WO2013174255A1 - 应用于mz调制器的工作点控制装置及方法 - Google Patents

应用于mz调制器的工作点控制装置及方法 Download PDF

Info

Publication number
WO2013174255A1
WO2013174255A1 PCT/CN2013/076041 CN2013076041W WO2013174255A1 WO 2013174255 A1 WO2013174255 A1 WO 2013174255A1 CN 2013076041 W CN2013076041 W CN 2013076041W WO 2013174255 A1 WO2013174255 A1 WO 2013174255A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
modulator
microprocessor
low
output
Prior art date
Application number
PCT/CN2013/076041
Other languages
English (en)
French (fr)
Inventor
胡毅
蔡亮
邹晖
杨瑾
匡杨
Original Assignee
武汉电信器件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉电信器件有限公司 filed Critical 武汉电信器件有限公司
Priority to JP2015513005A priority Critical patent/JP2015520873A/ja
Priority to US14/401,700 priority patent/US9503195B2/en
Publication of WO2013174255A1 publication Critical patent/WO2013174255A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • H04B10/50575Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the modulator DC bias
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type

Definitions

  • the present invention relates to optical transmission network technology, and more particularly to an operating point control apparatus and method for a Mach-Zehnder (MZ) modulator.
  • MZ Mach-Zehnder
  • MZ modulator Mach-Zehnder electro-optic modulator
  • the control method of the bias point of the conventional MZ modulator is to add a low-frequency square wave signal to the modulated signal of the MZ, and then separate the signal from the output modulated signal, and control the stability of the bias point by phase-locking amplification. as shown in picture 2.
  • Full hardware control makes the control circuit very complex, and the temperature stability of the circuit device also limits the accuracy of the entire control loop. Summary of the invention
  • the main object of the present invention is to provide a work applied to an MZ modulator.
  • the point control device and method solve the problem that the hardware control circuit of the bias point of the existing MZ modulator is complicated and the control precision is not high.
  • An operating point control device for an MZ modulator comprising an optical modulator for phase modulating an input data signal, further comprising: a transimpedance amplifier, a low noise amplifier, a high Q bandpass filter, a first power Flat conditioner, microprocessor and second level conditioner;
  • the transimpedance amplifier is configured to convert a current output by the photodetector PD of the modulator into a voltage signal
  • a low noise amplifier for detecting low frequency signal components and amplifying them to improve the signal to noise ratio of the system
  • a high Q band pass filter for filtering out the required low frequency signal to obtain an optical detection signal of the low frequency square wave signal input to the optical modulator; and for detecting and amplifying the error signal to improve the signal to noise ratio of the system;
  • a first level conditioner that level-conditions the phase error signal such that the signal output satisfies the input range of the analog-to-digital conversion A/D;
  • a microprocessor for generating a low frequency signal, performing a software synchronous detection and a proportional integral PI adjustment algorithm
  • the second level conditioner completes the digital-to-analog D/A output voltage regulation so that the D/A output can satisfy the DC bias of the optical modulator.
  • the microprocessor is a single-chip microcomputer comprising an analog-to-digital conversion A/D and a digital-to-analog conversion DZA of 12 bits and above.
  • the phase polarity of the optical detection signal output by the high Q band pass filter reflects the position of the DC bias point relative to the optimal bias point, and the amplitude of the optical detection signal is proportional to the distance from the optimal bias point .
  • the optical detection signal enters the on-chip analog-to-digital conversion of the microprocessor through the first level modulator
  • the A/D circuit is synchronously detected by the software inside the microprocessor, specifically: by using the phase polarity and amplitude information of the optical detection signal, the optical detection signal is subjected to the fundamental wave in the microprocessor through software programming. Synchronous detection results in an error AC signal to control the optimum bias point of the optical modulator.
  • the microprocessor adjusts by software PI, selects the appropriate integral constant, and adjusts the digital-to-analog D/A circuit until a fast and stable DC signal is output, that is, the optimal operating point voltage of the optical modulator.
  • a method for operating point control of an MZ modulator comprising the steps of:
  • a low frequency square wave signal is generated by micro processing, input to the DC bias DC b s pin of the MZ modulator, and the signal is superimposed on the high speed data signal for light modulation;
  • the photocurrent output from the photodetector PD pin is converted into a voltage signal by a transimpedance amplifier, and then amplified by a low noise amplifier;
  • the amplified signal is filtered out of the low frequency signal by a high Q bandpass filter to obtain an optical detection signal of the low frequency square wave signal input to the modulator;
  • the optical detection signal enters the on-chip analog-to-digital conversion A/D circuit of the microprocessor through the first level modulator, and is synchronously detected by software in the microprocessor;
  • the microprocessor adjusts by software PI, selects the appropriate integral constant, and adjusts the digital-to-analog conversion D/A circuit until it outputs a fast and stable DC signal, which is the optimum operating point voltage of the modulator.
  • Step D describes a process of synchronous detection by a microprocessor, specifically:
  • Dl first initialize, set the analog-to-digital conversion of the microprocessor, the initial value of the A/D circuit and the digital-to-analog conversion D/A circuit, and control the input/output 10 interface to emit a low-frequency square wave signal;
  • the rising edge of the low-frequency square wave signal sent by the 10 interface is used as a trigger signal for the feedback signal, sampled N times, and summed and accumulated to obtain the accumulation and siiml of the first half cycle; and the 10 interface is issued
  • the falling edge of the square wave acts as a trigger signal to the feedback signal. Times, and carry out and accumulate, get the accumulation of the second half cycle and sum2;
  • the method further includes implementing a control flow of the software PI algorithm: specifically:
  • D4 initializing, setting the initial value of D/A; using the error value cz obtained by synchronous detection, using the previously set D/A value and the synchronous detection error value cz/integral constant T for subtraction or addition, setting the value Is the current D/A value; if the value exceeds the range of D/A's settable digital quantity, the software is reset to the initial value.
  • the method further includes:
  • the PI adjustment operation is performed based on the error value cz obtained by the synchronous detection, and the output analog-to-digital conversion D/A value controls the voltage value of the DC bias DC Bias pin of the modulator.
  • the device is used for the search of the ideal working point of the MZ modulator, including the control of the maximum point and the minimum point of the light characteristic curve.
  • the whole device is controlled by a preset algorithm, and can timely and effectively control the signal in the optical path.
  • the control of the working point of the modulator can be completed at the same time, and the relative phase of the optical signal is kept unchanged under the condition of environmental change, thereby achieving the purpose of stable control. Therefore, the control system has the advantages of simple circuit, good control effect, high precision and fast response speed.
  • 1 is a schematic diagram of the principle of a conventional MZ modulator operating point control device
  • FIG. 2 is a schematic diagram showing the overall design of an existing MZ modulator operating point control device
  • FIG. 3 is a functional block diagram of an operating point control device of the MZ modulator of the present invention.
  • Figure 4 is a schematic diagram of the phase modulation principle
  • FIG. 5 is a schematic diagram of the principle of the dithering method
  • 6 is a flowchart of a control process of a software synchronous detection part according to an embodiment of the present invention
  • FIG. 7 is a flowchart of a software PI algorithm according to an embodiment of the present invention
  • Fig. 8 is a flow chart showing the processing of the control of the bias point control device of the MZ modulator of the present invention. detailed description
  • the present invention is to solve the problem that the transmission curve of the MZ modulator is drifted due to external factors and the transmitted signal is erroneous. This method realizes feedback control of the modulator bias operating point.
  • FIG. 3 is a functional block diagram of an operating point control device of the MZ modulator of the present invention; as shown in FIG. 3, the control device mainly includes seven parts: a transimpedance amplifier 10, a low noise amplifier 20, and a high Q bandpass filter. 30. First level conditioner 40, microprocessor 50 and second level conditioner 60. In the following, the MZ modulator is assumed to work at the null point according to the needs of the actual application.
  • a low frequency square wave signal through the DC Bias pin of the MZ modulator (refer to Figure 1).
  • the optical signal is detected by a photodetector (PD) pin, which passes through a transimpedance amplifier 10, a low noise amplifier 20, a high Q bandpass filter 30, and the first level modulator 40 enters the microprocessor 50.
  • the microprocessor 50 controls the digital-to-analog converter (D/A) to output a control signal by performing synchronous detection and proportional integral (PI) adjustment on the sampled signal.
  • D/A digital-to-analog converter
  • PI proportional integral
  • the transimpedance amplifier 10 is configured to convert a photodetector (PD) output current of the optical modulator into a voltage signal;
  • a low noise amplifier 20 configured to detect and amplify the low frequency signal component to improve the signal to noise ratio of the system
  • a high Q bandpass filter 30 for filtering out the desired low frequency signal to obtain an input light modulator
  • the optical detection signal of the low frequency square wave signal and used for detecting the error signal and amplifying the signal to improve the signal to noise ratio of the system;
  • the first level conditioner 40 level-aligns the error signal of the phase so that the signal output satisfies the A/D input range;
  • the microprocessor 50 in order to save space, can optionally include 12/s or more A/D and D/A microcontrollers on the chip to generate a low frequency signal, complete software synchronous detection and PI adjustment algorithm;
  • the second level conditioner 60 completes the D/A output voltage conditioning, so that the D/A output can satisfy the DC Bias full control range voltage range of the optical modulator 70;
  • the light modulator 70 is configured to phase modulate the input data signal.
  • the system has time requirements from the laser to the modulator output optical signal.
  • the phase modulator working point is searched.
  • a low frequency square wave signal is generated by the microprocessor 50 and input to the DC bias pin of the MZ modulator.
  • the signal is superimposed on the high speed data signal and optically modulated to obtain a phase modulated optical eye diagram, as shown in FIG.
  • the photocurrent from the PD pin is converted into a voltage signal by the transimpedance amplifier 10, and amplified by the low noise amplifier 20.
  • the voltage signal includes the low frequency part to be controlled and also has high frequency noise and DC components. Therefore, it is first required to isolate the DC component and filter out the required low frequency portion.
  • the amplified signal is filtered by the high Q bandpass filter 30 to obtain a low frequency signal, and the optical detection signal of the low frequency square wave signal f input to the modulator is obtained; the phase polarity of the optical detection signal reflects the DC bias point relative to At the position of the optimal bias point (peak or null) (on the falling or rising edge), the amplitude of the optical detection signal is proportional to the distance from the optimal bias point. Take the minimum point as an example, as shown in Figure 5.
  • the photodetection signal enters the slice of the microprocessor 50 through the first level modulator 40 A/D, through the software synchronous detection inside the microprocessor, the software synchronous detection actually utilizes the phase polarity and amplitude information of the optical detection signal, and synchronizes the optical detection signal to the fundamental wave through software programming in the microprocessor. Detecting, an error AC signal is obtained to control the optimal bias point of the electro-optic modulator.
  • the microprocessor 50 adjusts by software PI, selects the appropriate integral constant, and adjusts the digital-to-analog conversion D/A circuit until a fast and stable DC signal is the optimum operating point voltage of the modulator.
  • the error comparison circuit, the integration circuit, the reset circuit, and the monitoring circuit in the existing full hardware technology are omitted by the above software algorithm processing. Therefore, while ensuring the accuracy, the complexity and cost of the peripheral control circuit can be reduced, the stability and reliability of the control process can be effectively improved, and the performance of optical signal modulation and transmission in the entire system can be improved.
  • the built-in PD of the modulator converts the optical signal into a current signal, which contains the low-frequency signal f component input from the modulator BIAS port, selects a suitable transimpedance amplifier 10, converts the current signal into a processable voltage signal, and then After the low noise amplifier 20 and the high Q bandpass filter 30, a relatively pure low frequency fundamental signal is obtained, and then the signal is conditioned to the on-chip A/D processable voltage of the microprocessor by the first level conditioner 40. range.
  • the microprocessor 50 emits a low frequency square wave signal which is converted by the second level conditioner 60 into a low frequency square wave signal having a small amplitude.
  • Micro-Processing 50 Control The D/A output DC signal is converted to the modulator DC Bias full voltage control range via the second level conditioner 60.
  • the small amplitude low frequency square wave signal and the D/A conditioned DC voltage are superimposed in the second level conditioner 60.
  • the amplitude of the jitter signal can not be too small, to ensure that it can be detected by the PD, and can not affect the data signal too much, generally less than 1% of the amplitude of the data signal;
  • the low frequency The frequency of the signal should be kept small so that it does not affect the spectrum of the modulated signal and does not exceed the speed of the microprocessor software processing.
  • the frequency of the low-frequency signal cannot be too low to be distinguished from the low-frequency noise.
  • Signal to noise ratio generally chosen as The number KHz;
  • this low-frequency signal selects a square wave signal with a duty ratio of 50%, and the more symmetric the better.
  • FIG. 6 is a flow chart of control processing of a software phase synchronous detection portion according to an embodiment of the present invention.
  • the specific process includes the following steps:
  • Step S601 initializing, setting the initial values of the A/D and D/A of the microprocessor, and controlling the input/output (10) interface to emit a low-frequency square wave signal.
  • Step S602 the rising edge of the square wave sent by the IO interface is used as a trigger signal for sampling the feedback signal, and is sampled N times, and summed and summed to obtain suml. At the same time, step S603 is performed.
  • Step S603 the falling edge of the square wave sent by the IO interface is used as a trigger signal for sampling the feedback signal, is sampled N times, and is summed to obtain sum2.
  • step S604 the accumulation of the first half cycle and the accumulation of suml and the latter half cycle are summed with sum2 to obtain a difference cz.
  • FIG. 7 is a flow chart of control processing of a software PI algorithm according to an embodiment of the present invention. The specific process includes the following steps:
  • Step S701 initializing, setting the initial value of the D/A.
  • Step S702 obtaining an error value cz by using synchronous detection.
  • Step S703 using the previously set D/A value and the synchronous detection error value cz/integral constant T for subtraction or addition, setting the value to the current D/A value, if the value exceeds the D/A settable For the range of digital quantities, the software is reset to the initial value. Subtraction and addition decide to look for null or peak points.
  • the appropriate integral constant T can be selected according to the real-time property and the accuracy.
  • the integral constant T used in each control process is not limited to a fixed value, and can be based on the range of the synchronous detection cz. To determine a larger integral constant, a more stable effect is obtained, thereby further improving the accuracy of the final determined bias point.
  • the processing flow chart specifically includes the following steps:
  • Step S801 initializing, setting the initial values of the A/D and D/A of the microprocessor, controlling the port 10 to emit a low-frequency square wave signal, and setting a symbol for finding a null point or a peak point.
  • Step S802 the software implements synchronous detection, and obtains an error value cz.
  • step S803 the PI adjustment operation is performed according to the error value cz obtained by the synchronous detection, and the D/A value is output to control the DC Bias pin voltage value of the modulator.
  • the computer software product can be stored in a storage medium, such as a ROM/AM, a magnetic disk, an optical disk, etc., and includes a plurality of instructions for causing a computer device (which can be a personal computer, a server, or Network devices, etc.) perform the methods described in various embodiments of the present invention or in certain portions of the embodiments.
  • a computer device which can be a personal computer, a server, or Network devices, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种应用于MZ调制器的工作点控制装置及方法,包括光调制器;跨阻放大器,将调制器的PD输出的电流转化成电压信号;低噪声放大器,检测出低频信号成份并放大,以提高系统的信噪比;高Q带通滤波器,检测误差信号并进行放大,提高系统的信噪比;第一电平调理器,对相位的误差信号进行电平调理,使得信号输出满足A/D的输入范围;微处理器,产生低频信号,完成软件同步检波以及比例积分PI调节算法;第二电平调理器,完成D/A输出电压调理,使得D/A输出能够满足光调制器的直流偏置全控制范围电压范围。应用本发明,能够解决现有MZ调制器偏置点的硬件控制电路较为复杂,控制精度不高的问题。

Description

应用于 MZ调制器的工作点控制装置及方法 技术领域
本发明涉及光传输网络技术, 尤其涉及应用于马赫 -曾德(MZ )调制器 的工作点控制装置及方法。 背景技术
在高速长距离的通信传输中, 采用强度调制很难达到要求, 目前在光 纤通信领域的长距传输中, 需要利用相位调制技术。 对于当前的光电相位 调制一般采用马赫 -曾德 (MZ ) 电光调制器 (可简称为 "MZ 调制器") 来 实现。 但是, MZ调制器在运行过程中产生的热量、 环境温度变化以及长期 运行老化都会影响电场的强度易使电光调制器的特性发生改变, 从而使得 调制器的理想控制点从预设点处产生漂移。 而理想控制点漂移的结果是: 调制后的光信号的曲线振幅和中心位置发生改变, 从而使光眼图劣化。 当 发生严重漂移时, MZ调制器将表现出强烈的非线性, 会降低光通信连接的 最大动态范围, 劣化整个系统的性能, 严重时会导致接收到的光信号甚至 无法恢复出原有信息, 所以必须实现光调制器工作点的稳定控制。 如图 1 所示, 为现有调制器工作点控制原理示意图。
现有常用的 MZ调制器的偏置点的控制方法是在 MZ的调制信号中加 入低频方波信号, 然后从输出的调制信号中分离这个信号, 通过锁相放大 从而控制偏置点的稳定, 如图 2所示。 全硬件控制使得控制电路非常复杂, 同时电路器件的温度稳定性也限制了整个控制环路的精度。 发明内容
有鉴于此, 本发明的主要目的在于提供一种应用于 MZ调制器的工作 点控制装置及方法, 以解决现有 MZ调制器偏置点的硬件控制电路较为复 杂, 控制精度不高的问题。
为达到上述目的, 本发明的技术方案是这样实现的:
一种应用于 MZ调制器的工作点控制装置, 包括用于对输入数据信号 进行相位调制的光调制器, 还包括: 跨阻放大器、 低噪声放大器、 高 Q值 带通滤波器、 第一电平调理器、 微处理器和第二电平调理器; 其中:
所述跨阻放大器,用于将调制器的光电探测器 PD输出的电流转化成电 压信号;
低噪声放大器, 用于检测出低频信号成份并放大, 以提高系统的信噪 比;
高 Q带通滤波器, 用于滤出所需的低频信号, 得到输入光调制器的低 频方波信号的光检波信号; 及用于检测误差信号并进行放大, 提高系统的 信噪比;
第一电平调理器, 对相位的误差信号进行电平调理, 使得信号输出满 足模数转换 A/D的输入范围;
微处理器, 用于产生低频信号, 完成软件同步检波以及比例积分 PI调 节算法;
第二电平调理器, 完成数模转换 D/A输出电压调理, 使得 D/A输出能 够满足光调制器的直流偏置 DC Bias全控制范围电压范围。
其中: 所述微处理器, 为含有片上 12位及以上的模数转换 A/D和数模 转换 DZA的单片机。
所述高 Q带通滤波器输出的光检波信号的相位极性反映直流偏置点相 对于最佳偏置点的位置, 该光检波信号的幅度则与偏离最佳偏置点的距离 成正比。
所述光检波信号通过第一电平调制器进入微处理器的片上模数转换 A/D 电路, 通过微处理器内部的软件同步检波, 具体为: 通过利用该光检 波信号的相位极性和幅度大小信息, 在微处理器内通过软件编程对光检波 信号进行对基波的同步检波, 得到误差交流信号去控制所述光调制器的最 佳偏置点。
所述微处理器通过软件 PI调节, 选择合适的积分常数, 调整数模转换 D/A 电路直到输出一个快速稳定的直流信号, 即该光调制器的最佳工作点 电压。
一种应用于 MZ调制器的工作点控制的方法, 该方法包括如下步骤:
A、 通过微处理产生一个低频方波信号, 输入到 MZ调制器的直流偏置 DC b s管脚, 将该信号叠加在高速的数据信号上一起进行光调制;
B、 将从光探测器 PD引脚输出的光电流经过跨阻放大器转化成电压信 号, 再经过低噪声放大器进行放大;
C、将该放大的信号经过高 Q值带通滤波器滤出低频信号,得到输入到 调制器的低频方波信号的光检波信号;
D、所述光检波信号通过第一电平调制器进入微处理器的片上模数转换 A/D电路, 通过微处理器内部的软件进行同步检波;
E、 该微处理器通过软件 PI调节, 选择合适的积分常数, 调整数模转 换 D/A电路直到输出一个快速稳定的直流信号, 即该调制器的最佳工作点 电压。
其中: 步骤 D所述通过微处理器进行同步检波的过程, 具体为:
Dl、 首先进行初始化, 设置微处理器的模数转换 A/D电路和数模转换 D/A电路的初始值, 控制输入输出 10接口发出低频的方波信号;
D2、将所述 10接口发出的低频方波信号的上升沿作为对反馈信号釆样 的触发信号, 采样 N次, 并进行和累加, 得到前半周期的累加和 siiml ; 并 将所述 10接口发出的方波下降沿作为对反馈信号釆样的触发信号, 釆样 N 次, 并进行和累加, 得到后半周期的累加和 sum2;
D3、 将前半周期的累加和 suml和后半周期的累加和 sum2做差, 得到 差值 cz。
该方法进一步包括实施软件 PI算法的控制流程: 具体为:
D4、进行初始化,设置 D/A的初始值;利用同步检波得到的误差值 cz, 用前次设置的 D/A值和同步检波误差值 cz/积分常数 T做减法或者加法,将 该值设置为当前的 D/A值; 如果该值超过 D/A的可设置的数字量的范围, 则软件复位为初始值。
该方法进一步包括:
根据同步检波得到的误差值 cz进行 PI调节运算, 输出模数转换 D/A 值控制该调制器的直流偏置 DC Bias引脚的电压值。
本发明所提供的应用于 MZ调制器的工作点控制装置及方法, 具有以 下优点:
该装置用于 MZ调制器理想工作点的寻找, 包括位于光特性曲线最大 点和最小点的控制, 整个装置由预设算法进行控制, 能及时有效的对光路 中的信号进行反馈控制, 在上电通光的同时就可以完成对调制器工作点的 控制, 并且在环境变化的情况下保持光信号相对相位不变, 达到稳定控制 的目的。 因而, 该控制系统具有实现电路简洁、 控制效果好、 精确度高和 响应速度快的优点。 附图说明
图 1为现有 MZ调制器工作点控制装置的原理示意图;
图 2为现有 MZ调制器工作点控制装置的总体设计示意图;
图 3为本发明的 MZ调制器的工作点控制装置的功能框图;
图 4为相位调制原理示意图;
图 5为抖动法原理示意图; 图 6为本发明实施例的软件同步检波部分的控制处理流程图; 图 7为本发明实施例的软件 PI算法流程图;
图 8为本发明 MZ调制器的偏置点控制装置进行控制的处理流程图。 具体实施方式
下面结合附图及本发明的实施例对本发明的系统及方法作进一步详细 的说明。
本发明是要解决由于外部因素造成了 MZ调制器的传输曲线发生了漂 移而使传递的信号产生错误, 该方法实现了对调制器偏压工作点的反馈控 制。
图 3为本发明的 MZ调制器的工作点控制装置的功能框图; 如图 3所 示, 该控制装置主要包括 7个部分: 跨阻放大器 10、 低噪声放大器 20、 高 Q值带通滤波器 30、第一电平调理器 40、微处理器 50和第二电平调理器 60。 下面以 MZ调制器根据实际应用的需求, 假设要求其工作在 null点。
我们将一个低频方波信号通过 MZ调制器的直流偏置(DC Bias ) 引脚 (可参考图 1 )。 再通过光电探测器(PD ) 引脚对光信号进行检测, 该信号 经过跨阻放大器 10、 低噪声放大器 20, 高 Q值带通滤波器 30, 第一电平 调理器 40进入微处理器 50的模数转换器(A/D ) 中, 微处理器 50通过对 采样来的信号进行同步检波、 比例积分(PI )调节控制数模转换器(D/A ) 输出控制信号, 所述控制信号经过第二电平调理器 60后, 最后输出至 MZ 调制器的直流偏置(DC Bias ) 引脚。
这里, 所述跨阻放大器 10, 用于将光调制器的光电探测器(PD )输出 电流转化成电压信号;
低噪声放大器 20, 用于检测出低频信号成份并放大, 以提高系统的信 噪比;
高 Q带通滤波器 30, 用于滤出所需的低频信号, 得到输入光调制器的 低频方波信号的光检波信号; 及用于检测误差信号并进行放大, 提高系统 的信噪比;
第一电平调理器 40, 对相位的误差信号进行电平调理, 使得信号输出 满足 A/D输入范围;
微处理器 50, 为节省空间, 可选择含有片上 12位及以上 A/D和 D/A 单片机, 产生一个低频信号, 完成软件同步检波以及 PI调节算法;
第二电平调理器 60, 完成 D/A输出电压调理, 使得 D/A输出能够满 足光调制器 70 的直流偏置(DC Bias )全控制范围电压范围;
光调制器 70, 用于对输入数据信号进行相位调制。
其实现原理如下:
1 )在具体应用上, 系统从激光器发光到调制器输出光信号有时间的要 求, 要在亳秒 (ms ) 级的时间里寻找到工作点并完成反馈控制, 相位调制 器工作点的寻找是通过微处理 50产生一个低频方波信号输入到 MZ调制器 的 DC bias管脚, 该信号叠加在高速的数据信号上一起进行光调制,得到相 位调制的光眼图, 如图 4所示。
2 )从 PD引脚出来的光电流经过跨阻放大器 10转化成电压信号, 再经 过低噪声放大器 20进行放大。 该电压信号包括了所需要控制的低频部分还 有高频噪声以及直流的成份, 所以首先要求隔离直流成份, 滤出所需要的 低频部分。
3 )该放大的信号经过高 Q值带通滤波器 30滤出低频信号, 得到输入 到调制器的低频方波信号 f的光检波信号;光检波信号的相位极性反映了直 流偏置点相对于最佳偏置点 (peak点或者 null点) 的位置(位于下降沿还 是上升沿), 光检波信号的幅度则与偏离最佳偏置点的距离成正比。 以最小 点为例, 如图 5所示。
4 )所述光检波信号通过第一电平调制器 40进入微处理器 50 的片上 A/D, 通过微处理器内部的软件同步检波, 软件同步检波实际上利用光检波 信号的相位极性和幅度大小信息, 在微处理器内通过软件编程对光检波信 号进行对基波的同步检波, 得到误差交流信号去控制电光调制器的最佳偏 置点。
5 )微处理器 50通过软件 PI调节, 选择合适的积分常数, 调整数模转 换 D/A电路直到输出一个快速稳定的直流信号就是该调制器的最佳工作点 电压。
由此可见, 通过上述的软件算法处理, 省略了现有全硬件技术中的误 差比较电路、 积分电路、 复位电路、 监控电路。 从而能够在保证精度的同 时还可以降低外围控制电路的复杂度与成本, 有效提高控制过程的稳定性 和可靠性, 有助于改善整个系统中光信号调制和发送的性能。
具体流程: 调制器的内置 PD将光信号转化成电流信号,该信号包含了 从调制器 BIAS端口输入的低频信号 f成份,选取合适跨阻放大器 10,将电 流信号转换成可处理电压信号, 再经过低噪声放大器 20、 高 Q值带通滤波 器 30, 得到较为纯净的低频基波信号, 再经过第一电平调理器 40将该信号 调理到微处理器的片上 A/D可处理的电压范围。
同时, 微处理器 50发出低频方波信号, 经过第二电平调理器 60转化 为幅度很小的低频方波信号。微处理 50的控制 D/A输出的直流信号经过第 二电平调理器 60转化为调制器 DC Bias全电压控制范围。 同时小幅度的低 频方波信号与 D/A调理后的直流电压在第二电平调理器 60中进行叠加。
对于方波信号有一定要求: 第一, 对于抖动信号幅度的大小不能太小, 保证其经过 PD能够检测出来, 也不能太大影响数据信号,一般小于数据信 号幅度的 1%; 第二, 低频信号的频率要保证很小, 使其不会影响调制信号 的光谱并且不会超出微处理器软件处理的速度, 同时该低频信号频率也不 能太低, 以至于与低频噪声无法区分, 为保证良好的信噪比, 一般选择为 数 KHz; 第三,为保证软件实现同步检波,这个低频信号选择占空比为 50% 的方波信号, 越对称越好。
图 6为根据本发明实施例的软件相同步检波部分的控制处理流程图, 具体过程包括如下步骤:
步骤 S601 , 初始化, 设置微处理器的 A/D和 D/A的初始值, 控制输入 输出 (10 )接口发出低频的方波信号。
步骤 S602,将 IO接口发出的方波上升沿作为对反馈信号采样的触发信 号, 釆样 N次, 并进行和累加, 得到 suml。 同时, 执行步骤 S603。
步骤 S603,将 IO接口发出的方波下降沿作为对反馈信号采样的触发信 号, 采样 N次, 并进行和累加, 得到 sum2。
步骤 S604,将前半周期的累加和 suml和后半周期的累加和 sum2做差, 得到差值 cz。
图 7为根据本发明实施的软件 PI算法的控制处理流程图, 具体过程包 括如下步骤:
步骤 S701 , 初始化, 设置 D/A的初始值。
步骤 S702, 利用同步检波得到误差值 cz。
步骤 S703 , 用前一次设置的 D/A值和同步检波误差值 cz/积分常数 T 做减法或者加法, 将该值设置为当前的 D/A值, 如果该值超过 D/A的可设 置的数字量的范围, 则软件复位为初始值。 减法和加法决定寻找的是 null 点或者 peak点。
此外, 根据本实施例的装置中同样能够根据实时性和精确度选择合适 的积分常数 T, 每次控制过程所采用的积分常数 T也并不局限于一个固定 值, 可以根据同步检波 cz的范围以确定更大的积分常数, 获得更稳定的效 果, 从而进一步提高最终确定的偏置点的准确度。
图 8为根据本发明实施例的 MZ调制器的偏置点控制装置进行控制的 处理流程图, 具体包括如下步骤:
步骤 S801 , 初始化, 设置微处理器的 A/D和 D/A的初始值, 控制 10 口发出低频的方波信号, 设置寻找 null点或者 peak点的符号。
步骤 S802, 软件实现同步检波, 得到误差值 cz。
步骤 S803,根据同步检波得到的误差值 cz进行 PI调节运算,输出 D/A 值控制调制器的 DC Bias引脚电压值。
为了保证 MZ调制器能够长时间在高精度下工作, 可以不停的重复或 者延时一段时间, 重复步骤 S802和 S803。
通过以上的实施方法的描述, 本领域的技术人员可以清楚的了解到本 发明可借助软件加必需的硬件平台的方式来实现, 基于这样的理解, 本发 明的技术方案对背景技术做出的贡献可以以软件产品的形式体现出来, 该 计算机软件产品可以存储在存储介质中, 如 ROM/ AM、 磁碟、 光盘等, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或 者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

杈利要求书
1、 一种应用于 MZ调制器的工作点控制装置, 包括用于对输入数据信 号进行相位调制的光调制器, 其特征在于, 还包括: 跨阻放大器、 低噪声 放大器、 高 Q值带通滤波器、 第一电平调理器、 微处理器和第二电平调理 器; 其中:
所述跨阻放大器,用于将调制器的光电探测器 PD输出的电流转化成电 压信号;
低噪声放大器, 用于检测出低频信号成份并放大, 以提高系统的信噪 比;
高 Q带通滤波器, 用于滤出所需的低频信号, 得到输入光调制器的低 频方波信号的光检波信号; 及用于检测误差信号并进行放大, 提高系统的 信噪比;
第一电平调理器, 对相位的误差信号进行电平调理, 使得信号输出满 足模数转换 A/D的输入范围;
微处理器, 用于产生低频信号, 完成软件同步检波以及比例积分 PI调 节算法;
第二电平调理器, 完成数模转换 D/A输出电压调理, 使得 D/A输出能 够满足光调制器的直流偏置 DC Bias全控制范围电压范围。
2、 根据权利要求 1所述的应用于 MZ调制器的工作点控制装置, 其特 征在于, 所述微处理器, 为含有片上 12位及以上的模数转换 A/D和数模转 换 D/A的单片机。
3、 根据权利要求 1所述的应用于 MZ调制器的工作点控制装置, 其特 征在于, 所述高 Q带通滤波器输出的光检波信号的相位极性反映直流偏置 点相对于最佳偏置点的位置, 该光检波信号的幅度则与偏离最佳偏置点的 距离成正比。
4、 根据权利要求 3所述的应用于 MZ调制器的工作点控制装置, 其特 征在于, 所述光检波信号通过第一电平调制器进入微处理器的片上模数转 换 A/D电路, 通过微处理器内部的软件同步检波, 具体为: 通过利用该光 检波信号的相位极性和幅度大小信息, 在微处理器内通过软件编程对光检 波信号进行对基波的同步检波, 得到误差交流信号去控制所述光调制器的 最佳偏置点。
5、 根据权利要求 1或 3所述的应用于 MZ调制器的工作点控制装置, 其特征在于, 所述徼处理器通过软件 PI调节, 选择合适的积分常数, 调整 数模转换 D/A电路直到输出一个快速稳定的直流信号, 即该光调制器的最 佳工作点电压。
6、 一种应用于 MZ调制器的工作点控制的方法, 其特征在于, 该方法 包括如下步骤:
A、 通过微处理产生一个低频方波信号, 输入到 MZ调制器的直流偏置 DC b s管脚, 将该信号叠加在高速的数据信号上一起进行光调制;
B、 将从光探测器 PD引脚输出的光电流经过跨阻放大器转化成电压信 号, 再经过低噪声放大器进行放大;
C、将该放大的信号经过高 Q值带通滤波器滤出低频信号,得到输入到 调制器的低频方波信号的光检波信号;
D、所述光检波信号通过第一电平调制器进入微处理器的片上模数转换 A/D电路, 通过微处理器内部的软件进行同步检波;
E、 该微处理器通过软件 PI调节, 选择合适的积分常数, 调整数模转 换 D/A电路直到输出一个快速稳定的直流信号, 即该调制器的最佳工作点 电压。
7、 根据权利要求 5所述的应用于 MZ调制器的工作点控制的方法, 其 特征在于, 步骤 D所述通过微处理器进行同步检波的过程, 具体为: Dl、 首先进行初始化, 设置微处理器的模数转换 A/D电路和数模转换 D/A电路的初始值, 控制输入输出 10接口发出低频的方波信号;
D2、将所述 10接口发出的低频方波信号的上升沿作为对反馈信号采样 的触发信号, 采样 N次, 并进行和累加, 得到前半周期的累加和 suml; 并 将所述 10接口发出的方波下降沿作为对反馈信号采样的触发信号, 釆样 N 次, 并进行和累加, 得到后半周期的累加和 sum2;
D3、 将前半周期的累加和 suml和后半周期的累加和 sum2做差, 得到 差值 cz。
8、 根据权利要求 6所述的应用于 MZ调制器的工作点控制的方法, 其 特征在于, 该方法进一步包括实施软件 PI算法的控制流程: 具体为:
D4、进行初始化,设置 D/A的初始值;利用同步检波得到的误差值 cz, 用前次设置的 D/A值和同步检波误差值 cz/积分常数 T做减法或者加法,将 该值设置为当前的 D/A值; 如果该值超过 D/A的可设置的数字量的范围, 则软件复位为初始值。
9、根据权利要求 6或 7所述的应用于 MZ调制器的工作点控制的方法, 其特征在于, 该方法进一步包括:
根据同步检波得到的误差值 cz进行 PI调节运算, 输出模数转换 D/A 值控制该调制器的直流偏置 DC Bias引脚的电压值。
PCT/CN2013/076041 2012-05-22 2013-05-22 应用于mz调制器的工作点控制装置及方法 WO2013174255A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015513005A JP2015520873A (ja) 2012-05-22 2013-05-22 Mz変調器に用いる動作点制御装置及び方法
US14/401,700 US9503195B2 (en) 2012-05-22 2013-05-22 Working point controlling device and method for applying MZ modulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210159953.3 2012-05-22
CN201210159953.3A CN102710336B (zh) 2012-05-22 2012-05-22 应用于mz调制器的工作点控制装置及方法

Publications (1)

Publication Number Publication Date
WO2013174255A1 true WO2013174255A1 (zh) 2013-11-28

Family

ID=46902918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076041 WO2013174255A1 (zh) 2012-05-22 2013-05-22 应用于mz调制器的工作点控制装置及方法

Country Status (4)

Country Link
US (1) US9503195B2 (zh)
JP (1) JP2015520873A (zh)
CN (1) CN102710336B (zh)
WO (1) WO2013174255A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102710336B (zh) * 2012-05-22 2015-08-12 武汉电信器件有限公司 应用于mz调制器的工作点控制装置及方法
CN103346842B (zh) * 2013-06-09 2016-06-29 桂林电子科技大学 控制双平行mzm调制器输出光强的反馈控制系统和方法
CN103412594B (zh) * 2013-07-31 2016-01-06 武汉电信器件有限公司 电光调制器工作点控制装置及控制方法
CN104168067A (zh) * 2014-08-29 2014-11-26 四川华拓光通信股份有限公司 一种判断光接收电路中的光功率信号强度的方法及其电路
CN105099569B (zh) * 2015-06-25 2017-12-12 北京邮电大学 一种马赫增德尔调制器的偏置控制系统及方法
CN105334644B (zh) * 2015-11-25 2018-04-20 宁波中物东方光电技术有限公司 铌酸锂外调制器的精确控制方法
CN105610762B (zh) * 2015-12-17 2019-06-04 中国电子科技集团公司第四十一研究所 一种可校准的宽载波正交调制装置
US9835928B1 (en) 2017-02-13 2017-12-05 Futurewei Technologies, Inc. Optical N-level quadrature amplitude modulation (NQAM) tuned by dithering associated heaters
TWI638535B (zh) * 2017-12-12 2018-10-11 美商光聯通訊有限公司 Control device and method for optimizing transmission performance of optical communication system
CN108957174B (zh) * 2018-06-12 2020-10-20 国网浙江省电力有限公司台州供电公司 一种电压暂降检测装置及方法
JP7419949B2 (ja) * 2020-04-16 2024-01-23 富士通オプティカルコンポーネンツ株式会社 光伝送装置、光合波器及び光伝送方法
CN111600560B (zh) * 2020-06-16 2023-11-17 中国电子科技集团公司第三研究所 一种用于水下接收机的信号放大电路
CN113824507B (zh) * 2020-06-19 2023-06-09 圣邦微电子(北京)股份有限公司 用于光通信的发射机及偏置点补偿装置和方法
CN114499684B (zh) * 2020-10-26 2023-12-05 青岛海信宽带多媒体技术有限公司 一种控制mz调制器工作点稳定的方法及系统
CN114884576B (zh) * 2021-02-05 2024-05-10 青岛海信宽带多媒体技术有限公司 一种光模块
CN115001588B (zh) * 2021-03-01 2023-06-09 烽火通信科技股份有限公司 一种5g前传链路的远端管理装置与方法
CN114124257B (zh) * 2021-09-29 2024-04-19 武汉船舶通信研究所(中国船舶重工集团公司第七二二研究所) 信号质量评估装置及信号质量评估方法
CN114268373B (zh) * 2021-11-23 2023-04-07 北京理工大学 基于双边带相位差分稳定的光频梳产生装置及方法
CN115453778B (zh) * 2022-08-04 2024-02-27 中国电子科技集团公司第十四研究所 一种低杂散的电光调制器偏置点控制装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060127104A1 (en) * 2004-12-10 2006-06-15 Nortel Networks Limited Control system for a polar optical transmitter
CN201690436U (zh) * 2010-05-25 2010-12-29 武汉电信器件有限公司 应用于相位调制器的工作点控制装置
US20110043888A1 (en) * 2009-08-19 2011-02-24 Jds Uniphase Corporation Modulation system and method for generating a return-to-zero (rz) optical data signal
CN102201868A (zh) * 2011-04-06 2011-09-28 烽火通信科技股份有限公司 双并联mz调制器的偏置控制方法与装置
CN102710336A (zh) * 2012-05-22 2012-10-03 武汉电信器件有限公司 应用于mz调制器的工作点控制装置及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208506A (ja) * 1985-03-13 1986-09-16 Kobe Steel Ltd サ−ボ・バルブ等の制御方法
JP2003531546A (ja) * 2000-04-13 2003-10-21 コーニング・インコーポレーテッド 簡易な利得/出力制御装置を有する光増幅器
JP3765967B2 (ja) * 2000-06-30 2006-04-12 三菱電機株式会社 光送信装置およびこれに用いる光変調器のバイアス電圧制御方法
US6700907B2 (en) * 2000-11-20 2004-03-02 Jds Uniphase Corporation Mach-Zehnder modulator bias and driver gain control mechanism
US7369290B1 (en) * 2003-03-19 2008-05-06 Photonic Systems, Inc. Modulator bias control
JP2004301965A (ja) * 2003-03-28 2004-10-28 Anritsu Corp 光変調器のバイアス制御装置および該バイアス制御装置を用いた光変調装置
US7075695B2 (en) * 2004-03-01 2006-07-11 Lucent Technologies Inc. Method and apparatus for controlling a bias voltage of a Mach-Zehnder modulator
GB2417333B (en) * 2004-08-13 2008-07-16 Bookham Technology Plc Automatic bias controller for an optical modulator
JP4578942B2 (ja) * 2004-11-10 2010-11-10 オリンパス株式会社 内視鏡形状検出装置
US7903981B2 (en) * 2007-01-23 2011-03-08 Ciena Corporation Software-based electro-optic modulator bias control systems and methods
US7729621B2 (en) * 2007-06-26 2010-06-01 Intel Corporation Controlling a bias voltage for a Mach-Zehnder modulator
US7733193B2 (en) * 2007-11-01 2010-06-08 Ciena Corporation Systems and methods for DQPSK modulator control using selectively inserted dither tone
US8543010B2 (en) * 2010-02-24 2013-09-24 Jds Uniphase Corporation Bias control in an optical modulator and transmitter
JP5318278B2 (ja) * 2010-02-25 2013-10-16 三菱電機株式会社 光送信器
US8503056B2 (en) * 2010-04-29 2013-08-06 Arris Group, Inc. Bias point control circuit for externally modulated transmitter
US8849129B2 (en) * 2012-07-20 2014-09-30 Finisar Corporation Method and apparatus for stabilization of optical transmitter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060127104A1 (en) * 2004-12-10 2006-06-15 Nortel Networks Limited Control system for a polar optical transmitter
US20110043888A1 (en) * 2009-08-19 2011-02-24 Jds Uniphase Corporation Modulation system and method for generating a return-to-zero (rz) optical data signal
CN201690436U (zh) * 2010-05-25 2010-12-29 武汉电信器件有限公司 应用于相位调制器的工作点控制装置
CN102201868A (zh) * 2011-04-06 2011-09-28 烽火通信科技股份有限公司 双并联mz调制器的偏置控制方法与装置
CN102710336A (zh) * 2012-05-22 2012-10-03 武汉电信器件有限公司 应用于mz调制器的工作点控制装置及方法

Also Published As

Publication number Publication date
US9503195B2 (en) 2016-11-22
US20150104195A1 (en) 2015-04-16
JP2015520873A (ja) 2015-07-23
CN102710336B (zh) 2015-08-12
CN102710336A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
WO2013174255A1 (zh) 应用于mz调制器的工作点控制装置及方法
EP2432139B1 (en) Method, device and system for feedback control of a coherent receiver
CN108306689B (zh) 基于三导频的双平行马赫-曾德尔调制器(dpmzm)的任意点自动偏压控制方法
JP2005202400A (ja) バイアス制御装置を備えた光変調装置及びこれを用いたバイアス制御方法
JP4734452B2 (ja) 分散を検出するための方法およびデバイス、ならびに光信号伝送システム
CN102722204A (zh) 一种电光强度调制器偏置电压的控制装置及其控制方法
CN201690436U (zh) 应用于相位调制器的工作点控制装置
US7903981B2 (en) Software-based electro-optic modulator bias control systems and methods
US11705970B2 (en) Optical receiver with an optically compensated amplifier control loop
WO2009010007A1 (fr) Procédé, appareil et modulateur optique pour ajustement de phase
WO2024098766A1 (zh) 一种同频共用光纤通信感知一体化系统
CN105334644B (zh) 铌酸锂外调制器的精确控制方法
CN115480417B (zh) 一种电光调制器的偏压控制电路系统
CN217276797U (zh) 一种光纤时延测量装置
CN102333056B (zh) 控制双偏振正交相移键控调制器相位偏置点的方法及系统
CN114063323A (zh) 一种电光调制器最佳偏置点自动控制方法
JP2000200922A (ja) 光信号検出装置および光信号検出方法
CN113471806B (zh) 一种多反馈激光器步进扫频驱动装置及方法
CN102510309B (zh) 电信号远程传输的装置及其方法
CN106301579B (zh) 一种突发光信号放大控制方法、装置及突发光信号放大系统
CN110838996B (zh) 基于载波周期性的大频偏范围载波恢复方法
CN101873171B (zh) Dpsk/dqpsk模块延迟干涉仪控制装置及方法
CN201742415U (zh) Dpsk/dqpsk模块延迟干涉仪控制装置
CN117691460A (zh) 一种激光信号源的实现方法
CN103944591B (zh) 基于光学辅助的伪毫米波超宽带信号包络检测系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794323

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14401700

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015513005

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794323

Country of ref document: EP

Kind code of ref document: A1