有し得る。いくつかの例では、ダイオード312、314、316、及び318に対して記載された上記のダイオード領域の極性は反対でもよい。
図4は、本開示の様々な実施形態により構成される例示的なクローバー保護デバイス400のブロック図を示している。いくつかの例では、クローバーデバイス400は、回路保護部品300内にクローバーデバイス302として実装され得る。図示されるように、クローバー保護デバイス400は、例えば、シリコン等の基板410上に製造される。いくつかの実施形態では、基板410は、約25Ω・cmの抵抗率を有するN型基板である。図示されるように、基板410は、基板410の底部近くに位置する深い拡散領域412を含む。深い拡散領域412は、クローバーデバイス400のアノードを形成する。いくつかの例では、深い拡散領域412は、P+型拡散領域であり得る。
ベース414及びエミッタ416がさらに図示される。いくつかの例では、ベース414は、P型のベースであってもよく、エミッタ416はN+型エミッタであってもよい。ベース414及びエミッタ416は、従来の半導体製造技術を使用して基板410の前面に形成されてもよく、これは当業者にとって自明である。説明されるように、クローバーデバイス400はNPNP型半導体デバイスである。いくつかの例では、エミッタ416は、ベース414の端と重なり低電圧ブレークダウン領域を形成する。さらに、いくつかの例では、クローバーデバイス400は、デバイスの上面及び/または下面に形成され、デバイスを回路(例えば、回路保護部品300等)に接続するためのアノード及びカソードを形成する酸化層と金属層(図示せず)をさらに有し得る。
動作の間、過渡電圧がクローバーデバイス400を横切って現れる時に、電流はトリガ経路420(点線で示す)に沿って流れる。電流は、図示されるように当初エミッタ416の部分を通って流れる。基板410の抵抗値が高いため、電流がトリガ経路420に沿った領域を通過するにつれて大きな電圧降下が生じ得る。このことは、急速な及び/または大きな過渡電流が生じる期間の間に特に当てはまる。そのとき、この電流は経路426に沿ってブレークダウン領域422を通過する。ブレークダウン領域422はトリガ電圧を決定し得る。このトリガ電圧は所望のデバイス特性を満足させるように選択され得る。そして、いくつかの例では、8−50ボルトの範囲となり得る。このトリガ電圧を超えた場合に、電流はエミッタ416(示されたように)の下を通り領域424を通り抜けて外へ出ていき、ここで、エミッタ416に穴が形成される。いくつかの例では、点428における電圧がおよそ0.7ボルトに近づいたときに、エミッタ416は順方向バイアスとなり、クローバーデバイス400は動き始め導電状態に入る。いくつかの例では、エミッタ416は領域424において複数の穴を有するように形成され得る。しかし、図4では明瞭に表すため単一の穴が示されている。
いくつかの例では、クローバーデバイス400は、標準的な過渡現象の波形に対して回路を保護するように構成され得る。しかし、理解されるように、クローバーデバイス400は、静電気放電(ESD)等の他の過渡現象にもさらされ得る。これらの他の過渡現象の静電気の高電圧が、クローバーデバイス400上の酸化物を破壊させ得る。いくつかの例では、酸化物の損傷を引き起こす電圧よりは低いがブレークダウン電圧よりは高い電圧で、空乏層が拡散層412に達する(hit)ように領域424におけるドーピングレベルを設定することにより、このような過渡現象からの保護が提供され得る。
図5Aは、本開示の様々な実施形態により構成された他の例示的なクローバー保護デバイス500のブロック図を示す。いくつかの例では、クローバーデバイス500は、クローバーデバイス302のような回路保護部品300において実施され得る。説明されるように、クローバーデバイス500は、例えば、シリコン等の基板510上に製造される。いくつかの実施形態では、基板510はP+型基板である。エピタキシャル層512は、基板510に形成(例えば、成長等)されている。いくつかの実施形態では、エピタキシャル層512は、N型エピタキシャル層である。
ベース514及びエミッタ516をさらに説明する。エミッタ516は、部分516A−516Dを有することが描かれている。いくつかの例では、ベース514はP型ベースであり得るし、エミッタ516はN+型エミッタであり得る。ベース514及びエミッタ516は、従来の半導体製造技術を使用してエピタキシャル層512に形成することができ、このことは当業者にとって明らかである。いくつかの例では、基板510、エピタキシャル層512、ベース514、及びエミッタ516は、NPNP型半導体デバイスを形成する。いくつかの例では、エミッタ516は、ベース514の端と重なり合って、低電圧ブレークダウン領域を形成する。さらに、いくつかの例では、クローバーデバイス500は、デバイスの上部及び/または下部に形成され、デバイスを回路(例えば、回路保護部品300等)に接続するためのアノード及びカソードを形成する酸化層及び金属層をさらに有し得る。
いくつかの実施形態では、エピタキシャル層512は、基板510とベース514(例えば、領域522によりハイライトされているように)との間にドープされ得る。領域522のドープ特性は、クローバーデバイス500に所望のスイッチング特性を持たせるように選択され得る。一般に、エミッタ516Aとベース514との接合(例えば、領域524によりハイライトされている)付近のドーパントの濃度は、領域522のそれよりも大きくなり得る。領域522に関する上記のドープは、領域524のブレークダウン電圧が領域522のブレークダウン電圧よりもより高くなるように選択され得ることが理解される。また、領域522のブレークダウン電圧を増加させるために本開示の主旨と範囲から逸脱することなく他の技術も実施され得ることも理解される。
動作中に過渡電圧がクローバーデバイス500を横断して出現するとき、電流はトリガ経路520(点線で示される)に沿って流れる。電流は、初めに516Aでエミッタを通過し、エミッタ516Bの下でベース514を通過して領域526を通って外に流れ、ここでエミッタ516における穴が形成される。いくつかの例では、エミッタ516は領域526における複数の穴を有するように形成され得る。しかし、図5では明確にするために単一の穴が示されている。ブレークダウン電圧(トリガ電圧とも呼ばれる)は所望のデバイス特性を満たすように選択することができ、いくつかの例では、8−50ボルトの範囲にし得る。領域524のブレークダウン電圧を超える時に、電流は経路528に沿って流れ始める。いくつかの例では、領域522におけるドーパントの濃度はエピタキシャル層512内の他の領域の濃度よりも大きくし得る。さらに、領域522におけるドーパントの濃度は、経路528に沿った電流が均一に流れやすくなるように選択され得る。
図5Bは、他の例示的クローバー保護デバイス500’のブロック図を示す。見てわかるように、デバイス500はデバイス500に類似している。より詳細にいうと、図5A及びデバイス500に関して上記したようにデバイス500’は、基板510と、エピタキシャル層512と、ベース514とを含む。デバイス500’はエミッタ516’を含む。説明されるように、エミッタ516’は、ベース514上に形成された部分516A’と部分516B’とを含む。エミッタ516’は、図5Aに関して上記したものと同様に領域526における穴をさらに含む。
動作中に、過渡電圧がクローバーデバイス500’を通過するように現れるときに、電流がトリガ経路520’(点線で表示)に沿って流れる。説明されるように、電流は、初めエピタキシャル層512を通ってベース514とエピタキシャル層512(例えば、領域524)との接合に流れ込み、そしてエミッタ516A’の下のベース514を通過して領域526を通って外に出る。いくつかの例では、エミッタ516は、領域526において複数の穴を有するように形成され得る。しかし、図5では明瞭にするために単一の穴が示されている。デバイス500及び図5Aに関して上に説明したように、領域524のブレークダウン電圧を超えたときに、電流は経路528に沿って流れ始める。いくつかの例では、領域522におけるドーパントの濃度は、エピタキシャル層512内の他の領域におけるドーパントの濃度よりも大きくし得る。さらに、領域522におけるドーパントの濃度は、経路528に沿った電流の伝導が一様になり易くなるように選択され得る。
図5Cは、他の例示的なクローバー保護デバイス500’’のブロック図を示す。見ればわかるように、デバイス500’’は前述したデバイス500’と類似している。より詳しく言うと、デバイス500’’は、基板510と、エピタキシャル層512と、ベース514と、エミッタ516’とを含む。いくつかの例では、ベースの下のエピタキシャル層512の拡散領域522’は複数の拡散領域を有する。例えば、デバイス500’’は、拡散領域522A’’−522D’’を有することが示されている。領域522A’’−522D’’の拡散レベルは、この領域のブレークダウン電圧がエピタキシャル層512とベース514のコーナー(例えば、領域524)との間の接合により決まるブレークダウン電圧よりも大きくなるように、ベース514と領域522’’との間で所望のブレークダウン電圧を有するデバイス500’’を提供するように選択され得る。デバイス500’’の動作は、デバイス500’に関して既に述べたような動作と類似している。より具体的に言えば、始めの電流経路520’は、領域524を通過して流れるように示される。電圧ブレークダウンの後、電流は経路528を通って流れる。
図5Dは、他の例示的なクローバー保護デバイス500’’’のブロック図を示す。説明されるように、クローバーデバイス500’’’は、基板510と、エピタキシャル層512と、ベース514と、エミッタの部分516Aおよび部分516Bとを含む。いくつかの例では、基板510及びベース514は、P型(例えば、P又はP+)材料から形成され得る。いくつかの例では、エピタキシャル層512及びエミッタ516は、N型(例えば、N又はN+)材料から形成され得る。さらに、図示はしないが、エピタキシャル層514は、ドープされ得る(例えば、図5A−5Cで示される領域522におけるように)。
クローバー保護デバイス500’’’の層510、512、514、及び516の間に形成されるNPN接合及びPNP接合が示される。理解されるように、示されるNPN接合及びPNP接合は、(明瞭にするため図示していないが)クローバー保護デバイス500、500’、及び500’’にも存在している。説明されるように、NPN接合530A、530Bは、エミッタ516A、516B、ベース514、及びエピタキシャル層512から形成されることが示されている。さらに、PNP接合540A、540Bは、ベース514、エピタキシャル層512、及び基板510から形成されることが示される。図5A−5Bに関して説明されたように、電流経路520を通る電圧降下がブレークダウン電圧(例えば、0.7ボルト)を超える時に、NPN接合530A、530B及びPNP接合540A、540Bが再生され、これによりクローバー保護デバイス500’’’が完全にオンとなり導電経路528に沿って電流が流れる。
図6は、本開示の様々な実施形態により構成されたクローバーデバイスの例示的な過渡電圧波形610(実線)及び対応する例示的な応答電圧波形620(破線)のブロック図を示す。いくつかの例では、クローバーデバイス400とクローバーデバイス500のいずれか又は両方が図6で説明された応答と実質的に類似する電圧応答を有し得る。説明されるように、ブロック図は、Y軸602上に電圧振幅を表し、X軸604上に電圧パルスの継続時間を表すことにより、過渡電圧波形610、電圧応答620を明示している。過渡電圧波形610は、トリガ点612(例えば、クローバーデバイスの電圧ブレークダウンの点)に届くまで急速に振幅が増加する。詳しく前述したように、クローバーデバイスは電流経路に高抵抗領域が存在するため、クローバーデバイスの両端電圧も過渡応答と同様にトリガ点まで振幅が増加する。クローバーデバイスがブレークダウンし導電状態に入るとき、クローバーの両端電圧は、時間630で小さい定常状態レベル622まで低下する。いくつかの例では、この時間630は、0.5マイクロ秒か又はそれより短い。より具体的には、クローバーデバイス400及び500等の本開示による様々なクローバーデバイスは、0.5マイクロ秒未満の対応する期間630を有する電圧応答620と類似する電圧応答を有し得る。逆に、従来のクローバーデバイスは、例えば1マイクロ秒又はそれより長い等、実質的により長い期間の電圧応答を有する。上述のように、1マイクロ秒又はそれより長い電圧応答は、データ線120を損傷から適切に保護するのには不十分である。
図7は、対応する電界分布700(点線)を有するクローバーデバイスの例示的なドーピングプロファイルのブロック図である。Y軸702には電界の大きさが示される。説明されるように、クローバーデバイスは4つの層710、720、730、及び740を有する。いくつかの例では、クローバーデバイスは、上記のクローバーデバイス400、500等のNPNPクローバーデバイスであり得る。さらに、層710、730はそれぞれN型層、N+型層であり得る一方、層720、740は、それぞれP型層、P+型層であり得る。説明されるように、エピタキシャルドーピングは層720と層740の間で均一である。ドーピング濃度と幅は、要求されるトリガ電圧で層720と層740(例えば、上述の領域424及び領域522)の間の領域が十分空乏化される(fully depleted)ように選択され得る。一例として、層720及び層740の間の領域の抵抗は、約1.0Ω・cmで厚さは約2ミクロンで約20ボルトのトリガ電圧を有し得る。より具体的には、印加電圧が約20ボルトに達するとき、領域は完全に空乏化され得る。説明されるように、いったん領域が完全に空乏化されると、層730と層740の間の接合における電界は大きな順方向バイアスとなりクローバーデバイスは急速に導通し得る。
当業者の方々には理解されるように、トランジスタのスイッチング速度は、トランジスタのベース幅の2乗に反比例し得る。いくつかの実施形態では、この幅(例えば、基板410の幅又はエピタキシャル層512の幅)は、50−100ミクロンの間であり得る。したがって、スイッチング速度は従来のクローバーデバイスと比較すると実質的に減少させることができ、クローバーデバイスを過渡現象からの保護、特にVDSLデバイスの過渡現象からの保護に適したものとすることができる。さらに、容易に理解されるように、ステアリング・ダイオード・ブリッジ(例えば、310)の容量の変動を抑えるのに使用される逆バイアスがクローバーデバイスにわたり存在し得る。これにより、トランジスタのベース幅が効果的に減少し、さらにスイッチング速度が改善される。
もし要求がクローバーデバイスのスイッチング速度を最大にすることであるなら、ドーピングプロファイルは領域の主な量が(例えば、領域424、又は522)が低いバイアス電圧で空乏化されてバイアス条件の全ての範囲にわたりベース幅を最も狭くさせるように調節され得る。この点は図8に十分に示されており、この図は対応する電界分布800(点線)を有するクローバーデバイスの例示的ドーピングプロファイルのブロック図を表わす。電界の大きさはY軸802で示される。説明されるように、クローバーデバイスは5つの層810、820、830、840、及び850を有する。いくつかの例では、クローバーデバイスは上記のクローバーデバイス400、500等のNPNPクローバーデバイスであり得る。さらに、層810、層830、層は840は、それぞれN+型層、N型層、N+型層であり得る一方、層820、層840は、それぞれP型層、P+型層であり得る。
説明されるように、層830は隣接層840により低いバイアス電圧で空乏化されるように非常に低濃度にドープされており、したがって層850がドープされることを妨げる。対応する電界分布800が長方形により近いので、狭い領域(例えば、領域424、又は522)が所望のトリガ電圧を提供するように要求され得るが、このことはさらに低い容量を可能とするとともにスイッチング速度を高速化させ得る。
図9は、対応する電界分布900(点線)を有するクローバーデバイスの例示的ドーピングプロファイルのブロック図を示す。電界の大きさはY軸902で表わされる。説明されるように、クローバーデバイスは5つの層910、920、930、940、及び950を有する。いくつかの例では、クローバーデバイスは、上記のクローバーデバイス400、500等のNPNPクローバーデバイスであり得る。さらに、層910、930、940はそれぞれN+型層、N+型層、N型層であり得る一方、層820、840はそれぞれP型層、P+型層であり得る。
説明されるように、層920の近くの層930が高濃度にドーピングされていることは電界分布900により明らかである。より具体的に言えば、層930が完全に空乏化されるまで層920と層930の間の接合の領域において空乏層は制約される。いったん層930が完全に空乏化されると、低濃度でドープされた領域は急速に空乏化し層940と層950の間の接合が順方向に大きくバイアスされる。このドーピングプロファイルを使用する利点は、トランジスタ利得を比較的低くかつ一定に保ち得ることである。これによりスイッチング速度を犠牲にして過度の漏れ電流のような問題をなくすことを可能にし得る。

Claims (20)

  1. 回路保護部品であって、
    ステアリング・ダイオード・ブリッジと、
    前記ステアリング・ダイオード・ブリッジに電気的に接続されるクローバーデバイスとを具備し、
    前記クローバーデバイスは第1の層上に形成されたエミッタとベースとを有し、前記第1の層はブレークダウン電圧を規定し、前記ブレークダウン電圧を超えるときに電流が前記エミッタの下を通り前記エミッタ内に形成された穴を通って前記デバイスの外へ流れることを可能とする回路保護部品。
  2. 第1の端子と第2の端子とをさらに具備し、
    前記第1の端子と前記第2の端子は前記回路保護部品を保護すべき回路に接続するように構成される、請求項1に記載の回路保護部品。
  3. 前記ステアリング・ダイオード・ブリッジは、第1のダイオードと、第2のダイオードと、第3のダイオードと、第4のダイオードとを含む、請求項2に記載の回路保護部品。
  4. 前記第1の端子は前記第1のダイオードのアノードと前記第2のダイオードのカソードとに電気的に接続され、前記第1のダイオードのカソードは前記第3のダイオードのカソードに電気的に接続され、前記第2のダイオードのアノードは前記第4のダイオードのアノードに電気的に接続され、前記第2の端子は前記第3のダイオードのアノードと前記第4のダイオードのカソードとに電気的に接続される、請求項3に記載の回路保護部品。
  5. 前記クローバーデバイスの前記アノードは前記第2のダイオードの前記アノードと第4のダイオードの前記アノードとに電気的に接続され、前記クローバーデバイスは前記カソードは前記第1のダイオードの前記カソードと第3のダイオードの前記カソードとに電気的に接続される、請求項4に記載の回路保護部品。
  6. 前記ステアリング・ダイオード・ブリッジは、複数のダイオードを含み、前記複数のダイオードはN型基板上に高抵抗エピタキシャル層から形成され、前記高抵抗エピタキシャル層は50Ω・cm又はそれより大きい抵抗率を有する、請求項1に記載の回路保護部品。
  7. 前記N型基板は、前記高抵抗エピタキシャル層のドープに比べ高濃度にドープされた、請求項6に記載の回路保護部品。
  8. 前記エピタキシャル層は5から15ミクロンまでの厚さを有する、請求項7に記載の回路保護部品。
  9. 回路保護部品のためのクローバーデバイスであり、
    基板と、
    前記基板の下部の領域に形成された拡散層と、
    前記基板に形成されたベースと、
    前記ベースに形成された、中に穴を有するエミッタとを具備し、前記クローバーデバイスはブレークダウン電圧を有し、前記ブレークダウン電圧を超えるときに電流が前記エミッタの下を通り前記エミッタ内に形成された穴を通り前記デバイスの外に流れることを可能とする、クローバーデバイス。
  10. 前記基板は約25Ω・cmの抵抗率を有する、請求項9に記載のクローバーデバイス。
  11. 前記基板はN型基板である、請求項9に記載のクローバーデバイス。
  12. 前記拡散層は、P+型拡散領域を形成するために、前記基板の下部の(lower)領域をドープすることにより形成される、請求項9に記載のクローバーデバイス。
  13. 前記ベースはP型半導体である、請求項9に記載のクローバーデバイス。
  14. 前記エミッタはN型半導体である、請求項9に記載のクローバーデバイス。
  15. 前記ブレークダウン電圧は8ボルトから50ボルトまでである、請求項9に記載のクローバーデバイス。
  16. 回路保護部品のためのクローバーデバイスであり、
    基板と、
    前記基板に形成されたエピタキシャル層と、
    前記エピタキシャル層に形成されたベースと、
    前記ベースに形成された、中に穴を有するエミッタとを具備し、前記クローバーデバイスはブレークダウン電圧を有し、前記ブレークダウン電圧を超えるときに電流が前記エミッタの下を通り前記エミッタ内に形成された穴を通り前記デバイスの外に流れることを可能とする、クローバーデバイス。
  17. 前記ベースはP型半導体である、請求項16に記載のクローバーデバイス。
  18. 前記エミッタはN+型半導体である、請求項16に記載のクローバーデバイス。
  19. 前記基板はP型半導体である、請求項16に記載のクローバーデバイス。
  20. 前記ブレークダウン電圧は8ボルトから50ボルトまでである、請求項16に記載のクローバーデバイス。
JP2015520688A 2012-07-05 2013-07-03 過渡電圧回路保護のためのクローバーデバイス Active JP6396294B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261668326P 2012-07-05 2012-07-05
US61/668,326 2012-07-05
PCT/US2013/049351 WO2014008415A1 (en) 2012-07-05 2013-07-03 Crowbar device for voltage transient circuit protection

Publications (2)

Publication Number Publication Date
JP2015522238A true JP2015522238A (ja) 2015-08-03
JP6396294B2 JP6396294B2 (ja) 2018-09-26

Family

ID=49882497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015520688A Active JP6396294B2 (ja) 2012-07-05 2013-07-03 過渡電圧回路保護のためのクローバーデバイス

Country Status (5)

Country Link
US (1) US10074642B2 (ja)
EP (1) EP2870611B1 (ja)
JP (1) JP6396294B2 (ja)
CN (1) CN104412339B (ja)
WO (1) WO2014008415A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3117347B1 (en) 2014-03-10 2020-09-23 Interana, Inc. Systems and methods for rapid data analysis
US9640982B2 (en) 2014-11-05 2017-05-02 General Electric Company Over-voltage protection system and method
WO2018176366A1 (en) * 2017-03-31 2018-10-04 Littelfuse Semiconductor (Wuxi) Co., Ltd. Circuit protection apparatus including structurally resilient electrical transient material and method for making same
EP3688802A4 (en) * 2017-09-29 2021-05-19 Intel Corporation MULTI-LEVEL DISTRIBUTED CLAMPS
CN107799518A (zh) * 2017-11-14 2018-03-13 上海芯石半导体股份有限公司 一种双向npn穿通型超低压tvs结构及其制备方法
EP4286881A1 (en) 2022-06-02 2023-12-06 Ecole Royale Militaire - Koninklijke Militaire School Positioning method and system for compensation of internal propagation delays

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536979A (ja) * 1991-07-30 1993-02-12 Shindengen Electric Mfg Co Ltd サージ防護素子
JPH0677505A (ja) * 1992-01-14 1994-03-18 Shindengen Electric Mfg Co Ltd 2端子サージ防護素子及び多線防護方法
US5483086A (en) * 1993-04-20 1996-01-09 Shindengen Electric Manufacturing Co., Ltd. Four layer semiconductor surge protector having plural short-circuited junctions
JPH10507059A (ja) * 1994-10-06 1998-07-07 ノーザン・テレコム・リミテッド アクティブ電話ラインインタフェース回路の保護
JP2004531065A (ja) * 2001-05-23 2004-10-07 ヴラム・テクノロジーズ・エルエルシイ 縦形の金属/酸化物/シリコン型電界効果ダイオード
US20090057717A1 (en) * 2007-08-28 2009-03-05 Rodrigues Richard A Low capacitance semiconductor device
JP4369230B2 (ja) * 2001-11-07 2009-11-18 新電元工業株式会社 サージ防護半導体装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3697827A (en) * 1971-02-09 1972-10-10 Unitrode Corp Structure and formation of semiconductors with transverse conductivity gradients
US4291319A (en) * 1976-05-19 1981-09-22 National Semiconductor Corporation Open base bipolar transistor protective device
SE414357B (sv) * 1978-08-17 1980-07-21 Asea Ab Overspenningsskydd for skydd av halvledarkomponenter av lageffekttyp
DE3279779D1 (en) * 1981-09-11 1989-07-27 Nippon Telegraph & Telephone Low-loss and high-speed diodes
JPH03238871A (ja) * 1990-02-15 1991-10-24 Mitsubishi Electric Corp 半導体装置およびその製造方法
FR2670340B1 (fr) * 1990-12-07 1993-03-12 Sgs Thomson Microelectronics Circuit de protection a faible capacite.
GB2256743A (en) * 1991-06-11 1992-12-16 Texas Instruments Ltd A semiconductor component for transient voltage limiting
US5486086A (en) * 1994-01-04 1996-01-23 General Electric Company Blade containment system
FR2729008B1 (fr) 1994-12-30 1997-03-21 Sgs Thomson Microelectronics Circuit integre de puissance
US6377434B1 (en) * 1999-10-14 2002-04-23 Lucent Technologies Inc. Individual secondary protection device
US6448589B1 (en) * 2000-05-19 2002-09-10 Teccor Electronics, L.P. Single side contacts for a semiconductor device
US6867436B1 (en) * 2003-08-05 2005-03-15 Protek Devices, Lp Transient voltage suppression device
US7489488B2 (en) 2005-10-19 2009-02-10 Littelfuse, Inc. Integrated circuit providing overvoltage protection for low voltage lines
US7515391B2 (en) * 2005-10-19 2009-04-07 Littlefuse, Inc. Linear low capacitance overvoltage protection circuit
US8501580B2 (en) * 2010-02-26 2013-08-06 Jerry Hu Process of fabricating semiconductor device with low capacitance for high-frequency circuit protection
US8553380B2 (en) * 2010-07-08 2013-10-08 Analog Devices, Inc. Apparatus and method for electronic circuit protection
TWI430432B (zh) * 2011-01-27 2014-03-11 Sinopower Semiconductor Inc 具有防靜電結構之功率半導體元件及其製作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536979A (ja) * 1991-07-30 1993-02-12 Shindengen Electric Mfg Co Ltd サージ防護素子
JPH0677505A (ja) * 1992-01-14 1994-03-18 Shindengen Electric Mfg Co Ltd 2端子サージ防護素子及び多線防護方法
US5483086A (en) * 1993-04-20 1996-01-09 Shindengen Electric Manufacturing Co., Ltd. Four layer semiconductor surge protector having plural short-circuited junctions
JPH10507059A (ja) * 1994-10-06 1998-07-07 ノーザン・テレコム・リミテッド アクティブ電話ラインインタフェース回路の保護
JP2004531065A (ja) * 2001-05-23 2004-10-07 ヴラム・テクノロジーズ・エルエルシイ 縦形の金属/酸化物/シリコン型電界効果ダイオード
JP4369230B2 (ja) * 2001-11-07 2009-11-18 新電元工業株式会社 サージ防護半導体装置
US20090057717A1 (en) * 2007-08-28 2009-03-05 Rodrigues Richard A Low capacitance semiconductor device

Also Published As

Publication number Publication date
EP2870611A1 (en) 2015-05-13
JP6396294B2 (ja) 2018-09-26
EP2870611A4 (en) 2015-11-25
US10074642B2 (en) 2018-09-11
EP2870611B1 (en) 2020-12-16
CN104412339B (zh) 2017-10-17
WO2014008415A1 (en) 2014-01-09
CN104412339A (zh) 2015-03-11
US20150116873A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP6396294B2 (ja) 過渡電圧回路保護のためのクローバーデバイス
US8829570B2 (en) Switching device for heterojunction integrated circuits and methods of forming the same
KR101394913B1 (ko) 트렌치 소자분리를 사용한 래치업 없는 버티컬 tvs 다이오드 어레이 구조
US8637899B2 (en) Method and apparatus for protection and high voltage isolation of low voltage communication interface terminals
US8816389B2 (en) Overvoltage and/or electrostatic discharge protection device
US10163891B2 (en) High voltage ESD protection apparatus
CN116316507A (zh) 一种双向瞬态电压抑制保护电路
US10141300B1 (en) Low capacitance transient voltage suppressor
US8803193B2 (en) Overvoltage and/or electrostatic discharge protection device
CN109841609B (zh) 瞬态电压抑制器
US20130334665A1 (en) Semiconductor device
CN105679836B (zh) 一种超低电容tvs二极管结构及其制备方法
US10199368B2 (en) Stucture for protecting an integrated circuit against electrostatic discharges
CN108565260B (zh) 一种半导体器件
TWI777880B (zh) 具有高保持電壓的低電容瞬態電壓抑制器及設備
US6768176B1 (en) Electrostatic discharge protection circuit
US11581304B2 (en) Protection device
TWI559490B (zh) 電路保護構件及用於電路保護構件的消弧裝置
JP5529436B2 (ja) 静電破壊保護回路
US10615595B2 (en) Chip including over-voltage and surge protection
KR102262041B1 (ko) 정전기 방전 보호소자
Bobde et al. A novel ESD super-clamp structure for TVS applications
KR101525304B1 (ko) 전기 기기 및 그 제조 방법
US20040145022A1 (en) Semiconductor device serving as a protecting element
US20230034808A1 (en) Semiconductor device and esd protection device comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180829

R150 Certificate of patent or registration of utility model

Ref document number: 6396294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250