JP2015520873A - Mz変調器に用いる動作点制御装置及び方法 - Google Patents

Mz変調器に用いる動作点制御装置及び方法 Download PDF

Info

Publication number
JP2015520873A
JP2015520873A JP2015513005A JP2015513005A JP2015520873A JP 2015520873 A JP2015520873 A JP 2015520873A JP 2015513005 A JP2015513005 A JP 2015513005A JP 2015513005 A JP2015513005 A JP 2015513005A JP 2015520873 A JP2015520873 A JP 2015520873A
Authority
JP
Japan
Prior art keywords
signal
modulator
microprocessor
operating point
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015513005A
Other languages
English (en)
Inventor
フー・イー
カイ・リアン
ゾウ・フイ
ヤン・ジン
クアン・ヤン
Original Assignee
ウーハン・テレコミュニケーション・デバイシーズ・カンパニー・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウーハン・テレコミュニケーション・デバイシーズ・カンパニー・リミテッド filed Critical ウーハン・テレコミュニケーション・デバイシーズ・カンパニー・リミテッド
Publication of JP2015520873A publication Critical patent/JP2015520873A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • H04B10/50575Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the modulator DC bias
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【解決手段】本発明は、光変調器と、変調器のPDにより出力された電流を電圧信号に変換するトランスインピーダンス増幅器と、システムのシグナルノイズ比を向上するように低周波数信号成分を検出して増幅する低ノイズ増幅器と、誤差信号を検出して増幅し、システムのシグナルノイズ比を向上させる高Qバンドパスフィルタと、信号出力がA/Dの入力範囲を満たすように位相の誤差信号に対してレベル調整を行う第1のレベル調整器と、低周波数信号を生成し、ソフトウェア同期検波及び比例積分PI調節アルゴリズムを完成するマイクロプロセッサと、光変調器の直流バイアス全体制御範囲を満たす可能な電圧範囲をD/Aに出力させるように、D/A出力電圧の調整を完成する第2のレベル調整器と、を含むMZ変調器に用いる動作点制御装置及び方法を公開する。本発明によれば、従来のMZ変調器のバイアスポイントのハードウェア制御回路が複雑で、制御精度が低い問題を解決することができる。

Description

本発明は、光伝送ネットワーク技術に係り、特にマッハ・ツェンダー(MZ)変調器に用いる動作点制御装置及び方法に関するものである。
高速で長距離な通信伝送において、強度変調でその要求を満たすことが困難であり、従来、光ファイバ通信分野の長距離伝送において、位相変調技術を利用する必要がある。従来の電気光学位相変調について、一般的にマッハ・ツェンダー(MZ)電気光学変調器(「MZ変調器」と略称可能)を採用して実現する。しかし、MZ変調器の動作中に生じた熱、環境温度の変化及び長期間動作による劣化が、いずれも電界の強度に影響を与え、電気光学変調器の特性を変化させやすいため、変調器の理想的な制御点をプリセットポイントからドリフトさせてしまう。そして、理想的な制御点がドリフトした結果、変調された光信号の曲線の振幅と中心位置が変化することにより、光アイダイアグラムが劣化してしまう。強いドリフトが発生した場合、MZ変調器は強い非線形性を表現し、光通信接続の最大動的範囲が低下され、システム全体の性能が劣化され、厳しい場合、受信した光信号が元の情報に復元さえできなくなるので、光変調器動作点の安定した制御を実現しなければならない。図1は、従来の変調器動作点制御原理の概略図を示している。
従来で常に用いられるMZ変調器のバイアスポイントの制御方法は、図2に示すように、MZの変調信号に低周波数方形波信号を入れて、そして、出力された変調信号からこの信号を分離し、位相ロックの増幅によってバイアスポイントを安定的に制御する。全体のハードウェア制御によって、制御回路が非常に複雑となるとともに、回路デバイスの温度安定性も制御ループ全体の精度を限定している。
これを鑑みて、本発明の主な目的は、従来のMZ変調器バイアスポイントのハードウェア制御回路が複雑で、制御精度が低い問題を解決するために、MZ変調器に用いる動作点制御装置及び方法を提供することである。
上記の目的を達成するために、本発明の技術案は下記のように実現される。
入力データ信号に対して位相変調を行う光変調器を有するMZ変調器に用いる動作点制御装置において、
変調器のフォトディテクタPDにより出力された電流を電圧信号に変換するトランスインピーダンス増幅器と、
システムのシグナルノイズ比を向上させるために低周波数信号成分を検出して増幅する低ノイズ増幅器と、
必要な低周波数信号をフィルタリングし、光変調器の低周波数方形波信号に入力する光検波信号を得、及び誤差信号を検出して増幅し、システムのシグナルノイズ比を向上させるための高Qバンドパスフィルタと、
信号出力がアナログ・デジタル変換A/Dの入力範囲を満たすように位相の誤差信号に対してレベル調整を行う第1のレベル調整器と、
低周波数信号を生成し、ソフトウェア同期検波及び比例積分PI調節アルゴリズムを完成するためのマイクロプロセッサと、
光変調器の直流バイアスDC Bias全体制御範囲を満たす可能な電圧範囲をD/Aに出力させるように、デジタル・アナログ変換D/A出力電圧の調整を完成する第2のレベル調整器と、をさらに有する。
そのうち、前記マイクロプロセッサは、オンチップ12ビット及びそれ以上のアナログ・デジタル変換A/Dとデジタル・アナログ変換D/Aとを有するシングルチップコンピュータである。
前記高Qバンドパスフィルタにより出力された光検波信号の位相極性は、直流バイアスポイントの最適バイアスポイントに対する位置を反映し、該光検波信号の振幅は最適バイアスポイントからずれる距離に正比例する。
前記光検波信号は、第1のレベル調整器を介してマイクロプロセッサのオンチップアナログ・デジタル変換A/D回路に入り、マイクロプロセッサ内部のソフトウェアによって同期検波され、具体的には、該光検波信号の位相極性と振幅の大きさ情報を利用して、マイクロプロセッサにおいてソフトウェアプログラミングによって光検波信号に対して基本波に対する同期検波を行い、誤差交流信号を得ることにより前記光変調器の最適バイアスポイントを制御する。
前記マイクロプロセッサは、ソフトウェアPI調節によって、適正な積分定数を選択し、高速かつ安定した直流信号、つまり、該光変調器の最適動作点電圧が出力されるまでデジタル・アナログ変換D/A回路を調整する。
MZ変調器に用いる動作点制御方法において、
A、マイクロプロセッサによって低周波数方形波信号を生成して、MZ変調器の直流バイアスDC biasピンに入力し、該信号を高速なデータ信号に重ね合わせて一緒に光変調を行うステップと、
B、フォトディテクタPDピンから出力された光電流をトランスインピーダンス増幅器によって電圧信号に変換し、さらに低ノイズ増幅器によって増幅するステップと、
C、前記増幅した信号を高Q値バンドパスフィルタによって低周波数信号をフィルタリングして、変調器の低周波数方形波信号に入力する光検波信号を得るステップと、
D、前記光検波信号は第1のレベル調整器を介してマイクロプロセッサのオンチップアナログ・デジタル変換A/D回路に入り、マイクロプロセッサ内部のソフトウェアによって同期検波されるステップと、
E、該マイクロプロセッサはソフトウェアPI調節によって、適正な積分値数を選択し、高速かつ安定した直流信号、つまり、該変調器の最適動作点電圧、が出力されるまでデジタル・アナログ変換D/A回路を調整するステップと、を含む。
ここで、ステップDに記載のマイクロプロセッサによって同期検波されるプロセスは、具体的に、
D1、まず初期化し、マイクロプロセッサのアナログ・デジタル変換A/D回路とデジタル・アナログ変換D/A回路の初期値を設定し、低周波数方形波信号を送信させるように入出力IOインタフェースを制御するステップ、
D2、前記IOインタフェースから送信された低周波数方形波信号の立ち上がりを、フィードバック信号をサンプリングするトリガー信号として、N回サンプリングして累加し、前半周期の累加和sum1を得て、前記IOインタフェースから送信された方形波の立ち下がりを、フィードバック信号をサンプリングするトリガー信号として、N回サンプリングして累加し、後半周期の累加和sum2を得るステップ、及び
D3、前半周期の累加和sum1と後半周期の累加和sum2とを減算して、誤差czを得るステップである。
該方法は、ソフトウェアのPIアルゴリズムを実施するための制御プロセスを更に含み、具体的には、
D4、初期化し、D/Aの初期値を設定し、同期検波により得られた誤差czを利用して、前回設定したD/A値を用いて同期検波誤差cz/積分定数Tと減算又は加算し、該値を従来のD/A値として設定し、もし該値がD/Aの設定可能な数値範囲を超えているとしたら、ソフトウェアが初期値にリセットする。
該方法は、
同期検波により得られた誤差czに基づいてPI調節演算を行い、アナログ・デジタル変換A/Dの値を出力して該変調器の直流バイアスDC Biasピンの電圧値を制御するステップをさらに含む。
本発明により提供されたMZ変調器に用いる動作点制御装置及び方法は、下記のメリットを有する。
該装置は、MZ変調器の理想的な動作点を見つけるためであり、光特性曲線の最大点と最小点での制御を含み、装置全体がプリセットアルゴリズムによって制御され、光路における信号に対してタイムリーかつ効果的にフィードバック制御を行う可能であり、パワーオンして光路を開放すると同時に変調器の動作点に対する制御が完成され、且つ、環境が変化した場合に位相に対して光信号が変わらないことが保持でき、安定的に制御する目的を達成することができる。従って、該制御システムは、回路が簡潔で、制御効果が良くて、精度が高くて、応答速度が速いことを実現したメリットを有する。
図1は従来のMZ変調器動作点制御装置の原理を示す概略図である。 図2は従来のMZ変調器動作点制御装置の全体設計を示す概略図である。 図3は本発明のMZ変調器動作点制御装置の機能ブロック図である。 図4は位相変調原理を示す概略図である。 図5はディザ法原理を示す概略図である。 図6は本発明の実施例のソフトウェア同期検波部分の制御処理フローチャートである。 図7は本発明の実施例のソフトウェアのPIアルゴリズムフローチャートである。 図8は本発明のMZ変調器のバイアスポイント制御装置の制御処理フローチャートである。
以下、図面を踏まえて、本発明の技術的特徴と長所について、さらに詳しく説明する。
以下、図面及び本発明の実施例を合わせて、本発明のシステム及び方法をさらに詳しく説明する。
本発明は、外部要素によりMZ変調器の伝送曲線がドリフトしてしまい、伝達する信号にエラーを生じさせることを解決しようとするものであり、該方法は、変調器バイアス動作点に対するフィードバック制御を実現している。
図3は、本発明のMZ変調器の動作点制御装置の機能ブロック図であり、図3に示すように、該制御装置は主に、トランスインピーダンス増幅器10と、低ノイズ増幅器20と、高Q値バンドパスフィルタ30と、第1のレベル調整器40と、マイクロプロセッサ50と、第2のレベル調整器60との7部分を含む。以下、実際のニーズに応じて、MZ変調器がnullポイントで動作すると仮定する。
発明者は1つの低周波数方形波信号をMZ変調器の直流バイアス(DC Bias)ピンに通過させる(図1参照)。そして、フォトディテクタ(PD)ピンによって光信号を検出し、該信号はトランスインピーダンス増幅器10、低ノイズ増幅器20、高Q値バンドパスフィルタ30、及び第1のレベル調整器40を経てマイクロプロセッサ50のアナログ・デジタル変換(A/D)に入り、マイクロプロセッサ50は、サンプリングした信号に対して同期検波、比例積分(PI)調節を行うことによって、制御信号を出力するようにデジタル・アナログ変換(D/A)を制御して、前記制御信号は第2のレベル調整器60を経てから、最後にMZ変調器の直流バイアス(DC Bias)ピンに出力される。
ここで、前記トランスインピーダンス増幅器10は、光変調器のフォトディテクタ(PD)の出力電流を電圧信号に変換するためである。
低ノイズ増幅器20は、システムのシグナルノイズ比を向上させるために、低周波数信号成分を検出して増幅するためである。
高Qバンドパスフィルタ30は、必要な低周波数信号をフィルタリングし、光変調器の低周波数方形波信号に入力する光検波信号を得、及び誤差信号を検出して増幅し、システムのシグナルノイズ比を向上させるためである。
第1のレベル調整器40は、信号出力がA/Dの入力範囲を満たすように位相の誤差信号に対してレベル調整を行うためである。
マイクロプロセッサ50は、スペースを節約するために、オンチップ12ビット及びそれ以上のA/DとD/Aを有するシングルチップコンピュータに選択してもよく、1つの低周波信号を生成して、ソフトウェア同期検波及びPI調節アルゴリズムを完成するためである。
第2のレベル調整器60は、光変調器70の直流バイアス(DC Bias)全体制御範囲を満たす可能な電圧範囲をD/Aに出力させるように、D/A出力電圧の調整を完成するためである。
光変調器70は、入力データ信号に対して位相変調を行うためである。
それを実現する原理は下記の通りである。
1)具体的な応用において、システムは、レーザが発光してから変調器の光信号出力まで、時間が必要とするため、ミリ秒(ms)級オーダーの時間内に動作点を見つけてフィードバック制御を完成する必要があり、位相変調器動作点を見つけることは、図4に示すように、マイクロプロセッサ50が1つの低周波数方形波信号を生成してMZ変調器のDC biasピンに入力し、該信号を高速的なデータ信号に重ね合わせて一緒に光変調され、位相変調の光アイダイアグラムを得ることによって行われるものである。
2)PDピンから出た光電流はトランスインピーダンス増幅器10によって電圧信号に変換され、さらに低ノイズ増幅器20によって増幅される。該電圧信号は、制御する必要がある低周波数部分、そして高周波数ノイズ及び直流の成分を含んでいるので、まず直流成分を隔離して、必要とする低周波数成分をフィルタリングすることが要求される。
3)該増幅した信号は、高Q値バンドパスフィルタ30によって低周波数信号をフィルタリングして、変調器の低周波数方形波信号fに入力するための光検波信号を得る。光検波信号の位相極性は、直流バイアスポイントの最適バイアスポイント(peakポイント又はnullポイント)に対する位置を反映し(立ち下がりにあるか立ち上がりにあるか)、光検波信号の振幅は最適バイアスポイントからずれる距離に正比例する。図5に示すように、最小点を例とする。
4)前記光検波信号は、第1のレベル調整器40を介してマイクロプロセッサ50のオンチップA/Dに入り、マイクロプロセッサ内部のソフトウェアによって同期検波され、ソフトウェア同期検波は、実際に光検波信号の位相極性と振幅の大きさの情報を利用して、マイクロプロセッサにおいてソフトウェアプログラミングによって光検波信号に対して基本波に対する同期検波を行い、誤差交流信号を得ることにより電気光学変調器の最適バイアスポイントを制御する。
5)マイクロプロセッサ50はソフトウェアPI調節によって、適正な積分定数を選択し、高速かつ安定した直流信号、つまり、該光変調器の最適動作点電圧が出力されるまでデジタル・アナログ変換D/A回路を調整する。
これでわかるように、上記のソフトウェアアルゴリズム処理によって、従来の全ハードウェア技術における誤差比較回路、積分回路、リセット回路及び監視回路が省略されている。これによって、精度を保証するとともに、周辺制御回路の複雑さとコストが低下し、制御プロセスの安定性と信頼性を効果的に向上させることができ、システム全体において光信号の変調と送信の性能を改善することに寄与している。
具体的なプロセスは下記の通りである。変調器の内蔵PDは、光信号を電流信号に変換し、該信号には変調器BIASポートから入力された低周波数信号f成分が含まれ、適正なトランスインピーダンス増幅器10を選択して、電流信号を処理可能な電圧信号に変換し、そして低ノイズ増幅器20、及び高Q値バンドパスフィルタ30によって、より純粋な低周波数基本波信号を得て、さらに第1のレベル調整器40によって該信号をマイクロプロセッサのオンチップA/Dの処理可能な電圧範囲に調整する。
それと共に、マイクロプロセッサ50から低周波数方形波信号が送信され、第2のレベル調整器60によって振幅の極めて小さい低周波数方形波信号に変換される。マイクロプロセッサ50のD/A出力を制御するための直流信号は、第2のレベル調整器60によって変調器DC Bias全体電圧制御範囲に変換される。それと共に、小振幅の低周波数方形波信号と、D/A調節された直流電圧とが、第2のレベル調整器60において重畳される。
方形波信号に対して下記のように要求されている。第一、ディザ信号の振幅についてその大きさは、小さすぎてはだめであり、PDによって検出されることを保証すべきであり、また、データ信号に影響を及ぼすほど大きすぎてもだめであり、一般的にはデータ信号の振幅の1%より小さいほうがよい。第二、低周波数信号の周波数は、変調信号のスペクトルに影響を及ぼしないとともにマイクロプロセッサのソフトウェアの処理速度を超えないように極めて小さいほど保証すべきであり、それとともに、該低周波数信号の周波数が低周波数ノイズと区別されないほど小さすぎてもだめであり、良好なシグナルノイズ比を保証するために、一般的には数KHzに選択する。第三、ソフトウェアが同期検波を実現することを保証するために、この低周波数信号を、デューティサイクルが50%である方形波信号に選択し、対称性が高ければ高いほど好ましい。
図6は本発明の実施例のソフトウェア同期検波部分の制御処理フローチャートであり、具体的には下記のステップを含む。
ステップS601で、初期化し、マイクロプロセッサのA/DとD/Aの初期値を設定し、低周波数方形波信号を送信させるように入出力(IO)インタフェースを制御する。
ステップS602で、IOインタフェースから送信された方形波の立ち上がりを、フィードバック信号をサンプリングするトリガー信号として、N回サンプリングして累加し、sum1を得る。それと共に、ステップS603を実行する。
ステップS603で、IOインタフェースから送信された方形波の立ち下がりを、フィードバック信号をサンプリングするトリガー信号として、N回サンプリングして累加し、sum2を得る。
ステップS604で、前半周期の累加和sum1と後半周期の累加和sum2とを減算して、誤差czを得る。
図7は、本発明の実施例のソフトウェアのPIアルゴリズムに基づく制御処理フローチャートであり、具体的には下記のステップを含む。
ステップS701で、初期化し、D/Aの初期値を設定する。
ステップS702で、同期検波を利用して誤差czを得る。
ステップS703で、前回設定したD/A値を用いて同期検波誤差cz/積分定数Tと減算又は加算し、該値を従来のD/A値として設定し、もし該値がD/Aの設定可能な数値範囲を超えているとしたら、ソフトウェアが初期値にリセットする。減算と加算により、見つけるのはnullポイントであるかpeakポイントであるかが決められる。
なお、本実施例の装置によって、同様にリアルタイム性と精確性に基づいて適正な積分定数Tを選択することができ、毎回の制御プロセスにおいて採用される積分定数Tも1つの固定値に限らずに、同期検波czの範囲に応じてより大きな積分定数を特定して、より安定した効果を得ることができ、これによって、最終的に特定されたバイアスポイントの的確性をさらに向上させる。
図8は本発明の実施例のMZ変調器のバイアスポイント制御装置によって制御を行う処理フローチャートであり、具体的には下記のステップを含む。
ステップS801で、初期化し、マイクロプロセッサのA/DとD/Aの初期値を設定し、低周波数方形波信号を送信させるようにIOインタフェースを制御し、nullポイント又はpeakポイントを見つける符号を設置する。
ステップS802で、ソフトウェアは同期検波を実現し、誤差czを得る。
ステップS803で、同期検波によって得られた誤差czに基づいてPI調節演算を行い、D/A値を出力して変調器のDC Biasピンの電圧値を制御する。
MZ変調器が高精度で長期間的に動作できることを保証するために、繰り返しをやめずに、又は一定の期間を遅延してステップS802とS803を繰り返すことができる。
以上の実施方法の説明によれば、当業者は、本発明がソフトウェアに加えて必要なハードウェアプラットフォームを利用するように実現されることをはっきりわかることができ、このような理解に基づいて、本発明の技術案が背景技術に対する寄与は、ソフトウェア製品の形で体現することができ、該コンピュータソフトウェア製品が、記録媒体、例えば、ROM/RAM、磁気ディスク、光ディスク等に格納されることができ、若干の指令を含んで一台のコンピュータデバイス(パーソナルコンピュータ、サーバ、又はネットワークデバイスなどであってもよい)に本発明の各実施例又は実施例のある部分に記載の方法を実行させることができる。
以上で説明したことは、単に本発明の好ましい実施例であり、本発明の保護範囲を限定するためではない。

Claims (9)

  1. 入力データ信号に対し位相変調を行う光変調器を有するMZ変調器に用いる動作点制御装置において、
    変調器のフォトディテクタPDにより出力された電流を電圧信号に変換するトランスインピーダンス増幅器と、
    システムのシグナルノイズ比を向上させるために低周波数信号成分を検出して増幅する低ノイズ増幅器と、
    必要な低周波数信号をフィルタリングし、光変調器の低周波数方形波信号に入力する光検波信号を得、及び誤差信号を検出して増幅し、システムのシグナルノイズ比を向上させるための高Qバンドパスフィルタと、
    信号出力がアナログ・デジタル変換A/Dの入力範囲を満たすように位相の誤差信号に対してレベル調整を行う第1のレベル調整器と、
    低周波数信号を生成し、ソフトウェア同期検波及び比例積分PI調節アルゴリズムを完成するためのマイクロプロセッサと、
    光変調器の直流バイアスDC Bias全体制御範囲を満たすことを可能な電圧範囲をD/Aに出力させるように、デジタル・アナログ変換D/A出力電圧の調整を完成する第2のレベル調整器と、をさらに有すること
    を特徴とするMZ変調器に用いる動作点制御装置。
  2. 前記マイクロプロセッサは、オンチップ12ビット及びそれ以上のアナログ・デジタル変換A/D及びデジタル・アナログ変換D/Aを有するシングルチップコンピュータであること
    を特徴とする請求項1に記載のMZ変調器に用いる動作点制御装置。
  3. 前記高Qバンドパスフィルタにより出力された光検波信号の位相極性は、直流バイアスポイントの最適バイアスポイントに対する位置を反映し、該光検波信号の振幅は最適バイアスポイントからずれる距離に正比例すること
    を特徴とする請求項1に記載のMZ変調器に用いる動作点制御装置。
  4. 前記光検波信号は、第1のレベル調整器を介してマイクロプロセッサのオンチップアナログ・デジタル変換A/D回路に入り、マイクロプロセッサ内部のソフトウェアによって同期検波され、具体的には、該光検波信号の位相極性と振幅の大きさの情報を利用して、マイクロプロセッサにおいてソフトウェアプログラミングによって光検波信号に対して基本波に対する同期検波を行い、誤差交流信号を得ることにより前記光変調器の最適バイアスポイントを制御すること
    を特徴とする請求項3に記載のMZ変調器に用いる動作点制御装置。
  5. 前記マイクロプロセッサは、ソフトウェアPI調節によって、適正な積分定数を選択し、高速かつ安定した直流信号、つまり、該光変調器の最適動作点電圧が出力されるまでデジタル・アナログ変換D/A回路を調整すること
    を特徴とする請求項1又は3に記載のMZ変調器に用いる動作点制御装置。
  6. MZ変調器に用いる動作点制御方法において、
    A、マイクロプロセッサによって低周波数方形波信号を生成して、MZ変調器の直流バイアスDC biasピンに入力し、該信号を高速なデータ信号に重ね合わせて一緒に光変調を行うステップと、
    B、フォトディテクタPDピンから出力された光電流をトランスインピーダンス増幅器によって電圧信号に変換し、さらに低ノイズ増幅器によって増幅するステップと、
    C、前記増幅した信号を高Q値バンドパスフィルタによって低周波数信号をフィルタリングして、変調器の低周波数方形波信号に入力する光検波信号を得るステップと、
    D、前記光検波信号は第1のレベル調整器を介してマイクロプロセッサのオンチップアナログ・デジタル変換A/D回路に入り、マイクロプロセッサ内部のソフトウェアによって同期検波されるステップと、
    E、該マイクロプロセッサはソフトウェアPI調節によって、適正な積分値数を選択し、高速かつ安定した直流信号、つまり、該変調器の最適動作点電圧が出力されるまでデジタル・アナログ変換D/A回路を調整するステップと、を含むこと
    を特徴とするMZ変調器に用いる動作点制御方法。
  7. ステップDに記載のマイクロプロセッサによって同期検波を行うプロセスは、具体的に、
    D1、まず初期化し、マイクロプロセッサのアナログ・デジタル変換A/D回路とデジタル・アナログ変換D/A回路の初期値を設定し、低周波数方形波信号を送信させるように入出力IOインタフェースを制御するステップと、
    D2、前記IOインタフェースから送信された低周波数方形波信号の立ち上がりを、フィードバック信号をサンプリングするトリガー信号として、N回サンプリングして、累加し、前半周期の累加和sum1を得て、前記IOインタフェースから送信された方形波の立ち下がりを、フィードバック信号をサンプリングするトリガー信号として、N回サンプリングして累加し、後半周期の累加和sum2を得るステップと
    D3、前半周期の累加和sum1と後半周期の累加和sum2とを減算して、誤差czを得るステップと、を含むこと
    を特徴とする請求項5に記載のMZ変調器に用いる動作点制御方法。
  8. 該方法は、ソフトウェアのPIアルゴリズムを実施するための制御プロセスを更に含み、具体的には、
    D4、初期化し、D/Aの初期値を設定し、同期検波により得られた誤差czを利用して、前回設定したD/A値を用いて同期検波誤差cz/積分定数Tと減算又は加算し、該値を従来のD/A値として設定し、もし該値がD/Aの設定可能な数値範囲を超えているとしたら、ソフトウェアが初期値にリセットすること
    を特徴とする請求項6に記載のMZ変調器に用いる動作点制御方法。
  9. 該方法は、
    同期検波により得られた誤差czに基づいてPI調節演算を行い、アナログ・デジタル変換A/Dの値を出力して該変調器の直流バイアスDC Biasピンの電圧値を制御するステップをさらに含むこと
    を特徴とする請求項6又は7に記載のMZ変調器に用いる動作点制御方法。
JP2015513005A 2012-05-22 2013-05-22 Mz変調器に用いる動作点制御装置及び方法 Pending JP2015520873A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201210159953.3 2012-05-22
CN201210159953.3A CN102710336B (zh) 2012-05-22 2012-05-22 应用于mz调制器的工作点控制装置及方法
PCT/CN2013/076041 WO2013174255A1 (zh) 2012-05-22 2013-05-22 应用于mz调制器的工作点控制装置及方法

Publications (1)

Publication Number Publication Date
JP2015520873A true JP2015520873A (ja) 2015-07-23

Family

ID=46902918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015513005A Pending JP2015520873A (ja) 2012-05-22 2013-05-22 Mz変調器に用いる動作点制御装置及び方法

Country Status (4)

Country Link
US (1) US9503195B2 (ja)
JP (1) JP2015520873A (ja)
CN (1) CN102710336B (ja)
WO (1) WO2013174255A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102710336B (zh) 2012-05-22 2015-08-12 武汉电信器件有限公司 应用于mz调制器的工作点控制装置及方法
CN103346842B (zh) * 2013-06-09 2016-06-29 桂林电子科技大学 控制双平行mzm调制器输出光强的反馈控制系统和方法
CN103412594B (zh) * 2013-07-31 2016-01-06 武汉电信器件有限公司 电光调制器工作点控制装置及控制方法
CN104168067A (zh) * 2014-08-29 2014-11-26 四川华拓光通信股份有限公司 一种判断光接收电路中的光功率信号强度的方法及其电路
CN105099569B (zh) * 2015-06-25 2017-12-12 北京邮电大学 一种马赫增德尔调制器的偏置控制系统及方法
CN105334644B (zh) * 2015-11-25 2018-04-20 宁波中物东方光电技术有限公司 铌酸锂外调制器的精确控制方法
CN105610762B (zh) * 2015-12-17 2019-06-04 中国电子科技集团公司第四十一研究所 一种可校准的宽载波正交调制装置
US9835928B1 (en) 2017-02-13 2017-12-05 Futurewei Technologies, Inc. Optical N-level quadrature amplitude modulation (NQAM) tuned by dithering associated heaters
TWI638535B (zh) * 2017-12-12 2018-10-11 美商光聯通訊有限公司 Control device and method for optimizing transmission performance of optical communication system
CN108957174B (zh) * 2018-06-12 2020-10-20 国网浙江省电力有限公司台州供电公司 一种电压暂降检测装置及方法
JP7419949B2 (ja) * 2020-04-16 2024-01-23 富士通オプティカルコンポーネンツ株式会社 光伝送装置、光合波器及び光伝送方法
CN111600560B (zh) * 2020-06-16 2023-11-17 中国电子科技集团公司第三研究所 一种用于水下接收机的信号放大电路
CN113824507B (zh) * 2020-06-19 2023-06-09 圣邦微电子(北京)股份有限公司 用于光通信的发射机及偏置点补偿装置和方法
CN114499684B (zh) * 2020-10-26 2023-12-05 青岛海信宽带多媒体技术有限公司 一种控制mz调制器工作点稳定的方法及系统
CN114884576B (zh) * 2021-02-05 2024-05-10 青岛海信宽带多媒体技术有限公司 一种光模块
CN115001588B (zh) * 2021-03-01 2023-06-09 烽火通信科技股份有限公司 一种5g前传链路的远端管理装置与方法
CN114124257B (zh) * 2021-09-29 2024-04-19 武汉船舶通信研究所(中国船舶重工集团公司第七二二研究所) 信号质量评估装置及信号质量评估方法
CN114268373B (zh) * 2021-11-23 2023-04-07 北京理工大学 基于双边带相位差分稳定的光频梳产生装置及方法
CN115453778B (zh) * 2022-08-04 2024-02-27 中国电子科技集团公司第十四研究所 一种低杂散的电光调制器偏置点控制装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208506A (ja) * 1985-03-13 1986-09-16 Kobe Steel Ltd サ−ボ・バルブ等の制御方法
JP2002023120A (ja) * 2000-06-30 2002-01-23 Mitsubishi Electric Corp 光送信装置およびこれに用いる光変調器のバイアス電圧制御方法
JP2003531546A (ja) * 2000-04-13 2003-10-21 コーニング・インコーポレーテッド 簡易な利得/出力制御装置を有する光増幅器
JP2004301965A (ja) * 2003-03-28 2004-10-28 Anritsu Corp 光変調器のバイアス制御装置および該バイアス制御装置を用いた光変調装置
JP2006136413A (ja) * 2004-11-10 2006-06-01 Olympus Corp 内視鏡形状検出装置
US20090115544A1 (en) * 2007-11-01 2009-05-07 Boris Kershteyn Systems and methods for dqpsk modulator control using selectively inserted dither tone

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700907B2 (en) * 2000-11-20 2004-03-02 Jds Uniphase Corporation Mach-Zehnder modulator bias and driver gain control mechanism
US7369290B1 (en) * 2003-03-19 2008-05-06 Photonic Systems, Inc. Modulator bias control
US7075695B2 (en) * 2004-03-01 2006-07-11 Lucent Technologies Inc. Method and apparatus for controlling a bias voltage of a Mach-Zehnder modulator
GB2417333B (en) * 2004-08-13 2008-07-16 Bookham Technology Plc Automatic bias controller for an optical modulator
US7787778B2 (en) * 2004-12-10 2010-08-31 Ciena Corporation Control system for a polar optical transmitter
US7903981B2 (en) * 2007-01-23 2011-03-08 Ciena Corporation Software-based electro-optic modulator bias control systems and methods
US7729621B2 (en) * 2007-06-26 2010-06-01 Intel Corporation Controlling a bias voltage for a Mach-Zehnder modulator
US8325410B2 (en) * 2009-08-19 2012-12-04 Jds Uniphase Corporation Modulation system and method for generating a return-to-zero (RZ) optical data signal
US8543010B2 (en) * 2010-02-24 2013-09-24 Jds Uniphase Corporation Bias control in an optical modulator and transmitter
JP5318278B2 (ja) * 2010-02-25 2013-10-16 三菱電機株式会社 光送信器
US8503056B2 (en) * 2010-04-29 2013-08-06 Arris Group, Inc. Bias point control circuit for externally modulated transmitter
CN201690436U (zh) * 2010-05-25 2010-12-29 武汉电信器件有限公司 应用于相位调制器的工作点控制装置
CN102201868B (zh) * 2011-04-06 2014-01-01 烽火通信科技股份有限公司 双并联mz调制器的偏置控制方法与装置
CN102710336B (zh) * 2012-05-22 2015-08-12 武汉电信器件有限公司 应用于mz调制器的工作点控制装置及方法
US8849129B2 (en) * 2012-07-20 2014-09-30 Finisar Corporation Method and apparatus for stabilization of optical transmitter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208506A (ja) * 1985-03-13 1986-09-16 Kobe Steel Ltd サ−ボ・バルブ等の制御方法
JP2003531546A (ja) * 2000-04-13 2003-10-21 コーニング・インコーポレーテッド 簡易な利得/出力制御装置を有する光増幅器
JP2002023120A (ja) * 2000-06-30 2002-01-23 Mitsubishi Electric Corp 光送信装置およびこれに用いる光変調器のバイアス電圧制御方法
JP2004301965A (ja) * 2003-03-28 2004-10-28 Anritsu Corp 光変調器のバイアス制御装置および該バイアス制御装置を用いた光変調装置
JP2006136413A (ja) * 2004-11-10 2006-06-01 Olympus Corp 内視鏡形状検出装置
US20090115544A1 (en) * 2007-11-01 2009-05-07 Boris Kershteyn Systems and methods for dqpsk modulator control using selectively inserted dither tone

Also Published As

Publication number Publication date
WO2013174255A1 (zh) 2013-11-28
US20150104195A1 (en) 2015-04-16
US9503195B2 (en) 2016-11-22
CN102710336B (zh) 2015-08-12
CN102710336A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
JP2015520873A (ja) Mz変調器に用いる動作点制御装置及び方法
CN106932925B (zh) 一种基于混沌信号的偏置控制装置及方法
US20110164300A1 (en) Method and device for bias control of a laser modulator
US8891959B2 (en) Optical modulation device and bias voltage control method
EP1144950A1 (en) System for suppression of relative intensity noise in a fiber optic gyroscope
US9490901B2 (en) Bias monitoring method and apparatus and transmitter
US9935712B2 (en) Optically balanced opto-electrical oscillator
KR20150024799A (ko) 폐루프 광변조 진폭 제어
US20080212976A1 (en) Optical receiver and optical transmitter
WO2009010007A1 (fr) Procédé, appareil et modulateur optique pour ajustement de phase
CN108880693B (zh) 一种使用单个光电二极管实现相干检测的方法
JP2013535934A (ja) 位相アンバランスおよび振幅アンバランスの自動補償を用いた差動受光用光電子デバイス
KR102004918B1 (ko) 위상잡음 보상에 의한 좁은 선폭 레이저 광원 구현장치 및 방법
TWI569591B (zh) 相位調變轉強度調變轉換器的光纖微波網路傳輸系統
JP4316212B2 (ja) 光強度変調装置
JP6333203B2 (ja) 光通信装置
US11387910B2 (en) Optical module, transmission device, and operating point control method
CN115882955B (zh) 一种低杂散的光调制器偏置控制装置及方法
CN105703739B (zh) 数模结合的抗混叠滤波方法及装置
JP4956842B2 (ja) 光送信機
Reeves et al. Asynchronous fiber-optic delta-sigma modulator
JP4674361B2 (ja) 光電気発振器
CN113471806A (zh) 一种多反馈激光器步进扫频驱动装置及方法
JP2011182197A (ja) 光雑音低減回路及び光雑音低減方法
JP2007208195A (ja) 発振検出装置、光源システム、レーザ制御方法、プログラム、記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170307