JP2015170883A - 高調波信号生成装置、周波数変換装置、送信装置および周波数変換方法 - Google Patents

高調波信号生成装置、周波数変換装置、送信装置および周波数変換方法 Download PDF

Info

Publication number
JP2015170883A
JP2015170883A JP2014042465A JP2014042465A JP2015170883A JP 2015170883 A JP2015170883 A JP 2015170883A JP 2014042465 A JP2014042465 A JP 2014042465A JP 2014042465 A JP2014042465 A JP 2014042465A JP 2015170883 A JP2015170883 A JP 2015170883A
Authority
JP
Japan
Prior art keywords
signal
frequency
harmonic
terminal
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014042465A
Other languages
English (en)
Inventor
伊東 正治
Masaharu Ito
正治 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2014042465A priority Critical patent/JP2015170883A/ja
Publication of JP2015170883A publication Critical patent/JP2015170883A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmitters (AREA)

Abstract

【課題】逓倍数を切り替えることができるとともに、所望周波数信号とスプリアス波の周波数を一致させることなく、スプリアス波の抑圧を容易にすることができる周波数変換装置を提供する。
【解決手段】基本信号から位相の異なる第1および第2移相信号を生成して出力する第1移相手段と、第1および第2移相信号のそれぞれの周波数を逓倍した第1および第2高調波信号を生成し、生成する第1および第2高調波信号の逓倍数を同調的に切り替えて出力する高調波信号生成手段と、第1および第2高調波信号のそれぞれを移相した後に合成して出力する第2移相手段とを備える周波数変換装置とする。
【選択図】 図1

Description

本発明は、高調波信号生成装置、周波数変換装置、送信装置および周波数変換方法に関する。特に、無線通信機器に用いられる高調波信号生成装置、周波数変換装置、送信装置および周波数変換方法に関する。
マイクロ波帯やミリ波帯などの高周波帯では、低周波数信号源からの信号を高周波数信号に逓倍変換して低位相雑音の発振器を有する送信器モジュールを実現することができる。
低位相雑音の発振器を実現する逓倍回路の一例として、アンチパラレルダイオードペア(以下、APDP)を使用した回路がある(APDP:Anti Parallel Diode Pair)。APDPを使用した逓倍回路は、例えば特許文献1および2に開示されている。
また、近年、複数の周波数帯に対応することができる送信モジュールが求められる。しかしながら、特許文献1および2に開示された逓倍回路では、逓倍数を切り替えるために複数の逓倍回路が必要となるため、回路規模が大きくなるという問題点があった。
特許文献3には、所定逓倍数の周波数信号の切り替えを単一の回路で実現する周波数逓倍装置が開示されている(図19)。
図19に示した特許文献3の周波数逓倍装置110は、位相シフト部111およびレベルシフト部112から構成される回路ブロックと、波形合成部113と、比較部114とを備える。まず、回路ブロックは、入力周波数信号finを基本信号として、適宜に位相がシフトした信号(以下、位相シフト信号)を少なくとも1つ生成するとともに、位相シフト信号および基本信号のうちから適宜な信号に対して振動レベルをシフトさせる。次に、波形合成部113は、位相シフト信号と基本信号との合成波形を生成する。そして、比較部114は、波形合成部113が生成させた合成波形を比較閾値と比較し、比較閾値に応じた出力周波数信号foutを出力する。このようにして、特許文献3の周波数逓倍装置110は、合成された位相シフト信号波形の数、振幅レベル量および比較閾値に応じて出力周波数信号の周波数を切り替えることができる。
特開平9−238028号公報 特開平9−275319号公報 特開2003−32047号公報
特許文献1または2の逓倍回路では、所望周波数信号と同時にスプリアス波が生成される。しかしながら、特許文献1または2の逓倍回路では、所望周波数信号とスプリアス波の周波数が一致した場合、送信用高出力増幅器6に縦続するフィルタを設けたとしてもスプリアス波を抑圧することができない。そのため、スプリアス波のレベルが許容以上である場合、ある周波数帯では3逓倍器、別の周波数帯では2逓倍器といったようにRF周波数帯を分割し、逓倍数が異なる2つの送信器モジュールを使い分ける必要があるという課題があった。
特許文献3の周波数逓倍装置によれば、単一の装置で複数の逓倍数に対応できる送信モジュールを実現できる。特許文献3の周波数逓倍装置では、位相シフト部111およびレベルシフト部112において生成されるスプリアス高調波の漏洩波が波形合成部113に入力される。その結果、所望周波数信号以外にも多数のスプリアス波が波形合成部113によって生成されるため、波形合成部113の後段に帯域通過フィルタを設けてスプリアス波を抑圧する必要があった。しかしながら、所望周波数信号と周波数が一致したスプリアス波については、帯域通過フィルタを縦続させたとしても除去できないという課題があった。
本発明の目的は、上述した課題を解決する周波数変換装置を提供することにある。
本発明の高調波生成装置は、同じ周波数で位相の異なる2つの信号を入力とし、入力した2つの信号のそれぞれの周波数を逓倍化した2つの高調波信号を生成し、生成する2つの高調波信号の逓倍数を(外部から受信した切替制御信号に応じて)同調的に切り替えて出力する
本発明の周波数変換装置は、基本信号から位相の異なる第1および第2移相信号を生成して出力する第1移相手段と、第1および第2移相信号のそれぞれの周波数を所定の逓倍数だけ逓倍した第1および第2高調波信号を生成し、生成する第1および第2高調波信号の逓倍数を(外部から受信した切替制御信号に応じて)同調的に切り替えて出力する高調波信号生成手段と、第1および第2高調波信号のそれぞれを移相した後に合成して出力する第2移相手段とを備える。
本発明の送信装置は、基本信号を発振する発振手段と、基本信号から位相の異なる第1および第2移相信号を生成し、第1および第2移相信号のそれぞれの周波数を逓倍した第1および第2高調波信号を生成し、生成する第1および第2高調波信号の逓倍数を同調的に切り替え、第1および第2高調波信号のそれぞれを移相した後に合成して出力する周波数変換手段と、周波数変換手段によって出力された信号を増幅する第1の増幅手段と、第1の増幅手段によって増幅された信号の帯域を制限する濾波手段と、濾波手段によって帯域を制限された信号と中間周波数信号とを周波数混合する混合手段と、混合手段によって周波数混合された信号を増幅する第2の増幅手段と、第2の増幅手段によって増幅された信号を送信する送信手段とを備える。
本発明の周波数変換方法は、同じ周波数で位相の異なる2つの信号を入力し、入力した前記2つの信号のそれぞれの周波数を逓倍化した2つの高調波信号を生成し、生成する前記2つの高調波信号の逓倍数を(外部から受信した切替制御信号に応じて)同調的に切り替えて出力する。
本発明によれば、逓倍数を切り替えることができるとともに、所望周波数信号とスプリアス波の周波数を一致させることなく、スプリアス波の抑圧を容易にすることができる周波数変換装置を提供することができる。
本発明の概要に係る周波数変換装置の機能構成を示すブロック図である。 本発明の概要に係る周波数変換装置の高調波信号生成手段の機能構成を示す概念図である。 本発明の概要に係る周波数変換装置の高調波信号生成手段の機能構成を示す概念図である。 本発明の概要に係る周波数変換装置の高調波信号生成手段の機能構成を示す概念図である。 本発明の概要に係る周波数変換装置の機能構成を示すブロック図である。 本発明の第1の実施形態に係る周波数逓倍回路の回路図である。 本発明の第1の実施形態に係る周波数逓倍回路の各端子における基本波および3次高調波(3逓倍動作)の位相および合成係数をまとめた表である。 本発明の第1の実施形態に係る周波数逓倍回路の各端子における基本波および2次高調波(2逓倍動作)の位相および合成係数をまとめた表である。 本発明の実施形態に係る送信装置の機能構成を示すブロック図である。 本発明の実施形態に係る送信装置を実現する送信器モジュールの一例を示す構成図である。 周波数逓倍回路(2逓倍)を含む送信器モジュールにおいて生成される所望波およびスプリアス波の出力周波数の入力周波数依存性を示すグラフである。 周波数逓倍回路(3逓倍)を含む送信器モジュールにおいて生成される所望波およびスプリアス波の出力周波数の入力周波数依存性を示すグラフである。 本発明の第1の実施形態に係る周波数逓倍回路(3逓倍動作)における基本波および高調波の出力電力の入力周波数依存性の計算結果の一例を示すグラフである。 本発明の第1の実施形態に係る周波数逓倍回路(2逓倍動作)における基本波および高調波の出力電力の入力周波数依存性の計算結果の一例を示すグラフである。 本発明の第2の実施形態に係る周波数逓倍回路の回路図である。 本発明の第2の実施形態に係る周波数逓倍回路に関するダイオード半波整流回路の流通角に対する高調波の振幅の変化を計算した結果の一例を示すグラフである。 本発明の第2の実施形態に係る周波数逓倍回路において2逓倍動作時に生成される2次高調波の入力周波数依存性の一例を示すグラフである。 本発明の第2の実施形態に係る周波数逓倍回路において2逓倍動作時に生成される3次高調波の入力周波数依存性の一例を示すグラフである。 特許文献3の周波数逓倍装置の構成を示すブロック図である。
以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。
(概要)
まず、図面を参照して本発明の概要に係る周波数変換装置について説明し、その後、本発明の実施形態に係る周波数逓倍回路について説明する。
図1は、本発明の概要に係る周波数変換装置の機能構成を示すブロック図である。本概要に係る周波数変換装置は、第1移相手段10と、高調波信号生成手段20と、第2移相手段30とを備える。
(第1移相手段)
第1移相手段10は、基本信号(基本波とも呼ぶ)を入力として、基本信号と同一の位相をもつ第1移相信号と、第1移相信号と所定の位相差をもつ第2移相信号とを出力する。すなわち、第1移相手段は、基本信号を位相の異なる2つの信号(第1および第2移相信号)に分離する。第1移相手段10から出力された第1および第2移相信号は、高調波信号生成手段20に入力される。
第1移相手段に入力される基本信号は、図示しない局部発振手段によって発信された特定の周波数をもつ局部発振信号である。
第1移相手段10は、例えば90°ハイブリッドによって実現される。第1移相手段10を90°ハイブリッドで構成する場合、第1移相信号は基本信号と同じ位相をもつ信号となり、第2移相信号は第1移相信号と90°位相がずれた信号となる。例えば、第1移相手段10は、入力された基本信号について、0°の位相差(同一の位相)を付けた第1移相信号と、−90°の位相差を付けた第2移相信号とを出力する。なお、第1および第2の位相差は0°や−90°に限らずに任意の位相差とすることができる。ただし、以下の説明において、第1移相手段は、基本信号に対して−90°の位相差を付けた第2移相信号を出力することを前提として説明する。
(高調波信号生成手段)
高調波信号生成手段20は、第1移相手段10から出力された第1および第2移相信号を入力とし、入力された第1および第2移相信号のそれぞれから第1および第2高調波信号を生成する。そして、高調波信号生成手段20は、生成した第1および第2高調波信号を出力する。高調波信号生成手段20から出力された第1および第2高調波信号は、第2移相手段30に入力される。
図1に示したように、高調波信号生成手段20は、第1移相信号を入力とする第1逓倍変換手段21aと、第2移相信号を入力とする第2逓倍変換手段21bとを有する。
図2に示したように、第1逓倍変換手段21aは、第1切替手段23aと第1整流手段25aとを含む。同様に、第2逓倍変換手段21bは、第2切替手段23bと第2整流手段25bとを含む。これ以降、特に断らない限り、第1逓倍変換手段21aおよび第2逓倍変換手段21bの内部構成を区別せず、第1および第2切替手段23a・23bを切替手段23、第1および第2整流手段25a・25Bを整流手段25と記載する。
整流手段25は、2つのダイオードが互いに逆向きに並列接続されたアンチパラレルダイオードペア(以下、APDP)として構成される(APDP:Anti Parallel Diode Pair)。なお、APDPを構成する各ダイオードは、特に断りが無い限り同じ構造・特性をもつものとする。整流手段25に含まれるダイオードは、切替手段23によって導通・非導通を切り替えられる。
切替手段23は、整流手段を構成する2つのダイオードへの導通を制御する。図2には、整流手段25を構成する2つのダイオードに対して個別にスイッチを設けた例を示している。なお、切替手段23は、整流手段の前段ではなくて後段に配置されていてもよいし、前段と後段の両方に配置されていてもよい。
切替手段23は、外部から入力された切替制御信号に応じて制御される。第1および第2逓倍変換手段21a・21bの切替手段23に含まれるスイッチのうち同一方向を向いた1組のダイオードに接続されたスイッチ同士は、共通の切替制御信号に応じて同調的に動作してダイオードの導通・非導通を切り替えることが好ましい。すなわち、図2において、第1逓倍変換手段21aの第1切替手段23aに含まれる上側のスイッチと、第2逓倍変換手段21bの第2切替手段23bに含まれる下側のスイッチとが対応するように同調的に動作することが好ましい。もしくは、図2において、第1逓倍変換手段21aの第1切替手段23aに含まれる下側のスイッチと、第2逓倍変換手段21bの第2切替手段23bに含まれる上側のスイッチとが対応するように同調的に動作することが好ましい。なお、第1および第2逓倍変換手段21a・21bの切替手段23に含まれる全てのスイッチは、共通の切替制御信号に応じて同調的に動作してもよい。
図2には、全てのスイッチがオンの状態を図示している。図2の例では、3逓倍動作することになる。また、図3には、逆接続されたダイオードはオフの状態であり、順接続されたダイオードはオンの状態を図示している。図3の例では、2逓倍動作することになる。
切替手段23に含まれるスイッチは、例えばFETによって実現される(FET:Field Effect Transistor)。スイッチをFETで構成する場合、ダイオードの前段および後段の少なくともいずれかにFETを挿入すればよい。FETは、ソースとドレインが信号線に接続されるように挿入し、ゲートには外部から信号供給するための端子を接続する。端子から切替制御信号を供給することによって、それぞれのスイッチのオン/オフを切り替えることができる。なお、端子とゲートの間には、外部のインピーダンスの影響を低減するために十分大きい抵抗をもつ抵抗を介在させることが好ましい。ただし、切替手段23に含まれるスイッチは、FETに限らず、例えばバイポーラトランジスタなどを使用してもよい。
第1および第2逓倍変換手段21a・21b内には、それぞれ第1および第2移相信号が入力する入力端子が設けられている。入力端子は、第1および第2逓倍変換手段21a・21b内の切替手段23の2つのスイッチに接続される。
第1および第2移相信号のそれぞれは、第1および第2逓倍変換手段21a・21bの入力端子に入力されると、閉状態のスイッチを通って整流手段25内のダイオードに入力される。整流手段25内のダイオードに入力された信号は、出力端子を介して出力されることになる。出力端子を介して出力された信号が第1および第2高調波信号となる。すなわち、第1および第2高調波信号のそれぞれは、第1および第2逓倍変換手段21a・21b内において、基本波(1次高調波)および高次高調波を含む信号に変換される。
第1逓倍変換手段21aは、第1切替手段23a内のスイッチのオン/オフ状態に応じて、第1移相信号を基に生成させた第1高調波信号を出力する。第2逓倍変換手段21bは、第1逓倍変換手段21aと同様に、第2切替手段23b内のスイッチのオン/オフ状態に応じて、第2移相信号を基に生成させた第2高調波信号を出力する。
高調波信号生成手段20から出力された第1および第2高調波信号は、第2移相手段30に入力される。
なお、図4に示したように、切替手段23は整流手段25の後段に配置されていてもよい。図4の場合、第1および第2逓倍変換手段21c・21dのそれぞれに入力された第1および第2移相信号は、切替手段23の状態に応じて整流手段25に入力される。なお、整流手段25内の導通されたダイオードを経た信号は、切替手段23内の閉状態のスイッチを経て、出力端子を介して出力されることになる。また、図示しないものの、整流手段25の両側に切替手段23を配置する構成としてもよい。
(第2移相手段)
第2移相手段30は、第1および第2高調波信号を入力とし、入力した第1および第2高調波信号に位相差を付けてから合成した出力信号を出力する。出力信号は、基本信号の周波数を逓倍変換した周波数をもつ逓倍変換信号となる。
第2移相手段30は、第1移相手段10と同様に、例えば90°ハイブリッドによって実現される。第1移相手段10と第2移相手段30とは、同じ構成をもつ90°ハイブリッドの入力と出力とを逆にした構成とすればよい。
例えば、整流手段25内の全てのダイオードを導通させた場合、第2移相手段は、基本信号の周波数を3逓倍させた出力信号を出力する(3逓倍動作)。また、例えば、入力信号に対して逆接続されたダイオードの導通を切り、順接続されたダイオードのみを導通させた場合、第2移相手段は、基本信号の周波数を2逓倍させた出力信号を出力する(2逓倍動作)。なお、入力信号に対して順接続されたダイオードの導通を切り、逆接続されたダイオードのみを導通させた場合も2逓倍動作する。
(変形例)
図5は、本発明の概要に係る周波数変換装置の変形例を示す図である。本変形例では、第1移相手段10および第2移相手段30と、第1および第2逓倍変換手段21a・21bとの間の信号線にインダクタ40a〜40dの一端を接続する。インダクタ40a〜40dの一端は信号線に接続され、他端は端子41a〜41dに接続される。
端子41a〜41dの全てを接地端子に接続してもよい。また、端子41a〜41dのいずれかを、整流手段に含まれるダイオードに印可される電位を制御するための電位制御端子としてもよい。例えば、端子41a・41bを電位制御端子とし、端子41c・41dを接地端子に接続すれば、整流手段25内部のダイオードの入出力間にDCオフセット電圧VOFFSETを加えることができる(DC:Direct Current)。
以上が、本発明の概要に係る周波数変換装置についての説明である。本概要に係る高調波信号生成手段は、同じ周波数で位相の異なる2つの信号を入力とし、入力した2つの信号のそれぞれの周波数を逓倍化した2つの高調波信号を生成し、生成した2つの高調波信号の逓倍数を同調的に切り替えて出力する高調波信号生成装置である。高調波信号生成手段は、通常、外部から受信した切替制御信号に応じて、生成した2つの高調波信号の逓倍数を同調的に切り替える。なお、本概要に係る周波数変換装置の動作や効果の詳細については、後ほど周波数逓倍回路を例として説明する。
(第1の実施形態)
(構成)
図6は、本発明の第1の実施形態に係る周波数逓倍回路201の回路図である。なお、本実施形態に係る周波数逓倍回路201は、本発明の概要として説明した周波数逓倍装置に含まれ、本発明を実現するための回路構成の一例である。
周波数逓倍回路201は、第1移相信号を入力とするアンチパラレルダイオードペア22a(以下、APDP22a)と、第2移相信号を入力とするアンチパラレルダイオードペア22b(以下、APDP22b)とを備える。さらに、周波数逓倍回路201は、信号源11と、2つの90°ハイブリッド12および13と、負荷14と、チョークインダクタ18a〜18dとを備える。
続いて、本実施形態に係る周波数逓倍回路201の構成要素の詳細について説明する。
信号源11は、基本信号を発振する局部発振手段である。
90°ハイブリッド12は、信号源11によって発振された基本信号を入力とする。90°ハイブリッド12は、基本信号と同じ位相の第1移相信号と、位相を−90°ずらすことによって第1移相信号と90°の位相差をもつ第2移相信号とを分配して出力する第1移相手段である。
APDP22aは、FETスイッチ24a・24b、逆並列接続されたダイオード26a・26bを有する第1逓倍変換手段である。また、APDP22aは、第1移相信号を入力する入力端子27a、第1移相信号を逓倍変換することによって生成された第1高調波信号を出力する出力端子28aを有する。APDP22aに入力された第1移相信号が入力端子27aにおいてFETスイッチ24a・24bに向けて分岐されるように、入力端子27aはFETスイッチ24a・24bのソースもしくはドレインに接続される。
FETスイッチ24aのソースもしくはドレインのうち入力端子27aと接続されていない方は、ダイオード26aのカソードに接続される。また、FETスイッチ24bのソースもしくはドレインのうち入力端子27aと接続されていない方は、ダイオード26bのアノードに接続される。ダイオード26aのアノードおよびダイオード26bのカソードは、出力端子28aに接続される。すなわち、FETスイッチ24aとダイオード26aとが直列接続され、FETスイッチ24bとダイオード26bとが直列接続される。
同様に、APDP22bは、FETスイッチ24c・24d、逆並列接続されたダイオード26c・26dを有する第2逓倍変換手段である。また、APDP22bは、第2移相信号を入力する入力端子27b、第2移相信号を逓倍変換することによって生成された第2高調波信号を出力する出力端子28bを有する。APDP22bに入力された第2移相信号が入力端子27bにおいてFETスイッチ24c・24dに向けて分岐されるように、入力端子27bはFETスイッチ24c・24dのソースもしくはドレインに接続される。
FETスイッチ24cのソースもしくはドレインのうち入力端子27bと接続されていない方は、ダイオード26cのカソードに接続される。また、FETスイッチ24dのソースもしくはドレインのうち入力端子27bと接続されていない方は、ダイオード26dのアノードに接続される。ダイオード26cのアノードおよびダイオード26dのカソードは、出力端子28bに接続される。すなわち、FETスイッチ24cとダイオード26cとが直列接続され、FETスイッチ24dとダイオード26dとが直列接続される。
FETスイッチ24a〜24dのゲートには、抵抗17a〜17dを介して制御端子16a〜16dが接続される。なお、抵抗17a〜17dの抵抗値は、外部のインピーダンスの影響を低減するために十分大きくすることが望ましい(例えば、数KΩ以上)。
出力端子28a・28bのそれぞれから出力される第1および第2高調波信号は、ともに後段に向けて出力される。
90°ハイブリッド13は、第1および第2高調波信号を入力とする。90°ハイブリッド13は、第1高調波信号と、第2高調波信号の位相を−90°ずらした信号とを合成し、合成された出力信号を出力する第2移相手段である。90°ハイブリッド13から出力された出力信号は、負荷14に向けて出力される。
APDP22a・22bの入力端子27a・27bは、それぞれチョークインダクタ18a・18bを介して接地端子(GND)に接続される(GND:Ground)。同様に、APDP22a・22bの出力端子28a・28bは、それぞれチョークインダクタ18c・18dを介して接地端子(GND)に接続される。チョークインダクタ18a〜18dは、ダイオード26a〜26dの電位を固定するために設置される。
以上が、第1の実施形態に係る周波数逓倍回路201の構成についての説明である。続いて、本実施形態に係る周波数逓倍回路201の動作について説明する。
(3逓倍動作)
まず、FETスイッチ24a〜24dが全てオン状態の場合の動作について考える。この場合、周波数逓倍回路201は3逓倍器として機能することになる。
APDP22aを構成するダイオード26a・26bに加わる励振電圧をVd、それぞれのダイオード26a・26bに流れる電流をIaおよびIbとすると、各電流値は式1および式2で表される。なお、図6中に示したように、電流IaおよびIbは入力端子27aから出力端子28aの方向に流れる。
Figure 2015170883

Figure 2015170883
式1および式2において、Isはダイオードの飽和電流、αはq/kTである。なお、qは電荷、kはボルツマン定数、Tは絶対温度である。
また、電流IaおよびIbをテーラー展開すると、それぞれ式3および式4で表される。
Figure 2015170883

Figure 2015170883
したがって、APDP22aで生成され、出力端子28aから出力される電流Ioutは、式5で表される通り、励振電圧Vdに対して奇関数となる。
Figure 2015170883
したがって、励振電圧Vdとして正弦波を加えると、出力高周波数電流Ioutは奇数次成分のみを含む。
同様に、APDP22bから出力される高周波数電流も奇数次成分のみを含む。
これ以降、APDP22aから出力される信号を第1高調波信号、APDP22bから出力される信号を第2高調波信号と呼ぶ。
3逓倍動作において、第1および第2高調波信号には、1次高調波である基本波、3次高調波、さらには5次以上の高調波が含まれる。なお、5次以上の奇数次成分は、基本波および3次高調波と比べると変換損失が大きいため、ここでは考慮しない。
ここで、各端子(入力端子27aおよび27b、出力端子28aおよび28b、負荷14)における第1高調波信号に含まれる基本波および3次高調波の各位相は、図7の表に示したようになる。なお、図7の表に示した位相は、APDP22aを経路に含まれる基本波を基準とする。
信号源11から出力された基本波は、90°ハイブリッド12を経由すると、0°の位相を持つ基本波(第1移相信号)がAPDP22aに、−90°の位相を持つ基本波(第2移相信号)がAPDP22bに分配供給される。APDP22a・22bに分配供給された基本波(第1および第2移相信号)は、APDP22a・22bのそれぞれにおいて奇数次成分のみからなる第1および第2高調波信号に変換される。
APDP22aから出力された第1高調波信号に含まれる1次高調波(基本波)は90°ハイブリッド13において0°の位相差を付けられる。また、APDP22bから出力された第2高調波信号に含まれる1次高調波(基本波)は、90°ハイブリッド13において−90°の位相差を付けられる。90°ハイブリッド13は、位相差を付けた2つの基本波を合成する。
このとき、APDP22a・22bを経由した基本波は互いに逆相関係(0°と−180°)となって打ち消しあうため、負荷14には出力されない。
一方、3次高調波については、APDP22a・22bにおいて3倍の位相変化を生じる。そのため、APDP22aの出力端子28aにおける3次高調波の位相は0°となり、APDP22bの出力端子28bにおける3次高調波の位相は−270°となる。
APDP22aから出力された第1高調波信号に含まれる3次高調波は、90°ハイブリッド13において0°の位相差を付けられる。また、APDP22bから出力された第2高調波信号に含まれる3次高調波は、90°ハイブリッド13において−90°の位相差を付けられる。90°ハイブリッド13は、位相差を付けた2つの3次高調波を合成する。
その結果、APDP22a・22bのそれぞれを経由した3次高調波の位相差は0°(同相)となり、各APDP22aおよび22bで生成される電力の2倍(合成係数2)の電力が負荷14に出力される。
以上のように、FETスイッチ24a〜24dの全てがオンの場合、周波数逓倍回路201は3逓倍器として動作する。
(2逓倍動作)
次に、FETスイッチ24a・24cがオフ、24b・24dがオン状態の動作について考える。この場合、周波数逓倍回路201は2逓倍器として機能する。
FETスイッチ24a・24cがオフであるため、APDP22a・22b内のダイオード26b・26dのみが機能し、ダイオード26a・26cは機能しない。すなわち、APDP22a・22bは、それぞれ1つのダイオードから成る半波整流回路として動作する。
各APDP22a・22bから出力される高周波電流は、式4と同じであり、奇数次および偶数次両方の成分を含む。2逓倍動作において、第1および第2高調波信号には、1次高調波である基本波、2次高調波、3次高調波、さらには4次以上の高調波が含まれる。なお、4次以上の成分は、基本波、2次高調波および3次高調波と比べると変換損失が大きいため、ここでは考慮しない。
ここで、3次以下の成分について、各端子(入力端子27a・27b、出力端子28a・28b、負荷14)における位相を示すと、図8のようになる。
基本波および3次高調波については、先述の3逓倍動作と同じであるので、説明は省略する。
2次高調波については、APDP22a・22bにおいて、基本波の2倍の位相変化を生じる。そのため、2次高調波の位相は、APDP22aの出力端子28aにおいて0°、APDP22bの出力端子28bにおいて−180°となる。
APDP22aから出力された第1高調波信号に含まれる2次高調波は、90°ハイブリッド13において0°の位相差を付けられる。また、APDP22bから出力された第2高調波信号に含まれる2次高調波は、90°ハイブリッド13において−90°の位相差を付けられる。90°ハイブリッド13は、位相差を付けた2つの3次高調波を合成する。
その結果、APDP22a・22bのそれぞれを経由した2次高調波は互いに90°の位相差を持ち、APDP22a・22bで生成される電力の√2倍(合成係数√2)の電力が負荷14に出力される。
なお、3次高調波の合成係数は2であるため、比較的大きな3次高調波が出力される。しかしながら、一般に、高い次数をもつスプリアス3次高調波の出力電力は、低い次数をもつ2次高調波よりも相対的に小さく、第1および第2高調波信号の主成分は2次高調波となる。つまり、FETスイッチ24a・24cがオフ、FETスイッチ24b・24dがオンの場合、周波数逓倍回路201は、2逓倍器として動作する。なお、FETスイッチ24a・24cがオン、FETスイッチ24b・24dがオフの場合(オン/オフが逆の組み合わせ)であっても同じように2逓倍器として動作する。
以上のように、本発明の第1の実施形態に係る周波数逓倍回路によれば、APDPに含まれるダイオードの導通・非導通を切り替えることによって、出力信号の逓倍数を切り替えることができる。また、本発明の第1の実施形態に係る周波数逓倍回路によれば、所望周波数信号とスプリアス波の周波数を一致させることなく、スプリアス波の抑圧を容易にすることができる。
(送信装置)
図9は、本発明の実施形態に係る周波数変換装置を備えた送信装置100の構成を示すブロック図である。送信装置100は、発振手段101、周波数変換手段102、第1増幅手段103、濾波手段104、混合手段105、第2増幅手段106、送信手段107を備える。
発振手段101は、基本信号を発振する低周波数信号源である。発振手段101は、発振させた基本信号を周波数変換手段102に出力する。なお、発振手段101を送信装置100に含めずに、外部の発振手段によって発信された基本信号を周波数変換手段102に入力させる構成としてもよい。
周波数変換手段102は、本実施形態に係る周波数変換装置の機能を有する手段である。周波数変換手段102は、入力された基本信号を、混合手段105を駆動する高調波信号に逓倍変換する。周波数変換手段102は、逓倍変換した高調波信号を第1増幅手段103に出力する。
第1増幅手段103は、周波数変換手段102から入力した高調波信号を、混合手段105を駆動するのに十分な電力レベルまで増幅する。第1増幅手段103は、増幅した信号を濾波手段104に出力する。
濾波手段104は、第1増幅手段によって増幅された信号の周波数帯を制限する。濾波手段104は、例えば低域通過フィルタとして構成する。濾波手段104は、濾波した信号を混合手段105に出力する。
混合手段105は、濾波手段104によって濾波された信号と、図示しない発信源によて発振された中間周波数信号とを入力とし、入力した信号を周波数混合して無線周波数信号(以下、RF信号)を生成する(RF:Radio Frequency)。混合手段105は、生成したRF信号を第2増幅手段106に出力する。なお、混合手段105に入力される中間周波数信号の発信源となる局部発振手段も送信装置100に含めてもよいが、局部発振手段を含まない送信モジュールとして送信装置100を構成してもよい。
第2増幅手段106は、通信路を介して送信できる程度に入力されたRF信号を増幅する。第2増幅手段106は、増幅したRF信号を送信手段107に向けて出力する。
送信手段107は、入力したRF信号を通信路に送信する手段である。通信路として無線通信路を用いる場合、送信手段107は、RF信号を送信するためのアンテナをもつ。また、有線通信を用いる場合、送信手段107は、通信路にRF信号を送信するためのポートをもつ。
以上が本発明の実施形態に係る周波数変換装置を含む送信装置についての説明である。本実施形態に係る送信装置によれば、逓倍数を切り替えることができるとともに、所望周波数信号とスプリアス波の周波数を一致させることなく、スプリアス波が抑圧されたRF信号を送信することが可能となる。
(送信モジュール)
ここで、周波数逓倍回路を含む送信器モジュール(送信装置)について、一般的な周波数逓倍回路を用いた場合と本実施形態に係る周波数逓倍回路201を用いた場合とを比較して説明する。図10には、ミリ波帯等の高周波数帯で使用される送信器モジュールの構成図の一例を示す。
図10の送信器モジュール1は、周波数逓倍器2(周波数変換手段)、駆動用増幅器3(第1の増幅手段)、低域通過フィルタ4(濾波手段)、ミキサ5(混合手段)、送信用高出力増幅器6(第2の増幅手段)により構成される。
入力端子7から供給された低周波数信号源からのLO信号(基本信号)は、周波数逓倍器2により、ミキサ5を駆動する高調波信号に逓倍変換(例えば、2倍や3倍)される(LO:Local Oscillator)。
逓倍変換されたLO信号(以下、逓倍LO信号)は、駆動用増幅器3により、ミキサ5を駆動するために十分な電力レベルまで増幅される。
低域通過フィルタ4は、増幅された逓倍LO信号の周波数帯を制限した信号(以下、逓倍LO周波数信号)を出力する。通常、非線形領域で動作する駆動用増幅器3において生成されたスプリアス高調波(主に2次)は、低域通過フィルタ4により抑圧される。
ミキサ5には、逓倍LO周波数信号と、入力端子8から供給された中間周波数(IF)信号とが入力される(IF:Intermediate Frequency)。ミキサ5は、逓倍LO周波数信号とIF信号とを周波数混合し、RF信号を生成させる。なお、ミリ波帯等の高周波数帯では、駆動用増幅器3の動作周波数を低減するために、ミキサ5としてサブハーモニック型のミキサが使用されることが多い。
送信用高出力増幅器6によって増幅されたRF信号は、出力端子9を介して送信される。
ミキサ5には、所望の逓倍LO周波数信号のみが入力されることが理想であるが、実際には、周波数逓倍器2や駆動用増幅器3において生成されるスプリアス高調波の漏洩波も入力される。そのため、ミキサ5によるIF信号周波数との周波数混合により、RF信号周波数帯には、所望周波数信号以外にも多数のスプリアス波が生成される。これらのスプリアス波は、出力端子9に縦続する図示しない帯域通過フィルタ(以下、BPF)により十分に抑圧される(BPF:Band Pass Filter)。その後、BPFによってスプリアス波が除去された所望周波数信号がアンテナから空間へと放射される。
ここで、一例として、RF信号周波数を57〜66GHz、IF信号周波数を3.5GHzとし、2次のサブハーモニック型のミキサ5を用いた例を挙げる(RF:Radio Frequency)。
RF信号周波数は、LO信号周波数により変化される。図11および図12には、LO信号周波数を変化させた場合における、ミキサ5において生成される所望周波数信号と、所望周波数信号に近接するスプリアス波との周波数を示す。なお、所望周波数信号は、ミキサ5で生成される高周波数側単側波(USB)とした(USB:Upper SideBand)。
周波数逓倍器2の次数が4以上の場合は変換損失が大きくなる。そのため、周波数逓倍器2の次数には、通常2または3が多く使用される。そこで、図11および図12には、それぞれ周波数逓倍器2の次数が2および3の場合について示す。
逓倍数が2の場合(図11)、4倍のLOとIFとの和周波数信号である所望周波数信号(実線)は、59GHz近傍において近接スプリアス波(破線)と一致する。なお、図11に示した近接スプリアス波(破線)は、5倍のLOと3倍のIFとの差周波数信号である。また、逓倍数が3の場合(図12)、6倍のLOとIFとの和周波数信号である所望周波数信号(実線)は、66GHz近傍において、近接スプリアス波と一致する。なお、図12に示した近接スプリアス波は、5倍のLOと4倍のIFとの和周波数信号(破線)と、7倍のLOと2倍のIFとの差周波数信号(一点鎖線)である。
ここで、図13および図14を用いて、上述の周波数例において逓倍動作させた場合の周波数逓倍回路201の出力電力について説明する。なお、図13および図14においては、90°ハイブリッド12および13としてランゲカプラを使用した例を示している。
図13は、3逓倍動作させた場合の周波数逓倍回路201の出力電力の計算結果を示す。図13より、スプリアスとなる基本波よりも所望の高調波である3次高調波の方が大きくなっていることを確認できる。同様に、図14には、2逓倍動作させた場合の周波数逓倍回路201の出力電力の計算結果を示す。図14より、スプリアスとなる基本波および他の高調波(3次高調波)よりも2逓倍動作においても所望の高調波である2次高調波の方が大きくなっていることを確認できる。
理想90°ハイブリッドでは、基本波の漏洩は完全に抑圧される。それに対し、図13および図14に示したような実際の90°ハイブリッドでは、分配・合成において位相および振幅誤差が生じること、周波数依存性を持つことに起因して基本波の漏洩が見られる。
しかしながら、本実施形態に係る周波数逓倍回路201を用いると、基本波抑圧用のフィルタが無いにもかかわらず、所望高調波に対してスプリアス波を10dB程度抑圧できている。したがって、基本波周波数帯と所望高調波周波数帯とが重なり、スプリアス基本波を縦続するフィルタでは抑圧できない場合には、本実施形態の構造が特に有効であるといえる。
図10の送信モジュール1の周波数逓倍器2として一般的な周波数逓倍器を用いると、所望周波数信号とスプリアス波との周波数が一致した場合、PA6に縦続するBPF(図示しない)ではスプリアス波を抑圧することができない。そのため、スプリアス波のレベルが許容以上である場合、例えば57〜62GHzでは3逓倍器、62〜66GHzでは2逓倍器といったように、RF周波数帯を分割して逓倍数が異なる2つの送信器モジュール1を使い分ける必要がある。
それに対し、本実施形態に係る周波数変換装置を周波数逓倍器2として用いた場合、単一の装置で逓倍数を変更することができる。そのため、本実施形態に係る周波数変換装置によれば、所望周波数信号波とスプリアス波を一致させることなく、単一の送信モジュール1で複数の逓倍数をもつ信号を出力することが可能となる。
(第2の実施形態)
次に、本発明の第2の実施形態に係る周波数逓倍回路202について、図15を用いて詳細に説明する。図15は、本実施形態に係る周波数逓倍回路202の回路図である。ただし、第1の実施形態に係る周波数逓倍回路201と同じ構成については説明を省略する。なお、本実施形態に係る周波数逓倍回路202は、本発明の概要として説明した周波数変換装置に含まれ、本発明を実現するための回路構成の一例である。
第2の実施形態では、第1の実施形態のAPDP22a・22bの入力側に配置するDC電位固定用のチョークインダクタ18a・18bを接地端子に接続する替わりに、電位制御端子19a・19bを設けている。これにより、ダイオード26a〜26dの入出力間にDCオフセット電圧VOFFSETを加えることができる。
(2逓倍動作)
ここで、周波数逓倍回路が2逓倍器として動作する場合(FETスイッチ24a・24cがオフ、24b・24dがオン状態)について説明する。半波整流回路となるダイオード26b・26dにおいて定電圧近似し、励振電圧VdとしてVACcosωt+VOFFSETを加えると、出力端子28a・28bに現れる高周波電圧Vout(DC成分は無視)は、式6で表される。
Figure 2015170883
なお、式6において、ωは角周波数、tは時間を示す。また、式6を展開した際のa1は式7で表され、anは式8で表される(nは2以上の整数)。
Figure 2015170883

Figure 2015170883
なお、式7および式8において、VACは入力高周波電圧振幅を示す。また、式7および式8におけるθは、ダイオードが導通する時間となる流通角であり、式9で表される。
Figure 2015170883
式9より、DCオフセット電圧VOFFSETによって流通角θを変化させることができる。その結果、高周波電圧VOUTに含まれる高調波成分の比率を制御することができる。
図16には、流通角θを変化させた場合における2次および3次高調波成分の振幅を示す。なお、図16に示した2次および3次高調波成分の振幅は、入力高周波電圧振幅VACによって規格化している。
図16より、流通角θが180°(DCオフセット電圧VOFFSETがダイオードの順方向降下電圧の場合)において、2次高調波が最大であり、かつ3次高調波が最小となることが分かる。すなわち、本実施形態の構造により、スプリアス3次高調波を大きく低減することができる。なお、ダイオード26a〜26dのオン/オフが逆の組み合わせの場合も同様の効果を得られるが、DCオフセット電圧VOFFSETは正負反転することになる。
図17および図18には、2逓倍動作させた場合における、DCオフセット電圧VOFFSETによる周波数逓倍回路の出力電力の変化を計算した結果を示す。図17および図18には、DCオフセット電圧VOFFSETが、0V(実線)、0.2V(破線)、0.4V(一点鎖線)および0.6V(二点鎖線)の例を示す。
図17および図18より、DCオフセット電圧VOFFSETによって2次および3次高調波出力電力が変化することが分かる。
図17によると、2次高調波出力電力は、順方向降下電圧(0.7V程度)より少し小さく、DCオフセット電圧VOFFSETが0.4V程度で最大となっている。図18によると、3次高調波出力電力は、順方向降下電圧(0.7V程度)より少し小さく、DCオフセット電圧VOFFSETが0.4V程度で最小となっている。
以上のように、本発明の第2の実施形態では、APDPの入力端子と90°ハイブリッドとの間に一端が接続されるチョークインダクタの他端に制御端子を設けることによって、ダイオードの入出力間にDCオフセット電圧VOFFSETを加えることができる。そのため、DCオフセット電圧VOFFSETを変化させることによって、APDPの出力端子から出力される高調波を制御することができる。
(変形例)
以上の本発明の実施形態においては、FETスイッチをダイオードに対して入力側に配置した例を示したが、FETスイッチをダイオードに対して出力側あるいは両側に配置しても構わない。
また、本発明の実施形態に係る周波数逓倍回路には、所望の変換特性を満たすようにフィルタおよび整合回路等を適宜付加しても構わない。その場合、信号源11と90°ハイブリッド12との間、90°ハイブリッド12(13)とAPDP22aおよび22bとの間、90°ハイブリッド13と負荷14との間等にフィルタおよび整合回路等を付加すればよい。
以上、実施形態を参照して本発明を説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
1 送信器モジュール
2 逓倍器
3 駆動用増幅器
4 低域通過フィルタ
5 ミキサ
6 送信用高出力増幅器
7、8 入力端子
9 出力端子
10 第1移相手段
11 信号源
12、13 90°ハイブリッド
14 負荷
16 制御端子
17 抵抗
18 チョークインダクタ
19 電位制御端子
20 高調波信号生成手段
21a 第1逓倍変換手段
21b 第2逓倍変換手段
22 アンチパラレルダイオードペア
23 切替手段
24 FETスイッチ
25 整流手段
26 ダイオード
27 入力端子
28 出力端子
30 第2移相手段
40 インダクタ
41 端子
100 送信装置
101 発振手段
102 周波数変換手段
103 第1増幅手段
104 濾波手段
105 混合手段
106 第2増幅手段
107 送信手段
110 周波数逓倍装置
111 位相シフト部
112 レベルシフト部
113 波形合成部
114 比較部
201、202 周波数逓倍回路

Claims (10)

  1. 同じ周波数で位相の異なる2つの信号を入力とし、入力した前記2つの信号のそれぞれの周波数を逓倍化した2つの高調波信号を生成し、生成する高調波信号の逓倍数を同調的に切り替えて出力する高調波信号生成装置。
  2. 基本信号から位相の異なる第1および第2移相信号を生成して出力する第1移相手段と、
    前記第1および第2移相信号を入力とし、入力した前記第1および第2移相信号のそれぞれの周波数を逓倍化した第1および第2高調波信号を生成し、生成する前記第1および第2高調波信号の逓倍数を同調的に切り替えて出力する高調波信号生成手段と、
    前記第1および第2高調波信号のそれぞれを移相した後に合成して出力する第2移相手段とを備える周波数変換装置。
  3. 前記高調波信号生成手段は、
    前記逓倍数を外部から受信した切替制御信号に応じて同調的に切り替えて出力する請求項2に記載の周波数変換装置。
  4. 前記高調波信号生成手段は、
    逆平行接続された2つのダイオードのペアが少なくとも2つ並列接続された回路を有し、
    複数の前記ダイオードのうち同一方向を向いた少なくとも2つのダイオードの導通状態を同調的に切り替える請求項2または3に記載の周波数変換装置。
  5. 前記第1移相手段は、
    前記第1移相信号の位相は変えず、前記第2移相信号に対しては−90°位相を変え、
    前記第2移相手段は、
    前記第1高調波信号の位相は変えず、前記第2高調波信号に対しては−90°位相を変える請求項2乃至4のいずれか一項に記載の周波数変換装置。
  6. 逆平行接続された2つのダイオードを含む第1整流手段と、前記第1整流手段に含まれる2つのダイオードの導通状態を切り替える第1切替手段とを含み、前記第1移相信号を前記第1高調波信号に変換する第1逓倍変換手段と、
    逆平行接続された2つのダイオードを含む第2整流手段と、前記第2整流手段に含まれる2つのダイオードの導通状態を切り替える第2切替手段とを含み、前記第2移相信号を前記第2高調波信号に変換する第2逓倍変換手段とを有し、
    前記第1および第2切替手段は、
    前記第1および第2整流手段に含まれる同一方向を向いた少なくとも2つのダイオードの導通状態を同調的に切り替える請求項2乃至5のいずれか一項に記載の周波数変換装置。
  7. 第1および第2の端子と、
    前記第1の端子にカソードが接続されるとともに前記第2の端子にアノードが接続された第1のダイオードと、
    前記第1の端子にアノードが接続されるとともに前記第2の端子にカソードが接続された第2のダイオードと、
    第3および第4の端子と、
    前記第3の端子にカソードが接続されるとともに前記第4の端子にアノードが接続された第3のダイオードと、
    前記第3の端子にアノードが接続されるとともに前記第4の端子にカソードが接続された第4のダイオードと、
    前記第1の端子に通過端子が接続されるとともに前記第3の端子に結合端子が接続される第1の90°ハイブリッドと、
    前記第2の端子に通過端子が接続されるとともに前記第4の端子に結合端子が接続される第2の90°ハイブリッドと、
    前記第1および第3のダイオードからなる第1の組と前記第2および第4のダイオードからなる第2の組とのうち少なくとも1つの組の導通・非導通を切り替えるスイッチを有する周波数逓倍回路を含む請求項2乃至6のいずれか一項に記載の周波数変換装置。
  8. 前記第1の端子に一端が接続された第1のインピーダンス素子と、
    前記第1のインピーダンス素子の他端に接続された第1の電位制御端子と、
    前記第2の端子に一端が接続された第2のインピーダンス素子と、
    前記第2のインピーダンス素子の他端に接続された第2の電位制御端子と、
    前記第3の端子に一端が接続された第3のインピーダンス素子と、
    前記第3のインピーダンス素子の他端に接続された第3の電位制御端子と、
    前記第4の端子に一端が接続された第4のインピーダンス素子と、
    前記第4のインピーダンス素子の他端に接続された第4の電位制御端子とを有する周波数逓倍回路を含む請求項7に記載の周波数変換装置。
  9. 基本信号を発振する発振手段と、
    前記基本信号から位相の異なる第1および第2移相信号を生成し、前記第1および第2移相信号のそれぞれの周波数を逓倍した第1および第2高調波信号を生成し、生成する前記第1および第2高調波信号の逓倍数を同調的に切り替え、前記第1および第2高調波信号のそれぞれを移相した後に合成して出力する周波数変換手段と、
    前記周波数変換手段によって出力された信号を増幅する第1の増幅手段と、
    前記第1の増幅手段によって増幅された信号の帯域を制限する濾波手段と、
    前記濾波手段によって帯域を制限された信号と局部発振器によって発信された中間周波数信号とを周波数混合する混合手段と、
    前記混合手段によって周波数混合された信号を増幅する第2の増幅手段と、
    前記第2の増幅手段によって増幅された信号を送信する送信手段とを備える送信装置。
  10. 同じ周波数で位相の異なる2つの信号を入力し、
    入力した前記2つの信号のそれぞれの周波数を逓倍化した2つの高調波信号を生成し、
    生成する前記2つの高調波信号の逓倍数を同調的に切り替えて出力する周波数変換方法。
JP2014042465A 2014-03-05 2014-03-05 高調波信号生成装置、周波数変換装置、送信装置および周波数変換方法 Pending JP2015170883A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014042465A JP2015170883A (ja) 2014-03-05 2014-03-05 高調波信号生成装置、周波数変換装置、送信装置および周波数変換方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014042465A JP2015170883A (ja) 2014-03-05 2014-03-05 高調波信号生成装置、周波数変換装置、送信装置および周波数変換方法

Publications (1)

Publication Number Publication Date
JP2015170883A true JP2015170883A (ja) 2015-09-28

Family

ID=54203287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014042465A Pending JP2015170883A (ja) 2014-03-05 2014-03-05 高調波信号生成装置、周波数変換装置、送信装置および周波数変換方法

Country Status (1)

Country Link
JP (1) JP2015170883A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111406366A (zh) * 2017-09-20 2020-07-10 克里公司 宽带谐波匹配网络

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111406366A (zh) * 2017-09-20 2020-07-10 克里公司 宽带谐波匹配网络
CN111406366B (zh) * 2017-09-20 2024-05-10 沃孚半导体公司 宽带谐波匹配网络

Similar Documents

Publication Publication Date Title
JP6449258B2 (ja) 高調波除去受動周波数アップコンバータ
TWI482424B (zh) 倍頻器
US9960883B1 (en) Transmit/receive beamforming signal generation
US8938204B2 (en) Signal generator circuit and radio transmission and reception device including the same
US20160118964A1 (en) Frequency tripler and local oscillator generator
CN105375898A (zh) 单音rf信号发生器
JP4478451B2 (ja) 高調波ミクサ
Subhan et al. Towards suppression of all harmonics in a polyphase multipath transmitter
JP2015170883A (ja) 高調波信号生成装置、周波数変換装置、送信装置および周波数変換方法
EP2885871A1 (en) Device for frequency tripling
WO2016041575A1 (en) A power efficient frequency multiplier
JP2014519291A (ja) 高出力電力デジタル送信器
US10461698B2 (en) Signal processing apparatus and method
CN110011673B (zh) 基于数字偏移频率产生器的射频发射器
WO2015117645A1 (en) A frequency multiplier and a method therein for generating an output signal with a specific frequency
JP2005236600A (ja) 高周波2逓倍回路
US8432218B1 (en) Harmonic-rejection power amplifier
JP5573308B2 (ja) 電子回路
WO2015001924A1 (ja) 周波数変換器
KR20110019063A (ko) 싱글 사이드 밴드 믹서, 및 이를 구비한 로컬 오실레이터
Thian et al. Even order harmonic series-L/parallel-tuned class-E frequency multiplier
Klumperink et al. Multipath polyphase circuits and their application to RF transceivers
JP4185017B2 (ja) 周波数変換回路
JP2014072859A (ja) 信号発生装置および無線機
JP2009246567A (ja) マイクロ波発振器