JP2015199411A - ハイブリッド車 - Google Patents

ハイブリッド車 Download PDF

Info

Publication number
JP2015199411A
JP2015199411A JP2014078789A JP2014078789A JP2015199411A JP 2015199411 A JP2015199411 A JP 2015199411A JP 2014078789 A JP2014078789 A JP 2014078789A JP 2014078789 A JP2014078789 A JP 2014078789A JP 2015199411 A JP2015199411 A JP 2015199411A
Authority
JP
Japan
Prior art keywords
motor
engine
rotational speed
phase
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014078789A
Other languages
English (en)
Inventor
奈津樹 野澤
Natsuki Nozawa
奈津樹 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014078789A priority Critical patent/JP2015199411A/ja
Publication of JP2015199411A publication Critical patent/JP2015199411A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】エンジンと2つのモータとを備えるタイプのハイブリッド車において、2つのモータの各相電流を検出するセンサに異常が生じたときでも退避走行を可能とする。【解決手段】エンジンを運転しながら走行している最中に2つのモータMG1,MG2の各相電流を検出する電流センサに何らかの異常が生じたことによってモータMG1,MG2の各相電流を検出することができない異常が生じたときには、モータMG1を3相短絡し、モータMG1の回転数Nm1が引き摺りトルクが比較的大きな所定回転数領域(0<Nm1≰Nlim)内で保持されるようエンジンの出力を制御する。これにより、モータMG1の引き摺りトルクを走行用の駆動力として用いることができ、退避走行を可能とすることができる。【選択図】図3

Description

本発明は、ハイブリッド車に関し、詳しくは、エンジンと、第1モータと、3つの回転要素がエンジンと第1モータと車軸とに連結された遊星歯車機構と、走行用の駆動力を出力する第2モータと、を備えるハイブリッド車に関する。
従来、この種のハイブリッド車としては、エンジンと、第1のモータジェネレータと、エンジンと第1のモータジェネレータとフロント車輪とにキャリアとサンギヤとリングギヤとが連結されたプラネタリギヤと、フロント車輪に駆動力を出力する第2のモータジェネレータと、を備えるハイブリッド自動車において、第1のモータジェネレータの各相電流を検出する複数の電流センサの異常と第1のモータジェネレータを駆動するインバータの一相短絡とを検出したときには、インバータの三相をオンするのを許可するものが提案されている(特許文献1参照)。このハイブリッド車では、インバータの三相をオンとすることにより、第1のモータジェネレータの引き摺りトルクであるブレーキトルクを抑えて退避走行を可能としている。
特開2010−047083号公報
上述したエンジンと2つのモータジェネレータとを備えるタイプのハイブリッド車では、第1のモータジェネレータの各相電流を検出するセンサと第2のモータジェネレータの各相電流を検出するセンサとに異常を生じたときには、通常は両モータジェネレータのインバータをシャットダウンするため、フロント車輪に駆動力を出力することができない。上述のハイブリッド車では、リア車輪用の第3のモータジェネレータを備えるため、フロント車輪に駆動力を出力することができないときでも、第3のモータジェネレータからの駆動力により退避走行することができるが、第3のモータジェネレータを備えないタイプのハイブリッド車では、退避走行が困難となる。
本発明のハイブリッド車は、エンジンと2つのモータとを備えるタイプのハイブリッド車において、2つのモータの各相電流を検出するセンサに異常が生じたときでも退避走行を可能とすることを主目的とする。
本発明のハイブリッド車は、上述の主目的を達成するために以下の手段を採った。
本発明のハイブリッド車は、
エンジンと、三相交流発電電動機として構成された第1モータと、3つの回転要素がエンジンと第1モータと車軸とに連結された遊星歯車機構と、走行用の駆動力を出力するよう三相交流発電電動機として構成された第2モータと、前記第1モータを駆動する第1インバータと、前記第2モータを駆動する第2インバータと、前記第1モータの各相電流を検出する第1電流検出手段と、前記第2モータの各相電流を検出する第2電流検出手段と、を備えるハイブリッド車において、
前記第1電流検出手段および前記第2電流検出手段に異常が生じたときには、前記第1インバータを構成するスイッチング素子のうち上アームの全て又は下アームの全てをオンとして3相短絡するよう前記第1インバータを制御すると共に前記第1モータの回転数が所定回転数領域内となるようエンジンを駆動制御する異常時制御手段、
を備えることを特徴とする。
この本発明のハイブリッド車では、第1モータの各相電流を検出する第1電流検出手段と第2モータの各相電流を検出する第2電流検出手段とに共に異常が生じたときには、第1モータを駆動する第1インバータを構成するスイッチング素子のうち上アームの全て又は下アームの全てをオンとして3相短絡し、第1モータの回転数が所定回転数領域内となるようエンジンを駆動制御する。三相交流発電電動機は、3相短絡して回転させると、回転数を減少させる方向のトルク(引き摺りトルク)を発生する。この引き摺りトルクは、比較的低い回転数で大きく、回転数が大きくなると小さくなる。したがって、引き摺りトルクが比較的大きな回転数範囲を所定回転数領域として予め定めておき、3相短絡した状態で第1モータを所定回転数領域内で回転させれば、第1モータは引き摺りトルクを発生するから、このトルクを車軸に出力することにより、走行用の駆動力を得ることができる。この結果、退避走行を行なうことができる。
こうした本発明のハイブリッド車において、前記異常時制御手段は、前記第1電流検出手段および前記第2電流検出手段に異常が生じたときには、前記第1インバータおよび前記第2インバータをゲート遮断すると共に前記第1モータの回転数が前記所定回転数領域内となるようエンジンを駆動制御し、前記第1モータの回転数が前記所定回転数領域内となったときに前記第1インバータを3相短絡するよう前記第1インバータを制御し、その後、前記第1モータの回転数が前記所定回転数領域内となるようエンジンを駆動制御する手段であるものとすることもできる。こうすれば、走行中に第1電流検出手段および第2電流検出手段に異常が生じたときでも、停車することなく、退避走行することができる。
本発明の一実施例としてのハイブリッド自動車20の構成の概略を示す構成図である。 モータMG1,MG2を含む電機駆動系の構成の概略を示す構成図である。 HVECU70により実行される異常時制御ルーチンの一例を示すフローチャートである。 3相短絡したときのモータMG1の回転数Nm1とモータMG1から出力されるトルク(引き摺りトルク)との関係の一例を示す説明図である。 インバータ41,42がゲート遮断されたときのプラネタリギヤ30の回転要素における回転数とトルクとの力学的な関係を示す共線図の一例を示す説明図である。 モータMG1からの引き摺りトルクを駆動力として駆動軸36に出力しているときのプラネタリギヤ30の回転要素における回転数とトルクとの力学的な関係を示す共線図の一例を示す説明図である。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は本発明の一実施例としてのハイブリッド自動車20の構成の概略を示す構成図であり、図2はモータMG1,MG2を含む電機駆動系の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図1に示すように、ガソリンや軽油などを燃料として動力を出力するエンジン22と、エンジン22を駆動制御するエンジン用電子制御ユニット(以下、エンジンECUという)24と、エンジン22のクランクシャフト26にキャリアが接続されると共に駆動輪38a,38bにデファレンシャルギヤ37を介して連結された駆動軸36にリングギヤが接続されたプラネタリギヤ30と、例えば同期発電電動機として構成されて回転子がプラネタリギヤ30のサンギヤに接続されたモータMG1と、例えば同期発電電動機として構成されて回転子が駆動軸36に接続されたモータMG2と、モータMG1,MG2を駆動するためのインバータ41,42と、例えばリチウムイオン二次電池として構成されたバッテリ50と、インバータ41,42が接続された電力ライン(以下、駆動電圧系電力ライン54aという)とバッテリ50が接続された電力ライン(以下、電池電圧系電力ライン54bという)とに接続されて駆動電圧系電力ライン54aの電圧VHを電池電圧系電力ライン54bの電圧VL以上の範囲で調節すると共に駆動電圧系電力ライン54aと電池電圧系電力ライン54bとの間で電力のやりとりを行なう昇圧コンバータ55と、インバータ41,42を制御することによってモータMG1,MG2を駆動制御すると共に昇圧コンバータ55を制御するモータ用電子制御ユニット(以下、モータECUという)40と、バッテリ50を管理するバッテリ用電子制御ユニット(以下、バッテリECUという)52と、車両全体を制御するハイブリッド用電子制御ユニット(以下、HVECUという)70と、を備える。
エンジンECU24は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。エンジンECU24には、エンジン22の運転状態を検出する各種センサからの信号、例えば、クランクシャフト26の回転位置を検出するクランクポジションセンサからのクランクポジションθcrやエンジン22の冷却水の温度を検出する水温センサからの冷却水温Tw,燃焼室内に取り付けられた圧力センサからの筒内圧力Pin,燃焼室へ吸排気を行なう吸気バルブや排気バルブを開閉するカムシャフトの回転位置を検出するカムポジションセンサからのカムポジションθca,スロットルバルブのポジションを検出するスロットルバルブポジションセンサからのスロットルポジションTP,吸気管に取り付けられたエアフローメータからの吸入空気量Qa,同じく吸気管に取り付けられた温度センサからの吸気温Ta,排気系に取り付けられた空燃比センサからの空燃比AF,同じく排気系に取り付けられた酸素センサからの酸素信号O2などが入力ポートを介して入力されており、エンジンECU24からは、エンジン22を駆動するための種々の制御信号、例えば、燃料噴射弁への駆動信号やスロットルバルブのポジションを調節するスロットルモータへの駆動信号,イグナイタと一体化されたイグニッションコイルへの制御信号,吸気バルブの開閉タイミングの変更可能な可変バルブタイミング機構への制御信号などが出力ポートを介して出力されている。また、エンジンECU24は、HVECU70と通信しており、HVECU70からの制御信号によりエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータをHVECU70に出力する。なお、エンジンECU24は、クランクシャフト26に取り付けられた図示しないクランクポジションセンサからの信号に基づいてクランクシャフト26の回転数、即ちエンジン22の回転数Neも演算している。
モータMG1,MG2は、いずれも、永久磁石が埋め込まれた回転子と三相コイルが巻回された固定子とを備える周知の同期発電電動機として構成されている。インバータ41,42は、図2に示すように、6つのトランジスタT11〜T16,T21〜26と、トランジスタT11〜T16,T21〜T26に逆方向に並列接続された6つのダイオードD11〜D16,D21〜D26と、により構成されている。トランジスタT11〜T16,T21〜T26は、それぞれ駆動電圧系電力ライン54aの正極母線と負極母線とに対してソース側とシンク側になるよう2個ずつペアで配置されており、対となるトランジスタ同士の接続点の各々にモータMG1,MG2の三相コイル(U相,V相,W相)の各々が接続されている。したがって、インバータ41,42に電圧が作用している状態で対をなすトランジスタT11〜T16,T21〜T26のオン時間の割合を調節することにより、三相コイルに回転磁界を形成でき、モータMG1,MG2を回転駆動することができる。インバータ41,42は、駆動電圧系電力ライン54aの正極母線と負極母線とを共用しているから、モータMG1,MG2のいずれかで発電される電力を他のモータに供給することができる。駆動電圧系電力ライン54aの正極母線と負極母線とには平滑用のコンデンサ57が接続されている。
昇圧コンバータ55は、図2に示すように、2つのトランジスタT51,T52とトランジスタT51,T52に逆方向に並列接続された2つのダイオードD51,D52とリアクトルLとからなる昇圧コンバータとして構成されている。2つのトランジスタT51,T52は、それぞれ駆動電圧系電力ライン54aの正極母線,駆動電圧系電力ライン54aおよび電池電圧系電力ライン54bの負極母線に接続されており、トランジスタT51,T52の接続点と電池電圧系電力ライン54bの正極母線とにリアクトルLが接続されている。したがって、トランジスタT51,T52をオンオフすることにより、電池電圧系電力ライン54bの電力を昇圧して駆動電圧系電力ライン54aに供給したり、駆動電圧系電力ライン54aの電力を降圧して電池電圧系電力ライン54bに供給したりすることができる。電池電圧系電力ライン54bの正極母線と負極母線とには平滑用のコンデンサ58が接続されている。以下、昇圧コンバータ55によって駆動電圧系電力ライン54aの電圧VHを電池電圧系電力ライン54bの電圧VLに対して昇圧する(高くする)ことを昇圧コンバータ55による昇圧を行なうと称することがある。
モータECU40は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。モータECU40には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの回転位置θm1,θm2や電流センサ45U,45V,46U,46Vにより検出されるモータMG1,MG2に印加される相電流,コンデンサ57の端子間に取り付けられた電圧センサ57aからのコンデンサ57の電圧(駆動電圧系電力ライン54aの電圧)VHやコンデンサ58の端子間に取り付けられた電圧センサ58aからのコンデンサ58の電圧(電池電圧系電力ライン54bの電圧)VL,電池電圧系電力ライン54bに取り付けられた電流センサ59からの充放電電流Ibなどが入力ポートを介して入力されており、モータECU40からは、インバータ41,42のトランジスタT11〜T16,T21〜T26へのスイッチング制御信号や昇圧コンバータ55のトランジスタT51,T52へのスイッチング制御信号などが出力ポートを介して出力されている。また、モータECU40は、HVECU70と通信しており、HVECU70からの制御信号によってモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをHVECU70に出力する。なお、モータECU40は、回転位置検出センサ43,44からのモータMG1,MG2の回転子の回転位置θm1,θm2に基づいてモータMG1,MG2の回転子の電気角θe1,θe2やモータMG1,MG2の回転角速度ωm1,ωm2,モータMG1,MG2の回転数Nm1,Nm2を演算したり、モータMG2の回転角速度ωm2に基づいてモータMG2の回転軸に換算した駆動輪38a,38bの回転角速度としての駆動輪回転角速度ωbを演算したりしている。ここで、モータMG1,MG2の各相電流のうち、u相電流Iu1,Iu2は電流センサ45U,46Uにより検出され、v相電流Iv1,Iv2は電流センサ45V,46Vにより検出され、w相電流Iw1,Iw2はu相電流Iu1,Iu2とv相電流Iv1,Iv2との和が値0とする関係式から計算により求められる。
バッテリECU52は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。バッテリECU52には、バッテリ50を管理するのに必要な信号、例えば、バッテリ50の端子間に設置された図示しない電圧センサからの端子間電圧Vbやバッテリ50の出力端子に接続された電池電圧系電力ライン54bに取り付けられた電流センサ59からの充放電電流Ib,バッテリ50に取り付けられた図示しない温度センサからの電池温度Tbなどが入力されており、必要に応じてバッテリ50の状態に関するデータを通信によりHVECU70に送信する。また、バッテリECU52は、バッテリ50を管理するために、電流センサにより検出された充放電電流Ibの積算値に基づいてそのときのバッテリ50から放電可能な電力の容量の全容量に対する割合である蓄電割合SOCを演算したり、演算した蓄電割合SOCと電池温度Tbとに基づいてバッテリ50を充放電してもよい最大許容電力である入出力制限Win,Woutを演算したりしている。
HVECU70は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。HVECU70には、イグニッションスイッチ80からのイグニッション信号やシフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP,アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc,ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速Vなどが入力ポートを介して入力されている。HVECU70は、前述したように、エンジンECU24やモータECU40,バッテリECU52と通信ポートを介して接続されており、エンジンECU24やモータECU40,バッテリECU52と各種制御信号やデータのやりとりを行なっている。なお、実施例のハイブリッド自動車20では、シフトレバー81の操作位置(シフトポジションセンサ82により検出されるシフトポジションSP)としては、駐車時に用いる駐車ポジション(Pレンジ),後進走行用のリバースポジション(Rレンジ),中立のニュートラルポジション(Nレンジ),前進走行用のドライブポジション(Dレンジ)などがある。
こうして構成された実施例のハイブリッド自動車20では、前進走行時には、エンジン22の運転を伴って走行するハイブリッド走行モード(HV走行モード)や、エンジン22の運転(燃料噴射制御など)を停止して走行する電動走行モード(EV走行モード)で走行し、後進走行時には、基本的には、EV走行モードで走行する。
HV走行モードでの走行時には、HVECU70は、アクセル開度Accと車速Vとに基づいて走行に要求される要求トルクTr*(前進走行するときが正の値)を設定する。続いて、設定した要求トルクTr*に駆動軸36の回転数Nr(例えばモータMG2の回転数Nm2(前進走行するときが正の値))を乗じて走行に要求される走行用パワーPdrv*を計算し、計算した走行用パワーPdrv*からバッテリ50の蓄電割合SOCに基づくバッテリ50の充放電要求パワーPb*(バッテリ50から放電するときが正の値)を減じて車両に要求される要求パワーPe*を設定する。そして、要求パワーPe*とエンジン22を効率よく運転するための動作ライン(例えば燃費最適動作ライン)とを用いてエンジン22の目標回転数Ne*と目標トルクTe*とを設定し、エンジン22の回転数Neが目標回転数Ne*となるようにするための回転数フィードバック制御によってモータMG1のトルク指令Tm1*を設定する。そして、モータMG1をトルク指令Tm1*で駆動したときにモータMG1から出力されてプラネタリギヤ30を介して駆動軸36に伝達されるトルクを要求トルクTr*から減じてモータMG2の仮トルクTm2tmpを計算し、モータMG1のトルク指令Tm1*に回転数Nm1を乗じて得られるモータMG1の消費電力(発電電力)をバッテリ50の入出力制限Win,Woutから減じて更にモータMG2の回転数Nm2で除してモータMG2のトルク制限Tm2min,Tm2maxを計算し、仮トルクTm2tmpをトルク制限Tm2min,Tm2maxおよび正側,負側の定格トルクTm2rat1,Tm2rat2で制限してモータMG2のトルク指令Tm2*を計算する。ここで、定格トルクTm2rat1,Tm2rat2は、モータMG2の回転数Nm2と定格トルクTm2rat1,Tm2rat2との関係を予め定めたマップに回転数Nm2を適用して設定するものとした。そして、目標回転数Ne*と目標トルクTe*とについてはエンジンECU24に送信し、トルク指令Tm1*,Tm2*についてはモータECU40に送信する。目標回転数Ne*と目標トルクTe*とを受信したエンジンECU24は、目標回転数Ne*と目標トルクTe*とによってエンジン22が運転されるようエンジン22の吸入空気量制御や燃料噴射制御,点火制御などを行なう。また、トルク指令Tm1*,Tm2*を受信したモータECU40は、トルク指令Tm1*,Tm2*でモータMG1,MG2が駆動されるようインバータ41,42の複数のスイッチング素子のスイッチング制御を行なう。
EV走行モードでの走行時には、HVECU70は、アクセル開度Accと車速Vとに基づいて要求トルクTr*を設定し、モータMG1のトルク指令Tm1*に値0を設定すると共にHVモードでの走行時と同様にモータMG2のトルク指令Tm2*を設定してモータECU40に送信する。そして、トルク指令Tm1*,Tm2*を受信したモータECU40は、モータMG1,MG2がトルク指令Tm1*,Tm2*で駆動されるようインバータ41,42のスイッチング素子のスイッチング制御を行なう。
次に、こうして構成されたハイブリッド自動車20の動作、特に電流センサ45U,45V,46U,46Vに生じた何らかの異常によりモータMG1の各相電流とモータMG2の各相電流とを共に検出することができないときに退避走行する際の動作について説明する。図3は、HVECU70により実行される異常時制御ルーチンの一例を示すフローチャートである。このルーチンは、所定時間毎(例えば、数msec毎)に繰り返し実行される。
異常時制御ルーチンが実行されると、HVECU70は、まず、電流センサ45U,45V,46U,46Vに何らかの異常が生じたことによってモータMG1に印加される各相電流Iu1,Iv1,Iw1とモータMG2に印加される各相電流Iu2,Iv2,Iw2とを共に検出することができない異常が生じているか否かを判定する(ステップS100)。こうした異常が生じていないときには、本ルーチンによる処理は不要と判断し、本ルーチンを終了する。一方、異常が生じているときには、モータMG1を駆動するインバータ41をゲート遮断すると共にモータMG2を駆動するインバータ42をゲート遮断し(ステップS110)、エンジン22を起動中(運転中)であるか否かを判定する(ステップS120)。エンジン22を起動中(運転中)ではないときには、本ルーチンによる処理の対象外と判断し、本ルーチンを終了する。
エンジン22が起動中(運転中)であるときには、モータMG1の回転数Nm1が値0より大きく閾値Nlim以下の所定回転数領域(0<Nm1≦Nlim)内となるまでエンジン22の出力を制御する(ステップS130,S140)。ここで、閾値Nlimは、3相短絡したときにモータMG1の回転に伴って出力されるトルク(引き摺りトルク)が駆動力として用いることができる程度の大きさを有する上限回転数として予め定められるものである。図4に、モータMG1のインバータ41のトランジスタT11〜T16のうち上アーム(T11〜T13)をオン又は下アーム(T14〜T16)をオンとして3相短絡したときのモータMG1の回転数Nm1とモータMG1から出力するトルク(引き摺りトルク)との関係の一例を示す。図示するように、三相交流同期発電電動機として構成されたモータMG1は、3相短絡すると、回転数の値0からの上昇に対して、引き摺りトルクは一旦大きくなった後に小さくなる。このため、引き摺りトルクを駆動力として用いることができる程度の大きさを有する回転数範囲としては、値0より大きく閾値Nlim以下の範囲となる。引き摺りトルクをどのように駆動力として用いるかについては後述する。エンジン22の出力制御は、モータMG1の回転数Nm1が所定回転数領域(0<Nm1≦Nlim)を上回るときにはエンジン22から出力するトルクTeが小さくなるように吸入空気量を減少するようスロットル開度を制御し、モータMG1の回転数Nm1が所定回転数領域(0<Nm1≦Nlim)を下回るときにはエンジン22から出力するトルクTeが大きくなるように吸入空気量を増加するようスロットル開度を制御するなどにより行なうことができる。
モータMG1の回転数Nm1が所定回転数領域(0<Nm1≦Nlim)内になると、モータMG1のインバータ41のトランジスタT11〜T16のうち下アーム(T14〜T16)を全てオンとして3相短絡し(ステップS150)、シフトポジションSPが駐車レンジ(Pレンジ)とされるまで、モータMG1の回転数Nm1が所定回転数領域(0<Nm1≦Nlim)内で保持されるようエンジン22の出力を制御し(ステップS160,S170)、シフトポジションSPが駐車レンジ(Pレンジ)とされたときに、本ルーチンを終了する。ここで、エンジン22の出力制御は、例えば、モータMG1の回転数Nm1が所定回転数領域(0<Nm1≦Nlim)内のときにはそのときのエンジン22の運転を維持するように制御し、モータMG1の回転数Nm1が所定回転数領域(0<Nm1≦Nlim)を上回るときにはエンジン22から出力するトルクTeが小さくなるように吸入空気量を減少するようスロットル開度を制御し、モータMG1の回転数Nm1が所定回転数領域(0<Nm1≦Nlim)を下回るときにはエンジン22から出力するトルクTeが大きくなるように吸入空気量を増加するようスロットル開度を制御するなどにより行なうことができる。
いま、エンジン22を運転しながら走行している最中に電流センサ45U,45V,46U,46Vに何らかの異常が生じたことによってモータMG1に印加される各相電流Iu1,Iv1,Iw1とモータMG2に印加される各相電流Iu2,Iv2,Iw2とを共に検出することができない異常が生じたときを考える。このとき、上述の異常時制御ルーチンによりインバータ41,42は共にゲート遮断されるから(ステップS110)、モータMG1,MG2からはトルクは出力されない。このときのプラネタリギヤ30の回転要素における回転数とトルクとの力学的な関係を示す共線図の一例を図5に示す。図中、左のS軸はモータMG1の回転数Nm1であるサンギヤの回転数を示し、C軸はエンジン22の回転数Neであるキャリアの回転数を示し、R軸はモータMG2の回転数Nm2であるリングギヤの回転数Nrを示す。状態Aは、比較的低車速で走行しているときを示し、状態Bは比較的高車速で走行しているときを示す。また、C軸上の太線矢印はエンジン22のトルクTeを示す。
インバータ41,42をゲート遮断すると、モータMG1の回転数Nm1が所定回転数領域(0<Nm1≦Nlim)内となるまでエンジン22の出力が制御され(ステップS130,S140)、モータMG1の回転数Nm1が所定回転数領域(0<Nm1≦Nlim)内になると、モータMG1を3相短絡し(ステップS150)、モータMG1の回転数Nm1が所定回転数領域(0<Nm1≦Nlim)内で保持されるようエンジン22の出力が制御される(ステップS160,S170)。このときのプラネタリギヤ30の回転要素における回転数とトルクとの力学的な関係を示す共線図の一例を図6に示す。図中、S軸上の太線矢印はモータMG1の引き摺りトルクを示し、R軸上の太線矢印はモータMG1の引き摺りトルクにより駆動軸36に出力されるトルクを示す。図6に示すように、モータMG1を3相短絡して所定回転数領域(0<Nm1≦Nlim)内で回転させると回転数を減少させる方向に引き摺りトルクが生じる。この引き摺りトルクは、駆動軸36(R軸上)には前進方向に走行するためのトルクとして作用する。実施例のハイブリッド自動車20では、このトルクを用いて退避走行するのである。
以上説明した実施例のハイブリッド自動車20によれば、エンジン22を運転しながら走行している最中に電流センサ45U,45V,46U,46Vに何らかの異常が生じたことによってモータMG1に印加される各相電流Iu1,Iv1,Iw1とモータMG2に印加される各相電流Iu2,Iv2,Iw2とを共に検出することができない異常が生じたときには、モータMG1を3相短絡し、モータMG1の回転数Nm1が引き摺りトルクが比較的大きな所定回転数領域(0<Nm1≦Nlim)内で保持されるようエンジン22の出力を制御することにより、モータMG1の引き摺りトルクを走行用の駆動力として用いることができ、退避走行を可能とすることができる。
実施例のハイブリッド自動車20では、インバータ41のトランジスタT11〜T16のうち下アーム(T14〜T16)を全てオンとして3相短絡するものとしたが、インバータ41のトランジスタT11〜T16のうち上アーム(T11〜T13)を全てオンとして3相短絡するものとしてもよい。
実施例のハイブリッド自動車20では、モータMG1の回転数Nm1を所定回転数領域(0<Nm1≦Nlim)内で保持するエンジン22の出力制御として、モータMG1の回転数Nm1が所定回転数領域(0<Nm1≦Nlim)内のときにはそのときのエンジン22の運転を維持するように制御し、モータMG1の回転数Nm1が所定回転数領域(0<Nm1≦Nlim)を上回るときにはエンジン22から出力するトルクTeが小さくなるように吸入空気量を減少するようスロットル開度を制御し、モータMG1の回転数Nm1が所定回転数領域(0<Nm1≦Nlim)を下回るときにはエンジン22から出力するトルクTeが大きくなるように吸入空気量を増加するようスロットル開度を制御するものとしたが、0<Nref1<Nref2<Nlimを満たす閾値Nref1と閾値Nref2とからなる制御回転数領域を用いて、モータMG1の回転数Nm1が制御回転数領域(Nref1<Nm1≦Nref2)内のときにはそのときのエンジン22の運転を維持するように制御し、モータMG1の回転数Nm1が制御回転数領域(Nref1<Nm1≦Nれf2)を上回るときにはエンジン22から出力するトルクTeが小さくなるように吸入空気量を減少するようスロットル開度を制御し、モータMG1の回転数Nm1が制御回転数領域(Nref1<Nm1≦Nref2)を下回るときにはエンジン22から出力するトルクTeが大きくなるように吸入空気量を増加するようスロットル開度を制御するものとしたり、所定回転数領域(0<Nm1≦Nlim)内の制御回転数Nsetを用いて、モータMG1の回転数Nm1が制御回転数Nsetとなるようにエンジン22の出力をフィードバック制御するものとしたりしてもよい。
実施例のハイブリッド自動車20では、3相短絡した後は、シフトポジションSPが駐車レンジ(Pレンジ)とされるまで、モータMG1の回転数Nm1が所定回転数領域(0<Nm1≦Nlim)内で保持されるようエンジン22の出力を制御するものとしたが、3相短絡した後は、停車するまでモータMG1の回転数Nm1が所定回転数領域(0<Nm1≦Nlim)内で保持されるようエンジン22の出力を制御するものとしたり、3相短絡した後は、所定時間経過するまでモータMG1の回転数Nm1が所定回転数領域(0<Nm1≦Nlim)内で保持されるようエンジン22の出力を制御するものとしたりしてもよい。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、エンジン22が「エンジン」に相当し、モータMG1が「第1モータ」に相当し、プラネタリギヤ30が「遊星歯車機構」に相当し、モータMG2が「第2モータ」に相当し、インバータ41が「第1インバータ」に相当し、インバータ42が「第2インバータ」に相当し、電流センサ45U,45Vが「第1電流検出手段」に相当し、電流センサ46U,46Vが「第2電流検出手段」に相当し、エンジンECU24とモータECU40とHVECU70とが「異常時制御手段」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、ハイブリッド車の製造産業などに利用可能である。
20 ハイブリッド自動車、22 エンジン、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、30 プラネタリギヤ、36 駆動軸、37 デファレンシャルギヤ、38a,38b 駆動輪、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、45U,45V,46U,46V 電流センサ、50 バッテリ、52 バッテリ用電子制御ユニット(バッテリECU)、54a 駆動電圧系電力ライン、54b 電池電圧系電力ライン、55 昇圧コンバータ、57,58 コンデンサ、57a,58a 電圧センサ、59 電流センサ、70 ハイブリッド用電子制御ユニット(HVECU)、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、D11〜D16,D21〜D26,D51,D52 ダイオード、L リアクトル、MG1,MG2 モータ、T11〜T16,T21〜T26,T51,T52 トランジスタ。

Claims (1)

  1. エンジンと、三相交流発電電動機として構成された第1モータと、3つの回転要素がエンジンと第1モータと車軸とに連結された遊星歯車機構と、走行用の駆動力を出力するよう三相交流発電電動機として構成された第2モータと、前記第1モータを駆動する第1インバータと、前記第2モータを駆動する第2インバータと、前記第1モータの各相電流を検出する第1電流検出手段と、前記第2モータの各相電流を検出する第2電流検出手段と、を備えるハイブリッド車において、
    前記第1電流検出手段および前記第2電流検出手段に異常が生じたときには、前記第1インバータを構成するスイッチング素子のうち上アームの全て又は下アームの全てをオンとして3相短絡するよう前記第1インバータを制御すると共に前記第1モータの回転数が所定回転数領域内となるようエンジンを駆動制御する異常時制御手段、
    を備えることを特徴とするハイブリッド車。
JP2014078789A 2014-04-07 2014-04-07 ハイブリッド車 Pending JP2015199411A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014078789A JP2015199411A (ja) 2014-04-07 2014-04-07 ハイブリッド車

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014078789A JP2015199411A (ja) 2014-04-07 2014-04-07 ハイブリッド車

Publications (1)

Publication Number Publication Date
JP2015199411A true JP2015199411A (ja) 2015-11-12

Family

ID=54551112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014078789A Pending JP2015199411A (ja) 2014-04-07 2014-04-07 ハイブリッド車

Country Status (1)

Country Link
JP (1) JP2015199411A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107031610A (zh) * 2016-02-04 2017-08-11 丰田自动车株式会社 混合动力车辆
JP2018177081A (ja) * 2017-04-18 2018-11-15 トヨタ自動車株式会社 ハイブリッド自動車
CN113494407A (zh) * 2020-04-08 2021-10-12 广州汽车集团股份有限公司 一种基于电机调速的发动机启动控制

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107031610A (zh) * 2016-02-04 2017-08-11 丰田自动车株式会社 混合动力车辆
CN107031610B (zh) * 2016-02-04 2019-06-18 丰田自动车株式会社 混合动力车辆
JP2018177081A (ja) * 2017-04-18 2018-11-15 トヨタ自動車株式会社 ハイブリッド自動車
CN113494407A (zh) * 2020-04-08 2021-10-12 广州汽车集团股份有限公司 一种基于电机调速的发动机启动控制
CN113494407B (zh) * 2020-04-08 2022-08-16 广州汽车集团股份有限公司 一种基于电机调速的发动机启动控制

Similar Documents

Publication Publication Date Title
JP6392653B2 (ja) ハイブリッド自動車
JP6183339B2 (ja) ハイブリッド自動車
JP6725409B2 (ja) ハイブリッド自動車
JP6888512B2 (ja) ハイブリッド自動車
JP6156404B2 (ja) ハイブリッド自動車
JP6575544B2 (ja) ハイブリッド自動車
JP2021084537A (ja) ハイブリッド車両
JP6772947B2 (ja) ハイブリッド自動車
JP6760194B2 (ja) ハイブリッド車両
JP2018079786A (ja) ハイブリッド自動車
JP2009184500A (ja) 車両およびその制御方法
JP6631571B2 (ja) ハイブリッド自動車
US10814862B2 (en) Hybrid vehicle
JP2013193523A (ja) ハイブリッド車
JP2015199411A (ja) ハイブリッド車
CN108569273B (zh) 混合动力车辆及其控制方法
JP6740944B2 (ja) ハイブリッド車両の制御装置
JP6489100B2 (ja) ハイブリッド自動車
JP6812895B2 (ja) ハイブリッド車両
JP2013141836A (ja) ハイブリッド自動車
JP6607217B2 (ja) ハイブリッド自動車
JP6888511B2 (ja) ハイブリッド自動車
JP2012130098A (ja) 電動車両
JP6769366B2 (ja) ハイブリッド車両の制御装置
JP2016049867A (ja) ハイブリッド車