JP2015196004A - 観察画像取得システム及び観察画像取得方法 - Google Patents

観察画像取得システム及び観察画像取得方法 Download PDF

Info

Publication number
JP2015196004A
JP2015196004A JP2014076278A JP2014076278A JP2015196004A JP 2015196004 A JP2015196004 A JP 2015196004A JP 2014076278 A JP2014076278 A JP 2014076278A JP 2014076278 A JP2014076278 A JP 2014076278A JP 2015196004 A JP2015196004 A JP 2015196004A
Authority
JP
Japan
Prior art keywords
image information
light
region
observation
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014076278A
Other languages
English (en)
Other versions
JP6412709B2 (ja
JP2015196004A5 (ja
Inventor
和昭 田村
Kazuaki Tamura
和昭 田村
伊藤 毅
Takeshi Ito
毅 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2014076278A priority Critical patent/JP6412709B2/ja
Priority to CN201580016610.3A priority patent/CN106132275B/zh
Priority to DE112015001158.7T priority patent/DE112015001158T5/de
Priority to PCT/JP2015/060333 priority patent/WO2015152327A1/ja
Publication of JP2015196004A publication Critical patent/JP2015196004A/ja
Priority to US15/281,709 priority patent/US10582842B2/en
Publication of JP2015196004A5 publication Critical patent/JP2015196004A5/ja
Application granted granted Critical
Publication of JP6412709B2 publication Critical patent/JP6412709B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/063Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for monochromatic or narrow-band illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0653Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with wavelength conversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14556Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases by fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract


【課題】 対象物質のコントラストが高い白色光もしくは特殊光観察画像を取得すること。
【解決手段】 観察対象中の対象物質の吸収ピークが存在する波長領域を含まない波長領域の第1の光と、吸収ピークが存在する波長領域の第2の光とを観察対象に照射する光源手段と、観察対象を撮像して画像情報を取得する撮像手段と、撮像手段により取得された画像情報を演算して対象物質を強調する強調画像情報を生成する強調画像情報生成手段を含む画像取得手段とを具備し、画像取得手段は、第1の光を観察対象に照射したときに撮像手段により取得される第1の画像情報と、第2の光を観察対象に照射したときに撮像手段により取得される第2の画像情報とに基づいて強調画像情報を生成する強調画像情報生成手段を具備する。
【選択図】図1

Description

本発明は、例えば白色光による観察や、この白色光の波長とは異なる波長の光、例えば特定の対象物質を観察するための特殊光による観察などを行う観察画像取得システム及び観察画像取得方法に関する。
現在、小型の固体光源から光を出力し、この光を光ファイバ先端に配置した波長変換部材に照射して波長変換し、この波長変換によって光を所望の照射パターンや色へ変化させる発光装置や、この発光装置を用いた内視鏡装置が開発されている。
例えば特許文献1は、波長の異なる励起光源と複数の波長変換部材との組合せにより白色光と特定の狭い波長域の光(以下、特殊光と称する)とを射出する光源装置と、この光源装置から射出される白色光と特殊光との被検体からの各反射光を撮像し、これら撮像により取得される各画像を画像処理して白色光画像と特殊光画像とを生成し表示する内視鏡装置とについて開示する。
又、特許文献1は、狭帯域光(青色、緑色)と広帯域光とを含む白色光画像情報と特殊光画像情報とから狭帯域光による強調画像情報を解析的に求め、例えば血管強調画像を生成して表示することを開示する。
特開2009−297141号公報
しかしながら、特許文献1は、抽出される狭帯域光の1つが白色照明光用の青色LD光であり、例えば血管をコントラスト良く表示するための波長(血管の吸収ピーク)と合っていない。また、特許文献1は、各色画素で検出される照明光が同じ波長範囲から抽出されるので、例えば血管等の強調画像を生成するためにはその情報量が少なく、血管等の診断に有効な画像を取得するには難しい面がある。
本発明は、観察対象中に存在する対象物質の吸収特性を考慮して、特定の色画素で波長領域の異なる光を観察対象に照射して撮像した画像情報から対象物質の強調画像情報を生成し、対象物質のコントラストが高い白色光もしくは特殊光観察画像を取得できる観察画像取得システム及び観察画像取得方法を提供することを目的とする。
本発明の主要な局面に係る観察画像取得システムは、観察対象中の対象物質の吸収ピークが存在する波長領域を含まない波長領域の第1の光と、前記吸収ピークが存在する波長領域の第2の光と、を前記観察対象に照射する光源手段と、前記観察対象を撮像して画像情報を取得する撮像手段と、前記撮像手段により取得された前記画像情報を演算して前記対象物質を強調する強調画像情報を生成する強調画像情報生成手段を含む画像取得手段と、を具備し、前記画像取得手段は、前記第1の光を前記観察対象に照射したときに前記撮像手段により取得される第1の画像情報と、前記第2の光を前記観察対象に照射したときに前記撮像手段により取得される第2の画像情報とに基づいて前記強調画像情報を生成する強調画像情報生成手段を含む。
本発明の主要な局面に係る観察画像取得方法は、観察対象中の対象物質の吸収ピークが存在する波長領域を含まない波長領域の第1の光を前記観察対象に照射し、前記第1の光を前記観察対象に照射したときに第1の画像情報を取得し、前記吸収ピークが存在する波長領域の第2の光を前記観察対象に照射し、前記第2の光を前記観察対象に照射したときに第2の画像情報を取得し、前記第1の光を前記観察対象に照射したときに取得される前記第1の画像情報と、前記第2の光を前記観察対象に照射したときに取得される前記第2の画像情報とに基づいて前記対象物質を強調する強調画像情報を生成する。
本発明によれば、観察対象中に存在する対象物質の吸収特性を考慮して、特定の色画素で波長領域の異なる光を観察対象に照射して撮像した画像情報から対象物質の強調画像情報を生成し、対象物質のコントラストが高い白色光もしくは特殊光観察画像を取得できる観察画像取得システム及び観察画像取得方法を提供できる。
図1は本発明に係る観察画像取得システムの第1の実施の形態を示す構成図。 図2は同装置における波長変換ユニットを示す具体的な構成図。 図3は同装置における波長変換ユニットに用いるYAG蛍光体の励起・蛍光スペクトル特性を示す図。 図4は同装置における波長変換ユニットに用いるサイアロン蛍光体の励起・蛍光スペクトル特性を示す図。 図5は同装置における撮像装置を構成する撮像素子の分光感度特性を示す図。 図6は同装置における被検体としての血管内のヘモグロビンの吸収強度の指標となる吸収係数を示す図。 図7は同装置における観察画像生成表示フロートチャート。 図8は同装置における生体組織の吸収特性や励起光の強度、撮像装置の各色画素の受光感度特性を示す図。 図9は同装置における強調画像情報(B3)生成の一手法を示す模式図。 図10は同装置における強調画像情報(B3)生成の他の手法を示す模式図。 図11は同装置において白色光強調観察画像と特殊光強調観察画像とを交互に表示するときの動作タイミング図。 図12は同装置における青色LEDを用いて照明光を生成したときの白色光と特殊光との波長に対する強度を示す図。 図13は本発明に係る観察画像取得システムの第2の実施の形態を示す構成図。
[第1の実施の形態]
以下、本発明の第1の実施の形態について図面を参照して説明する。本実施の形態において、青緑赤の色領域と可視光波長範囲との関係は、青色領域を波長380nm〜500nmの領域とし、緑色領域を波長500nm〜600nmの領域とし、赤色領域を波長600nm〜780nmの領域とする。
図1は観察画像取得システム1の構成図を示す。本システム1は、観察対象中に存在する対象物質のコントラストを高く強調表示する強調画像情報を生成する。ここで、観察対象は、例えば人体等の被検体2であり、生体組織4を含む。対象物質は、観察対象中に存在し、被検体2の生体組織4内の表層部に存在する表層血管3及びこの表層血管3よりも深い部位に存在する中層血管5に流れるヘモグロビンである。
本実施の形態では、対象物質としてヘモグロビンを用いたが、他の体内に存在する物質を用いても良いし、体外より投与する蛍光プローブを用いても良い。この場合、蛍光プローブの吸収波長域を励起光の波長に合わせると良い。蛍光プローブは、被検体外より投与され特定の波長に反応して発光する。
本システム1の構成を説明すると、本システム1は、被検体2に照明光を照射する光源装置6と、被検体2からの反射光を撮像する撮像装置(撮像手段)7と、被検体2の画像情報を生成する画像取得装置(画像取得手段)8と、被検体2の画像を表示する画像表示装置(画像表示手段)9と、本システム1の観察モードを設定する観察モード入力装置(観察モード入力手段)10と、この観察モード入力装置10に設定された観察モードに従って光源装置6と撮像装置7と画像取得装置8とをそれぞれ動作制御するシステム制御装置11とを含む。
光源装置6は、人体等の被検体2中に流れるヘモグロビンの吸収ピークが存在する波長領域を含まない波長領域にピーク波長を有する第1の光(第1の照明光)Q1と、ヘモグロビンの吸収ピークが存在する波長領域にピーク波長を有する第2の光(第2の照明光)Q2とを被検体2に照射するもので、第1励起光源20と、第2励起光源21と、光源制御部22と、導光部23と、波長変換ユニット24とを含む。
第1励起光源20は、発光ピーク波長が450nm(λ1)、半値幅が数nm以下の青色のレーザ光を射出する第1の半導体レーザ(LD)を含む。この第1励起光源20では、射出する青色レーザ光に含まれる青色のレーザ光成分を第1の励起光とする。なお、この第1励起光源20は、以下、第1の半導体レーザ20と称する。
第2励起光源21は、発光ピーク波長が415nm(λ2)、半値幅が数nm以下の青紫色のレーザ光を射出する第2の半導体レーザ(LD)を含む。この第2励起光源21では、射出するレーザ光に含まれる青紫色のレーザ光成分を第2の励起光とする。なお、この第2励起光源21は、以下、第2の半導体レーザ21と称する。
光源制御部22は、第1の半導体レーザ20及び第2の半導体レーザ21に供給する各駆動電流を制御し、かつこれら第1の半導体レーザ20及び第2の半導体レーザ21の駆動方式、例えばパルス駆動又は連続駆動の制御を行う。
導光部23は、第1の半導体レーザ20から射出される青色レーザ光と、第2の半導体レーザ21から射出される青紫色レーザ光とを波長変換ユニット24に導光するもので、第1の光ファイバ25と、第2の光ファイバ26と、光合波部27と、第3の光ファイバ28とを含む。
第1の光ファイバ25は、第1の半導体レーザ20と光合波部(2×1の光カプラー:2入力−1出力)27との間に光学的に接続され、第1の半導体レーザ20から射出される青色レーザ光を光合波部27に導光する。
第2の光ファイバ26は、第2の半導体レーザ21と光合波部27との間に光学的に接続され、第2の半導体レーザ21から射出される青紫色レーザ光を光合波部27に導光する。
光合波部27は、第1の光ファイバ25により導光された第1の半導体レーザ20からの青色レーザ光と、第2の光ファイバ26により導光された第2の半導体レーザ21からの青紫色レーザ光とを合波して第3の光ファイバ28に出力する。
第3の光ファイバ28は、光合波部27と波長変換ユニット24との間に光学的に接続され、光合波部27から出力される青色レーザ光、青紫色レーザ光、又はこれら青紫色レーザ光と青紫色レーザ光との合波光を波長変換ユニット24に導光する。
従って、光合波部27は、第1の半導体レーザ20から青色レーザ光が射出され、第2の半導体レーザ21から青紫色レーザ光の射出が無ければ、当該青色レーザ光のみを第3の光ファイバ28に出力する。又、光合波部27は、第1の半導体レーザ20から青色レーザ光の射出が無く、第2の半導体レーザ21から青紫色レーザ光が射出されると、当該青紫色レーザ光のみを第3の光ファイバ28に出力する。
上記第1乃至第3の光ファイバ25、26、28は、それぞれ例えばコア径50μm、開口数FNA=0.2を有するマルチモード光ファイバである。
第1の半導体レーザ20と第1の光ファイバ25との間と、第2の半導体レーザ21と第2の光ファイバ26との間とには、それぞれ図示されない結合レンズが設けられている。これら結合レンズは、それぞれ第1の半導体レーザ20から射出される青色レーザ光を収束し、又は第2の半導体レーザ21から射出される青紫色レーザ光を収束することによって、第1の半導体レーザ20と第1の光ファイバ25との間と、第2の半導体レーザ21と第2の光ファイバ26との間との各結合効率を良くする。
波長変換ユニット24は、第3の光ファイバ28の射出端側に接続され、当該第3の光ファイバ28から射出される青色レーザ光、青紫色レーザ光、又は青色レーザ光と青紫色レーザ光との合波光の照射により励起される。この波長変換ユニット24は、青色レーザ光により励起されて白色光Q1に波長変換し、青紫色レーザ光により励起されて特殊光Q2に波長変換する。
図2は波長変換ユニット24の具体的な構成図を示す。この波長変換ユニット24は、ホルダ30と、光透過部材としてのガラス部材31と、第1の波長変換部材としての第1の蛍光体32と、第2の波長変換部材としての第2の蛍光体33とを含む。
ホルダ30は、テーパー形状の保持穴34が形成され、小径側をレーザ光の入射端とし、大径側を波長変換した光を射出する射出端とする。保持穴34は、入射端から射出端に向かって径の大きさが連続して大きくなるように形成されている。この保持穴34内には、小径側の入射端から大径側の射出端に向かってガラス部材31、第1の蛍光体32、第2の蛍光体33が設けられている。保持穴34の内周面には、反射部材が形成されている。この反射部材は、青色レーザ光や青紫色レーザ光の励起光、第1の蛍光体32により発光される黄色の蛍光、及び第2の蛍光体33により発光される緑色の蛍光を正反射又は拡散反射する。
第1の蛍光体32は、第1の半導体レーザ20から射出される波長450nm(λ1)の青色レーザ光を吸収して黄色を呈する波長領域の蛍光(以下、黄色蛍光と称する)を発する。この第1の蛍光体32は、例えばYAG:Ce蛍光体(以下、YAG蛍光体と称する)から成る。
図3はYAG蛍光体の励起・蛍光スペクトル特性を示す。このYAG蛍光体は、可視光領域の中で波長450nm(λ1)付近の青色レーザ光で励起されると、強い発光強度の黄色蛍光を発光する。この黄色蛍光スペクトルは、ピークが波長575nm(λ3)に存在し、半値幅が130nmのブロードなスペクトルを有する。
第2の蛍光体33は、波長415nmの青紫色レーザ光を吸収して緑色を呈する波長領域の蛍光(以下、緑色蛍光と称する)を発光する。この第2の蛍光体33は、Eu(ユーロピウム)賦活のサイアロン系蛍光体(以下、サイアロン蛍光体)から成る。
図4はサイアロン蛍光体の励起・蛍光スペクトル特性を示す。この第2の蛍光体33は、近紫外波長域に近いほど強い発光強度の緑色蛍光を発光する。この緑色蛍光スペクトルは、ピークが波長540nm(λ4)に存在し、半値幅が95nmのブロードなスペクトルを有する。
第1及び第2の蛍光体32、33は、それぞれ粉末形状の蛍光材をシリコーン樹脂やガラスなどの封止材料に分散させ、封止材料を固化させることにより形成される。これら第1及び第2の蛍光体32、33の厚さ及び封止材料に混合される粉末蛍光体の濃度は、蛍光材の励起光吸収率や波長変換効率の特性等を考慮した所定の条件に設定される。すなわち、第1及び第2の蛍光体32、33の厚さ及び粉末蛍光体の濃度は、青色レーザ光を当該青色レーザ光と黄色蛍光との混色による白色光Q1に変換し、かつ青紫色レーザ光を当該青紫色レーザ光と緑色蛍光との混色による特殊光Q2に変換するための所定の条件に設定される。
なお、白色光Q1は、青色領域と、緑色領域と、赤色領域とにスペクトル成分を含む。
特殊光Q2は、青色領域と、緑色領域とにスペクトル成分を含み、表示画像上においてヘモグロビン等の対象物質を強調表示するためのものである。この特殊光Q2のピーク波長は、白色光Q1のピーク波長よりもヘモグロビン等の対象物質の吸収ピークに近い波長領域に存在する。
ヘモグロビン等の対象物質の吸収ピークが存在する波長領域に対応し、撮像装置7の各波長領域のうち最大受光感度を有する波長領域を特定色領域とすると、当該特定色領域における特殊光Q2の発光スペクトル成分は、白色光Q1の発光スペクトル成分と同等以上の強度を有する。
ガラス部材31は、光透過部材として透過率が高いガラスやシリコーン樹脂により形成される。このガラス部材31は、光ファイバ28の射出端から射出される青色レーザ光、青紫色レーザ光、これら青色レーザ光と青紫色レーザ光との混合光、第1及び第2の蛍光体32、33から放射される黄色蛍光や緑色蛍光を透過する。
撮像装置7は、上記の通り観察対象である被検体2を撮像して画像情報を取得するもので、複数の撮像素子(CCD)を縦横方向に配列して成る。これら撮像素子は、それぞれ青色(B)領域と、緑色(G)領域と、赤色(R)領域との各画素に割り当てられる。すなわち、この撮像装置7は、図5に示す撮像素子の分光感度特性のように、B色領域内の波長460nm(λb)に感度ピークを有する複数のB画素と、G色領域内の波長540nm(λg)に感度ピークを有する複数のG画素と、R色領域内の波長630nm(λr)に感度ピークを有する複数のR画素とを含む。
この撮像装置7は、白色光Q1を被検体2等の観察対象に照射したときに、B色領域とG色領域とR色領域との各画素領域毎に第1の画像情報として白色光画像情報(B1、G1、R1)を取得する。
この撮像装置7は、特殊光Q2を被検体2に照射したときに、B色領域とG色領域とR色領域との各画素領域毎に第2の画像情報として特殊光画像情報(B2、G2、R2)を取得する。
ここで、白色光Q1と特殊光Q2との強度比率について説明する。
白色光Q1は、青色レーザ光と、第1の蛍光体32から発せられる黄色蛍光との混色光である。
特殊光Q2は、青紫色レーザ光と、第2の蛍光体33から発せられる緑色蛍光との混色光である。
これら白色光Q1と特殊光Q2とは、上記の通りヘモグロビン等の対象物質の吸収ピークが存在する波長領域に対応し、撮像装置7の各波長領域のうち最大受光感度を有する波長領域である特定色領域において発光スペクトルの帯域幅が異なる。
これら白色光Q1と特殊光Q2とは、同特定色領域において発光スペクトルが互いに重ならない。
被検体2内の血管の吸収特性は、青色レーザ光の吸収量よりも青紫色レーザ光の吸収量の方が多い。
一方、撮像装置7の各CCDの感度特性は、青紫色レーザ光に対する感度よりも青色レーザ光に対する感度の方が高い。この感度特性により白色光Q1と特殊光Q2とで略同じS/Nの青色画像を取得するためには、少なくともB色領域の青紫色レーザ光は、青色レーザ光よりも高いスペクトル強度を必要とする。
さらに、白色光Q1と特殊光Q2とで略同じS/Nの青色画像を取得するためには、白色光Q1と特殊光Q2とを切り替えて照射するのが好ましい。すなわち、白色光Q1の照明光スペクトルP(λ)と撮像素子のB画素の感度特性b(λ)とを掛け合わせたものの積算を第1の青色レベルB1とする。特殊光Q2の照明光スペクトルQ(λ)と撮像素子のB画素の感度特性b(λ)とを掛け合わせたものの積算を第2の青色レベルB2とする。
次式(1)は第1の青色レベルB1と第2の青色レベルB2とを示す。
Figure 2015196004
従って、第1の青色レベルB1と第2の青色レベルB2とが略同じレベルになるような青色レーザ光と青紫色レーザ光との比率を求め、この比率になるように白色光Q1と特殊光Q2とを切り替えて被検体2に照射するのが好ましい。
上記同様に、白色光Q1の照明光スペクトルP(λ)と撮像素子のG画素の感度特性g(λ)とを掛け合わせたものを第1の緑色レベルG1とし、同白色光Q1の照明光スペクトルP(λ)と撮像素子のR画素の感度特性r(λ)とを掛け合わせたものを第1の赤色レベルR1とする。
特殊光Q2の照明光スペクトルQ(λ)と撮像素子のG画素の感度特性g(λ)とを掛け合わせたものを第2の緑色レベルG2とし、同特殊光Q2の照明光スペクトルQ(λ)と撮像素子のR画素の感度特性r(λ)とを掛け合わせたものを第2の赤色レベルR2とする。
画像取得装置8は、撮像装置7の撮像により取得された画像情報を演算してヘモグロビン等の対象物質のコントラストを高く強調表示する強調画像情報を生成するもので、第1メモリ40と、第2メモリ41と、強調画像情報生成装置42と、第1現像部43と、第2現像部44とを含む。このうち強調画像情報生成装置42は、画像演算部45と、第3メモリ46とを含む。
第1メモリ40には、第1の半導体レーザ20を駆動して被検体2に白色光Q1を照射したときに撮像装置7の撮像により取得される第1の画像情報としての白色光画像情報(B1、G1、R1)が一時保存される。この白色光画像情報(B1、G1、R1)は、第1の光である白色光を被検体2に照射したときに撮像装置7のB色領域とG色領域とR色領域とにより取得される画像情報を示す。
第2メモリ41には、第2の半導体レーザ21を駆動して被検体2に特殊光Q2を照射したときに撮像装置7の撮像により取得される第2の画像情報としての特殊光画像情報(B2、G2、R2)が一時保存される。この特殊光画像情報(B2、G2、R2)は、第2の光である特殊光を被検体2に照射したときに撮像装置7のB色領域とG色領域とR色領域とにより取得される画像情報を示す。
強調画像情報生成装置42は、第1メモリ40に保存されている白色光画像情報(B1、G1、R1)と、第2メモリ41に保存されている特殊光画像情報(B2、G2、R2)とに基づいて対象物質であるヘモグロビンが存在する例えば表層血管3のコントラストを高く強調表示する強調画像情報(B3)を生成する。
具体的に、強調画像情報生成装置42は、画像演算部45と、第3メモリ46とを含み、このうちの画像演算部45は、白色光画像情報(B1、G1、R1)と特殊光画像情報(B2、G2、R2)とにそれぞれ含まれる同一波長領域、例えば強調画像情報生成用の基準画像情報として例えばB色領域の第1の色画像情報(B1)と第2の色画像情報(B2)とを選択し、これら第1の色画像情報(B1)と第2の色画像情報(B2)とに対して所定の演算を実行してヘモグロビンが存在する例えば表層血管3のコントラストを高く強調表示する強調画像情報(B3)を生成する。
この画像演算部45は、生成した強調画像情報(B3)を第3メモリ46に保存する。この強調画像情報(B3)は、白色光画像情報(B1、G1、R1)及び特殊光画像情報(B2、G2、R2)よりも表層血管3のコントラストが高くなる。なお、B色領域の第1の色画像情報(B1)又は第2の色画像情報(B2)の選択の指示は、システム制御装置11から強調画像情報生成装置42に発せられる。
ここで、強調画像情報(B3)の生成の具体例として2つの手法を説明する。
第1の手法として、画像演算部45は、白色光画像情報(B1、G1、R1)と特殊光画像情報(B2、G2、R2)とから対象物質であるヘモグロビンの吸収の差分を示す吸収差分情報を抽出し、この吸収差分情報をヘモグロビンの吸収が強い特殊光画像情報(B2、G2、R2)に付加して強調画像情報(B3)を生成する。
具体的に、画像演算部45は、同一波長領域、例えばB色領域の第1の色画像情報(B1)と第2の色画像情報(B2)との差分を求める演算を行って差分情報を抽出し、当該差分情報に対して閾値以上の吸収差分情報を抽出し、当該抽出された吸収差分情報と、B色領域の第1の色画像情報(B1)と第2の色画像情報(B2)とのうち何れか一方の画像情報(B1又はB2)との差分を求める演算を行って強調画像情報(B3)を生成する。
第2の手法として、画像演算部45は、白色光画像情報(B1、G1、R1)と特殊光画像情報(B2、G2、R2)とからヘモグロビン以外の画像情報のみに画像ノイズ低減処理を行い、当該画像ノイズ低減処理した画像情報から強調画像情報(B3)を生成する。
具体的に、画像演算部45は、特殊光画像情報(B2、G2、R2)に含まれる同一波長領域、例えばB色領域の輝度情報に対して閾値以上の輝度情報を抽出し、当該抽出された輝度情報と、白色光画像情報(B1、G1、R1)に含まれる同一波長領域、例えばB色領域の輝度情報との差分を求める演算を行って輝度情報を求め、当該輝度情報と特殊光画像情報(B2、G2、R2)に含まれるB領域の輝度情報との差分を求める演算を行って強調画像情報(B3)を生成する。
第1現像部43は、第1メモリ40に保存されている白色光画像情報(B1、G1、R1)の一部の画像情報(G1、R1)と、第3メモリ46に保存されている強調画像情報(B3)とに対して所定の画像処理を行って白色光の強調画像情報(B3、G1、R1)を生成し、この白色光強調画像情報(B3、G1、R1)の白色カラー映像信号を出力する。
この第1現像部43は、白色光画像情報(B1、G1、R1)から白色光通常観察画像を生成し、この白色光通常観察画像(B1、G1、R1)の白色カラー映像信号を出力する。
ここで、白色光強調画像情報(ここではB3、G1、R1)は、観察対象の色合いが白色光画像の条件を保ったままで、対象物質、例えば被検体2の生体組織4内の表層部に存在する表層血管3及びこの表層血管3よりも深い部位に存在する中層血管5に流れるヘモグロビンのみを強調することができる。この白色光強調画像は、粘膜など非対称物質の白色光画像情報を失わずに、上記対象物質を強調することができる。
第2現像部44は、第2メモリ41に保存されている特殊光画像情報(B2、G2、R2)の一部の画像情報(G2)と、第3メモリ46に保存されている強調画像情報(B3)とに対して所定の画像処理を行って特殊光の強調画像情報(B3、G2)を生成し、この特殊光強調画像情報(B3、G2)の特殊カラー映像信号を出力する。なお、第2現像部44は、第2メモリ41に保存されている特殊光画像情報(B2、G2、R2)の一部の画像情報(R2)と、第3メモリ46に保存されている強調画像情報(B3)とに対して所定の画像処理を行って特殊光強調画像情報(B3、R2)を生成し、この特殊光強調画像情報(B3、R2)の特殊カラー映像信号を出力するようにしてもよい。
この第2現像部44は、特殊光画像情報(B2、G2、R2)の一部の画像情報(B2、G2)から特殊光通常観察画像情報(B2、G2)を生成し、この特殊光通常観察画像(B2、G2)の特殊カラー映像信号を出力する。
これら特殊光強調画像情報(B3、R2)及び特殊光通常観察画像情報(B2、G2)の特殊光画像情報は、青色領域と緑色領域のみの特殊光Q2を被検体2に照射して生成されるもので、後述するように生体組織4の表面から内部に侵入する特殊光Q2の深さと、この特殊光Q2の光の散乱特性が異なる性質を持つこととを利用して表層血管3やこの表層血管3よりも深い部位に存在する中層血管5等をコントラスト良く観察でき、癌等の発見を容易にできるものである。
第1と第2現像部33、34は、白色光強調観察画像(B3、G1、R1)と、白色光通常観察画像(B1、G1、R1)と、特殊光強調観察画像(B3、R2)と、特殊光通常観察画像(B2、G2)との各色情報を決定するホワイトバランス係数や色変換係数などを図示しない記憶部に保存している。これら第1と第2現像部33、34は、ホワイトバランス係数又は色変換係数などを用いて画像生成に必要なその他の画像処理、例えばノイズ低減、構造強調、色変換などを行う。
さらに、第1と第2現像部33、34は、白色光強調観察画像(B3、G1、R1)と白色光通常観察画像(B1、G1、R1)との色合いと、特殊光強調観察画像(B3、R2)と特殊光通常観察画像(B2、G2)との色合いを揃えるための観察モード色調整パラメータを図示しない記憶部に保存している。これら第1と第2現像部33、34は、観察モード色調整パラメータを用いて当該観察モード色調整パラメータを各種の画像処理に適用する。
画像表示装置9は、CRTや液晶等のディスプレイを備え、第1現像部43から出力される白色光強調観察画像(B3、G1、R1)又は白色光通常観察画像(B1、G1、R1)の映像信号を入力してその画像をディスプレイに表示する。
画像表示装置9は、特殊光強調観察画像(B3、R2)又は特殊光通常観察画像(B2、G2)の映像信号を入力してその画像をディスプレイに表示する。
被検体2の吸収特性について図6に示す血管内のヘモグロビンの吸収強度の指標となる吸収係数を参照して説明する。
人体の被検体2は、大きく分けて表層血管3や中層血管5などの血管3、5と、例えば粘膜などの生体組織4との少なくとも吸収特性が異なる2種類の組織が存在する。図6に示すように血管3、5内のヘモグロビンの吸収強度は、波長帯域380nm〜780nmの可視光領域において、波長415nm付近(λh1)と、波長540nm付近(λh2)との異なる波長に吸収強度ピークを持つ。このヘモグロビンの吸収強度は、波長415nm(λh1)付近の吸収強度が最も大きくなるという性質を持つ。
一般に内視鏡のNBI(狭帯域観察)は、波長λh1と波長λh2との波長領域を含む2つの波長の光、例えばおよそ波長400nm〜440nmの光と、およそ波長525nm〜555nmの光とを観察光として使用する。さらに、NBIは、2つの波長の光が生体組織4の表面から内部へ侵入する光の深さ、および散乱特性が異なる性質を持つことを利用して、血管3、5等をコントラスト良く観察し、癌等の発見を容易にする技術(特殊光観察)である。
一方、ヘモグロビンの吸収特性は、波長λh1から長波長側になるにつれて吸収強度が急激に低下する傾向を示す。例えば、ヘモグロビンの吸収強度は、波長450nmの吸収係数と波長415nm(λh1)とを比較した場合、これら波長450nmと波長415nmとの波長差35nmでおよそ5分の1まで低下する。
これに対して人体等の被検体2内の生体組織4は、肌色から赤色を示すものが多い。この生体組織4の吸収特性は、一例として、青色領域から赤色領域にかけて吸収係数が緩やかに低下し、かつ青色領域の波長415nm付近においてヘモグロビンの吸収係数よりも小さくなり、波長450nm付近ではヘモグロビンの吸収係数より大きい組織も存在するものとなっている。
システム制御装置11は、CPUやRAM、ROM等を含むコンピュータから成り、ROM等に格納されている観察画像生成表示プログラムを実行することにより、白色光強調観察画像(B3、G1、R1)と特殊光強調観察画像(B3、R2)とを生成・表示するために光源装置6と撮像装置7と画像取得装置8とをそれぞれ動作指令を発する。
次に、上記の如く構成されたシステム1による白色光強調観察画像(B3、G1、R1)と特殊光強調観察画像(B3、G2)との生成・表示の動作について図7に示す観察画像生成表示フロートチャートに従って説明する。
観察モード入力装置10は、ユーザの操作を受けて本システム1の観察モードの設定や当該の観察モードの順序を設定する。この観察モード入力装置10は、ユーザの操作によって例えば、先ず、白色光強調観察画像(B3、G1、R1)を生成・表示するモードを設定し、次に、特殊光強調観察画像(B3、G2)を生成・表示するモードを設定したとする。なお、特殊光強調観察画像(B3、G2)を生成・表示し、次に白色光強調観察画像(B3、G1、R1)を生成・表示するように設定してもよい。
システム制御装置11は、ステップS1において、光源制御部22に対して第1の半導体レーザ20を駆動する指令を発する。この第1の半導体レーザ20は、図8に示すように発光ピーク波長が450nm(λ1)、半値幅が数nm以下の青色レーザ光を射出する。この青色レーザ光は、導光部23の第1の光ファイバ25に入射すると、この第1の光ファイバ25から光合波部27、第3の光ファイバ28により導光され、第1の励起光として波長変換ユニット24に照射される。
この波長変換ユニット24の第1の蛍光体32は、青色レーザ光が照射されると、この青色レーザ光を吸収して励起され、黄色蛍光を発する。この黄色蛍光スペクトルは、ピークが波長575nm(λ2)に存在し、半値幅が130nmのブロードなスペクトルを有する。これと共に第1の蛍光体32は、青色レーザ光の一部が黄色蛍光に寄与せずに透過する。これにより、第1の蛍光体32からは、黄色蛍光と青色レーザ光の一部とが混色された白色光Q1が射出され、この白色光Q1が被検体2に照射される。
この白色光Q1は、被検体2に照射されることにより、この被検体2における白色光Q1の照射領域W内の生体組織4に存在する表層血管3に照射される。この白色光Q1は、図8に示すようにヘモグロビンの流れる表層血管3や、粘膜などの生体組織4の吸収特性に従ってその一部が吸収され、かつ残りの一部が散乱、反射される。このうち表層血管3や生体組織4からの反射光は、撮像装置7に入射する。
この撮像装置7は、表層血管3や生体組織4からの反射光を入射し、この反射光をCCDのB色領域とG色領域とR色領域とにより受光し、これらBGR色毎の3つの画像情報すなわち白色光画像情報(B1、G1、R1)を出力する。この白色光画像情報(B1、G1、R1)は、画像取得装置8に送られ、同装置8の第1メモリ40に保存される。なお、白色光画像情報(B1、G1、R1)は、3枚の画像情報(B1)(G1)(R1)として第1メモリ40に保存される。
この撮像装置7のB色画素の受光感度特性は、図8に示すように波長領域380nm〜540nmに存在するので、B色画素が受光する表層血管3や生体組織4からの反射光は、青色レーザ光と黄色蛍光の短波長領域になる。但し、B色画素は、波長520nm付近の感度が低いので、主にB色画素により受光される成分は青色レーザ光になる。
次に、システム制御装置11は、ステップS2において、強調画像情報(B3)を生成するための色情報、例えば白色光画像情報(B1、G1、R1)と特殊光画像情報(B2、G2、R2)とにそれぞれ含まれる同一波長領域、例えば強調画像情報生成用の基準画像情報として例えばB色領域の第1の色画像情報(B1)と第2の色画像情報(B2)とを強調画像情報生成装置42に指示する。
この強調画像情報生成装置42の画像演算部45は、第1メモリ40に保存されている白色光画像情報(B1、G1、R1)から例えばB色領域の第1の色画像情報(B1)を選択する。
又、この画像演算部45は、強調画像情報(B3)の生成に使用しない基準画像情報の例えばG、R色領域の色画像情報(G1、R1)を白色光画像情報(B1、G1、R1)から選択し、この色画像情報(G1、R1)を第1現像部43に送信する。
一方、システム制御装置11は、上記ステップS1の処理に並行するステップS3において、光源制御部22に対して第2の半導体レーザ21を駆動する指令を発する。この第2の半導体レーザ21は、図8に示すように発光ピーク波長が415nm(λ2)、半値幅が数nm以下の青紫色のレーザ光を射出する。この青紫色レーザ光は、導光部23の第2の光ファイバ26に入射すると、この第1の光ファイバ26から光合波部27、第3の光ファイバ28により導光され、第2の励起光として波長変換ユニット24に照射される。
この波長変換ユニット24の第2の蛍光体33は、青紫色レーザ光が照射されると、この青紫色レーザ光を吸収して励起され、緑色蛍光を発する。この緑色蛍光スペクトルは、ピークが波長540nm(λ4)に存在し、半値幅が95nmのブロードなスペクトルを有する。これと共に第2の蛍光体33は、青紫色レーザ光の一部が緑色蛍光に寄与せずに透過する。これにより、第2の蛍光体33からは、緑色蛍光と青紫色レーザ光の一部とが混色された特殊光Q2が射出され、この特殊光Q2が被検体2に照射される。
この特殊光Q2は、被検体2に照射されることにより、この被検体2における特殊光Q2の照射領域W内の生体組織4に存在する表層血管3に照射される。この特殊光Q2は、図8に示すようにヘモグロビンの流れる表層血管3、粘膜などの生体組織4の吸収特性に従ってその一部が吸収され、かつ残りの一部が散乱、反射される。このうち表層血管3や生体組織4からの反射光は、撮像装置7に入射する。
この撮像装置7は、表層血管3や生体組織4からの反射光を入射し、この反射光をCCDのB色領域とG色領域とR色領域とにより受光し、これらBGR色毎の3つの画像情報すなわち特殊光画像情報(B2、G2、R2)を出力する。この特殊光画像情報(B2、G2、R2)は、画像取得装置8に送られ、同装置8の第2メモリ41に保存される。なお、特殊光画像情報(B2、G2、R2)は、3枚の各色の画像情報(B2)(G2)(R2)として第2メモリ41に保存される。
撮像装置7のB色画素の受光感度特性は、図8に示すように波長領域380nm〜540nmに存在するので、B色画素が受光する表層血管3や中層血管5からの反射光は、青紫色レーザ光と緑色蛍光とになる。すなわち、B色画素により受光される色成分は、主に青紫色レーザ光になる。
次に、画像演算部45は、ステップS4において、第2メモリ41に保存されている特殊光画像情報(B2、G2、R2)から強調画像情報(B3)を生成するための色情報、例えば上記同様に、B色領域の第2の色画像情報(B2)を選択する。なお、画像演算部45は、強調画像情報(B3)を生成するために使用しない基準画像情報としての例えばG、R色領域の第2の色画像情報(G2、R2)を特殊光画像情報(B2、G2、R2)から選択し、この特殊光画像情報(G2、R2)を第2現像部44に送信する。
次に、画像演算部45は、ステップS5において、第1メモリ40に保存されている白色光画像情報(B1、G1、R1)と、第2メモリ41に保存されている特殊光画像情報(B2,G2、R2)とを読み出す。
画像演算部45は、読み出した白色光画像情報(B1、G1、R1)と特殊光画像情報(B2、G2、R2)とにそれぞれ含まれる同一波長領域、例えばB色領域の第1の色画像情報(B1)と第2の色画像情報(B2)とを選択する。
画像演算部45は、B色領域の第1の色画像情報(B1)と同色領域の第2の色画像情報(B2)とに対して所定の演算を実行してヘモグロビンが存在する例えば表層血管3を強調する強調画像情報(B3)を生成し、この強調画像情報(B3)を第3メモリ46に保存する。この強調画像情報(B3)は、第1の色画像情報(B1)及び第2の色画像情報(B2)よりも表層血管3のコントラストが高いものとなる。
ここで、白色光による第1の色画像情報(B1)と特殊光による第2の色画像情報(B2)との差について説明する。
表層血管3をCRTや液晶ディスプレイ等の画像表示装置9に表示した場合、この表層血管3は、白色光(青色レーザ光の射出時)を被検体2に照射して取得した第1の色画像情報(B1)よりも、特殊光(青紫色レーザ光の射出時)を照射して取得した第2の色画像情報(B2)の方が相対的に暗く表示される。表層血管3に流れるヘモグロビンは、青紫色レーザ光(特殊光)を吸収し易いためである。
生体組織4をCRTや液晶ディスプレイ等の画像表示装置9に表示した場合、生体組織4は、青紫色レーザ光と青色レーザ光との波長差の吸収特性がヘモグロビンの吸収特性より少ないので、第2の色画像情報(B2)と第1の色画像情報(B1)との表示画像を比較すると、生体組織4の画像の方が表層血管3の画像よりも輝度の差の少ないものとなる。
従って、生体組織4に対する表層血管3のコントラストは、白色光を照射して取得した第1の色画像情報(B1)による画像よりも、特殊光を照射して取得した第2の色画像情報(B2)の方が高くなる。
次に、強調画像情報(B3)を生成する一手法について図9を参照して具体的に説明する。
画像演算部45は、上記同一波長領域、すなわち特殊光画像情報(B2、G2、R2)におけるB色領域の第2の色画像情報(B2)と、白色光画像情報(B1、G1、R1)におけるB色領域の第1の色画像情報(B1)との差分を求める演算を行って差分情報(第1の中間情報)Y1(=B2−B1)を抽出する。
画像演算部45は、差分情報(Y1)に対して閾値を設定し、この差分情報(Y1)から閾値(T1)以上の吸収差分情報(第2の中間情報)Y2(>T1)を抽出する。
画像演算部45は、第2の色画像情報(B2)と、上記抽出された吸収差分情報(Y2)との差分を求める演算を行ってヘモグロビンが存在する例えば表層血管3のコントラストを高く強調表示する強調画像情報B3(=B2−Y2)を生成する。この強調画像情報(B3)は、白色光画像情報(第1の色画像情報B1)及び特殊光画像情報(第2の色画像情報B2)よりも表層血管3のコントラストが高いものとなる。
なお、画像演算部45は、第1の色画像情報(B1)と上記抽出された吸収差分情報(第1の中間情報)Y2との差分を求める演算を行って強調画像情報(B3=B1−Y2)を生成してもよい。
次に、強調画像情報(B3)を生成する他の手法について図10を参照して具体的に説明する。
画像演算部45は、特殊光画像情報(B2、G2、R2)に含まれる同一波長領域、例えばB色領域の輝度情報に対して平均輝度値である閾値(T2)を設定し、第2の色画像情報(B2)から閾値(T2)以上の輝度情報(第3の中間情報)Y3(>T2)を抽出する。上記平均輝度値である閾値(T2)は、ヘモグロビンの吸収量が大きい第2の色画像情報(B2)の各画素輝度値から算出される。
画像演算部45は、白色光画像情報(B1、G1、R1)に含まれる同一波長領域、例えばB色領域の第1の色画像情報(B1)と、上記抽出された輝度情報(第3の中間情報)Y3との差分を求める演算を行って輝度情報(第4の中間情報)Y4(=B1−Y3)を求める。
画像演算部45は、特殊光画像情報(B2、G2、R2)に含まれるB領域の輝度情報(B2)と上記輝度情報(第4の中間情報)Y4との差分を求める演算を行ってヘモグロビンが存在する例えば表層血管3のコントラストを高く強調表示する強調画像情報(B3=B2−Y4)を生成するようにしてもよい。
このように他の手法により生成された強調画像情報(B3)でも、白色光画像情報(第1の色画像情報B1)及び特殊光画像情報(第2の色画像情報B2)よりも表層血管3のコントラストが高いものとなる。
その他の強調画像情報(B3)の生成手法についても説明する。
画像演算部45は、白色光画像情報(B1、G1、R1)に含まれる例えばB色領域の第1の色画像情報(B1)と、特殊光画像情報(B2、G2、R2)に含まれるB領域の第2の色画像情報(B2)とに対応する2枚の画像から生体組織部4(所定の輝度値以上)のノイズを低減する画像処理を行って中間画像情報を求め、この中間画像情報と上記B領域の第2の色画像情報(B2)とを画像合成して強調画像情報(B3)を生成してもよい。この強調画像情報(B3)も表層血管3のコントラストが高いものとなる。
さらに、他の方法として、画像演算部45は、白色光画像情報(B1、G1、R1)に含まれる第1の色画像情報(B1)と、特殊光画像情報(B2、G2、R2)に含まれるB領域の第1の色画像情報(B2)とに対応する2枚の画像から表層血管3と生体組織4との境界(所定の明暗差以上)を抽出する画像処理を行ってエッジを抽出した中間画像を生成し、このエッジを抽出した中間画像と上記B領域の第1の色画像情報(B2)とを画像合成して表層血管3とこの表層血管3よりも深層の中層血管5とを異なる色で表示した血管強調画像情報(B3)を生成してもよい。
次に、第1現像部43は、ステップS6において、第1メモリ40に保存されている白色光画像情報(B1、G1、R1)から一部の画像情報(G1、R1)を読み出すと共に、第3メモリ46に保存されている強調画像情報(B3)を読み出し、これら画像情報(G1、R1)と強調画像情報(B3)とに対して所定の画像処理を行って白色光の強調画像情報(B3、G1、R1)を生成し、この白色光強調画像情報(B3、G1、R1)の白色カラー映像信号を出力する。この白色光強調画像情報(B3、G1、R1)の白色カラー映像信号は、画像表示装置9に送られる。
次に、この画像表示装置9は、ステップS7において、第1現像部43から出力される白色カラー映像信号を入力し、この白色カラー映像信号を表示用信号に処理して白色光強調画像情報(B3、G1、R1)の画像をCRTや液晶等のディスプレイに表示する。
一方、第2現像部44は、ステップS8において、第2メモリ41に保存されている特殊光画像情報(B2、G2、R2)の一部の画像情報(G2)を読み取ると共に、第3メモリ46に保存されている強調画像情報(B3)を読み取り、これら画像情報(G2)と強調画像情報(B3)とに対して所定の画像処理を行って特殊光の強調画像情報(B3、G2)を生成し、この特殊光強調画像情報(B3、G2)の特殊カラー映像信号を出力する。この特殊光強調画像情報(B3、G2)の映像信号は、画像表示装置9に送られる。
次に、この画像表示装置9は、ステップS9において、第2現像部44から出力される特殊カラー映像信号を入力し、この特殊カラー映像信号を表示用信号に処理して特殊光強調画像情報(B3、G2)の画像をCRTや液晶等のディスプレイに表示する。
なお、第1現像部43は、白色光画像情報(B1、G1、R1)から白色光通常観察画像を生成し、この白色光通常観察画像(B1、G1、R1)の白色カラー映像信号を出力する。
画像表示装置9は、第1現像部43から出力される白色カラー映像信号を入力し、この白色カラー映像信号を表示用信号に処理して白色光通常観察画像(B1、G1、R1)をCRTや液晶等のディスプレイに表示する。
又、第2現像部44は、特殊光画像情報(B2、G2、R2)の一部の画像情報(B2、G2)から特殊光通常観察画像情報(B2、G2)を生成し、この特殊光通常観察情報(B2、G2)の特殊カラー映像信号を出力する。
画像表示装置9は、第2現像部44から出力される特殊カラー映像信号を入力し、この特殊カラー映像信号を表示用信号に処理して特殊光通常観察画像情報(B2、G2)の画像をCRTや液晶等のディスプレイに表示する。
なお、第2現像部44は、第2メモリ41に保存されている特殊光画像情報(B2、G2、R2)の一部の画像情報(R2)と、第3メモリ46に保存されている強調画像情報(B3)とに対して所定の画像処理を行って特殊光強調画像情報(B3、R2)を生成し、この特殊光強調画像情報(B3、R2)の特殊カラー映像信号を出力するようにしてもよい。これにより、画像表示装置9には、特殊光強調画像情報(B3、R2)の画像がCRTや液晶等のディスプレイに表示される。
このように第1現像部33は、特殊光強調観察情報(B3、G2)と特殊光通常観察情報(B2、G2)とを生成し、第2現像部34は、白色光強調観察情報(B3、G1、R1)と白色光通常観察情報(B1、G1、R1)とを生成するが、この生成時に、ホワイトバランス係数又は色変換係数などを用いて画像生成に必要なその他の画像処理、例えばノイズ低減、構造強調、色変換などを行う。
さらに、第1現像部33は、白色光強調観察画像(B3、G1、R1)と白色光通常観察画像(B1、G1、R1)との色合いを揃えるための観察モード色調整パラメータに基づいて各種の画像処理に適用する。
同様に、第2現像部34も、特殊光強調観察画像(B3、R2)と特殊光通常観察画像(B2、G2)との色合いを揃えるための観察モード色調整パラメータを保存し、かつ当該観察モード色調整パラメータを各種の画像処理に適用する。
以上の動作により被検体2に2種類の照明光、すなわち白色光の第1の照明光Q1と特殊光の第1の照明光Q2とを照射して白色光通常観察情報(B1、G1、R1)や特殊光通常観察情報(B2、G2)よりも血管のコントラストを高く強調表示できる白色光強調画像情報(B3、G1、R1)や特殊光強調画像情報(B3、G2)を取得することができる。
次に、白色光強調画像情報(B3、G1、R1)と特殊光強調画像情報(B3、G2)とを交互に表示するための動作タイミングについて図11を参照して説明する。
第1の半導体レーザ20から青色レーザ光を射出することにより波長変換ユニット24からは、白色光Q1が被検体2に照射される。
第2の半導体レーザ21から青紫色レーザ光を射出することにより波長変換ユニット24からは、青紫色レーザ光と緑色蛍光との混合による特殊光Q2が被検体2に照射される。
これら白色光Q1と特殊光Q2とは、1フレーム期間毎に切り替わり、交互に被検体2に照射される。なお、図11は第1乃至第3のフレーム期間までを示す。
第1のフレーム期間F1では、白色光Q1が被検体2に照射され、撮像装置7の撮像により白色光画像情報(B1、G1、R1)が取得される。
この第1のフレーム期間F1の1つ前のフレーム期間では、既に、特殊光Q2が被検体2に照射され、撮像装置7の撮像により特殊光画像情報(B2、G2、R2)が取得されている。
又、1つ前のフレーム期間では、強調画像情報生成装置42は、白色光画像情報(B1、G1、R1)と特殊光画像情報(B2、G2、R2)とにそれぞれ含まれる同一波長領域、例えばB色領域の第1の色画像情報(B1)と第2の色画像情報(B2)とを選択し、これら第1の色画像情報(B1)と第2の色画像情報(B2)とに対して所定の演算を実行してヘモグロビンが存在する例えば表層血管3のコントラストを高く強調表示する強調画像情報(B3)を生成している。
従って、第1のフレーム期間F1では、前のフレーム期間で取得された強調画像情報(B3)と、本フレーム期間F1で取得された白色光画像情報(B1、G1、R1)との演算により白色光強調画像情報(B3、G1、R1)が生成される。
次に、第2のフレーム期間F2では、特殊光Q2が被検体2に照射され、撮像装置7の撮像により特殊光画像情報(B2、G2、R2)が取得される。
この第2のフレーム期間F2の1つ前のフレーム期間F1では、上記説明の通り白色光Q1が被検体2に照射され、撮像装置7の撮像により白色光画像情報(B1、G1、R1)が取得されている。
同第2のフレーム期間F2では、強調画像情報生成装置42は、白色光画像情報(B1、G1、R1)と特殊光画像情報(B2、G2、R2)とにそれぞれ含まれるB色領域の第1の色画像情報(B1)と第2の色画像情報(B2)とを選択し、これら第1の色画像情報(B1)と第2の色画像情報(B2)とに対して所定の演算を実行してヘモグロビンが存在する例えば表層血管3のコントラストを高く強調表示する強調画像情報(B3)を生成する。
従って、同第2のフレーム期間F2では、特殊光画像情報(B2、G2、R2)と、強調画像情報(B3)との演算により特殊光強調画像情報(B3、G2、R2)が生成される。
これ以降、白色光Q1と特殊光Q2とが1フレーム期間毎に切り替わって交互に被検体2に照射されることにより、白色光観察強調画像(B3、G1、R1)と特殊光観察強調画像(B3、G2、R2)とが1フレーム期間毎に交互に生成される。
このように上記第1の実施の形態によれば、被検体2中に存在するヘモグロビンの吸収特性を考慮し、白色光画像情報(B1、G1、R1)と特殊光画像情報(B2、G2、R2)とにそれぞれ含まれる同一波長領域、例えばB色領域の第1の色画像情報(B1)と第2の色画像情報(B2)とを選択し、これら第1の色画像情報(B1)と第2の色画像情報(B2)とに対して所定の演算を実行し、ヘモグロビン等の対象物質が存在する例えば表層血管3を強調する強調画像情報(B3)を生成するので、白色光画像情報(B1、G1、R1)及び特殊光画像情報(B2、G2、R2)よりも表層血管3のコントラストを高くすることができ、この表層血管3のコントラストを高くした強調画像情報(B3)の画像をCRTや液晶等のディスプレイの画像表示装置9に表示できる。
特に、ヘモグロビン等の対象物質に対してそれぞれ吸収が異なる白色光Q1と特殊光Q2とを照射して白色光画像情報(B1、G1、R1)と特殊光画像情報(B2、G2、R2)とを取得し、これら情報(B1、G1、R1)(B2、G2、R2)に対して所定の演算を行うので、画像ノイズが少なく、SN比の高い強調画像情報(B3)を取得できる。
生体組織4は、青紫色レーザ光と青色レーザ光との波長差の吸収特性がヘモグロビンの吸収特性より少ないので、生体組織4の画像の方が表層血管3の画像よりも輝度の差の少なくなり、白色光を照射して取得した第1の色画像情報(B1)による表層血管3のコントラストよりも、特殊光を照射して取得した第2の色画像情報(B2)による表層血管3のコントラストの方を高く強調できる。
強調画像情報(B3)を生成する手法としては、一手法として、B色領域の特殊光画像情報(B2)と、同B色領域の白色光画像情報(B1)との差分情報Y1を抽出し、この差分情報Y1に対して閾値以上の吸収差分情報Y2を抽出し、この吸収差分情報Y2と特殊光画像情報(B2)との差分からヘモグロビンが存在する例えば表層血管3のコントラストを高く強調表示する強調画像情報(B3)を生成する。
他の手法としては、特殊光画像情報(B2、G2、R2)に含まれる例えばB色領域の輝度情報に対して閾値以上の輝度情報(Y3)を抽出し、この輝度情報(Y3)とB色領域の輝度情報(B1)との差分の輝度情報(Y4)を求め、この輝度情報(Y4)とB領域の輝度情報(B2)との差分からヘモグロビンが存在する例えば表層血管3を強調する強調画像情報(B3)を生成する。
これら手法により生成された強調画像情報(B3)は、1つの照明光から生成した通常画像よりも、表層血管3のコントラストを高く強調表示する強調画像情報(B3)を得ることができる。この強調画像情報(B3)をCRTや液晶等のディスプレイの画像表示装置9に表示すれば、表層血管3を識別し易く、かつ診断に有効とすることができる。
又、第1現像部43により白色光通常観察画像(B1、G1、R1)を生成し、第2現像部44により特殊光通常観察画像情報(B2、G2)を生成できるので、これら生成した白色光通常観察画像(B1、G1、R1)と特殊光通常観察画像情報(B2、G2)との表示タイミングを制御することにより、観察モードの条件に応じて当該白色光通常観察画像(B1、G1、R1)と特殊光通常観察画像情報(B2、G2)とを所望のタイミングで画像表示装置9に表示できる。
画像取得装置8は、強調画像情報(B3)と白色光画像情報(B1、G1、R1)とに基づいて白色光強調画像情報(B3、G1、R1)を生成するので、この白色光強調画像情報(B3、G1、R1)によって被検体2等の観察対象の色合いが白色光画像情報(B1、G1、R1)の条件を保ったままで、ヘモグロビン等の対象物質の流れる表層血管3のみのコントラストを高く強調表示することができる。
又、白色光強調画像(B3、G1、R1)によって粘膜などの非対象物質の白色光画像情報(B1、G1、R1)を失わずに、ヘモグロビン等が流れる表層血管3等の対象物質のコントラストを高く強調表示することができる。
なお、上記第1の実施の形態は、次のように変形してもよい。
上記第1の実施の形態では、青色レーザを用いて白色光Q1を生成したが、青色の発光ダイオード(LED)から発する青色LED光を用いて白色光のスペクトル、すなわち青色領域から緑色領域にかけてスペクトル成分を有する白色光Q1を生成してもよい。図12は青色LEDを用いて照明光を生成したときの白色光Q1と特殊光Q2との波長に対する強度を示す。
特殊光Q2は、波長415nmの青紫色レーザを使用したが、白色光Q1を生成するための青色レーザの波長450nmよりもヘモグロビンの吸収特性が約2倍以上大きい波長領域400nmから435nmの青紫色レーザを使用して生成してもよい。
波長変換ユニット24に搭載する蛍光体は、青色の蛍光を励起可能な緑蛍光体や赤色蛍光体を用いてもよい。この場合、これら緑蛍光体や赤色蛍光体は、波長変換ユニット24に青色光を入射したときに白色光を発光するような濃度条件で当該波長変換ユニット24に搭載するのがよい。
画像取得装置8は、白色光通常観察画像(B1、G1、R1)又は/及び特殊光通常観察画像情報(B2、G2)を生成し、これら白色光通常観察画像(B1、G1、R1)又は/及び特殊光通常観察画像情報(B2、G2)と、白色光強調画像情報(B3、G1、R1)又は/及び特殊光強調画像情報(B3、G2)とをモニタ等の画像表示装置9に並べて表示してもよい。
白色光強調観察画像(B3、G1、R1)と特殊光強調観察画像(B3、G2)とを交互に繰り返して生成する以外に、観察モード入力装置10の設定方法により、所定のタイミング条件のみ白色光Q1と特殊光Q2とを照射し強調観察画像を表示してもよい。
[第2の実施の形態]
次に、本発明の第2の実施の形態について図面を参照して説明する。なお、図1と同一部分には同一符号を付してその詳しい説明は省略する。
図13は観察画像取得システム1の構成図を示す。光源装置6は、第1の光(第1の照明光)Q1と、青紫色レーザ光と緑色レーザ光との混合光による特殊光Q3を被検体2に照射するもので、上記の通り、青色のレーザ光を射出する第1の半導体レーザ(LD)を含む第1励起光源20と、青紫色のレーザ光を射出する第2の半導体レーザ(LD)を含む第2励起光源21と、光源制御部22と、導光部23と、波長変換ユニット24とに加え、第3励起光源50を含む。
この第3励起光源50は、発光ピーク波長が540nmの緑色のレーザ光を射出する第3の半導体レーザ(LD)を含む。以下、第3の半導体レーザ(LD)を第3の半導体レーザ50と称する。
波長変換ユニット24は、第3の光ファイバ28から射出される青色レーザ光により励起されて白色光Q1に波長変換する。
この波長変換ユニット24は、青紫色レーザ光と緑色レーザ光との混合光の照射では殆ど励起されずに、透過した青紫色レーザ光と緑色レーザ光を特殊光Q3として射出する。
この波長変換ユニット24は、ホルダ30と、光透過部材としてのガラス部材31と、第1の波長変換部材としての第1の蛍光体32とを含む。この波長変換ユニット24は、上記第1の実施の形態における波長変換ユニット24から第2の蛍光体33を除き、第1の蛍光体32のみを搭載する。この第1の蛍光体32は、第1の半導体レーザ20から射出される青色レーザ光を吸収して黄色蛍光を発する。又、この第1の蛍光体32は、第3の半導体レーザ50から射出される緑色レーザ光が照射されても、当該緑色レーザ光を透過し、励起されない。
撮像装置7は、白色光Q1を被検体2等の観察対象に照射したときに、B色領域とG色領域とR色領域との各画素領域毎に第1の画像情報として白色光画像情報(B1、G1、R1)を取得する。この白色光画像情報(B1、G1、R1)は、第1メモリ40に保存される。
この撮像装置7は、特殊光Q3を被検体2に照射したときに、B色領域とG色領域とR色領域との各画素領域毎に第3の画像情報として特殊光画像情報(B4、G4、R4)を取得する。この特殊光画像情報(B4、G4、R4)は、第2メモリ41に保存される。
強調画像情報生成装置42は、第1メモリ40に保存されている白色光画像情報(B1、G1、R1)と、第2メモリ41に保存されている特殊光画像情報(B4、G4、R4)とに基づいて対象物質であるヘモグロビンが存在する例えば表層血管3のコントラストを高く強調表示する強調画像情報(B3)を生成する。
具体的に、当該強調画像情報生成装置42の画像演算部45は、白色光画像情報(B1、G1、R1)と特殊光画像情報(B4、G4、R4)とにそれぞれ含まれる同一波長領域、例えば強調画像情報生成用の基準画像情報として例えばB色領域の第1の色画像情報(B1)と第2の色画像情報(B4)とを選択し、これら第1の色画像情報(B1)と第2の色画像情報(B4)とに対して所定の演算を実行してヘモグロビンが存在する例えば表層血管3のコントラストを高く強調表示する強調画像情報(B3)を生成する。
この画像演算部45は、生成した強調画像情報(B3)を第3メモリ46に保存する。この強調画像情報(B3)は、白色光画像情報(B1、G1、R1)及び特殊光画像情報(B2、G2、R2)よりも表層血管3のコントラストが高くなる。
又、画像演算部45は、白色光画像情報(B1、G1、R1)と特殊光画像情報(B4、G4、R4)とにそれぞれ含まれる同一波長領域、例えばG色領域の第1の色画像情報(G1)と第2の色画像情報(G4)とを選択し、これら第1の色画像情報(G1)と第2の色画像情報(G4)とに対して所定の演算を実行してヘモグロビンが存在する例えば中層血管5のコントラストを高く強調表示する強調画像情報(G5)を生成する。
この画像演算部45は、生成した強調画像情報(G5)を第3メモリ46に保存する。この強調画像情報(G5)は、白色光画像情報(B1、G1、R1)よりも中層血管5のコントラストが高くなる。
第1現像部43は、第1メモリ40に保存されている白色光画像情報(B1、G1、R1)の一部の画像情報(R1)と、第3メモリ46に保存されている強調画像情報(B3)と、同第3メモリ46に保存されている強調画像情報(G5)とに対して所定の画像処理を行って白色光強調画像情報(B3、G5、R1)を生成し、この白色光強調画像情報(B3、G5、R1)の白色カラー映像信号を出力する。
第2現像部44は、第3メモリ46に保存されている強調画像情報(B3)と、同第3メモリ46に保存されている強調画像情報(G5)とに対して所定の画像処理を行って特殊光強調画像情報(B3、G5)を生成し、この特殊光強調画像情報(B3、G5)の特殊カラー映像信号を出力する。
画像表示装置9は、第1現像部43から出力される白色光強調観察画像(B3、G5、R1)の映像信号を入力してその画像をCRTや液晶等のディスプレイに表示する。
画像表示装置9は、特殊光強調観察画像(B3、G5)の映像信号を入力してその画像をディスプレイに表示する。
次に、上記の如く構成されたシステム1の動作について説明する。
第1の半導体レーザ20は、青色レーザ光を射出する。この青色レーザ光は、導光部23により導光されて波長変換ユニット24に照射される。この波長変換ユニット24の第1の蛍光体32は、青色レーザ光の照射により黄色蛍光を発すると共に、青色レーザ光の一部を透過し、これら黄色蛍光と青色レーザ光の一部とを混色した白色光Q1を射出する。この白色光Q1は被検体2に照射される。
撮像装置7は、表層血管3や生体組織4からの反射光を入射し、この反射光をCCDのB色領域とG色領域とR色領域とにより受光してその白色光画像情報(B1、G1、R1)を出力する。この白色光画像情報(B1、G1、R1)は、第1メモリ40に保存される。
強調画像情報生成装置42の画像演算部45は、第1メモリ40に保存されている白色光画像情報(B1、G1、R1)から例えばB色領域の第1の色画像情報(B1)を選択する。
一方、第2の半導体レーザ21は、青紫色レーザ光を射出する。これと共に、第3の半導体レーザは、緑色レーザ光を射出する。これら青紫色レーザ光と緑色レーザ光との混合光は、導光部23により導光されて波長変換ユニット24に照射される。
この波長変換ユニット24の第1の蛍光体32は、第2の半導体レーザ21、第3の半導体レーザ50から射出される青紫色レーザ光と緑色レーザ光とが照射されても、殆ど励起されないため、青紫色レーザ光と緑色レーザ光との成分が透過して特殊光Q3として被検体2に照射される。。
撮像装置7は、特殊光Q3を被検体2に照射したときに、B色領域とG色領域とR色領域との各画素領域毎の特殊光画像情報(B4、G4、R4)を取得する。この特殊光画像情報(B4、G4、R4)は、第2メモリ41に保存される。
強調画像情報生成装置42は、第1メモリ40に保存されている白色光画像情報(B1、G1、R1)と、第2メモリ41に保存されている特殊光画像情報(B4、G4、R4)とに基づいて対象物質であるヘモグロビンが存在する例えば表層血管3のコントラストを高く強調表示する強調画像情報(B3)を生成する。
具体的に、強調画像情報生成装置42の画像演算部45は、白色光画像情報(B1、G1、R1)と特殊光画像情報(B4、G4、R4)とにそれぞれ含まれる同一波長領域、例えばB色領域の第1の色画像情報(B1)と第2の色画像情報(B4)とを選択し、これら第1の色画像情報(B1)と第2の色画像情報(B4)とに対して所定の演算を実行してヘモグロビンが存在する例えば表層血管3のコントラストを高く強調表示する強調画像情報(B3)を生成する。この画像演算部45は、生成した強調画像情報(B3)を第3メモリ46に保存する。この強調画像情報(B3)は、白色光画像情報(B1、G1、R1)及び特殊光画像情報(B4、G4、R4)よりも表層血管3のコントラストが高くなる。
又、画像演算部45は、白色光画像情報(B1、G1、R1)と特殊光画像情報(B4、G4、R4)とにそれぞれ含まれる同一波長領域、例えばG色領域の第1の色画像情報(G1)と第2の色画像情報(G4)とを選択し、これら第1の色画像情報(G1)と第2の色画像情報(G4)とに対して所定の演算を実行してヘモグロビンが存在する例えば中層血管5のコントラストを高く強調表示する強調画像情報(G5)を生成する。この画像演算部45は、生成した強調画像情報(G5)を第3メモリ46に保存する。この強調画像情報(G5)は、白色光画像情報(B1、G1、R1)と特殊光画像情報(B4、G4、R4)とよりも中層血管5のコントラストが高くなる。
第1現像部43は、第1メモリ40に保存されている白色光画像情報(B1、G1、R1)の一部の画像情報(R1)と、第3メモリ46に保存されている強調画像情報(B3)と、同第3メモリ46に保存されている強調画像情報(G5)とに対して所定の画像処理を行って白色光強調画像情報(B3、G5、R1)を生成し、この白色光強調画像情報(B3、G5、R1)の白色カラー映像信号を出力する。
画像表示装置9は、第1現像部43から出力される白色光強調観察画像(B3、G5、R1)の白色カラー映像信号を入力してその画像をCRTや液晶等のディスプレイに表示する。
第2現像部44は、第3メモリ46に保存されている強調画像情報(B3)と、同第3メモリ46に保存されている強調画像情報(G5)とに対して所定の画像処理を行って特殊光強調画像情報(B3、G5)を生成し、この特殊光強調画像情報(B3、G5)の特殊カラー映像信号を出力する。
画像表示装置9は、特殊光強調観察画像(B3、G5)の特殊カラー映像信号を入力してその画像をディスプレイに表示する。
このように上記第2の実施の形態によれば、発光ピーク波長が540nmの緑色のレーザ光を射出する第3の半導体レーザ50を設け、被検体2中に存在するヘモグロビンの吸収特性を考慮し、表層血管3のコントラストを高く強調表示する強調画像情報(B3)の生成に加えて、白色光画像情報(B1、G1、R1)と特殊光画像情報(B4、G4、R4)とにそれぞれ含まれる同一波長領域、例えばG色領域の色画像情報(G1)と色画像情報(G4)とを選択して所定の演算を実行し、ヘモグロビン等の対象物質が存在する例えば中層血管5のコントラストを高く強調表示する強調画像情報(G5)を生成するので、白色光画像情報(B1、G1、R1)及び特殊光画像情報(B4、G4、R4)よりも中層血管5のコントラストを高くすることができ、この中層血管5のコントラストを高くした強調画像情報(G5)の画像、すなわち白色光強調画像情報(B3、G5、R1)や特殊光強調画像情報(B3、G5)の画像をCRTや液晶等のディスプレイの画像表示装置9に表示できる。
これに加えて、第1現像部43は、上記同様に、白色光通常観察画像(B1、G1、R1)の映像信号を出力するようにしてもよい。この白色光通常観察画像(B1、G1、R1)であれば、表層血管3のコントラストを高くすることができ、この表層血管3のコントラストを高くした強調画像情報(B3)の画像をCRTや液晶等のディスプレイの画像表示装置9に表示できる。
第2現像部44は、第2メモリ41に保存されている特殊光画像情報(B4、G4、R4)の一部の画像情報(B4)と、第3メモリ46に保存されている強調画像情報(G5)とに対して所定の画像処理を行って特殊光の強調画像情報(B4、G5)の映像信号を出力するようにしてもよい。この特殊光強調画像情報(B4、G5)であれば、中層血管5のコントラストを高くした強調画像情報(G5)の画像を画像表示装置9に表示できる。
なお、上記第2の実施の形態は、次のように変形してもよい。
本実施の形態では、白色光画像情報(B1、G1、R1)と特殊光画像情報(B4、G4、R4)とにそれぞれ含まれる同一波長領域、例えばG色領域の色画像情報(G1)と色画像情報(G4)とから強調画像情報(G5)を生成しているので、当該生成された強調画像情報(G5)をCRTや液晶等のディスプレイの画像表示装置9に表示してもよい。強調画像情報(G5)であれば、ヘモグロビン等の対象物質が存在する例えば中層血管5のコントラストを高く強調表示する画像を観察できる。
又、第2現像部44は、第2メモリ41に保存されている特殊光画像情報(B4、G4、R4)の一部の画像情報(B4)と、第3メモリ46に保存されている強調画像情報(G5)とに対して所定の画像処理を行って特殊光強調画像情報(B4、G5)を生成し、この特殊光強調画像情報(B4、G5)の特殊カラー映像信号を出力するようにしてもよい。この特殊光通常観察画像(B4、G5)によれば、中層血管5のコントラストを高くした強調画像情報(G5)の画像を画像表示装置9に表示できる。
この第2現像部44は、特殊光画像情報(B4、G4、R4)の一部の画像情報(B4、G4)を生成し、この特殊光通常観察画像(B4、G4)の特殊カラー映像信号を出力するようにしてもよい。
従って、上記第2の実施の形態によれば、表層血管3と中層血管5や、中層血管5のみのコントラストを高くした強調画像情報の画像をCRTや液晶等のディスプレイの画像表示装置9に表示できる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
1:観察画像取得システム、7:撮像装置、2:被検体、3:表層血管、4:生体組織、5:中層血管、6:光源装置、8:画像取得装置、9:画像表示装置、10:観察モード入力装置、11:システム制御装置、20:第1励起光源(第1の半導体レーザ)、21:第2励起光源(第2の半導体レーザ)、22:光源制御部、23:導光部、24:波長変換ユニット、25:第1の光ファイバ、26:第2の光ファイバ、27:光合波部、28:第3の光ファイバ、30:ホルダ、31:ガラス部材、32:第1の蛍光体、33:第2の蛍光体、34:保持穴、40:第1メモリ、41:第2メモリ、42:強調画像情報生成装置、43:第1現像部、44:第2現像部、45:画像演算部、46:第3メモリ、50:第3励起光源(第3の半導体レーザ)。

Claims (22)

  1. 観察対象中に含まれる対象物質の吸収ピークが存在する波長領域を含まない波長領域の第1の光と、前記吸収ピークが存在する波長領域の第2の光とを前記観察対象に照射する光源手段と、
    前記観察対象を撮像して画像情報を取得する撮像手段と、
    前記撮像手段により取得された前記画像情報を演算して前記対象物質を強調する強調画像情報を生成する画像取得手段と、
    を具備し、
    前記画像取得手段は、前記第1の光を前記観察対象に照射したときに前記撮像手段により取得される第1の画像情報と、前記第2の光を前記観察対象に照射したときに前記撮像手段により取得される第2の画像情報とに基づいて前記強調画像情報を生成する強調画像情報生成手段を含む、
    ことを特徴とする観察画像取得システム。
  2. 前記強調画像情報生成手段は、前記第1の画像情報と前記第2の画像情報とに含まれる同一波長領域の第1の色画像情報と第2の色画像情報とを選択し、これら第1の色画像情報と第2の色画像情報とを演算して前記対象物質を強調する前記強調画像情報を生成することを特徴とする請求項1記載の観察画像取得システム。
  3. 前記強調画像情報生成手段は、前記第1の画像情報及び前記第2の画像情報のコントラストよりも前記対象物質のコントラストが高い前記強調画像情報を生成することを特徴とする請求項1又は2記載の観察画像取得システム。
  4. 前記第2の光のピーク波長は、前記第1の光のピーク波長よりも前記対象物質の吸収ピークに近い波長領域に存在し、
    前記対象物質の吸収ピークが存在する波長領域に対応し、前記撮像手段の各波長領域のうち最大受光感度を有する前記波長領域を特定色領域とすると、当該特定色領域における前記第2の光の発光スペクトル成分は、前記第1の光の発光スペクトル成分と同等以上の強度を有する、
    ことを特徴とする請求項1乃至3のうちいずれか1項記載の観察画像取得システム。
  5. 前記第1の光は、白色光であり、
    前記撮像手段は、前記白色光が前記観察対象に照射されたときに前記第1の画像情報として白色光画像情報を取得し、
    前記画像取得手段は、前記強調画像情報と前記白色光画像情報とに基づいて白色光強調画像情報を生成する、
    ことを特徴とする請求項1乃至4のうちいずれか1項記載の観察画像取得システム。
  6. 前記第2の光は、前記対象物質を強調するための特殊光であり、
    前記撮像手段は、前記特殊光が前記観察対象に照射されたときに前記第2の画像情報として特殊光画像情報を取得し、
    前記画像取得手段は、前記強調画像情報と前記特殊光画像情報とに基づいて特殊光強調画像情報を生成する、
    ことを特徴とする請求項1乃至4のうちいずれか1項記載の観察画像取得システム。
  7. 前記撮像手段は、青色領域と緑色領域と赤色領域との各画素領域を含み、前記第1の光を前記観察対象に照射したときに前記画素領域毎に前記第1の画像情報を取得し、前記第2の光を前記観察対象に照射したときに前記画素領域毎に前記第2の画像情報を取得し、
    前記強調画像情報生成手段は、前記第1と前記第2の画像情報とにそれぞれ含まれる前記同一波長領域の前記第1と前記第2の画像情報とを選択し、これら第1と第2の画像情報を演算して前記強調画像情報を生成する、
    ことを特徴とする請求項1記載の観察画像取得システム。
  8. 前記強調画像情報生成手段は、前記第1の画像情報と前記第2の画像情報とから前記対象物質の吸収の差分を示す吸収差分情報を抽出し、当該吸収差分情報を前記対象物質の吸収が強い前記第2の画像情報に付加して前記強調画像情報を生成することを特徴とする請求項1乃至3のうちいずれか1項記載の観察画像取得システム。
  9. 前記第1の光は、青色領域と、緑色領域と、赤色領域とにスペクトル成分を含む白色光であり、
    前記第2の光は、前記青色領域と、前記緑色領域とにスペクトル成分を含む特殊光であり、
    前記撮像手段は、前記白色光を前記観察対象に照射したときに前記第1の画像情報を取得し、前記特殊光を前記観察対象に照射したときに前記第2の画像情報を取得し、
    前記強調画像情報生成手段は、前記同一波長領域の前記第1と前記第2の画像情報との差分を求める演算を行って前記差分情報を抽出し、当該差分情報に対して閾値以上の吸収差分情報を抽出し、当該抽出された吸収差分情報と前記同一波長領域の前記第1又は前記第2の画像情報のうち何れか一方の画像情報との差分を求める演算を行って前記強調画像情報を生成する、
    ことを特徴とする請求項8記載の観察画像取得システム。
  10. 前記強調画像情報生成手段は、前記第1の画像情報と前記第2の画像情報とから前記対象物質以外の画像情報のみに画像ノイズ低減処理を行い、当該画像ノイズ低減処理した画像情報から前記強調画像情報を生成することを特徴とする請求項1乃至3のうちいずれか1項記載の観察画像取得システム。
  11. 前記第1の光は、青色領域と、緑色領域と、赤色領域とにスペクトル成分を含む白色光であり、
    前記第2の光は、前記青色領域と、前記緑色領域とにスペクトル成分を含む特殊光であり、
    前記撮像手段は、前記白色光を前記観察対象に照射したときに前記第1の画像情報を取得し、前記特殊光を前記観察対象に照射したときに前記第2の画像情報を取得し、
    前記強調画像情報生成手段は、前記第2の画像情報に含まれる前記同一波長領域の輝度情報に対して閾値以上の輝度情報を抽出し、前記第1の画像情報に含まれる前記同一波長領域の輝度情報と前記抽出された輝度情報との差分を求める演算を行って差分情報を求め、前記第2の画像情報に含まれる前記青色領域の輝度情報と前記差分情報との差分を求める演算を行って前記強調画像情報を生成する、
    ことを特徴とする請求項10記載の観察画像取得システム。
  12. 前記同一波長領域は、青色領域であることを特徴とする請求項8乃至11のうちいずれか1項記載の観察画像取得システム。
  13. 前記第1と前記第2の光は、前記特定色領域において前記発光スペクトルの帯域幅が異なることを特徴とする請求項4記載の観察画像取得システム。
  14. 前記第1と前記第2の光は、前記特定色領域において前記発光スペクトルが互いに重ならないことを特徴とする請求項4又は10記載の観察画像取得システム。
  15. 前記対象物質の吸収ピークが存在する波長領域に対応し、前記撮像手段の各波長領域のうち最大受光感度を有する前記波長領域を特定色領域とすると、
    前記光源手段は、前記特定色領域内に含まれる青色領域内に第1のピーク波長を含む第1の発光スペクトルを発光する第1の半導体レーザと、
    前記特定色領域内に含まれる前記青紫色領域内に第2のピーク波長を含む第2の発光スペクトルを発光する第2の半導体レーザと、
    前記第1の半導体レーザから発光される前記第1の発光スペクトルの一部を吸収して緑色領域と赤色領域とを含むブロードな蛍光スペクトルを発光し、当該蛍光スペクトルと前記第1の発光スペクトルとの混合光を前記第1の光として前記観察対象に照射し、かつ前記第2の発光スペクトルを前記第2の光として前記観察対象に照射する波長変換部材と、
    を含むことを特徴とする請求項1記載の観察画像取得システム。
  16. 前記第1の半導体レーザは、前記青色領域内に含まれる波長領域440nm〜460nmに第1のピーク波長を有する前記第1の発光スペクトルを発光し、
    前記第2の半導体レーザは、前記青色領域内に含まれる波長領域400nm〜440nmに第2のピーク波長を有する前記第2の発光スペクトルを発光する、
    ことを特徴とする請求項15記載の観察画像取得システム。
  17. 前記第1の光は、青色領域と、緑色領域と、赤色領域とにスペクトル成分を含む白色光であり、
    前記第2の光は、前記青色領域と、前記緑色領域とにスペクトル成分を含む特殊光であり、
    前記撮像手段は、前記白色光を前記観察対象に照射したときに前記第1の画像情報を取得し、前記特殊光を前記観察対象に照射したときに前記第2の画像情報を取得し、
    前記画像取得手段は、前記強調画像情報と、前記第1の画像情報に含まれる前記青色領域、前記緑色領域又は前記赤色領域の画像情報のうちいずれか1つの画像情報とを演算して所定のカラー画像である第1の観察画像情報を構築し、かつ前記強調画像情報と、前記第2の画像情報に含まれる前記青色領域又は前記緑色領域の画像情報のうちいずれか1つの画像情報とを演算して所定のカラー画像である第2の観察画像情報を構築する、
    ことを特徴とする請求項1記載の観察画像取得システム。
  18. 前記光源手段は、前記第1の光と前記第2の光とを繰り返し前記観察対象に照射し、
    前記撮像手段は、前記第1の光が前記観察対象に照射される毎に前記第1の画像情報として第1のフレーム画像を取得し、前記第2の光が前記観察対象に照射される毎に前記第2の画像情報として第2のフレーム画像を取得し、
    前記強調情報生成手段は、前記撮像手段により繰り返し取得される前記第1のフレーム画像と前記第2のフレーム画像とに基づいて前記第1の光に関する第1の前記強調画像情報と前記第2の光に関する第2の前記強調画像情報とを生成し、
    前記画像取得手段は、前記第1の強調画像情報に基づいて第1の観察画像情報を順次構築し、前記第2の強調画像情報に基づいて第2の観察画像情報を順次構築する、
    ことを特徴とする請求項1記載の観察画像取得システム。
  19. 前記光源手段は、前記特定色領域内に含まれる青色領域内の青色レーザ光を射出する第1の半導体レーザと、
    前記特定色領域内に含まれる青紫色領域内の青紫色レーザ光を射出する第2の半導体レーザと、
    前記特定色領域内に含まれる緑色領域内の緑色レーザ光を射出する第3の半導体レーザと、
    前記青色レーザ光により励起されて白色光に波長変換し、かつ前記青紫色レーザ光と前記緑色レーザ光との混合光の照射により特殊光に波長変換する波長変換ユニットと、
    を含み、
    前記撮像手段は、青色領域と緑色領域と赤色領域との各画素領域を含み、前記白色光が前記観察対象に照射されたときに前記画素領域毎に前記第1の画像情報として白色光画像情報を取得し、かつ前記特殊光が前記観察対象に照射されたとき前記画素領域毎に前記第2の画像情報として特殊光画像情報を取得し、
    前記強調画像情報生成手段は、前記白色光画像情報と前記特殊光画像情報とにそれぞれ含まれる前記同一波長領域である少なくとも前記緑色領域の前記第1と前記第2の画像情報とを選択し、これら第1と第2の画像情報から前記白色光と前記特殊光の各強調画像情報を生成する、
    ことを特徴とする請求項1記載の観察画像取得システム。
  20. 前記強調画像情報生成手段は、前記同一波長領域として前記緑色領域と前記青色領域との前記第1と前記第2の画像情報とを選択し、これら第1と第2の画像情報から前記白色光と前記特殊光の各強調画像情報を生成することを特徴とする請求項19記載の観察画像取得システム。
  21. 観察対象中の対象物質の吸収ピークが存在する波長領域を含まない波長領域の第1の光を前記観察対象に照射し、
    前記第1の光を前記観察対象に照射したときに第1の画像情報を取得し、
    前記吸収ピークが存在する波長領域の第2の光を前記観察対象に照射し、
    前記第2の光を前記観察対象に照射したときに第2の画像情報を取得し、
    前記第1の光を前記観察対象に照射したときに取得される前記第1の画像情報と、前記第2の光を前記観察対象に照射したときに取得される前記第2の画像情報とに基づいて前記対象物質を強調する強調画像情報を生成する、
    ことを特徴とする観察画像取得方法。
  22. 前記強調画像情報の生成は、前記第1の画像情報と前記第2の画像情報とにそれぞれ含まれる同一波長領域の前記各画像情報を選択し、これら画像情報を演算して前記対象物質を強調する前記強調画像情報を生成することを特徴とする請求項21記載の観察画像取得方法。
JP2014076278A 2014-04-02 2014-04-02 観察画像取得システム Active JP6412709B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014076278A JP6412709B2 (ja) 2014-04-02 2014-04-02 観察画像取得システム
CN201580016610.3A CN106132275B (zh) 2014-04-02 2015-04-01 观察图像取得系统以及观察图像取得方法
DE112015001158.7T DE112015001158T5 (de) 2014-04-02 2015-04-01 Beobachtungsbild-Gewinnungssystem und Beobachtungsbild-Gewinnungsverfahren
PCT/JP2015/060333 WO2015152327A1 (ja) 2014-04-02 2015-04-01 観察画像取得システム及び観察画像取得方法
US15/281,709 US10582842B2 (en) 2014-04-02 2016-09-30 Observation image acquiring system and observation image acquiring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014076278A JP6412709B2 (ja) 2014-04-02 2014-04-02 観察画像取得システム

Publications (3)

Publication Number Publication Date
JP2015196004A true JP2015196004A (ja) 2015-11-09
JP2015196004A5 JP2015196004A5 (ja) 2016-11-17
JP6412709B2 JP6412709B2 (ja) 2018-10-24

Family

ID=54240645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014076278A Active JP6412709B2 (ja) 2014-04-02 2014-04-02 観察画像取得システム

Country Status (5)

Country Link
US (1) US10582842B2 (ja)
JP (1) JP6412709B2 (ja)
CN (1) CN106132275B (ja)
DE (1) DE112015001158T5 (ja)
WO (1) WO2015152327A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017213307A (ja) * 2016-06-02 2017-12-07 Hoya株式会社 画像処理装置および電子内視鏡システム
JP2020130553A (ja) * 2019-02-19 2020-08-31 富士フイルム株式会社 内視鏡システム
JP2021001916A (ja) * 2019-06-19 2021-01-07 日亜化学工業株式会社 光源装置および画像取得装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066347A1 (ja) * 2016-10-03 2018-04-12 富士フイルム株式会社 内視鏡システム及びその作動方法
JP6731065B2 (ja) * 2016-10-27 2020-07-29 富士フイルム株式会社 内視鏡システム及びその作動方法
DE112017006226T5 (de) * 2016-12-12 2019-09-05 Olympus Corporation Lichtquelleneinrichtung
JP6774603B2 (ja) * 2017-03-06 2020-10-28 株式会社Jvcケンウッド レーザ光照射検出装置、レーザ光照射検出方法、レーザ光照射検出システム
WO2018216119A1 (ja) 2017-05-23 2018-11-29 オリンパス株式会社 照明ユニット、照明装置及び内視鏡システム
WO2019026191A1 (ja) * 2017-08-01 2019-02-07 オリンパス株式会社 撮像装置および制御方法
CN113747826A (zh) * 2019-04-04 2021-12-03 纳瑟维有限公司 利用窄带成像的医学仪器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011156339A (ja) * 2010-01-08 2011-08-18 Fujifilm Corp 医療機器及び内視鏡装置
JP2011200367A (ja) * 2010-03-25 2011-10-13 Fujifilm Corp 画像撮像方法および装置
JP2012005807A (ja) * 2009-09-24 2012-01-12 Fujifilm Corp 内視鏡装置の制御方法及び内視鏡装置
JP2012213612A (ja) * 2011-04-01 2012-11-08 Fujifilm Corp 電子内視鏡システム及び電子内視鏡システムの校正方法
JP2013233219A (ja) * 2012-05-07 2013-11-21 Hoya Corp 光源装置、電子内視鏡装置及びオプティカルチョッパー

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7787121B2 (en) * 2007-07-18 2010-08-31 Fujifilm Corporation Imaging apparatus
JP2009153712A (ja) * 2007-12-26 2009-07-16 Olympus Corp 光源装置およびそれを備えた内視鏡装置
JP5296396B2 (ja) * 2008-03-05 2013-09-25 オリンパスメディカルシステムズ株式会社 生体内画像取得装置、生体内画像受信装置、生体内画像表示装置およびノイズ除去方法
JP5285967B2 (ja) 2008-06-11 2013-09-11 富士フイルム株式会社 光源装置およびこれを用いた内視鏡装置
JP5555002B2 (ja) * 2010-02-10 2014-07-23 オリンパス株式会社 蛍光内視鏡装置
DE102010038742B4 (de) * 2010-07-30 2016-01-21 Globalfoundries Dresden Module One Llc & Co. Kg Verfahren und Halbleiterbauelement basierend auf einer Verformungstechnologie in dreidimensionalen Transistoren auf der Grundlage eines verformten Kanalhalbleitermaterials
JP5258869B2 (ja) * 2010-12-13 2013-08-07 富士フイルム株式会社 内視鏡装置
JP5450527B2 (ja) * 2011-08-10 2014-03-26 富士フイルム株式会社 内視鏡装置
JP5698186B2 (ja) * 2012-05-23 2015-04-08 富士フイルム株式会社 内視鏡システム、内視鏡システムのプロセッサ装置、及び内視鏡システムの作動方法
JP6017219B2 (ja) * 2012-08-01 2016-10-26 オリンパス株式会社 蛍光観察装置および蛍光観察システム
EP3360462A4 (en) * 2015-10-08 2019-04-24 Olympus Corporation ENDOSCOPE DEVICE
WO2017130325A1 (ja) * 2016-01-27 2017-08-03 オリンパス株式会社 内視鏡観察方法及び内視鏡装置
WO2018105020A1 (ja) * 2016-12-05 2018-06-14 オリンパス株式会社 内視鏡装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005807A (ja) * 2009-09-24 2012-01-12 Fujifilm Corp 内視鏡装置の制御方法及び内視鏡装置
JP2011156339A (ja) * 2010-01-08 2011-08-18 Fujifilm Corp 医療機器及び内視鏡装置
JP2011200367A (ja) * 2010-03-25 2011-10-13 Fujifilm Corp 画像撮像方法および装置
JP2012213612A (ja) * 2011-04-01 2012-11-08 Fujifilm Corp 電子内視鏡システム及び電子内視鏡システムの校正方法
JP2013233219A (ja) * 2012-05-07 2013-11-21 Hoya Corp 光源装置、電子内視鏡装置及びオプティカルチョッパー

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017213307A (ja) * 2016-06-02 2017-12-07 Hoya株式会社 画像処理装置および電子内視鏡システム
JP2020130553A (ja) * 2019-02-19 2020-08-31 富士フイルム株式会社 内視鏡システム
US11311185B2 (en) 2019-02-19 2022-04-26 Fujifilm Corporation Endoscope system
JP7080195B2 (ja) 2019-02-19 2022-06-03 富士フイルム株式会社 内視鏡システム
JP2021001916A (ja) * 2019-06-19 2021-01-07 日亜化学工業株式会社 光源装置および画像取得装置
JP7025661B2 (ja) 2019-06-19 2022-02-25 日亜化学工業株式会社 光源装置および画像取得装置
US11759097B2 (en) 2019-06-19 2023-09-19 Nichia Corporation Light source device and image-capturing device

Also Published As

Publication number Publication date
US10582842B2 (en) 2020-03-10
JP6412709B2 (ja) 2018-10-24
CN106132275B (zh) 2020-05-26
DE112015001158T5 (de) 2016-12-08
CN106132275A (zh) 2016-11-16
US20170014022A1 (en) 2017-01-19
WO2015152327A1 (ja) 2015-10-08

Similar Documents

Publication Publication Date Title
JP6412709B2 (ja) 観察画像取得システム
JP5309120B2 (ja) 内視鏡装置
JP5216429B2 (ja) 光源装置および内視鏡装置
JP5405445B2 (ja) 内視鏡装置
US9456738B2 (en) Endoscopic diagnosis system
JP5229723B2 (ja) 蛍光画像取得装置
US9814375B2 (en) Light source device and subject observation apparatus as well as light source control method
WO2014136706A1 (ja) 被検体観察システム及び方法
JP5887350B2 (ja) 内視鏡システム及びその作動方法
CN108024689B (zh) 内窥镜装置
EP2301416A1 (en) Method of controlling endoscope and endoscope
JP6253231B2 (ja) 被検体観察システム及びその方法、カプセル型内視鏡システム
JP2011206227A (ja) 内視鏡装置
JP2012016545A (ja) 内視鏡装置
JP5762344B2 (ja) 画像処理装置及び内視鏡システム
JP5147538B2 (ja) 蛍光画像取得装置および蛍光画像取得装置の作動方法
JP6550420B2 (ja) 内視鏡装置
JP2013042855A (ja) 内視鏡装置及びその光源制御方法
JP2017170165A (ja) 内視鏡システム
JP2015164590A (ja) 内視鏡システム
JP2019000148A (ja) 内視鏡システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181001

R151 Written notification of patent or utility model registration

Ref document number: 6412709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250