JP2015198203A - 高保磁力化永久磁石 - Google Patents

高保磁力化永久磁石 Download PDF

Info

Publication number
JP2015198203A
JP2015198203A JP2014076477A JP2014076477A JP2015198203A JP 2015198203 A JP2015198203 A JP 2015198203A JP 2014076477 A JP2014076477 A JP 2014076477A JP 2014076477 A JP2014076477 A JP 2014076477A JP 2015198203 A JP2015198203 A JP 2015198203A
Authority
JP
Japan
Prior art keywords
permanent magnet
ratio
coercive force
less
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014076477A
Other languages
English (en)
Inventor
岳 佐藤
Takeshi Sato
佐藤  岳
金子 裕治
Yuji Kaneko
裕治 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2014076477A priority Critical patent/JP2015198203A/ja
Publication of JP2015198203A publication Critical patent/JP2015198203A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

【課題】稀少なDy等の重希土類元素に依ることなく、保磁力を大幅に向上させ得る永久磁石を提供する。【解決手段】本発明の永久磁石は、永久磁石に固有な単磁区径(D)に対する最大長(d)の比である最長比(d/D)が20以下であると共に単磁区径に対する隣接間隔(w)の比である間隔比(w/D)が10以下である窪みが分布してなる窪みパターンを表面に有する。永久磁石の種類(組成等)により固有な単磁区径をベースに設定された多数の窪みにより永久磁石の表面における磁壁移動が阻害され、高保磁力化が図られる。例えば、R2Fe14Bからなる希土類磁石であれば、最大長が4μm以下、隣接間隔が2μm以下とすると好ましい。【選択図】図3

Description

本発明は、稀少なジスプロシウム(Dy)などの重希土類元素の拡散等に依るまでもなく、永久磁石(特に希土類磁石)の保磁力の向上を可能とした高保磁力化永久磁石に関する。
非常に高い磁気特性を発揮する希土類磁石(特にNdFeB系磁石)は、機器の小型化や高性能化または環境負荷の低減等に寄与するため、多用されるようになった。もっとも、希土類磁石をより有効に活用するためには、その高温域における磁気特性(特に保磁力)の向上等が必要となる。この方策として、これまでは主に、NdFe14Bなどの結晶粒からなる希土類磁石の表面(粒界)へ、高異方性磁界のDyなどの重希土類元素を極薄く拡散させることがなされてきた。これらは、希土類磁石(またはその結晶粒)の表面近傍における構成原子または結晶構造を変化させ、その表面における異方性磁界を高めて、希土類磁石の保磁力(初期保磁力)を向上させる手法である。
ところで、Dyなどの稀少元素の利用には資源リスクがあるため、最近ではDy等に依らない希土類磁石の保磁力向上または耐熱性向上が求められており、種々の研究開発がなされている。これに関連する記載が、例えば、下記の文献にある。
特開2011−61038号公報
特許文献1は、Nd−Cu等の非磁性元素をNdFeB系希土類磁石の結晶粒界へ拡散させて、その希土類磁石の保磁力を向上させることを提案している。これはNdFeB系結晶粒間に生じる磁気的な相互作用を粒界で分断して保磁力を向上させるものである。
この他、希土類磁石を構成する各NdFeB系結晶粒を単磁区に近い状態にまで微細化することにより、その保磁力を向上させることも提案されている。
本発明は、このような事情に鑑みて為されたものであり、従来とは全く異なる手法により、永久磁石(特に希土類磁石)の保磁力を向上させ得る高保磁力化永久磁石を提供することを目的とする。
本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、従来のように組成的、組織的または結晶学的に保磁力を高めるのではなく、保磁力に大きな影響を及ぼす磁壁移動を形態的または幾何学的に阻害すること(いわゆるピニング)することにより、永久磁石の保磁力を向上させることを着想した。そして、微細な窪みを永久磁石の表面に多数配置することにより永久磁石の保磁力を向上させ得ることに成功した。この成果を発展させることにより、以降に述べるような本発明を完成するに至った。
《永久磁石》
(1)本発明の高保磁力化永久磁石は、永久磁石に固有な単磁区径(D)に対する最大長(d)の比である最長比(d/D)が20以下であると共に該単磁区径に対する隣接間隔(w)の比である間隔比(w/D)が10以下である窪みが分布してなる窪みパターンを表面に有し、該窪みにより該表面における磁壁移動が阻害されて高保磁力化されることを特徴とする。
(2)本発明の高保磁力化永久磁石(適宜、単に「永久磁石」という。)は、従来のように稀少な重希土類元素(Dy)等を用いることなく、十分に高い保磁力を発揮し得る。従って本発明によれば、実用温度域で十分な耐熱性等を発揮する高保磁力な永久磁石(特に希土類磁石)を比較的簡易に、低コストで提供することが可能となる。
(3)本発明の永久磁石が、そのような優れた特性を発揮するメカニズムは必ずしも定かではないが、現状では次のように考えられる。先ず、希土類磁石(NdFeB系磁石、SmCo系磁石等)、フェライト磁石など、多くの永久磁石は、結晶構造および組成により定まる結晶磁気異方性により保磁力を生じる。もっとも、様々な磁気的・組織的な要因が影響して、その結晶磁気異方性のポテンシャルが保磁力の発現に十分に反映されないのが実情である。従来は、この結晶磁気異方性自体を高めることにより、永久磁石に現れる保磁力を向上させる手法をとっていた。
また、保磁力を低減させる要因の一つに、磁化反転時の磁壁移動がある。具体的にいうと、永久磁石の磁化方向と逆向きに磁場が印加されると、その磁場方向に磁区が生成される。その磁場が大きくなるにつれて磁化方向と逆向きの磁区領域も拡大し、それに伴って磁区を区画する磁壁が移動する。そして最終的に、永久磁石全体の磁化方向が、当初の磁化方向とは反対の方向(印加された磁場の方向)に反転する現象(磁化反転)が生じる。永久磁石の保磁力は、そのような磁化反転に至るまでの抵抗力であり、磁壁移動の生じ易さに強く影響を受ける。
その磁化反転は、永久磁石の表面近傍で生じた磁壁移動に起因して一気に生じると考えられている。本発明の永久磁石では、その表面に単磁区径に近い微細な窪み(溝)が多数分布した窪みパターンを有する。これら窪みは、磁化反転を生じる起点となり易い永久磁石の表面近傍において、磁区を不連続に区切った状態とする。このような分断された磁区を磁壁が移動・通過するとき、磁気エネルギーは非常に高くなる。磁気エネルギーの上昇は、磁壁移動を抑制・阻害する方向に作用し、いわゆるピニング効果を生じさせる。このようにして本発明の永久磁石では、保磁力が著しく向上するに至ったと考えられる(図1A、図1B参照)。
(4)本発明でいう「単磁区径」とは、単磁区を構成し得る最大サイズを指標する代表値であり、永久磁石の種類により一義的に定まる固有値である。具体的にいうと、単磁区径は、結晶磁気異方性エネルギー、飽和磁化、交換スティフネス係数で決定される磁石材料の固有値である。磁区サイズが、その単磁区径に近づく程、磁壁は存在し難くなる。換言すると、単磁区径は磁壁の存在しうる磁区の臨界径(サイズ)といえる。そして本発明の永久磁石の場合、その表面近傍に生じる磁区が各窪みにより分断され、その分断された分割磁区のサイズが単磁区径に近くなるほど、磁壁移動が困難になり、永久磁石の保磁力が向上し得る。
なお、単磁区径の一例を示すと、NdFe14B:0.21μm、SmFe17:0.38μm、SmCo:1.5μm、BaFe1219:0.66μmである。単磁区径に関しては、例えば、佐川眞人、浜野正昭 編著「図解 希土類磁石」P.37(日刊工業新聞社)等に詳述されている。
本発明に係る窪みは、永久磁石の表面近傍において、磁区を分断して磁壁移動を確実に阻害する観点から、そのサイズ(最大長)と分布状況(隣接間隔)は、上述した単磁区径をベースに設定されることが重要となる。そこで本発明では、先ず、窪みのサイズを指標するものとしてその最大長(d)を導入し、また窪みの分布状況を指標するものとして隣接間隔(w)を導入した。ここで隣接間隔とは隣接する窪みの外周縁間の距離である(図2参照)。そして永久磁石の種類によって単磁区径(D)が変化することから、最大長については単磁区径に対する比率である最長比(d/D)により、また隣接間隔については単磁区径に対する比率である間隔比(w/D)により、本発明に係る窪みを規定することとした(図2参照)。
最長比または間隔比は、磁壁移動を抑制するピニング効果を生じさせる程度(所望する保磁力の向上レベル)に応じて設定されれば良いが、過大では実質的に意味がない。そこで最長比は20以下、15以下、10以下、5以下さらには3以下であると好ましい。また間隔比は10以下、8以下、6以下さらには5以下であると好ましい。最長比または間隔比は、小さいほど磁壁移動を抑制するピニング効果が高くなる傾向にあるため、その下限値を規定する意味はない。但し、窪みの実質的な有効性やその製作性(加工性)等の観点から、敢えていうなら、最長比または間隔比は0.1以上、0.5以上さらには1以上とすると好ましい。
最長比および間隔比が上述したような範囲内であれば、窪みの断面形状は問わず、円状、楕円状、長円状、方形状、溝状等のいずれでもよい。なお、窪みの断面形状が円形状(つまり円筒状の窪み)である場合、最長比はその内径となり、隣接間隔は隣接する窪みの中心間距離からその内径を引いた値となる。
窪みを設ける範囲(窪みパターンの領域)は、永久磁石の全表面でも、その一部でもよい。但し、反対磁場方向が既知である場合は、少なくとも、その反対磁場方向を法線とする永久磁石の表面(特定表面)に窪みパターンが設けられると好ましい。なお、窪みパターンの広さ(面積)は、上述したピニング効果により保磁力が高まる限り、特に問わない。
(5)本発明の永久磁石は、それを主に構成する磁性材料が明確ならば、最長比や間隔比を用いずに、直接的に最大長や隣接間隔を用いて規定することもできる。例えば、永久磁石が、希土類元素(R)と鉄(Fe)とホウ素(B)の正方晶金属間化合物(RFe14B)から主になる場合、その表面に形成される窪みは最大長が4μm以下、3μm以下さらには2μmであり、隣接間隔が2μm以下さらには1μmであると好適である。ここでRFe14Bから「主に」なるとは、敢えて言うと、永久磁石全体を100質量%として、RFe14Bが50質量%以上あるときである。
《その他》
(1)本発明に係る窪みパターンにおける窪みの分布状況は、上述したように、磁壁移動が抑制されピニング効果によって保磁力が確認される程度であればよい。敢えて言うと、窪みが3×10〜1×10個数/mm程度の高密度で存在すると好ましい。また、本発明に係る各窪みは、最表面の形態が上述した内容であればよく、深さ方向(内部方向)の形態は問わない。敢えていうと、その窪みの深さは0.1μm以上さらには0.3μm以上あれば十分である。
本発明に係る窪みパターンは、上述した最長比と間隔比を満たす窪みを含むものであればよく、各々の窪みの形態は同一でも異なっていてもよい。さらにいえば、窪みパターン中の一部に、本発明で規定する最長比と間隔比の範囲を逸脱した窪みが含まれていてもよい。
本発明の永久磁石は、複数種の永久磁石が混在したものでもよい。例えば、SmCo、SmFe17またはフェライト磁石の一種以上と、RFe14Bとが混在した複合磁石でもよい。また、磁石密度を高めるために、粒径の異なる同種または異種の永久磁石が混在した複合磁石でもよい。本発明の永久磁石中に、複数種の永久磁石が混在している場合、本発明に係る単磁区径は、各永久磁石毎に定まる単磁区径の内での最小のものとする。また、本発明の永久磁石は、磁石粉末の成形体を焼結させた焼結磁石でも、磁石粉末をバインダで固化したボンド磁石でも良いし、さらには鋳造磁石等でもよい。
(2)本発明に係る窪みは、永久磁石の内部ではなく表面近傍(内周面近傍等も含む)に存在することが好ましいことから、所望形状に調整された最終製品に窪みが存在する必要がある。但し、所望形状に成形、加工等された後に窪みパターンを形成する場合に限らず、それ以前に形成された窪みパターンが最終的に残存する場合でもよい。なお、永久磁石の形状は、その用途に応じて種々あり、例えば、ブロック状(塊状、バルク状)、(薄)膜状等の適切な形態が選択される。
(3)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。
磁石表面に窪みが分布しているときに、磁壁移動が阻害される様子を示す説明図である。 その窪みがない従来の永久磁石の表面において、磁壁が移動する様子を示す説明図である。 本発明に係る窪みの最大長と隣接間隔の一例を示す図である。 希土類磁石の表面にある窪みパターンを観察したSEM像である。 試料2と試料C1に係る磁化曲線を示すグラフである。 各試料に係る保磁力を比較した棒グラフである。
本明細書で説明する内容は、本発明の永久磁石のみならず、その製造方法にも該当し得る。製造方法に関する構成要素は、プロダクトバイプロセスクレームとして理解すれば物に関する構成要素ともなり得る。上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。
《永久磁石》
本発明の永久磁石は、三元系希土類磁石(NdFe14B、SmFe17等)でも、二元系希土類磁石(SmCo、SmCo17、PrCo等)でも、さらにはフェライト(酸化鉄)系磁石等でもよい。もっとも、本発明の永久磁石は、正方晶金属間化合物(RFe14B)からなる場合が代表的である。ここで、希土類元素(R)には、Sc、Y、ランタノイドを含む。ランタノイドは、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuなどがある。本発明に係るRは、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、TmおよびYbの少なくとも1種以上、特にコストや磁気特性の観点からPr、NdまたはSmの一種以上であると好ましい。
本発明の永久磁石が希土類磁石の場合、上述した主元素以外に、改質元素や不可避不純物を含有し得る。改質元素は、例えば、希土類磁石の耐熱性を向上させるCo、La、保磁力などの磁気特性の向上に有効なGa、Nb、Al、Si、Ti、V、Cr、Mn、Ni、Cu、Ge、Zr、Mo、In、Sn、Hf、Ta、WまたはPbの少なくとも1種以上がある。これら改質元素の組合せは任意であるが、その含有量は通常微量である。また不可避不純物として、例えば、Ca、Na、K、O、N、C、H、Ar等がある。
本発明では、磁石表面に窪みパターンを形成することにより保磁力向上を図るため、従来のように重希土類元素等の拡散元素は勿論、Rリッチ相等の粒界相の形成等も必ずしも必要ではない。そこで本発明の永久磁石が希土類磁石である場合、バインダ等を除いた全体を100原子%(以下単に%で表す。)としたときに、R:11〜12.5%さらには11.4〜12.3%、B:5〜7%さらには5.5〜6.5%、残部:Feという化学量論的(ストイキメトリ)な組成範囲内にあると好ましい。なお、本発明の永久磁石は、重希土類磁石をその表面から拡散させる場合や粒界にRリッチ相を形成する場合等を除くものではない。従来の保磁力向上策と、本発明に係る窪みパターンの付与による保磁力向上策とが併用されてもよい。
《製造方法》
本発明の永久磁石は、その製造方法を問わない。塊状の永久磁石の場合なら、レーザー加工、放電加工、切削加工等により、その表面に窪みパターンを形成することが可能である。薄膜状の永久磁石の場合でも同様な方法で窪みパターンを形成してもよいが、予め基材の表面に窪みパターンを形成しておき、その基材表面に永久磁石となる磁性層を形成してもよい。なお、基材表面への窪みパターンの形成は、上述した各種の加工方法に依る他、エッチング等により行ってもよい。また、磁性層の形成はスパッタリングなどにより行うことができる。
《用途》
本発明の永久磁石は、その用途を問わないが、例えば、高温域で使用され耐熱性が要求される各種機器、電動機のロータまたはステータなどに用いられると好ましい。
NdFe14Bから主になる磁性層(永久磁石)を基板の表面に形成した各試料の製造および評価を行うことにより、本発明の有効性をより具体的に説明する。
《試料の製造》
(1)基板と窪みパターン形成
基板として、シリコンウェハ(Si単結晶基板)に熱酸化処理を行い、その表面にSiO層を形成したSiO基板と、MgO単結晶基板(以下単に「MgO基板」という。)を用意した。SiO基板の一部に、石英マスクを用いた電子線リソグラフィーによりパターニングを行った後、ドライエッチングにより円筒状の窪み(円形ドット状の窪み)が多数分布した所望の窪みパターンを形成した。窪みの内径(最大長/図2のd)と隣接する窪みの間隔(隣接間隔/図2のw)は表1に示すように種々変更した。
(2)下地層形成工程
各基板の(001)面上に、Taからなる下地層をスパッタリングにより形成した(下地層形成工程)。このTa下地層の厚さは約10nmとした。なお、Taは、NdFe14B結晶(単位は原子%、以下同様)の配向面(c面)と格子整合性の高いb.c.c.材料である。
本実施例でいうスパッタリングは、特に断らない限り、マグネトロンスパッタ法に基づき、積層(成膜)前の到達真空度を5x10−8Pa以下、製膜形状をφ8mmの円形状として行った。また、各層(膜)の厚さは、積層(成膜)速度と積層(成膜)時間の積から算出した。ちなみに積層速度は、本実施例では0.4〜1Å/sとした。
(3)磁性層形成工程
650℃に加熱した基板に対して上述したスパッタリングを行い、厚さ100nmの磁性層を形成した。ターゲットには、Nd、Fe、Fe8020(組成は原子%)を用い、3元同時スパッタによりNd12Fe81(組成は原子%、以下同様)となる磁性層を形成した。なお、この磁性層は、NdFe14Bの化学量論組成よりも僅かにNdリッチおよびBリッチとした。
(4)被覆層形成工程
磁性層を形成した基板を室温(23℃)まで冷却し、その室温域でスパッタリングを行い、磁性層上に厚さ5nmのNd70Cu30からなる拡散層を形成した。この処理は特開2011−61038号公報の記載に沿って行った。
こうして下地層、磁性層および拡散層が積層された基板を450℃で加熱し、主相であるNdFe14B結晶粒と、その結晶粒を囲繞するNd−Cuからなる粒界相とで構成された薄膜磁石(永久磁石)を各基板上に形成した。
《試料の観察》
表1に示した各試料の表面を走査型電子顕微鏡(SEM)で観察した。その代表例として、試料2の表面に係るSEM像を図3に示した。これから明らかなように、基板に形成した窪みパターンに沿って薄膜磁石が形成されており、その表面にも同様な窪みパターンが出現しており、各窪みにより磁石表面は不連続な状態になっていることがわかる。
《試料の測定および評価》
各試料の薄膜磁石について、室温における保磁力を振動試料型磁力計(VSM)により測定した。得られた結果を表1に併せて示した。また、そのとき得られた試料2(窪みパターン有りのSiO基板)と試料C1(窪みパターン無しのSiO基板)とに係る磁化曲線を一例として図4に示した。さらに、各試料の保磁力を比較した棒グラフを図5に示した。
表1、図4および図5から明らかなように、ベースとなる基板が同じ試料1〜4と試料C1を比較すると、窪みパターンの有る試料の保磁力は、窪みパターンの無い試料の保磁力に対して7〜8倍にまで大幅に向上することが確認された。また試料1〜4は、高保磁力となり易い試料C2よりも保磁力が十分に大きいことから、表面形態(窪みパターン)による保磁力の向上効果が非常に大きいことも確認された。

Claims (2)

  1. 永久磁石に固有な単磁区径(D)に対する最大長(d)の比である最長比(d/D)が20以下であると共に該単磁区径に対する隣接間隔(w)の比である間隔比(w/D)が10以下である窪みが分布してなる窪みパターンを表面に有し、
    該窪みにより該表面における磁壁移動が阻害されて高保磁力化し得ることを特徴とする高保磁力化永久磁石。
  2. 前記永久磁石は、希土類元素(R)と鉄(Fe)とホウ素(B)の正方晶金属間化合物(RFe14B)から主になり、
    前記最大長が4μm以下であり、
    前記隣接間隔が2μm以下である請求項1に記載の高保磁力化永久磁石。
JP2014076477A 2014-04-02 2014-04-02 高保磁力化永久磁石 Pending JP2015198203A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014076477A JP2015198203A (ja) 2014-04-02 2014-04-02 高保磁力化永久磁石

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014076477A JP2015198203A (ja) 2014-04-02 2014-04-02 高保磁力化永久磁石

Publications (1)

Publication Number Publication Date
JP2015198203A true JP2015198203A (ja) 2015-11-09

Family

ID=54547724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014076477A Pending JP2015198203A (ja) 2014-04-02 2014-04-02 高保磁力化永久磁石

Country Status (1)

Country Link
JP (1) JP2015198203A (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380421A (ja) * 1989-08-23 1991-04-05 Sony Corp 垂直磁気記録媒体
JPH04137217A (ja) * 1990-09-28 1992-05-12 Sumitomo Metal Mining Co Ltd 磁気特性に優れた磁気ディスクの製造法
JPH06302029A (ja) * 1993-04-16 1994-10-28 Matsushita Electric Ind Co Ltd 光磁気記録媒体及びその記録方法
JP2001237119A (ja) * 2000-02-22 2001-08-31 Sumitomo Special Metals Co Ltd 永久磁石薄膜およびその製造方法
JP2002083417A (ja) * 2000-09-07 2002-03-22 Hitachi Maxell Ltd 磁気記録媒体及びそれを用いた磁気記録装置
WO2005081233A1 (ja) * 2004-02-25 2005-09-01 Nihon University 薄膜材料及び記録媒体
JP2006202441A (ja) * 2005-01-21 2006-08-03 Sharp Corp 情報記録媒体及びその製造方法並びに情報再生装置、情報記録再生装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380421A (ja) * 1989-08-23 1991-04-05 Sony Corp 垂直磁気記録媒体
JPH04137217A (ja) * 1990-09-28 1992-05-12 Sumitomo Metal Mining Co Ltd 磁気特性に優れた磁気ディスクの製造法
JPH06302029A (ja) * 1993-04-16 1994-10-28 Matsushita Electric Ind Co Ltd 光磁気記録媒体及びその記録方法
JP2001237119A (ja) * 2000-02-22 2001-08-31 Sumitomo Special Metals Co Ltd 永久磁石薄膜およびその製造方法
JP2002083417A (ja) * 2000-09-07 2002-03-22 Hitachi Maxell Ltd 磁気記録媒体及びそれを用いた磁気記録装置
WO2005081233A1 (ja) * 2004-02-25 2005-09-01 Nihon University 薄膜材料及び記録媒体
JP2006202441A (ja) * 2005-01-21 2006-08-03 Sharp Corp 情報記録媒体及びその製造方法並びに情報再生装置、情報記録再生装置

Similar Documents

Publication Publication Date Title
Cui et al. Manufacturing processes for permanent magnets: Part I—sintering and casting
JP6256360B2 (ja) 永久磁石およびその製造方法
JP5107198B2 (ja) 永久磁石および永久磁石の製造方法並びにそれを用いたモータ
Li et al. Grain interface modification and magnetic properties of Nd–Fe–B sintered magnets
US10109403B2 (en) R-T-B based sintered magnet and motor
US10388441B2 (en) R-T-B based sintered magnet and motor
US10770208B2 (en) Permanent magnet, motor, and generator
Yu et al. Development of FeCo-based thin films for gigahertz applications
JP2009153356A (ja) 自己始動式永久磁石同期電動機
KR101243347B1 (ko) 기계적 물성이 향상된 R-Fe-B계 소결자석 및 이의 제조방법
US20090189471A1 (en) Spindle Motor
CN108064407B (zh) 永久磁铁、旋转电机、以及车辆
Liu et al. The role of Cu in sintered Nd-Fe-B magnets: ab initio study
JP6117706B2 (ja) 希土類ナノコンポジット磁石
WO2018101402A1 (ja) R-t-b系焼結磁石およびその製造方法
JP2015135935A (ja) 希土類磁石
US10892091B2 (en) Permanent magnet, motor, and generator
JP6398911B2 (ja) 永久磁石およびその製造方法
JP2015198203A (ja) 高保磁力化永久磁石
JP6255977B2 (ja) 希土類磁石
US20170162304A1 (en) Permanent magnet, motor, and generator
JP5390996B2 (ja) 希土類高配向磁性薄膜とその製造方法、磁器部材および希土類永久磁石
JP6175889B2 (ja) 永久磁石およびその製造方法
Nakano et al. Nanocomposite Nd-Fe-B/\(\boldsymbol {\alpha}\)-Fe Thick-Film Magnets Prepared by Vacuum Arc Deposition
WO2014118971A1 (ja) 希土類磁石、及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180724