JP2015142392A - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
JP2015142392A
JP2015142392A JP2014012369A JP2014012369A JP2015142392A JP 2015142392 A JP2015142392 A JP 2015142392A JP 2014012369 A JP2014012369 A JP 2014012369A JP 2014012369 A JP2014012369 A JP 2014012369A JP 2015142392 A JP2015142392 A JP 2015142392A
Authority
JP
Japan
Prior art keywords
phase
conductor bar
electrode side
side switch
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014012369A
Other languages
English (en)
Other versions
JP6775909B2 (ja
Inventor
義浩 深山
Yoshihiro Miyama
義浩 深山
秀哲 有田
Hideaki Arita
秀哲 有田
大穀 晃裕
Akihiro Daikoku
晃裕 大穀
赤津 観
Kan Akatsu
観 赤津
大樹 土方
Hiroki Hijikata
大樹 土方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Shibaura Institute of Technology
Original Assignee
Mitsubishi Electric Corp
Shibaura Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Shibaura Institute of Technology filed Critical Mitsubishi Electric Corp
Priority to JP2014012369A priority Critical patent/JP6775909B2/ja
Publication of JP2015142392A publication Critical patent/JP2015142392A/ja
Application granted granted Critical
Publication of JP6775909B2 publication Critical patent/JP6775909B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

【課題】通電されるがトルクや出力に寄与しないムダ導体を発生させることなく、負荷状態に応じて回転電機の特性を変化させる。
【解決手段】このモータは、導体バー17の一方の端部は、第1の正極側スイッチ26を介して直流電源27の正極端子31に接続されるとともに、第2の負極側スイッチ28を介して直流電源27の負極端子32に接続される。また、導体バー17の他方の端部は、第1の負極側スイッチ29を介して直流電源27の負極端子32に接続されるとともに、第2の正極側スイッチ30を介して直流電源27の正極端子31に接続される。そして、第1の正極側スイッチ26、第2の負極側スイッチ28、第1の負極側スイッチ29及び第2の正極側スイッチ30は、制御装置により制御されることで、各導体バー17に流れる電流の振幅及び位相は、個別に制御される。
【選択図】図3

Description

この発明は、運転状態に応じて電機子導体に流れる電流の振幅と位相が切換えられる回転電機に関するものである。
従来、回転電機の電機子巻線の巻数や巻線間の接続方法を切換えることにより運転領域を拡大し、特性が向上した回転電機が提案されている。
例えば、特許文献1には、n個の部分巻線より構成される電機子巻線の同相コイルの接続を直列と並列に切換えること、相コイル間の結線をY結線とΔ結線とに切替えることにより運転領域が拡大し、また特性が向上した誘導電動機が記載されている。
特開平11−027987号公報
ところで、運転領域内において、高速域と低速域、高負荷域と低負荷域では回転電機に求められる特性が異なる。
例えば、低負荷域ではトルクリップルや電流リップルが出力トルクや入出力電流に比べて比較的大きくなり影響が顕著となるためリップルの小さな特性が求められるのに対して、高負荷域では温度の成立性等が求められる。
上記誘導電動機では、相コイルの巻数や直並列切換、Y-Δ結線の変更等によって線間電圧ピーク値や相コイルの電流密度を変化させていたが、切換によって固定子と回転子とのギャップ磁束密度波形自体は変化しないために、トルクリップルや電流リップル等のギャップ磁束波形に起因する特性を変化させることはできなかった。
一般に、分布巻は集中巻に比べて電機子の作るギャップ磁束分布を正弦波に近づけることができ、さらに短節巻は全節巻に比べてギャップ磁束分布を正弦波に近づけることができる。
このことから短節巻の巻線パターンを採用することによって集中巻の巻線パターンを採用した回転電機に比べてトルクリップルを低減しやすい。
一方で、短節巻は磁束利用率が低くトルクを得るのに電流を多く必要とするため高負荷での温度成立性が難しくなるという問題がある。
全節巻きもしくは短節巻きに巻装された分布巻巻線や集中巻巻線を用い、相コイルに通電する電流の振幅と位相を変えることによって他の磁束波形を再現することができれば上記課題を解決した回転電機を作ることができる。
しかしながら、実際には磁束の合成により相コイルが発生する磁束を相互に打消すような通電をする必要があるために、導体損失を発生させるのみでトルクを発生しないムダ導体が発生し効率が低下するという新たな問題を生じる。
ここで、ムダ導体について簡単に説明する。
図8(a)、(b)は、従来の全節巻、短節巻、集中巻を切替る構成を示す模式図であり、図8(a)はステータコア51に巻装されたコイル50を回転電機の軸線方向に沿って視たときの図、図8(b)は図8(a)の回転電機を径方向に沿って視たときの図である。
図中矢印はコイル50に流れる電流の向きを示している。
図8(a)、(b)において、従来の全節巻,短節巻,集中巻を切替る構造では例えば集中巻のコイル50がステータコア51に巻きつけられている。
分布巻の磁束波形を作る際には、図8に示すように例えば2スロット離れた分布巻とする場合、間に挟まれるコイル50を隣同士結ぶことで2スロット離れた位置のコイル50を接続する。
この場合、同スロットに挿入された2つのコイル50は互いに電流の向きが逆であるため互いに磁束を打ち消し合う。
従って、2スロット離れたコイル50を結ぶ間のコイル50は電流が通電されることによる導体損失を発生するものの有効な磁束を発生させない、所謂ムダ導体となる。
この発明は、上記課題を解決するものであり、運転領域の拡大と共に上記ギャップ磁束密度波形を任意に操作することで、各運転ポイントに求められる好適な磁束波形を形成し、かつ上記のようなムダ導体による損失のない低損失な回転電機を提供するものである。
この発明に係る回転電機は、ロータと、このロータを囲い、軸線方向に延びた複数のステータスロットが形成されたステータコア、及び各前記ステータスロットにそれぞれ挿入された導体バーを有するステータと、を備え、
前記導体バーの一方の端部は、電流をオン、オフする第1の正極側スイッチを介して直流電源の正極端子に電気的に接続されるとともに、電流を制御する負極側制御部品を介して直流電源の負極端子に電気的に接続され、
前記導体バーの他方の端部は、電流をオン、オフする第1の負極側スイッチを介して前記直流電源の負極端子に電気的に接続されるとともに、電流を制御する正極側制御部品を介して直流電源の正極端子に電気的に接続され、
前記第1の正極側スイッチ、前記負極側制御部品、前記第1の負極側スイッチ及び前記正極側制御部品は、制御装置により制御されることで、前記各導体バーに流れる電流の振幅及び位相は個別に制御される。
この発明に係る回転電機によれば、各導体バーに流れる電流の振幅及び位相は、各導体バーごとに制御され、ステータとロータとの間のギャップ磁束密度波形が任意に調整されることで、各運転ポイントに求められる好適な磁束波形を形成し、ムダ導体による損失なく全節巻、短節巻、集中巻の駆動を行うことができる。
従って、運転領域の拡大のみならずトルクリップル等の駆動特性も向上させることができる。
この発明の実施の形態1に係るモータを示す側断面図である。 図1のモータの正断面図である。 図1のモータの給電回路を示す給電回路図である。 図2の部分拡大図である。 この発明の実施の形態2に係るモータを示す正断面図である。 この発明の実施の形態3に係るモータを示す正断面図である。 図6の部分拡大図である。 従来のコイルの構成を示す模式図である。
以下、この発明の各実施の形態について図に基づいて説明するが、各図において同一、または相当部材、部位については、同一符号を付して説明する。
実施の形態1.
図1はこの発明の実施の形態1に係るモータ1を示す側断面図、図2は図1のモータ1の正断面図である。
このモータ1は、8極48スロットの永久磁石モータである。
回転電機であるモータ1は、円筒形状のフレーム2と、このフレーム2の両側に覆って設けられた負荷側ブラケット3及び反負荷側ブラケット4と、フレーム2の中心軸線上に配置され、負荷側ブラケット3及び反負荷側ブラケット4で負荷側ベアリング5及び反負荷側ベアリング6を介して回転自在に2点支持されたシャフト7と、シャフト7が挿入されてキー等で一体され、フレーム2、負荷側ブラケット3及び反負荷側ブラケット4で構成されたケース10内に収納されたロータ8と、フレーム2の内壁面に圧入や焼バメ等によって固定されロータ8と隙間を介して囲った円環状のステータ9と、を備えている。
負荷側ベアリング5は、ベアリング押さえ11で負荷側ブラケット3に対して軸線方向にボルト等で固定されている。反負荷側ベアリング6は、波ワッシャ12を介して反負荷側ブラケット4に対して軸線方向に自由度を持って固定されている。
ケース10は、フレーム2に対して負荷側ブラケット3及び反負荷側ブラケット4をボルト等で固定することで形成されている。
ステータ9は、円環状のヨーク13の内周側から径方向内側に等分間隔で突出した48個のティース14を有するステータコア15と、ティース14間に形成された軸線方向に延びた各ステータスロット16に、径方向に2個ずつ並んで挿入された導体バー17と、ステータコア15と各導体バー17との間に介在したインシュレータ18と、を備えている。
ステータコア15は、両面が絶縁処理された薄板鋼板を複数枚積層して形成される。
各導体バー17は、インシュレータ18で一体モールドされており、インシュレータ18で被覆された各導体バー17は、各ステータスロット16に圧入されることでステータコア15に固定される。
各導体バー17は、その両端部にそれぞれ負荷側リード23及び反負荷側リード24の各一端部が接続されている。各負荷側リード23及び反負荷側リード24は、それぞれフレーム2に形成された引出し口25を通ってモータ1の外部に引出されている。
ロータ8は、周方向等分間隔に全部で8個形成され軸線方向に延びた磁石スロット20を有する円柱形状のロータコア19と、各磁石スロット20にN極とS極とが交互に外径側を位置するように挿入された永久磁石21と、ロータコア19の軸線方向の両端に固定され磁石スロット20の両側を塞ぐ端板22と、を備えている。
端板22は、非磁性材料で製作されるのが望ましい。
図3は図1のモータ1の給電回路を示す給電回路図である。
負荷側リード23は、電流をオン、オフする第1の正極側スイッチ26を介して直流電源27の正極端子31に電気的に接続されているとともに、電流をオン、オフ制御する負荷側制御部品である第2の負極側スイッチ28を介して直流電源27の負極端子32に電気的に接続されている。
反負荷側リード24は、電流をオン、オフする第1の負極側スイッチ29を介して直流電源27の負極端子32に電気的に接続されているとともに、電流をオン、オフ制御する正極側制御部品である第2の正極側スイッチ30を介して直流電源27の正極端子31に電気的に接続されている。
このように、このモータ1の給電回路は、第1の正極側スイッチ26、第2の負極側スイッチ28、第1の負極側スイッチ29及び第2の正極側スイッチ30により、所謂Hブリッジ回路を構成している。
なお、図3において図示されていないが、各スイッチ26,30,29,28の駆動を制御する制御装置により各導体バー17に流す電流の振幅及び位相は個別に調整される。 この制御装置は、各スイッチ26,30,29,28につき一つずつ設けられている。
第1の正極側スイッチ26、第2の正極側スイッチ30、第1の負極側スイッチ29、第2の負極側スイッチ28は、シリコン半導体を用いた絶縁ゲートバイポーラトランジスタ(IGBT)により構成されるが,電界効果型トランジスタ(MOS−FET)で構成してもよい。
また,炭化珪素(SiC)や窒化ガリウム(GaN)などのワイドバンドギャップ半導体などを用いた半導体スイッチにより構成されてもよい。
図示していないが、第1の正極側スイッチ26、第2の正極側スイッチ30、第1の負極側スイッチ29、第2の負極側スイッチ28は、それぞれ各スイッチ26,30,29,28と並列に還流ダイオードを挿入されている。
直流電源27は、鉛バッテリやリチウムイオンバッテリ等で構成される。
個々の導体バー17に対してHブリッジ回路が構成され、また各Hブリッジ回路に対して直流電源27がそれぞれ個別に設けられており、一つのモータ1に対して、全部で96個のHブリッジ回路、96個の導体バー17が用いられている。
図3において、制御装置の駆動により、第1の正極側スイッチ26及び第1の負極側スイッチ29がオンされ、第2の負極側スイッチ28及び第2の正極側スイッチ30がオフされると、負荷側リード23の端部は、正極側の電位となり、反負荷側リード24の端部は、負極側の電位となる。
その結果、導体バー17には負荷側リード23から反負荷側リード24に向けて電流が流れる。
一方、制御装置の駆動により、第1の正極側スイッチ26及び第1の負極側スイッチ29がオフされ、第2の負極側スイッチ28及び第2の正極側スイッチ30がオンされると、負荷側リード23の端部は、負極側の電位となり、反負荷側リード24の端部は、正極側の電位となる。
その結果、導体バー17には反負荷側リード24から負荷側リード23に向けて電流が流れる。
また、Hブリッジ回路の4つのスイッチ26,30,29,28の全てをOFFとすると、導体バー17は、直流電源27から切り離されて電流は流れない。
このように、制御装置により、各スイッチ26,30,29,28のオン、オフの切り換えと、オン時間及びオフ時間の比をそれぞれ変化させることによって、各導体バー17には任意の振幅と位相の電流を通電することができる。
次に、上記構成の6相モータ1の動作について説明する。
図4は、図2の部分拡大図である。
図4において、各導体バー17には周方向に沿ってそれぞれaからxまでの番号が割り当てられている。
A+,B+,C+,D+,E+,F+はそれぞれ振幅が等しく位相が30度ずつ順番にずれた6相交流の相とし、A−,B−,C−,D−,E−,F−はそれぞれA+,B+,C+,D+,E+,F+に対して位相が反転した状態を表すものとする。
モータ1が全節分布巻の駆動を行なうには、通電する各導体バー17に次のように電流位相を調節する。
即ち、番号a,bの各導体バー17にA+の相、番号c,dの各導体バー17にB+の相、番号e,fの各導体バー17にC+の相、番号g,hの各導体バー17にD+の相、番号i,jの各導体バー17にE+の相、番号k,lの各導体バー17にF+の相、番号m,nの各導体バー17にA−の相、番号o,pの各導体バー17にB−の相、番号q,rの各導体バー17にC−の相、番号s,tの各導体バー17にD−の相、番号u,vの各導体バー17にE−の相、番号w,xの各導体バー17にF−の相となるように各導体バー17に通電する電流位相を調整することで、8極48スロット毎極毎相1の6相全節分布巻の電機子磁束を構成することができる。
なお,回転方向の図示していない部位については回転偶対称の構成となる。
また、モータ1が短節分布巻の駆動を行なうには、通電する各導体バー17に次のように電流位相を調節する。
即ち、番号aの導体バー17にA+の相、番号bの導体バー17にD−の相、番号cの導体バー17にB+の相、番号dの導体バー17にE−の相、番号eの導体バー17にC+の相、番号fの導体バー17にF−の相、番号gの導体バー17にD+の相、番号hの導体バー17にA−の相、番号iの導体バー17にE+の相、番号jの導体バー17にB−の相、番号kの導体バー17にF+の相、番号lの導体バー17にC−の相、番号mの導体バー17にA−の相、番号nの導体バー17にD+の相、番号oの導体バー17にB−の相、番号pの導体バー17にE+の相、番号qの導体バー17にC−の相、番号rの導体バー17にF+の相、番号sの導体バー17にD−の相、番号tの導体バー17にA+の相、番号uの導体バー17にE−の相、番号vの導体バー17にB+の相、番号wの導体バー17にF−の相、番号xの導体バー17にC+の相となるように各導体バー17に通電する電流位相を調整することで、8極48スロット毎極毎相1の6相短節分布巻の電機子磁束を構成することができる。
なお,回転方向の図示していない部位については前述と同様に回転偶対称となる。
また、モータ1が集中巻の駆動を行なうには、通電する各導体バー17に次のように電流位相を調節する。
即ち、番号aの導体バー17にA+の相、番号bの導体バー17にF−の相、番号cの導体バー17にB+の相、番号dの導体バー17にA−の相、番号eの導体バー17にC+の相、番号fの導体バー17にB−の相、番号gの導体バー17にD+の相、番号hの導体バー17にC−の相、番号iの導体バー17にE+の相、番号jの導体バー17にD−の相、番号kの導体バー17にF+の相、番号lの導体バー17にE−の相、番号mの導体バー17にA−の相、番号nの導体バー17にF+の相、番号oの導体バー17にB−の相、番号pの導体バー17にA+の相、番号qの導体バー17にC−の相、番号rの導体バー17にB+の相、番号sの導体バー17にD−の相、番号tの導体バー17にC+の相、番号uの導体バー17にE−の相、番号vの導体バー17にD+の相、番号wの導体バー17にF−の相、番号xの導体バー17にE+の相となるように各導体バー17に通電する電流位相を調整することで、8極48スロット毎極毎相1の6相集中巻の電機子磁束を構成することができる。
回転方向の図示していない部位については前述と同様に回転偶対称となる。
このように各導体バー17に通電することで、モータ1は、6相の全節巻、短節巻、集中巻の駆動をそれぞれ行うことができる。
次に、3相モータ1の動作について説明する。
3相についても同様に、U+,V+,W+をそれぞれ振幅が等しく位相が120度ずつ順番にずれた3相交流の相とし、U−,V−,W−はそれぞれU+,V+,W+に対して位相が反転した状態を表すものとする。
モータ1が全節巻の駆動を行なうには、通電する各導体バー17に次のように電流位相を調節する。
即ち、番号a,b,c,dの各導体バー17にU+の相、番号e,f,g,hの各導体バー17にV+の相、番号i,j,k,lの各導体バー17にW+の相、番号m,n,o,pの各導体バー17にU−の相、番号q,r,s,tの各導体バー17にV−の相、番号u,v,w,xの各導体バー17にW−の相関係となるように通電する電流位相を調整することで、8極48スロットの3相全節巻の電機子磁束を構成することができる。
また、モータ1が集中巻の駆動を行なうには、通電する各導体バー17に次のように電流位相を調節する。
即ち、番号a,bの各導体バー17にU+の相、番号c,dの各導体バー17にU−の相、番号e,fの各導体バー17にV+の相、番号g,hの各導体バー17にV−の相、番号i,jの各導体バー17にW+の相、番号k,lの各導体バー17にW−の相、番号m,nの各導体バー17にU−の相、番号o,pの各導体バー17にU+の相、番号q,rの各導体バー17にV−の相、番号s,tの各導体バー17にV+の相、番号u,vの各導体バー17にW−の相、番号w,xの各導体バー17にW+の相となるように通電する電流位相を調整することで、8極48スロットの3相集中巻の電機子磁束を構成することができる。
このように各導体バー17に通電することで、モータ1は、3相の全節巻,集中巻の駆動をそれぞれ行うことができる。
この実施の形態のモータ1では、第1の正極側スイッチ26、第2の負極側スイッチ28、第1の負極側スイッチ29及び第2の正極側スイッチ30の動作を制御装置により制御することで、各導体バー17に流れる電流の振幅及び位相は、各導体バー17毎に制御され、ステータ9とロータ8との間のギャップ磁束密度波形が任意に調整され、各運転ポイントに求められる好適な磁束波形を形成し、ムダ導体による損失なく全節巻、短節巻、集中巻の駆動を行うことができる。
従って、運転領域の拡大のみならずトルクリップル等の駆動特性も向上させることができる。
また,電機子は、2次元断面上の全導体バー17に流れる電流の振幅と位相を直接的に制御することができるため、ステータコア15に対し導線が巻きつけられたものを電流のベクトル合成により実現するものと異なり、余分な電流を流す必要が無く損失を低減することができる。
また、ロータ8は、軸線方向に延びた磁石スロット20に永久磁石21が収納されたロータコア19を有し、複数の導体バー17のうち、図4において反時計方向に回転するロータ8の回転方向の遅れ側の永久磁石21の端部に対向する導体バー17(図4において、番号m,n,o,p)に流れる電流の振幅は、通常正弦波電流を流した際の電流振幅と比較して小さくなるように制御装置により調整されている。そして、他の位置の導体バー17に流れる電流の振幅を大きくすることで出力するトルクが保たれる。
従って、永久磁石21がもっとも減磁しやすい位置の励磁を弱めることで同じ磁石量に対してトルクを向上させることができる。
なお、各導体バー17に流す電流を調整して、各スイッチ26,30,29,28を制御する制御装置を1つのスイッチ26,30,29,28につき一つ設けられているが、第1の正極側スイッチ26と第1の負極側スイッチ29、第2の負極側スイッチ28と第2の正極側スイッチ30とは常に同期してオン,オフを行うので、第1の正極側スイッチ26と第1の負極側スイッチ29とを同じ一つの制御装置で制御し、第2の負極側スイッチ28と第2の正極側スイッチ30とを同じ一つの制御装置で制御してもよい。
このようにすると制御装置の数を半分にすることができる。
さらに、上記構成のモータ1は、上述の通り1極対対称で導体バー17に通電される。 そこで1極対分ずつずれた位置にあるスイッチ26,30,29,28を1つの制御装置で制御してもよい。このようにすると制御装置の数を4分の1にすることができる。
なお、上記実施の形態のモータ1では、各ステータスロット16に挿入される導体バー17は2つずつであったが、2つ以上の複数の導体バー17を挿入してもよい。
このようにすれば各相のインダクタンスのばらつきを小さくすることができる。
同様に,上記実施の形態ではステータスロット16に挿入されている2つの導体バー17は、径方向に並べられているが、周方向に配置してもよい。
この場合にも各相のインダクタンスのばらつきを小さくすることができる。
また、上記実施の形態のモータ1では、直流電源27は、各Hブリッジ回路に対して1つずつ配置されているが、1極対ずつずれた位置にある導体バー17が1つの直流電源27を共用するように配置されてもよい。
このようにすれば直流電源27の数を減らすことができる。
実施の形態2.
図5はこの発明の実施の形態2に係るモータ1を示す正断面図である。
この実施の形態では、それぞれのステータスロット16には、導体バー17Aが1つずつ全部で48本挿入されている。
そして、個々の導体バー17Aに対してHブリッジ回路が構成され、また各Hブリッジ回路に対して直流電源27が個別に設けられており、一つのモータ1に対して、48個のHブリッジ回路、48個の導体バー17Aが設けられる。
その他の構造は実施の形態1のモータ1と同様である。
この実施の形態2によるモータ1では、各導体バー17Aには実施の形態1の同ステータスロット16に挿入されていた2つの導体バー17の電流を合成したものが通電される。
このようにすると直流電源27の数、スイッチ26,30,29,28の数、制御装置の数を半分にすることが出来るためを小型化できる。
また、各ステータスロット16内では、導体バー17Aにモールド成形されたインシュレータ18が1つになるため、ステータスロット16内の導体バー17Aの占積率が向上し高効率化を図ることができる。
実施の形態3.
図6はこの発明の実施の形態3に係るモータ1を示す正断面図、図7は図6の部分拡大図である。
この実施の形態によるモータ1では、ステータスロット16のそれぞれに2つずつ、全部で90個の導体バー17が挿入されている。
また、ロータコア19は、周方向に等分間隔で10個の磁石スロット20が形成され、それぞれの磁石スロット20に永久磁石21がそれぞれに挿入されている。
その他の構成は、実施の形態1のモータ1と同じである。
各導体バー17は、周方向にそれぞれaからrまでの番号が割り当てられている。
A+,B+,C+,D+,E+,F+,G+,H+,I+をそれぞれ振幅が等しく位相が40度ずつ順番にずれた9相交流の相とし、A−,B−,C−,D−,E−,F−,G−,H−,I−をそれぞれA+,B+,C+,D+,E+,F+,G+,H+,I+に対して位相が反転した状態を表すものとする。
このとき、番号aの導体バー17にA+の相、番号bの導体バー17にF−の相、番号cの導体バー17にB+の相、番号dの導体バー17にG−の相、番号eの導体バー17にC+の相、番号fの導体バー17にH−の相、番号gの導体バー17にD+の相、番号hの導体バー17にI−の相、番号iの導体バー17にE+の相、番号jの導体バー17にA−の相、番号kの導体バー17にF+の相、番号lの導体バー17にB−の相、番号mの導体バー17にG+の相、番号nの導体バー17にC−の相、番号oの導体バー17にH+の相、番号pの導体バー17にD−の相、番号qの導体バー17にI+の相、番号rの導体バー17にE−の相となるように各導体バー17に通電する電流位相を調整することで、10極45スロット毎極毎相2分の1の9相短節分布巻の電機子磁束を構成することができる。
なお、回転方向図示していない部位については回転偶対称の構成となる。
また,番号aの導体バー17にI−の相、番号bの導体バー17にA+の相、番号cの導体バー17にA−の相、番号dの導体バー17にB+の相、番号eの導体バー17にB−の相、番号fの導体バー17にC+の相、番号gの導体バー17にC−の相、番号hの導体バー17にD+の相、番号iの導体バー17にD−の相、番号jの導体バー17にE+の相、番号kの導体バー17にE−の相、番号lの導体バー17にF+の相、番号mの導体バー17にF−の相、番号nの導体バー17にG+の相、番号oの導体バー17にG−の相、番号pの導体バー17にH+の相、番号qの導体バー17にH−の相、番号rの導体バー17にI+の相となるように各導体バー17に通電する電流位相を調整することで10極45スロット9相集中巻の電機子磁束を構成することができる。
この場合も、回転方向図示していない部位については回転偶対称の構成となる。
続いて,3相についても同様に、U+の相、V+の相、W+の相をそれぞれ振幅が等しく位相が120度ずつ順番にずれた3相交流の相とし、U−の相、V−の相、W−の相はぞれぞれU+の相、V+の相、W+の相に対して位相が反転した状態を表すものとする。 このとき、番号a,b,cの各導体バー17にU+の相、番号d,e,fの各導体バー17にW−の相、番号gの導体バー17にHの相、番号iの導体バー17にV+の相、番号j,k,lの各導体バー17にU−の相、番号m,n,oの各導体バー17にW+の相、番号p,q,rの各導体バー17にV−の相となるように各導体バー17に通電する電流位相を調整することで10極45スロット3相短節分布巻の電機子磁束を構成することができる。
同様に,番号aの導体バー17にV+の相、番号bの導体バー17にU+の相、番号cの導体バー17にU−の相、番号dの導体バー17にU+の相、番号eの導体バー17にU−の相、番号fの導体バー17にW−の相、番号gの導体バー17にW+の相、番号hの導体バー17にV+の相、番号iの導体バー17にV−の相、番号jの導体バー17にV+の相、番号kの導体バー17にV−の相、番号lの導体バー17にU−の相、番号mの導体バー17にU+の相、番号nの導体バー17にW+の相、番号oの導体バー17にW−の相、番号pの導体バー17にW+の相、番号qの導体バー17のW−の相、番号rの導体バー17にV−の相となるように各導体バー17に通電する電流位相を調整することで10極45スロットの3相集中巻の電機子磁束を構成することができる。
また、この場合、3分の1の導体バー17を休止させて、番号aの導体バー17にW−の相、番号bの導体バー17にU+の相、番号gの導体バー17にU−の相、番号hの導体バー17にV+の相、番号mの導体バー17にV−の相、番号nの導体バー17にW+の相となるように通電することで、休止しているステータスロットをダミースロットとみなした10極15スロットの3相集中巻の電機子磁束を構成することができる。
このような構成としても実施の形態1と同様の効果を奏する。
なお,上記各実施の形態では、負極側制御部品として第2の負極側スイッチ28を用い、正極側制御部品として第2の正極側スイッチ30を用いた場合について説明したが、勿論このものに限定されない。
例えば、電流を制御する、負極側制御部品である第2の負荷側スイッチ28、正極側制御部品である第2の正極側スイッチ30の代わりに、それぞれダイオードを用い、第1の正極側スイッチ26、第1の負極側スイッチ29とともにHブリッジ回路を構成するようにしてもよい。
また、モータ1は、ロータ8に永久磁石21を有する永久磁石モータで説明したが、ロータ8は、突極を持つロータコアで構成されたスイッチトリラクタンスモータや、ロータコアの突極に巻線を施されて磁極を構成する巻線界磁型のモータ、ロータコアに設けた複数の溝に導体バーを挿入し、軸線方向両端で該導体バーがリング状導体により短絡されたインダクションモータ、略円形のロータコア内側に複数の空隙を設けられたシンクロナスリラクタンスモータなどに構成されても同様の効果を奏する。
また、上記各実施の形態のモータ1について、ロータを平面に展開した構造であるリニアモータに対しても同様の効果を奏する。
また、回転電機である発電機にも、この発明は適用できる。
1 モータ、2 フレーム、3 負荷側ブラケット、4 反負荷側ブラケット、5 負荷側ベアリング、6 反負荷側ベアリング、7 シャフト、8 ロータ、9 ステータ、10 ケース、11 ベアリング押さえ、12 波ワッシャ、13 ヨーク、14 ティース、15 ステータコア、16 ステータスロット、17,17A 導体バー、18 インシュレータ、19 ロータコア、20 磁石スロット、21 永久磁石、22 端板、23 負荷側リード、24 反負荷側リード、25 引出し口、26 第1の正極側スイッチ、27 直流電源、28 第2の負極側スイッチ(負極側制御部品)、29 第1の負極側スイッチ、30 第2の正極側スイッチ(正極側制御部品)、31 正極端子、32 負極端子。

Claims (10)

  1. ロータと、
    このロータを囲い、軸線方向に延びた複数のステータスロットが形成されたステータコア、及び各前記ステータスロットにそれぞれ挿入された導体バーを有するステータと、を備え、
    前記導体バーの一方の端部は、電流をオン、オフする第1の正極側スイッチを介して直流電源の正極端子に電気的に接続されるとともに、電流を制御する負極側制御部品を介して直流電源の負極端子に電気的に接続され、
    前記導体バーの他方の端部は、電流をオン、オフする第1の負極側スイッチを介して前記直流電源の負極端子に電気的に接続されるとともに、電流を制御する正極側制御部品を介して直流電源の正極端子に電気的に接続され、
    前記第1の正極側スイッチ、前記負極側制御部品、前記第1の負極側スイッチ及び前記正極側制御部品は、制御装置により制御されることで、各前記導体バーに流れる電流の振幅及び位相は、個別に制御される回転電機。
  2. 前記負極側制御部品は、電流をオン、オフする第2の負極側スイッチであり、前記正極側制御部品は、電流をオン、オフする第2の正極側スイッチである請求項1に記載の回転電機。
  3. 前記直流電源の数は、前記導体バーと同数あり、一つの前記直流電源に対して一つの前記導体バーが電気的に接続されている請求項1または2に記載の回転電機。
  4. 前記制御装置は、前記第1の正極側スイッチ、前記負極側制御部品、前記第1の負極側スイッチ及び前記正極側制御部品にそれぞれ個別に設けられている請求項1〜3の何れか1項に記載の回転電機。
  5. 前記制御装置は、前記第1の正極側スイッチ及び前記第1の負極側スイッチで一個、前記負極側制御部品及び前記正極側制御部品で一個設けられている請求項1〜3の何れか1項に記載の回転電機。
  6. 各前記ステータスロットには、それぞれ複数の前記導体バーが径方向、または周方向に配置されている請求項1〜5の何れか1項に記載の回転電機。
  7. 各前記ステータスロットには、それぞれ単数の前記導体バーが配置されている請求項1〜5の何れか1項に記載の回転電機。
  8. 前記ロータは、軸線方向に延びた磁石スロットに永久磁石が収納されたロータコアを有し、前記導体バーは、回転する前記ロータの回転方向の遅れ側の前記永久磁石の端部に対向するときに流れる電流の前記振幅が前記端部に対向する前に流れる電流の前記振幅と比較して小さい請求項1〜7の何れか1項に記載の回転電機。
  9. 前記第1の正極側スイッチ、前記負極側制御部品、前記第1の負極側スイッチ及び前記正極側制御部品によりHブリッジ回路が構成されている請求項1〜8の何れか1項に記載の回転電機。
  10. 回転電機は、モータである請求項1〜9の何れか1項に記載の回転電機。
JP2014012369A 2014-01-27 2014-01-27 回転電機 Active JP6775909B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014012369A JP6775909B2 (ja) 2014-01-27 2014-01-27 回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014012369A JP6775909B2 (ja) 2014-01-27 2014-01-27 回転電機

Publications (2)

Publication Number Publication Date
JP2015142392A true JP2015142392A (ja) 2015-08-03
JP6775909B2 JP6775909B2 (ja) 2020-10-28

Family

ID=53772427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014012369A Active JP6775909B2 (ja) 2014-01-27 2014-01-27 回転電機

Country Status (1)

Country Link
JP (1) JP6775909B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019080449A (ja) * 2017-10-26 2019-05-23 三菱電機株式会社 駆動システム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234997A (ja) * 1998-02-11 1999-08-27 Is Motor Japan:Kk 無整流子直流電動機及び発電機
JP2000270506A (ja) * 1999-03-19 2000-09-29 Honda Motor Co Ltd モータのステータ構造
JP2001136695A (ja) * 1999-11-02 2001-05-18 Honda Motor Co Ltd ブラシレスモータ
US20050231152A1 (en) * 2004-04-19 2005-10-20 Brian Welchko Inverter for electric and hybrid powered vehicles and associated system and method
JP2007091182A (ja) * 2005-09-30 2007-04-12 Nsk Ltd 電動パワーステアリング装置の制御装置
JP2008283782A (ja) * 2007-05-10 2008-11-20 Mitsuba Corp モータ駆動装置
JP2010035293A (ja) * 2008-07-28 2010-02-12 Shimadzu Corp 交流負荷駆動制御回路
JP2010183728A (ja) * 2009-02-05 2010-08-19 Hoya Corp 直線型アクチュエータ
JP2012029493A (ja) * 2010-07-26 2012-02-09 Nissan Motor Co Ltd 電動機システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234997A (ja) * 1998-02-11 1999-08-27 Is Motor Japan:Kk 無整流子直流電動機及び発電機
JP2000270506A (ja) * 1999-03-19 2000-09-29 Honda Motor Co Ltd モータのステータ構造
JP2001136695A (ja) * 1999-11-02 2001-05-18 Honda Motor Co Ltd ブラシレスモータ
US20050231152A1 (en) * 2004-04-19 2005-10-20 Brian Welchko Inverter for electric and hybrid powered vehicles and associated system and method
JP2007091182A (ja) * 2005-09-30 2007-04-12 Nsk Ltd 電動パワーステアリング装置の制御装置
JP2008283782A (ja) * 2007-05-10 2008-11-20 Mitsuba Corp モータ駆動装置
JP2010035293A (ja) * 2008-07-28 2010-02-12 Shimadzu Corp 交流負荷駆動制御回路
JP2010183728A (ja) * 2009-02-05 2010-08-19 Hoya Corp 直線型アクチュエータ
JP2012029493A (ja) * 2010-07-26 2012-02-09 Nissan Motor Co Ltd 電動機システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019080449A (ja) * 2017-10-26 2019-05-23 三菱電機株式会社 駆動システム

Also Published As

Publication number Publication date
JP6775909B2 (ja) 2020-10-28

Similar Documents

Publication Publication Date Title
US10090742B2 (en) Rotating electric machine
JP2010531130A (ja) 12個のステータ歯と10個のロータ極とを有する同期モータ
US11515771B2 (en) Alternating-current driven, salient-teeth reluctance motor with concentrated windings
JP6388611B2 (ja) ハイブリッド界磁式ダブルギャップ同期機
JP3466591B2 (ja) 回転電機
US10193428B2 (en) Electric rotating machine
JP2015509697A (ja) 同期式の電気機械
US20110057534A1 (en) Reverse electromotive force generating motor
JP2016093052A (ja) 回転電機
JP5885423B2 (ja) 永久磁石式回転電機
JP2010028957A (ja) 誘導機及び誘導機極数切換システム
JP6335523B2 (ja) 回転電機
US10236756B2 (en) Rotating electric machine
JP6775909B2 (ja) 回転電機
WO2017017769A1 (ja) 回転電機
JP6432778B2 (ja) 回転電機
EA008613B1 (ru) Многофазная электрическая машина
JP6504850B2 (ja) 制御装置、これを用いた回転電機、および当該制御装置と当該回転電機とを備えた駆動システム
JP6879884B2 (ja) 駆動システム
JP2011239589A (ja) 多相モータ
JP7461018B2 (ja) 永久磁石型モータ
Banerjee et al. Fine grain commutation: Integrated design of permanent-magnet synchronous machine drives with highest torque density
JP2017112817A (ja) 可変速交流電気機械
JP2006141106A (ja) ハイブリッド型モータまたは発電機およびこれを利用したモータまたは発電機駆動システム
JP2016082664A (ja) ロータ極数切換可能な永久磁石同期機

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190227

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201007

R150 Certificate of patent or registration of utility model

Ref document number: 6775909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250