JP2015230267A - 水素除去装置 - Google Patents

水素除去装置 Download PDF

Info

Publication number
JP2015230267A
JP2015230267A JP2014117174A JP2014117174A JP2015230267A JP 2015230267 A JP2015230267 A JP 2015230267A JP 2014117174 A JP2014117174 A JP 2014117174A JP 2014117174 A JP2014117174 A JP 2014117174A JP 2015230267 A JP2015230267 A JP 2015230267A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
hydrogen removal
heat
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014117174A
Other languages
English (en)
Inventor
慶拓 石川
Keisuke Ishikawa
慶拓 石川
山本 哲三
Tetsuzo Yamamoto
哲三 山本
敏浩 吉井
Toshihiro Yoshii
敏浩 吉井
美香 田原
Mika Tawara
美香 田原
雅士 田邊
Masashi Tanabe
雅士 田邊
基茂 柳生
Motoshige Yagyu
基茂 柳生
重広 味森
Shigehiro Mishin
重広 味森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014117174A priority Critical patent/JP2015230267A/ja
Publication of JP2015230267A publication Critical patent/JP2015230267A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

【課題】水素除去処理後のガス温度が最大温度となる状態で一定時間継続する場合においても大流量の冷却水が不要で装置から排出されるガス温度をより低く抑えることが可能な水素除去装置を提供する。【解決手段】水素除去装置30は、被処理ガス6に含まれる水素を酸化させて除去し、除去後のガスを排気する装置であり、被処理ガスに含まれる水素と反応する反応材41を収容する反応部31に、被処理ガスを通気させて、被処理ガスに含有される水素を酸化させて除去し、除去後のガスを排気部33から外部へ排気する水素除去手段34と、温熱17を蓄熱する蓄熱体35と、排気部に蓄熱体と接する状態で設置され、除去後のガスと蓄熱体との間で熱交換する熱交換器36と、冷却液(冷媒)15が流通し、この冷媒により蓄熱体を冷却する冷却液(冷媒)流路37とを備える水素除去モジュール60を具備する。【選択図】 図2

Description

本発明の実施形態は、ガス中に含まれる水素を除去する水素除去装置に関する。
原子力プラントでは、原子炉炉心を収容する原子炉圧力容器を原子炉格納容器に格納している。原子炉格納容器には、原子炉圧力容器を包囲する上部ドライウェルと下部ドライウェル、および、上部ドライウェルとベント管を介して接続され内部に水を貯蔵したサプレッションプールを備えたウェットウェルが形成されている。また、原子炉圧力容器を包囲して生体遮蔽壁が設置されている。
上記のような構成の原子炉格納容器において、原子炉事故が発生すると、原子炉格納容器内に水素が発生する。例えば、原子炉圧力容器に接続された主蒸気管等が万一破断した場合、原子炉格納要容器内の上部ドライウェルに高温・高圧の原子炉一次冷却材(水)が放出され、上部ドライウェル内の圧力・温度が急激に上昇する。
上部ドライウェルに放出された高温・高圧の冷却材は、上部ドライウェル内の気体と混合して、ベント管を通してサプレッションプールにおいて吸収される。原子炉圧力容器には内には非常用炉心冷却系によりサプレッションプールの水が注入されて炉心が冷却されるが、この冷却水は長期的には炉心から崩壊熱を吸収し、破断した配管の破断口からドライウェルへ流出される。このため、上部ドライウェル内の圧力・温度は常にウェットウェルよりも高い状態となる。
このような長期的な事象下で、軽水炉型原子力発電所の原子炉内では冷却材である水が放射分解され、水素ガスと酸素ガスが発生する。さらに、燃料被覆管の温度が上昇する場合には水蒸気と燃料被覆管材料のジルコニウムとの間で反応(Metal−Water反応)が生じ、短時間で水素ガスが発生する。
こうして発生する水素ガスが破断した配管の破断口から原子炉格納容器内に放出され、原子炉格納容器内の水素ガス濃度は次第に上昇する。また、水素ガスは非凝縮性であるから、原子炉格納容器内の圧力も上昇する。
このような水素ガスが発生し、原子炉格納容器内の水素濃度が上昇する事態に対して、何等有効な対策を採ることができずに水素ガス濃度が4vol%かつ酸素濃度が5vol%以上に上昇した場合、すなわち可燃性ガスとしての水素ガスの濃度が可燃限界を超えた場合、気体は可燃状態となる。さらに、水素ガス濃度が上昇すると過剰な反応が発生する可能性が生じる。
可燃性ガスである水素ガスが可燃状態となる等の事態を防止する有効な対策としては、例えば、従来の沸騰水型原子力発電設備の場合には、圧力抑制式の原子炉格納容器内を窒素ガスで置換し酸素濃度を低く維持することがある。このような対策を実践可能な装置等を導入することにより、Metal−Water反応により短時間で大量に発生する水素ガスに対しても原子炉格納容器内が可燃性雰囲気となることを防止し、固有の安全性が達成される。
また、他の対策例としては、再結合器およびブロアを有する可燃性ガス濃度抑制装置を原子炉格納容器外に設置することである。可燃性ガス濃度抑制装置は、原子炉格納容器内の気体を原子炉格納容器外に吸引し、昇温させて水素ガスと酸素ガスを再結合させて水に戻し、残りの気体を冷却してから原子炉格納容器内へ戻すように動作する装置である。このように動作する可燃性ガス濃度抑制装置を設置することで、原子炉格納容器内の可燃性ガス濃度上昇が抑制される。
このような水素を除去する技術として、例えば、水素と酸素を再結合させて処理するものが知られている。
特開2005−3371号公報
上述の水素と酸素の再結合による従来の水素除去処理技術では、水素の反応熱によって、可燃性ガス濃度抑制装置からの排出ガス温度が最大600℃に達する。従来の水素除去処理技術を原子炉格納容器内の雰囲気から水素を除去するために用いる場合、Metal−Water反応によって大量の水素が発生する事象を想定する必要がある。
Metal−Water反応による大量の水素が発生する事象が生じた場合には、最大で600℃にも達する排出ガスが最長で1時間程度継続して排出されることが想定されるため、このような大量の水素が発生する事象に対応可能とするためには、最大で600℃にも達する排出ガスの温度を安全に(熱損傷等を発生させずに)原子炉格納容器内へ戻すことのできる約200℃までに冷却する技術が必要となる。
このように、大量の水素を継続的に除去処理することが必要となる環境下で従来の水素除去処理技術を用いる場合、排出されるガスは最大で600℃というかなりの高温の状態が最大で1時間程度継続するため、水素除去処理技術を適用する環境によっては構造物の熱損傷等が発生し得る。従って、水素除去処理後のガスの温度を従来よりも低く抑えることが望まれる。
排出ガスの温度を約600℃から約200℃まで冷却する技術としては、例えば、可燃性ガス濃度抑制装置から排出されるガス温度を約600℃から約200℃までに常時冷却可能な冷却装置を適用することが考えられる。
しかしながら、約600℃のガスを約200℃までに常時冷却可能な冷却装置を適用する場合、装置が大型化するだけでなく、その運用には大流量の冷却水が必要となるため、現実的には適用は困難である。
本発明は、上述した事情に鑑みてなされたものであり、水素除去処理後のガスの温度が最大温度となる状態で一定時間継続する場合においても、大流量の冷却水を必要とすることなく装置から排出されるガスの温度をより低く抑えることが可能な水素除去装置を提供することを目的とする。
本発明の実施形態に係る水素除去装置は、上述した課題を解決するため、ガス導入流路から処理するガスを導入して前記ガスに含まれる水素を酸化させて除去し、ガス排気流路から除去後のガスを外部へ排気する水素除去装置であり、導入部から導入する前記ガスに含まれる水素と反応する反応材を収容する反応部に、前記ガスを通気させて反応させることで、前記ガスに含まれる水素を酸化させて除去し、排気部から前記除去後のガスを外部へ排気する水素除去手段と、熱を蓄熱する蓄熱手段と、前記ガス排気流路に前記蓄熱手段と接する状態で設置され、前記反応部で反応した後のガスと前記蓄熱手段との間で熱交換する熱交換手段と、冷媒が流通し、この冷媒により前記蓄熱手段を冷却する冷媒流路と、を備える水素除去モジュールを、具備することを特徴とする。
本発明の実施形態によれば、水素除去処理後のガスの温度が最大温度となる状態で一定時間継続する場合においても、大流量の冷却水を必要とすることなく装置から排出されるガスの温度をより低く抑えることができる。
本発明の実施形態に係る水素除去装置の適用例を示す概略図。 本発明の実施形態に係る水素除去装置の構成例を示す概略図。 本発明の実施形態に係る水素除去装置における温度の時間変化を説明する説明図であり、(A)は反応容器出口ガス温度Tgrc2の時間変化を説明する説明図(グラフ)、(B)は蓄熱体平均温度Thsmの時間変化を説明する説明図(グラフ)、(C)は水素除去装置出口温度T2の時間変化を説明する説明図(グラフ)。 本発明の実施形態に係る水素除去装置の変形例(水素除去モジュールを複数用いて構成する例)を示す概略図であり、(A)は2個の水素除去モジュールを直列に連結した例を示す概略図、(B)は複数の水素除去モジュールを並列に連結した例を示す概略図。
以下、本発明の実施形態に係る水素除去装置について、図面を参照して説明する。なお、以下の説明においては、上、下、左、右等の方向を示す言葉は、図示した状態または通常の使用状態を基準とする。
本発明の実施形態に係る水素除去装置は、水素と反応する反応材を用いてガス中の水素を除去する技術を採用している。本発明の実施形態に係る水素除去装置では、水素と反応する反応材として、例えば、金属酸化物または過酸化物イオン(O 2−)と金属とで構成される塩である金属過酸化物等の複数の酸化数を取り得る金属酸化物中の高次の酸化数を持つ材料を適用し、反応材がガス中の水素を酸化させることによって水素を消費して水素を除去する。
反応材として金属過酸化物を用いて被処理ガスに含有する水素を除去する技術は、金属過酸化物自体に含まれる酸素を利用するため、外部の酸素を必要とすることなく被処理ガスから水素を除去することができるという利点がある。なお、反応材として金属酸化物を用いる場合においても、金属酸化物に含まれるOと水素ガスとが結合して水(HO)を生成することできる。
続いて、本発明の実施形態に係る水素除去装置について、本発明の実施形態に係る水素除去装置を原子炉格納容器1(図1)の雰囲気から水素を除去する際に適用する場合を一例として示して説明する。なお、図1に示される水素除去装置30は、適用例の一つであり、本発明の実施形態に係る水素除去装置は、図示されるものに限定されない。
図1は、本発明の実施形態に係る水素除去装置の一例である水素除去装置30の適用例(原子炉格納容器1の雰囲気から水素を除去するために水素除去装置30を適用する場合の一例)を示す概略図である。
なお、図1は、原子炉格納容器1の雰囲気から水素を除去する水素除去処理に関連する系統を中心に簡略化して示している。また、図1中に示される矢印の方向は、ガス(被処理ガス6および処理済ガス11)の流れる方向を示している。
水素除去装置30は、例えば、従来の原子炉格納容器1の雰囲気から水素を除去する水素除去装置と同様に設置される。すなわち、従来の原子炉に適用される水素除去装置の代わりに水素除去装置30を適用することができ、水素除去装置30は、原子炉格納容器1と供給配管2および戻り配管3を介して連結される。
水素除去装置30の作用について概説すると、原子炉格納容器1内でなんらかの原因により、燃料被覆管の温度が上昇し、水蒸気と燃料被覆管材料であるジルコニウムとの間で反応(Metal−Water反応)が生じて水素が発生し、大量の蒸気とともに原子炉圧力容器5から漏洩する。
発生した多量の蒸気と水素が原子炉圧力容器5内から原子炉格納容器1に漏れ出た場合、原子炉格納容器1に漏れ出た蒸気および水素と元来原子炉格納容器1に存在している窒素との混合気体(被処理ガス)6は、まず、静的格納容器冷却系(Passive Containment Cooling System:PCCS)7へ導かれる。静的格納容器冷却系7では被処理ガス6中の蒸気の大部分が凝縮し、被処理ガス6から蒸気の大部分が取り除かれる。静的格納容器冷却系7で発生した凝縮水は、例えば、排水管8を通ってドライウェル9へ戻される。
また、蒸気の大部分が取り除かれた被処理ガス6は、静的格納容器冷却系7から供給配管2を通して水素除去装置30内に導入される。水素除去装置30内では、水素除去装置30内に設けられる水素除去手段(図1において省略)に被処理ガス6を通気させて被処理ガス6に含まれる水素と反応させることで、被処理ガス6に含まれる水素を酸化させて除去する。
被処理ガス6に含まれる水素を除去した後のガス(以下、「処理済ガス」と称する)11は、水素除去手段から水素除去装置30の外部へ排気される。処理済ガス11は、水素除去装置30から戻り配管3を介して、例えば、圧力抑制室(サプレッションチェンバ)13等の原子炉格納容器1内へ戻される。
図2は、水素除去装置30(水素除去モジュール60)の構成例を示す概略図である。なお、図2中の矢印は、被処理ガス6、処理済ガス11、冷却液15、および熱17の移動方向を示している。
水素除去装置30は、例えば、水素と反応する反応部31と導入部32から導入する被処理ガス6に含まれる水素とを反応させて、被処理ガス6から水素を除去し、排気部33から処理済ガス11を外部へ排気する水素除去手段34と、蓄熱手段としての蓄熱体35と、熱交換手段としての熱交換器36と、冷却液15を導入し通液させる冷却液流路37と、反応部31および蓄熱体35の間の熱伝達を減少する断熱手段としての断熱体38と、を備える水素除去モジュール60(基本モジュール)を1個または複数個具備して構成される。
水素除去手段34は、導入部32から導入する被処理ガス6に含まれる水素と反応する反応材41を反応材容器43に収容して構成される反応部31に、被処理ガス6を通気させて水素と反応させることで、被処理ガス6から水素を酸化させて除去する。被処理ガス6から水素を除去した後の処理済ガス11は、排気部33から外部へ排気される。
蓄熱体35は、例えば、物質に熱を蓄える(蓄熱する)性質を有する蓄熱材を用いて構成される。なお、蓄熱体35は、後述するように、反応部31の出口における温度が最大温度Tmax(図3(A))で最大温度持続時間h1(図3(A))持続したとしても、その平均温度Thsm(図3(B))は最大温度Tmaxよりも低い温度範囲で適用可能な各種の蓄熱材を適用して構成することができる。
熱交換器36は、排気部33に蓄熱体35と接する状態で設置され、反応部31で反応した後の処理済ガス11と蓄熱体35との間で熱交換する。すなわち、処理済ガス11の温熱17は、熱交換器36を介して蓄熱体35へ放熱され、蓄熱体35に吸収される。従って、処理済ガス11の温度は、排気部33を反応部出口P1側から水素除去装置出口P2側へ通気する過程で熱交換器36による熱交換によって低下する。
冷却液流路37は、冷却液15が通液する流路であり、蓄熱体35と接する状態で設置される。水素除去装置30(水素除去モジュール60)では、例えば、被処理ガス6または処理済みガス11が通気する中心に対して蓄熱体35の外側で接する状態で冷却液流路37が設けられており、この冷却液流路37に冷却液15を矢印方向(図2では下方から上方)へ通液させる。
水素除去装置30(水素除去モジュール60)では、蓄熱体35が蓄熱する温熱17を冷却液15が吸収(吸熱)し、冷却液15に吸熱された温熱17は冷却液15とともに外部へ移送される。この結果、蓄熱体35の温熱17は水素除去装置30(水素除去モジュール60)の外部へ放熱される。
断熱体38は、反応部31および蓄熱体35と接する状態で設置され、反応部31および蓄熱体35の間の熱伝達を減少させる機能を有する。
断熱体38は、例えば、少なくとも1種類の材料で構成される断熱材そのもの(断熱材による1層構造)で構成されるもの、多層に形成され、反応部側の表面層と冷却液流路側の表面層との間に少なくとも1層の断熱層を持たせて構成されるもの等、様々なタイプのものを適用することができる。断熱層は、断熱効果を発揮する所定の厚みを有する限り、どのような態様でもよい。例えば、厚みを持たせた断熱材の他、表面層間を空気で満たした中空層や、表面層間を真空状態とした真空層でも良い。
次に、水素除去装置30(水素除去モジュール60)の作用および効果について説明する。
水素除去装置30(図2)では、被処理ガス6が導入部32から導入される。導入部32から導入された被処理ガス6は、例えば、金属過酸化物等の反応材41を反応材容器43に収容して構成される反応部31を通気し、通気の際、反応部31と反応し、被処理ガス6に含まれる水素が酸化されて水素が消費(除去)される。
反応部31で生じる水素の再結合反応は、発熱反応であり、当該反応に伴って発生する熱によって反応部31は温度上昇し、処理済みガス11も反応部31を通気する過程で温度上昇する。処理済みガス11は、反応部31を出ると排気部33を通気して水素除去装置30の外部へ排気される。
処理済みガス11が排気部33に設置される熱交換器36を通過する際には、処理済みガス11の温熱17が熱交換器36を介して接する蓄熱体35へ放熱される。排気部33を通気する際の温熱17の放熱によって、処理済みガス11の温度は、反応部出口P1よりも水素除去装置出口P2の方がより低くなる。
また、蓄熱体35へ放熱された温熱17は、排気部33に近い高温側から冷却液15が通液する冷却液流路37に近い低温側へ熱伝達される。蓄熱体35から温熱17を吸熱した冷却液15は、冷却液流路37を流れて水素除去装置30の外部へ排出される。
続いて、水素除去装置30(図2)の主要部(反応部出口P1、蓄熱体35、および水素除去装置出口P2)における温度の時間変化について説明する。
図3は水素除去装置30(図2)における温度の時間変化を説明する説明図である。より詳細に説明すれば、図3(A)は反応部出口P1(図2)における処理済ガス11の温度(以下、「反応部出口温度」と称する。)Tgrc2の時間変化を説明する説明図(グラフ)、図3(B)は蓄熱体35(図2)の平均温度(以下、「蓄熱体平均温度」と称する。)Thsmの時間変化を説明する説明図(グラフ)、図3(C)は水素除去装置出口P2(図2)における処理済ガス11の温度(以下、「装置出口温度」と称する。)T2の時間変化を説明する説明図(グラフ)である。
なお、図3(A)、図3(B)、および図3(C)に示される時間(横軸)および温度(縦軸)は、何れも相対値である。
水素除去装置30(図2)において、反応部31の出口(反応部出口)P1における反応部出口温度Tgrc2は、水素との反応が始まると初期温度Tiから温度上昇し、最も活発になる状態が継続している最大温度持続時間h1の間に、最大温度Tmaxに達し、最大温度Tmaxが維持される。その後、被処理ガス中の水素量の減少等に伴い反応が沈静化し始める(最大温度持続時間h1を経過する)と温度は下がっていき、やがて初期温度Tiに収束する。
蓄熱体35における平均温度(蓄熱体平均温度)Thsmは、排気部33を通気する処理済みガス11の温熱17が熱交換器36を介して接する蓄熱体35へ放熱されるため、時間遅れh2を伴って蓄熱体平均温度Thsmは上昇する。蓄熱体平均温度Thsmは、蓄熱体35の蓄熱作用によって滑らかに温度が変化する。また、蓄熱体平均温度Thsmの最高温度は、蓄熱体35の相対的に高い熱容量により最大温度Tmaxに対してより低く抑えることができる。
水素除去装置30の出口(水素除去装置出口)P2における装置出口温度T2は、処理済ガス11が排気部33を反応部出口P1側から水素除去装置出口P2側へ通気する過程で、その温熱17が熱交換器36を介して奪われる(放熱される)ことによって低下する。
この結果、水素除去装置30では、反応部出口温度Tgrc2が最高温度Tmaxに達し、Tgrc2=Tmaxとなる時間が一定時間(1時間程度)継続したとしても、装置出口温度T2を反応部出口温度Tgrc2における最高温度Tmax(例えば、600℃程度)に対して十分低い温度に設定される設計許容温度Ta(例えば、200℃程度)以下に維持することができる。
従って、原子炉格納容器1の雰囲気から水素を除去するために水素除去装置30を適用する一例(図1)の場合に、反応部出口P1(図2)では最高で約600℃にも達する処理済ガス11の温度を、水素除去装置出口P2(図2)では原子炉格納容器1へ安全に(熱損傷等を発生させずに)戻すことのできる約200℃以下までに下げることができるので、ガス温度を約600℃から約200℃までに常時冷却可能な従来の冷却装置で使用されるような大量の冷却液15を使用(通液)することなく、処理済ガス11を原子炉格納容器1内へ安全に戻すことができる。
以上、水素除去装置30(水素除去モジュール60)によれば、水素除去処理後のガスの温度が最大温度となる状態で一定時間継続する場合においても、大流量の冷却水を必要とすることなく水素除去装置30(水素除去モジュール60)から排出される処理済ガス11の温度をより低く抑えることができる。
また、水素除去装置30,30A,30Bは、反応部31および蓄熱体35と接する断熱体38を備えることで、さらに、蓄熱体35への熱伝達を抑制することができ、水素除去装置30,30A,30Bから排出される処理済ガス11の温度をさらに低く抑えることができる。
なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階では、上述した実施例以外にも様々な形態で実施することが可能である。
例えば、図2に示される水素除去装置30では、反応部31および蓄熱体35と接する断熱体38が設けられているが、断熱体38は水素除去装置30に必ずしも設けられる必要はない。装置仕様上、排気する処理済ガス11の出口温度の設計許容温度が比較的高く、断熱体38がなくても設計許容温度以下となる(設計要求を満足できる)のであれば、断熱体38を省略することもできる。
また、図2に示される水素除去装置30は、水素除去モジュール60(基本モジュール)を1個具備して構成される例であるが、複数個の水素除去モジュール60を連結して1個の水素除去装置30(例えば、水素除去装置30A,30B:図4)を構成することができる。
ここで、図4は、本発明の実施形態に係る水素除去装置の変形例(水素除去モジュール60を複数用いて構成する例)である水素除去装置30A,30Bを示す概略図であり、図4(A)は2個の水素除去モジュール60を直列に連結した例である水素除去装置30Aの構成を示す概略図、図4(B)は複数の水素除去モジュール60を並列に連結した例である水素除去装置30Bを示す概略図である。
図4(A)に例示されるように、例えば2個等の複数個の水素除去モジュール60(基本モジュール)、すなわち、図2に例示される水素除去装置30を直列に接続して1個の水素除去装置30Aを構成することができる。また、複数個の水素除去モジュール60を直列に接続したものを1個の水素除去モジュール(複合モジュール)60Aとすることもできる。
また、例えば、図4(B)に示されるように、複数の水素除去モジュール60(基本モジュール)、すなわち、図2に例示される水素除去装置30を複数個、流量配分均一化装置70を介して並列に接続して1個の水素除去装置30Bを構成することができる。さらに、流量配分均一化装置70と、この流量配分均一化装置70を介して複数の水素除去モジュール60を接続したものを1個の水素除去モジュール(複合モジュール)60Bとすることもできる。
流量配分均一化装置70は、導入路71から導入されるガスを複数本の分配路72へ均一な流量で分配して排気する装置である。流量配分均一化装置70の各分配路72には当該流路を開閉する開閉弁73が設けられており、一部の分配路72に水素除去モジュール60が取り付けられない場合にも対応することができる。
なお、水素除去手段34と、蓄熱体35と、熱交換器36と、冷却液流路37とを備える水素除去モジュール60を複数個連結して構成される複合モジュールの構成は、ユーザが任意に決定することができ、水素除去モジュール60A,60Bとして例示した構成に限定されるものではない。例えば、図4(B)に例示される水素除去モジュール60Bにおいて、分配路72に接続される水素除去モジュール60の代わりに図4(A)に例示される水素除去モジュール60Aを適用したものを1個の複合モジュールとして構成することもできる。
また、本発明は、発明の要旨を逸脱しない範囲で、種々の省略、追加、置き換え、変更を行なうことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…原子炉格納容器、2…供給配管、3…戻り配管、5…原子炉圧力容器、6…被処理ガス、7…静的格納容器冷却系(PCCS)、8…排水管、9…ドライウェル、11…処理済ガス、13…圧力抑制室(サプレッションチェンバ)、15…冷却液、17…温熱、30(60),30A(60A),30B(60B)…水素除去装置(水素除去モジュール)、31…反応部、32…導入部、33…排気部、34…水素除去手段、35…蓄熱体(蓄熱手段)、36…熱交換器(熱交換手段)、37…冷却液流路、38…断熱体(断熱手段)、41…反応材、43…反応材容器、60…水素除去モジュール(基本モジュール)、60A,60B…水素除去モジュール(複合モジュール)、70…流量配分均一化装置(流量配分均一化手段)、71…導入路、72…分配路、73…開閉弁、P1…反応部出口、P2…水素除去装置出口、Tgrc2…P1における温度、Thsm…蓄熱体平均温度、T2…P2における温度、Tmax…処理済ガス最大温度、Ti…初期温度、Ta…設計許容温度、h1…最大温度持続時間、h2…遅れ時間。

Claims (3)

  1. ガス導入流路から処理するガスを導入して前記ガスに含まれる水素を酸化させて除去し、ガス排気流路から除去後のガスを外部へ排気する水素除去装置であり、
    導入部から導入する前記ガスに含まれる水素と反応する反応材を収容する反応部に、前記ガスを通気させて反応させることで、前記ガスに含まれる水素を酸化させて除去し、排気部から前記除去後のガスを外部へ排気する水素除去手段と、
    熱を蓄熱する蓄熱手段と、
    前記ガス排気流路に前記蓄熱手段と接する状態で設置され、前記反応部で反応した後のガスと前記蓄熱手段との間で熱交換する熱交換手段と、
    冷媒が流通し、この冷媒により前記蓄熱手段を冷却する冷媒流路と、を備える水素除去モジュールを、具備することを特徴とする水素除去装置。
  2. 前記水素除去モジュールは、前記反応部および前記蓄熱手段と接する状態で設置され、前記反応部および前記蓄熱手段の間の熱伝達を減少させる断熱手段をさらに備えることを特徴とする請求項1記載の水素除去装置。
  3. 前記水素除去モジュールを複数個と、
    導入路から導入されるガスを開閉自在な複数本の分配路へ均一な流量で分配して排気するガス流量配分均一化手段とをさらに具備し、
    前記ガス流量配分均一化手段の分配路のうち少なくとも2本と第1の水素除去モジュールの前記ガス導入流路および第2の水素除去モジュールの前記ガス導入流路とを接続して構成される複合モジュールを少なくとも一部に具備することを特徴とする請求項1または2記載の水素除去装置。
JP2014117174A 2014-06-06 2014-06-06 水素除去装置 Pending JP2015230267A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014117174A JP2015230267A (ja) 2014-06-06 2014-06-06 水素除去装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014117174A JP2015230267A (ja) 2014-06-06 2014-06-06 水素除去装置

Publications (1)

Publication Number Publication Date
JP2015230267A true JP2015230267A (ja) 2015-12-21

Family

ID=54887099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014117174A Pending JP2015230267A (ja) 2014-06-06 2014-06-06 水素除去装置

Country Status (1)

Country Link
JP (1) JP2015230267A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146460A (ja) * 2017-03-08 2018-09-20 株式会社東芝 水素除去装置
JP2019132685A (ja) * 2018-01-31 2019-08-08 株式会社東芝 格納容器用酸素計測装置およびその酸素センサ
TWI807514B (zh) * 2021-12-03 2023-07-01 鼎佳能源股份有限公司 氫氣處理系統
TWI817493B (zh) * 2022-05-10 2023-10-01 鼎佳能源股份有限公司 低溫氫氣氧化系統

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912298A (ja) * 1972-01-10 1974-02-02
US4000978A (en) * 1973-03-12 1977-01-04 Rockwell International Corporation Thermal recombiner
US4228132A (en) * 1973-08-10 1980-10-14 Westinghouse Electric Corp. Hydrogen-oxygen recombiner
JPS55158600A (en) * 1979-05-28 1980-12-10 Tokyo Shibaura Electric Co Recombiner
JPH09211188A (ja) * 1996-01-30 1997-08-15 Toshiba Corp 可燃性ガス濃度制御装置
JP2009216707A (ja) * 2008-03-07 2009-09-24 Areva Np Gmbh 気体流内を一緒に運ばれる水素を酸素と触媒式再結合する方法とこの方法を実施するための再結合システム
JP2013178188A (ja) * 2012-02-29 2013-09-09 Hitachi-Ge Nuclear Energy Ltd 原子力プラントの水素処理設備
JP2013221890A (ja) * 2012-04-18 2013-10-28 Toshiba Corp 原子炉格納容器のベント装置及びベント方法
JP2014020997A (ja) * 2012-07-20 2014-02-03 Toshiba Corp 原子炉格納容器の水素除去装置及び水素除去方法
CA2878629A1 (en) * 2012-08-01 2014-02-06 Areva Gmbh Containment protection system for a nuclear facility and associated operating method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912298A (ja) * 1972-01-10 1974-02-02
US4000978A (en) * 1973-03-12 1977-01-04 Rockwell International Corporation Thermal recombiner
US4228132A (en) * 1973-08-10 1980-10-14 Westinghouse Electric Corp. Hydrogen-oxygen recombiner
JPS55158600A (en) * 1979-05-28 1980-12-10 Tokyo Shibaura Electric Co Recombiner
JPH09211188A (ja) * 1996-01-30 1997-08-15 Toshiba Corp 可燃性ガス濃度制御装置
JP2009216707A (ja) * 2008-03-07 2009-09-24 Areva Np Gmbh 気体流内を一緒に運ばれる水素を酸素と触媒式再結合する方法とこの方法を実施するための再結合システム
JP2013178188A (ja) * 2012-02-29 2013-09-09 Hitachi-Ge Nuclear Energy Ltd 原子力プラントの水素処理設備
JP2013221890A (ja) * 2012-04-18 2013-10-28 Toshiba Corp 原子炉格納容器のベント装置及びベント方法
JP2014020997A (ja) * 2012-07-20 2014-02-03 Toshiba Corp 原子炉格納容器の水素除去装置及び水素除去方法
CA2878629A1 (en) * 2012-08-01 2014-02-06 Areva Gmbh Containment protection system for a nuclear facility and associated operating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146460A (ja) * 2017-03-08 2018-09-20 株式会社東芝 水素除去装置
JP2019132685A (ja) * 2018-01-31 2019-08-08 株式会社東芝 格納容器用酸素計測装置およびその酸素センサ
TWI807514B (zh) * 2021-12-03 2023-07-01 鼎佳能源股份有限公司 氫氣處理系統
TWI817493B (zh) * 2022-05-10 2023-10-01 鼎佳能源股份有限公司 低溫氫氣氧化系統

Similar Documents

Publication Publication Date Title
JP6034165B2 (ja) 水素除去装置
KR102580625B1 (ko) 냉간 셧다운을 위한 수동 냉각
JP2015230267A (ja) 水素除去装置
JP6309746B2 (ja) 水素除去装置
WO2010101112A1 (ja) 原子炉格納容器冷却設備、原子炉格納容器および原子炉格納容器冷却方法
JP6071493B2 (ja) 水素除去装置
JPH02201293A (ja) 原子炉プラント格納構造用の自然循環式受動冷却系
JP2020041834A (ja) 水素処理システム、原子炉施設および水素処理方法
JP2019051518A (ja) 水素処理装置
JP2017067725A (ja) 非常用炉心冷却系の代替循環冷却方法および原子力発電所
JP5687440B2 (ja) 原子炉格納容器除熱装置及び除熱方法
JP2012154644A (ja) 原子炉格納容器の熱輸送装置およびその方法
JP6180981B2 (ja) 水素処理装置
JP2019051519A (ja) 水素処理装置
JP2009069121A (ja) 原子力プラント
JP2014226572A (ja) 水素処理装置、水素処理方法及び水素処理プログラム
JP2014020997A (ja) 原子炉格納容器の水素除去装置及び水素除去方法
JP2006322768A (ja) 原子炉格納容器の水素除去装置及びその除去方法
KR102071979B1 (ko) 원자력 발전소 내 냉각수 저장수조의 수소 폭발 방지 장치
JP5989529B2 (ja) 水素除去装置
KR101695363B1 (ko) 피동안전계통 및 이를 구비하는 원전
JPH0990092A (ja) 原子炉格納容器
JP2013246100A (ja) 水素処理装置および水素処理方法
JP2006162559A (ja) 原子炉格納容器の過圧防止方法および装置
JP2018112480A (ja) 水素処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180619