JP2015141822A - 電極ペースト、電極板の製造方法、及び、電池の製造方法 - Google Patents

電極ペースト、電極板の製造方法、及び、電池の製造方法 Download PDF

Info

Publication number
JP2015141822A
JP2015141822A JP2014014332A JP2014014332A JP2015141822A JP 2015141822 A JP2015141822 A JP 2015141822A JP 2014014332 A JP2014014332 A JP 2014014332A JP 2014014332 A JP2014014332 A JP 2014014332A JP 2015141822 A JP2015141822 A JP 2015141822A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
paste
electrode paste
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014014332A
Other languages
English (en)
Inventor
淳哉 森
Junya Mori
淳哉 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014014332A priority Critical patent/JP2015141822A/ja
Publication of JP2015141822A publication Critical patent/JP2015141822A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】結着剤のマイグレーション現象及び活物質等の沈降現象を適切に抑制できる電極ペースト等を提供すること。
【解決手段】電極ペースト70は、少なくとも活物質10と結着剤20とを溶媒50に分散させた電池100用の電極ペーストである。この電極ペースト70は、0.2s-1である第1剪断速度Waにおける第1剪断粘度Paが、40000mPa・s以上であり、かつ、40s-1である第2剪断速度Wbにおける第2剪断粘度Pbが、5000mPa・s以下である。
【選択図】図5

Description

本発明は、少なくとも活物質と結着剤とを溶媒に分散させた電池用の電極ペースト、この電極ペーストを用いた電極板の製造方法、及び、この電極板を用いた電池の製造方法に関する。
従来より、活物質と結着剤とを溶媒に分散させた電池用の電極ペーストが知られている。例えば特許文献1には、活物質と結着剤とを溶媒に分散させた電池用の電極ペーストとして、1s-1の第1剪断速度における第1剪断粘度が2000mPa・s以上であり、500s-1の第2剪断速度における第2剪断粘度が350mPa・s以下であり、かつ、10000s-1の第3剪断速度における第3剪断粘度が240mPa・s以下の性状を有するものが開示されている。
そして、この電極ペーストによれば、以下の効果が得られると記載されている。1s-1の第1剪断速度における第1剪断粘度を2000mPa・s以上とすることで、結着剤のマイグレーション現象、即ち、電極箔に塗工した電極ペーストを乾燥させる際に、結着剤が厚み方向に偏る現象、具体的には、結着剤が活物質層の表面側で多くなり電極箔側で少なくなる現象を防止できる。また、電極ペースト中の活物質が沈降する活物質の沈降現象を防止できる。
また、500s-1の第2剪断速度における第2剪断粘度を350mPa・s以下とすることで、電極ペーストをフィルタに透過させる際のフィルタ透過性を良好にできる。
また、10000s-1の第3剪断速度における第3剪断粘度を240mPa・s以下とすることで、ダイコートで高速に電極ペーストを塗布する場合でも、均一に電極ペーストを塗布できる。
特開2011−113838号公報
しかしながら、従来の電極ペーストでは、前述の結着剤のマイグレーション現象や活物質等の沈降現象を適切に抑制できないことがあった。特に、電極板及び電池の生産性を向上させるために、電極箔に塗布した電極ペースト(電極ペースト層)を乾燥させる乾燥速度を速くするほど、結着剤のマイグレーション現象が大きく生じ易いことが判った。
本発明は、かかる現状に鑑みてなされたものであって、結着剤のマイグレーション現象及び活物質等の沈降現象を適切に抑制できる電極ペースト、電極板の製造方法、及び、電池の製造方法を提供することを目的とする。
上記課題を解決するための本発明の一態様は、少なくとも活物質と結着剤とを溶媒に分散させた電池用の電極ペーストであって、0.2s-1である第1剪断速度Waにおける第1剪断粘度Paが、40000mPa・s以上であり、かつ、40s-1である第2剪断速度Wbにおける第2剪断粘度Pbが、5000mPa・s以下である電極ペーストである。
この電極ペーストは、第1剪断速度Wa(=0.2s-1)における第1剪断粘度Paを40000mPa・s以上としている。これにより、電極箔に塗布した電極ペースト(電極ペースト層)を乾燥させる乾燥速度の大小に拘わらず、活物質層において結着剤が厚み方向に偏るマイグレーション現象を適切に抑制できる。また、電極ペーストを貯留タンク内等に貯留したときなどに活物質等が沈降する活物質等の沈降現象も適切に抑制できる。一方、第2剪断速度Wb(=40s-1)における第2剪断粘度Pbを5000mPa・s以下としている。これにより、電極ペーストのフィルタ透過性や電極箔への塗工性を良好にできる。
なお、「結着剤」としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)などが挙げられる。
更に、上記の電極ペーストを、正極板用の正極ペーストであり、黒鉛系導電材を含み、前記活物質は正極活物質である電極ペーストとすると良い。
電極ペーストが、正極活物質及び結着剤の他に黒鉛系導電材をも含む正極板用の正極ペーストの場合には、貯留タンク内等に貯留したときなどに、黒鉛系導電材が沈降する現象が特に生じ易い。これに対し、正極ペーストの第1剪断速度Wa(=0.2s-1)における第1剪断粘度Paを前述のように40000mPa・s以上とすることで、この黒鉛系導電材の沈降現象を効果的に抑制できる。
なお、「黒鉛系導電材」としては、例えば、天然黒鉛、人造黒鉛、カーボン繊維(カーボンファイバ)などが挙げられる。
また、他の態様は、少なくとも活物質と結着剤とを溶媒で混練してなり、0.2s-1である第1剪断速度Waにおける第1剪断粘度Paが40000mPa・s以上であり、かつ、40s-1である第2剪断速度Wbにおける第2剪断粘度Pbが5000mPa・s以下である電極ペーストを作製するペースト作製工程と、前記電極ペーストを電極箔に塗工して、前記電極箔上に電極ペースト層を形成する塗工工程と、前記電極ペースト層を乾燥させて活物質層を形成する乾燥工程と、を備える電極板の製造方法である。
更に、上記の電極板の製造方法であって、前記電極ペーストは、正極板用の正極ペーストであり、黒鉛系導電材を含み、前記活物質が正極活物質である電極板の製造方法とすると良い。
更に、上記のいずれかに記載の電極板の製造方法であって、前記塗工工程における、前記電極箔への前記電極ペーストの目付け量をMa(mg/cm2 )とし、前記乾燥工程における乾燥時間をTa(s)とし、前記乾燥工程における乾燥速度Vaを、Va=Ma/Ta(mg/cm2 ・s)としたとき、Va≧0.5を満たす電極板の製造方法とすると良い。
乾燥工程における乾燥速度を速くすると、具体的には、乾燥速度Va(mg/cm2 ・s)をVa≧0.5の大きな値とすると、前述のように、結着剤のマイグレーション現象が特に生じ易くなる。しかし、この電極板の製造方法では、電極ペーストの第1剪断速度Wa(=0.2s-1)における第1剪断粘度Paを40000mPa・s以上としているので、乾燥速度Vaを速くして電極板の生産性を向上させながらも、結着剤のマイグレーション現象を適切に抑制した活物質層を有する電極板を製造できる。
また、他の態様は、上記のいずれかに記載の電極板の製造方法を含む電池の製造方法である。
この電池の製造方法では、乾燥工程における乾燥速度の大小に拘わらず、結着剤のマイグレーション現象を適切に抑制した活物質層を有する電池を製造できる。また、電極ペーストの貯留時などに生じる活物質等の沈降現象も適切に抑制できる。一方、電極ペーストのフィルタ透過性や塗工工程における電極箔への塗工性を良好にでき、電池の生産性を向上させることができる。
実施形態に係り、リチウムイオン二次電池の斜視図である。 実施形態に係り、リチウムイオン二次電池の縦断面図である。 実施形態に係り、正極板及び負極板をセパレータを介して互いに重ねた状態を示す、電極体の展開図である。 実施形態に係る正極ペーストの剪断速度Wと剪断粘度Pとの関係を示すグラフである。 実施形態に係る正極ペーストの製造手順を示す説明図である。 実施例及び比較例に関し、マイグレーション指数Kaと第1剪断粘度Paとの関係を示すグラフである。 実施例及び比較例に関し、マイグレーション指数Kaと剥離強度Naとの関係を示すグラフである。 実施例及び比較例に関し、マイグレーション指数Kaと反応抵抗Raとの関係を示すグラフである。 実施例及び比較例に関し、マイグレーション指数KaとIV抵抗Rbとの関係を示すグラフである。
以下、本発明の実施の形態を、図面を参照しつつ説明する。図1及び図2に、リチウムイオン二次電池100(以下、単に電池100とも言う)を示す。また、図3に、この電池100を構成する捲回型の電極体120を展開した状態を示す。この電池100は、ハイブリッド自動車や電気自動車等の車両や、ハンマードリル等の電池使用機器に搭載される角型の密閉型電池である。この電池100は、直方体状の電池ケース110と、この電池ケース110内に収容された扁平状捲回型の電極体120と、電池ケース110に支持された正極端子150及び負極端子160等から構成されている。また、電池ケース110内には、非水系の電解液117が保持されている。
電極体120は、帯状の正極板121と帯状の負極板131とを、樹脂製の多孔質膜からなる帯状の2枚のセパレータ141,141を介して互いに重ねて(図3参照)、軸線周りに捲回し、扁平状に圧縮したものである。
正極板121は、芯材として、アルミニウムからなる帯状の正極電極箔(電極箔)122を有する。この正極電極箔122の両主面のうち幅方向の一部(図3中、下方)には、それぞれ長手方向(図3中、左右方向)に帯状に延びる正極活物質層(正極合剤層,活物質層)123,123が形成されている。
この正極活物質層123は、後述する正極ペースト(電極ペースト)70を正極電極箔122に塗工して正極ペースト層123pを形成し、この正極ペースト層123pを乾燥させたものであり、正極活物質(活物質)10と結着剤20と2種類の導電材30(第1導電材31及び第2導電材32)と分散剤40から構成されている。本実施形態では、正極活物質10としてリチウム・コバルト・ニッケル・マンガン複合酸化物(具体的にはLiCo1/3Ni1/3Mn1/32 )を、結着剤20としてポリフッ化ビニリデン(PVDF)を用いている。また、第1導電材31としてカーボンブラック(CB)、具体的にはアセチレンブラック(AB)を、第2導電材32として黒鉛系導電材、具体的には人造黒鉛、更に具体的にはTIMCAL社製:KS4を用いている。また、分散剤40としてポリビニルアセタール系の分散剤を用いている。
負極板131は、芯材として、銅からなる帯状の負極電極箔132を有する。この負極電極箔132の両主面のうち幅方向の一部(図3中、上方)には、それぞれ長手方向に帯状に延びる負極活物質層(負極合剤層)133,133が形成されている。この負極活物質層133は、負極活物質と増粘剤と結着剤から構成されている。本実施形態では、負極活物質として天然黒鉛を、増粘剤としてカルボキシメチルセルロース(CMC)を、結着剤としてスチレンブタジエンゴム(SBR)を用いている。
正極活物質層123の形成に用いる正極ペースト70は、前述の正極活物質10と結着剤20と導電材30(第1導電材31及び第2導電材32)と分散剤40とを、溶媒50、具体的にはN−メチル−2−ピロリドン(NMP)に分散させたものである。正極活物質10と結着剤20と第1導電材31と第2導電材32と分散剤40の混合割合は、重量比で91:3:3:3:0.15である。また、この正極ペースト70の固形分濃度は、69.0wt%である。
また、この正極ペースト70について、剪断速度W(s-1)と剪断粘度P(mPa・s)との関係を図4に示す。図4から判るように、この正極ペースト70の剪断粘度Pは、剪断速度Wが大きいほど小さい値となる。また、この正極ペースト70は、0.2s-1の第1剪断速度Waにおける第1剪断粘度Paが、40000mPa・s以上(具体的にはPa=40200mPa・s)である。また、40s-1の第2剪断速度Wbにおける第2剪断粘度Pbが、5000mPa・s以下(具体的にはPb=4630mPa・s)である。なお、剪断粘度Pは、回転粘度計、具体的には、Anton Paar社製のレオメーターMCR301を用いて測定した。
次いで、正極板121及び電池100の製造方法について説明する。まず、正極板121を製造する。即ち、ペースト作製工程において、図5に示すように、正極活物質10と結着剤20と導電材30(第1導電材31及び第2導電材32)と分散剤40を溶媒50で混練して、正極ペースト70を作製する。具体的には、溶媒50に結着剤20と導電材30(第1導電材31及び第2導電材32)と分散剤40を加え、撹拌して分散させる。これにより、溶媒50に結着剤20と導電材30(第1導電材31及び第2導電材32)と分散剤40が分散した導電ペースト60ができる。
その後、プラネタリーミキサ及びディスパを用いて、この導電ペースト60に正極活物質10を加え、60分間撹拌して分散させる。かくして、正極ペースト70が作製される。なお、正極活物質10と結着剤20と第1導電材31と第2導電材32と分散剤40と溶媒50の混合割合は、前述のように、重量比で91:3:3:3:0.15:45.0(固形分濃度69.0wt%)とする。
このようにして作製された正極ペースト70は、図4に示すレオロジ(粘度挙動)を有する。第1剪断速度Wa(=0.2s-1)における第1剪断粘度PaはPa=40200mPa・sであり、第2剪断速度Wb(=40s-1)における第2剪断粘度PbはPb=4630mPa・sである。なお、正極ペースト70のレオロジは、後述するように、正極ペースト70に含まれる各材質の混合割合や、正極ペースト70の固形分濃度、導電ペースト60と正極活物質10との混練時間などを変更することにより調整できる。
次に、アルミニウムからなる帯状の正極電極箔122を用意し、塗工工程において、上記の正極ペースト70を正極電極箔122に塗工して、正極ペースト層123pを形成する(図3参照)。具体的には、塗工に先立ち、正極ペースト70について、目開き55μmのフィルタを透過させる。これにより、正極ペースト70に含まれる大きな凝集物等を除去する。その後、正極電極箔122のうち一方の主面の幅方向の一部に、ダイコータを用いて正極ペースト70を塗布して、正極ペースト層123pを形成する。その際、正極ペースト70の正極電極箔122への目付け量Maは、27.0mg/cm2 とした。
次に、乾燥工程において、この正極ペースト層123pを熱風により乾燥させて(溶媒50を完全に蒸発させて)、正極活物質層123を形成する。その際、乾燥時間Taは、40sとした。従って、この乾燥工程における乾燥速度Vaを、Va=Ma/Ta(mg/cm2 ・s)としたとき、乾燥速度Vaは、Va≧0.5を満たす(本実施形態ではVa=0.675mg/cm2 ・s)。
同様に、正極電極箔122の反対側の主面にも、その幅方向の一部に、正極ペースト70を塗工して正極ペースト層123pを形成し(塗工工程)、この正極ペースト層123pを熱風により乾燥させて、正極活物質層123を形成する(乾燥工程)。その後、加圧ロールにより正極活物質層123,123を圧縮して、その密度を高める。かくして、正極板121が形成される。
また別途、負極板131を製造する。即ち、銅からなる帯状の負極電極箔132を用意する。そして、この負極電極箔132のうち一方の主面の幅方向の一部に、負極活物質、増粘剤及び結着剤を含む負極ペーストを塗布し、熱風により乾燥させて、負極活物質層133を形成する。同様に、負極電極箔132の反対側の主面にも、その幅方向の一部に、上記の負極ペーストを塗布し、熱風により乾燥させて、負極活物質層133を形成する。その後、加圧ロールにより負極活物質層133,133を圧縮して、その密度を高める。かくして、負極板131が形成される。
次に、帯状のセパレータ141,141を2枚用意し、前述の正極板121と負極板131とをセパレータ141,141を介して互いに重ね(図3参照)、巻き芯を用いて軸線周りに捲回する。その後、これを扁平状に圧縮して電極体120を形成する。
次に、この電極体120に正極端子150及び負極端子160を接続すると共に、電極体120を電池ケース110内に収容して、電池100を組み立てる。また、電解液117を電池ケース110内に注液する。その後は、この電池100について、初期充電やエージング、各種検査を行う。かくして、電池100が完成する。
(実施例及び比較例)
次いで、実施形態に係る正極ペースト70、並びに、正極板121及び電池100の製造方法の効果を検証するために行った試験の結果について説明する。
実施例1,2及び比較例1〜6として、第1剪断速度Wa(=0.2s-1)における第1剪断粘度Pa及び第2剪断速度Wb(=40s-1)における第2剪断粘度Pbがそれぞれ異なる8種類の正極ペーストを用意した(表1及び表2参照)。これらの正極ペーストの第1剪断粘度Pa及び第2剪断粘度Pbは、表1に示すように、導電材や分散剤の混合割合を変更したり、正極ペーストの固形分濃度を変更したり、正極ペーストを製造する際の導電ペーストと正極活物質との混練時間を変更することにより調整した。
Figure 2015141822
Figure 2015141822
まず、実施例1,2及び比較例1〜6の各正極ペーストについて、「沈降性試験」を行って、各正極ペーストの沈降性(正極活物質10や導電材30の沈降現象)をそれぞれ調べた。具体的には、作製した正極ペーストを貯留タンクに入れて5日間静置した。その後、貯留タンク内の上部の正極ペーストと下部の正極ペーストをそれぞれ採取して、その固形分濃度及び粘度(具体的には第1剪断粘度Pa及び第2剪断粘度Pb)をそれぞれ比較した。その結果、上部の正極ペーストと下部の正極ペーストとで、固形分濃度及び粘度に差がなかったものを「良好」(表2中に「○」で示す)、差があったものを「不良」(表2中に「×」で示す)と評価した。
次に、実施例1,2及び比較例1〜6の各正極ペーストについて、「フィルタ透過性試験」を行って、各正極ペーストのフィルタ透過性をそれぞれ調べた。具体的には、目開き55μmのフィルタ(ロキテクノ社製:250L-HCB-55)を用いて、0.1MPaの定圧濾過を行い、単位時間(min)当たりにフィルタを透過する正極ペーストの流量(L/min)を測定した。その結果、1.5L/min以上の流量を維持し続けた正極ペーストを「良好」(表2中に「○」で示す)、1.5L/minよりも流量が小さくなった正極ペーストを「不良」(表2中に「×」で示す)と評価した。
次に、実施例1,2及び比較例1〜6の各正極ペーストについて、「塗工性試験」を行って、各正極ペーストの塗工性をそれぞれ調べた。具体的には、正極ペーストをダイコータを用いて正極電極箔に塗布する。その際、目付精度(目付け量のバラツキ)が±3.0%以内であった正極ペーストを「良好」(表2中に「○」で示す)、目付精度が±3.0%を越えた正極ペーストを「不良」(表2中に「×」で示す)と評価した。
次に、実施例1,2及び比較例1,3の各正極ペーストを用いて、正極板をそれぞれ製造した。そして、正極活物質層における結着剤20の厚み方向の偏り具合を示す「マイグレーション指数Ka」をそれぞれ調べた。図6に、マイグレーション指数Kaと第1剪断粘度Paとの関係を示す。
なお、このマイグレーション指数Kaは、正極活物質層のうち、厚み方向の中央よりも正極活物質層の表面側を表面側部、正極電極箔122側を電極箔側部としたとき、表面側部における結着剤20の含有濃度Bdと電極箔側部における結着剤20の含有濃度Beとの比(Ka=Bd/Be)である。
表面側部及び電極箔側部における結着剤20の含有濃度Bd,Beは、次のようにして求めた。即ち、電子線マイクロアナライザ(Electron Probe MicroAnalyser:EPMA)を用い、正極活物質層の断面について、結着剤(PVDF)20由来のフッ素(F)の面分布を測定することにより、この断面における結着剤20の分布をマッピングする。そして、このマップに基づいて表面側部及び電極箔側部における結着剤20の含有濃度Bd,Be(相対値)をそれぞれ数値化して、比較した。
次に、実施例1,2及び比較例1,3に係る各正極板について、「剥離強度試験」を行って、正極活物質層の剥離強度Na(密着強度、N/m)をそれぞれ調べた。具体的には、各正極板から所定の大きさの帯状の断片をそれぞれ切り出した。この帯状断片のうち、一方側を両面テープを介して水平な台に固定し、他方側を剥離強度測定機(エーアンドデー社製)により上方に垂直に持ち上げた。そして、この剥離強度測定機によって、両面テープに貼り付いた正極活物質層が正極電極箔122から剥がれる際に掛かった力(N)を測定し、これから剥離強度Na(N/m)を求めた。図7に、マイグレーション指数Kaと剥離強度Naとの関係を示す。
次に、実施例1,2及び比較例1,3に係る各正極板を用いて、更に評価用の電池をそれぞれ製造した。そして、各電池について、反応抵抗Ra(mΩ)をそれぞれ調べた。具体的には、各電池について、交流インピーダンスをそれぞれ測定した。そして、測定結果から得られたcole-coleプロットにおける円弧の直径の大きさを反応抵抗Ra(mΩ)の値とした。なお、測定には、ソーラトロン社製の電気化学測定装置(インピーダンス測定装置)を用いた。図8に、マイグレーション指数Kaと反応抵抗Raとの関係を示す。
次に、実施例1,2及び比較例1,3に係る各電池について、IV抵抗Rb(mΩ)をそれぞれ調べた。具体的には、SOC60%に調整された電池を25℃の環境下に置いて、0.3C、1C、3C、5Cまたは10Cの定電流でそれぞれ放電させて、放電開始から10秒経過後の電圧降下量をそれぞれ測定した。そして、横軸を電流値、縦軸を電圧降下量として、各測定結果をプロットし、近似直線の傾きを求めて、これをIV抵抗Rb(mΩ)とした。なお、測定には、日鉄エレックス社製の小型充放電装置(5V1A50ch×2システム)を用いた。図9に、マイグレーション指数KaとIV抵抗Rbとの関係を示す。
まず、正極ペーストのペースト沈降性について検討する。表2から判るように、第1剪断速度Wa(=0.2s-1)における第1剪断粘度Paが40000mPa・sよりも小さい比較例1,3,4,6の正極ペーストでは、ペースト沈降性が不良であった。これらの正極ペーストでは、静置状態を模した極めて低い第1剪断速度Wa(=0.2s-1)での第1剪断粘度Paが小さ過ぎることから、電極ペースト中の正極活物質10や導電材30が時間の経過と共に沈降したからである。一方、第1剪断粘度Paが40000mPa・s以上である実施例1,2及び比較例2,5の正極ペーストでは、正極ペーストの沈降性が良好であった。第1剪断速度Wa(=0.2s-1)における第1剪断粘度Paが高いことから、時間が経過しても、電極ペースト中の正極活物質10や導電材30が沈降し難いからである。このことから、正極ペーストの第1剪断速度Wa(=0.2s-1)における第1剪断粘度Paは、40000mPa・s以上とするのが良いことが判る。
次に、正極ペーストのフィルタ透過性について検討する。表2から判るように、第2剪断速度Wb(=40s-1)における第2剪断粘度Pbが5000mPa・sよりも大きい比較例1〜5の正極ペーストでは、フィルタ透過性が不良であった。これらの正極ペーストでは、フィルタの透過を模した第2剪断速度Wb(=40s-1)での第2剪断粘度Pbが大き過ぎることから、フィルタを透過させる際にも正極ペーストの粘度が上昇し過ぎて、フィルタを透過する正極ペーストの流量が減少したと考えられる。一方、第2剪断粘度Pbが5000mPa・s以下である実施例1,2及び比較例6の正極ペーストは、フィルタ透過性が良好であった。第2剪断速度Wb(=40s-1)における第2剪断粘度Pbが低いことから、フィルタを透過させる際にも正極ペーストの粘度が高くなり過ぎず、フィルタを透過する正極ペーストの流量を適切に確保できたと考えられる。
次に、正極ペーストの塗工性について検討する。表2から判るように、第2剪断速度Wb(=40s-1)における第2剪断粘度Pbが5000mPa・sよりも大きい比較例1〜5の正極ペーストでは、正極ペーストの塗工性が不良であった。これらの正極ペーストでは、ダイコートによるペースト塗布の際の挙動を模した第2剪断粘度Pbが大き過ぎることから、ダイコートで正極ペーストを塗工したときにも、正極ペーストの粘度が上昇し過ぎて、塗工性が悪くなったと考えられる。一方、第2剪断粘度Pbが5000mPa・s以下である実施例1,2及び比較例6の正極ペーストは、正極ペーストの塗工性が良好であった。第2剪断速度Wb(=40s-1)における第2剪断粘度Pbが低いことから、ダイコートで正極ペーストを塗工したときにも、正極ペーストの粘度が高くなり過ぎず、塗工性が良好であったと考えられる。
次に、結着剤20のマイグレーション指数Kaについて検討する。図6から判るように、第1剪断速度Wa(=0.2s-1)における第1剪断粘度Paが大きい正極ペーストを用いるほど、正極活物質層における結着剤20のマイグレーション指数Kaが小さい。特に、第1剪断粘度Paが40000mPa・s以上の正極ペーストを用いると、マイグレーション指数Kaを1.4以下の小さい値とすることができ、正極活物質層におけるマイグレーション現象を適切に抑制できることが判る。
次に、正極活物質層の剥離強度Naについて検討する。図7から判るように、結着剤20のマイグレーション指数Kaが小さい正極活物質層ほど、正極活物質層の剥離強度Naが大きい。特に、マイグレーション指数Kaが1.4以下の場合には、10N/mを越える良好な剥離強度Naが得られる。これは、マイグレーション指数Kaが小さいほど、正極活物質層のうち正極電極箔近傍に含まれる結着剤の濃度が高くなるため、正極活物質層と正極電極箔との密着性が良好となり、正極活物質層の剥離強度が向上したからであると考えられる。
次に、電池の反応抵抗Raについて検討する。図8から判るように、結着剤20のマイグレーション指数Kaが小さい正極活物質層を有する正極板を備える電池ほど、電池の反応抵抗Raが小さい。特に、マイグレーション指数Kaが1.4以下の正極活物質層を有する電池では、反応抵抗Raを265mΩ以下とすることができて好ましい。これは、マイグレーション指数Kaが小さく、結着剤20が均一に分散しているほど、正極活物質層への電解液浸透性が良好となり、正極活物質と電解液との反応が活発になる。このため、電池の反応抵抗Raが小さくなると考えられる。
次に、電池のIV抵抗Rbについて検討する。図9から判るように、結着剤20のマイグレーション指数Kaが小さい正極活物質層を有する正極板を備える電池ほど、電池のIV抵抗Rbが小さい。特に、マイグレーション指数Kaが1.4以下の正極活物質層を有する電池では、IV抵抗Rbを745mΩよりも小さくできて好ましい。これは、マイグレーション指数Kaが小さいほど、IV抵抗Rbの一因である反応抵抗Raが前述のように小さいため、IV抵抗Rbも小さくなると考えられる。
これら図6〜図9に示した結果から、正極活物質層の剥離強度Na、電池の反応抵抗Ra及びIV抵抗Rbを良好にするには、正極活物質層におけるマイグレーション指数Kaを1.4以下とすること、そしてそのために、実施例1,2のように、第1剪断速度Wa(=0.2s-1)における第1剪断粘度Paを40000mPa・s以上とした正極ペーストを用いて正極活物質層を形成するのが良いことが判る。
以上で説明したように、前述の正極ペースト70は、第1剪断速度Wa(=0.2s-1)における第1剪断粘度Paを40000mPa・s以上としている。これにより、結着剤20が厚み方向に偏在するマイグレーション現象を適切に抑制した正極活物質層123を形成できる。更に、マイグレーション指数Kaを低くすることで、正極活物質層123の剥離強度Naを向上させることができる。また、電池100の反応抵抗Ra及びIV抵抗Rbを低く抑えることができる。
また、正極ペースト70を貯留タンク内等に貯留したときなどに正極活物質10や導電材30が沈降する沈降現象も適切に抑制できる。
一方、第2剪断速度Wb(=40s-1)における第2剪断粘度Pbを5000mPa・s以下としている。これにより、正極ペースト70のフィルタ透過性や正極電極箔122への塗工性を良好にでき、正極板121及び電池100の生産性を向上させることができる。
特に、黒鉛系導電材32を含む正極ペースト70では、黒鉛系導電材32の沈降現象が特に生じ易い。しかし、第1剪断粘度Paを40000mPa・s以上とすることで、黒鉛系導電材32の沈降現象を効果的に抑制できる。
また、前述の正極板121及び電池100の製造方法では、乾燥工程における乾燥速度Va(mg/cm2 ・s)をVa≧0.5の大きい値としているので、結着剤20のマイグレーション現象が特に生じ易い。しかし、正極ペースト70の第1剪断粘度Paを40000mPa・s以上としているので、結着剤20のマイグレーション現象を適切に抑制できる。
以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、正極板121用の正極ペースト70に本発明を適用したが、負極板131用の負極ペーストに本発明を適用してもよい。
10 正極活物質(活物質)
20 結着剤
30 導電材
31 第1導電材(カーボンブラック)
32 第2導電材(黒鉛系導電材)
40 分散剤
50 溶媒
60 導電ペースト
70 正極ペースト(電極ペースト)
100 リチウムイオン二次電池(電池)
120 電極体
121 正極板(電極板)
122 正極電極箔(電極箔)
123 正極活物質層(正極合剤層,活物質層)
123p 正極ペースト層
131 負極板

Claims (6)

  1. 少なくとも活物質と結着剤とを溶媒に分散させた電池用の電極ペーストであって、
    0.2s-1である第1剪断速度Waにおける第1剪断粘度Paが、40000mPa・s以上であり、かつ、
    40s-1である第2剪断速度Wbにおける第2剪断粘度Pbが、5000mPa・s以下である
    電極ペースト。
  2. 正極板用の正極ペーストであり、
    黒鉛系導電材を含み、
    前記活物質は正極活物質である
    請求項1に記載の電極ペースト。
  3. 少なくとも活物質と結着剤とを溶媒で混練してなり、0.2s-1である第1剪断速度Waにおける第1剪断粘度Paが40000mPa・s以上であり、かつ、40s-1である第2剪断速度Wbにおける第2剪断粘度Pbが5000mPa・s以下である電極ペーストを作製するペースト作製工程と、
    前記電極ペーストを電極箔に塗工して、前記電極箔上に電極ペースト層を形成する塗工工程と、
    前記電極ペースト層を乾燥させて活物質層を形成する乾燥工程と、を備える
    電極板の製造方法。
  4. 請求項3に記載の電極板の製造方法であって、
    前記電極ペーストは、
    正極板用の正極ペーストであり、
    黒鉛系導電材を含み、
    前記活物質が正極活物質である
    電極板の製造方法。
  5. 請求項3または請求項4に記載の電極板の製造方法であって、
    前記塗工工程における、前記電極箔への前記電極ペーストの目付け量をMa(mg/cm2 )とし、
    前記乾燥工程における乾燥時間をTa(s)とし、
    前記乾燥工程における乾燥速度Vaを、Va=Ma/Ta(mg/cm2 ・s)としたとき、
    Va≧0.5を満たす
    電極板の製造方法。
  6. 請求項3〜請求項5のいずれか一項に記載の電極板の製造方法を含む電池の製造方法。
JP2014014332A 2014-01-29 2014-01-29 電極ペースト、電極板の製造方法、及び、電池の製造方法 Pending JP2015141822A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014014332A JP2015141822A (ja) 2014-01-29 2014-01-29 電極ペースト、電極板の製造方法、及び、電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014014332A JP2015141822A (ja) 2014-01-29 2014-01-29 電極ペースト、電極板の製造方法、及び、電池の製造方法

Publications (1)

Publication Number Publication Date
JP2015141822A true JP2015141822A (ja) 2015-08-03

Family

ID=53772058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014014332A Pending JP2015141822A (ja) 2014-01-29 2014-01-29 電極ペースト、電極板の製造方法、及び、電池の製造方法

Country Status (1)

Country Link
JP (1) JP2015141822A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170020032A (ko) * 2015-08-13 2017-02-22 주식회사 엘지화학 이차전지용 캐소드 및 그의 제조방법
CN107925130A (zh) * 2015-10-08 2018-04-17 株式会社Lg化学 测量电极中粘合剂分布的方法
WO2019074024A1 (ja) * 2017-10-10 2019-04-18 日産自動車株式会社 電池用電極の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170020032A (ko) * 2015-08-13 2017-02-22 주식회사 엘지화학 이차전지용 캐소드 및 그의 제조방법
CN107925130A (zh) * 2015-10-08 2018-04-17 株式会社Lg化学 测量电极中粘合剂分布的方法
JP2018524784A (ja) * 2015-10-08 2018-08-30 エルジー・ケム・リミテッド 電極内のバインダー分布の測定方法
US10663528B2 (en) 2015-10-08 2020-05-26 Lg Chem, Ltd. Method of measuring distribution of binder in electrode
CN107925130B (zh) * 2015-10-08 2020-07-31 株式会社Lg化学 测量电极中粘合剂分布的方法
WO2019074024A1 (ja) * 2017-10-10 2019-04-18 日産自動車株式会社 電池用電極の製造方法
US11329265B2 (en) 2017-10-10 2022-05-10 Nissan Motor Co., Ltd. Method for producing battery electrode

Similar Documents

Publication Publication Date Title
KR101488850B1 (ko) 전기화학전지용 분리막 및 이의 제조방법
KR101329934B1 (ko) 전극판, 2차 전지 및 전극판의 제조 방법
JP6688206B2 (ja) 電極合剤層
JP4645778B2 (ja) リチウムイオン二次電池用電極
JP6183360B2 (ja) リチウムイオン二次電池の電極及びこれを用いたリチウムイオン二次電池
KR101769219B1 (ko) 그라펜을 포함하는 전극 제형
KR20100065205A (ko) 비수계 전지용 정극 합제 및 정극 구조체
JP2010153331A (ja) 非水二次電池用電極の製造方法
JP2005063953A (ja) 非水電解液二次電池とその製造方法及び電解液二次電池用電極材料
US11050054B2 (en) Electrode for lithium-ion battery comprising a binder formed from a blend of two polymers, the first polymer being a first polyacrylate or one of its derivatives, the second polymer being a second polyacrylate or a carboxymethyl cellulose or one of their derivatives, ink for producing such an electrode
JP7123251B2 (ja) 互いに異なる粒径の活物質を含む二重層構造の合剤層を含む二次電池用電極及びその製造方法
JP2014044921A (ja) リチウムイオン二次電池及びその製造方法
KR20220093112A (ko) 이차 전지용 페이스트, 이차 전지 정극용 슬러리, 이차 전지용 정극, 이차 전지, 및 이차 전지용 페이스트의 제조 방법
JP2018106984A (ja) 全固体リチウムイオン電池
WO2022255443A1 (ja) 鉛蓄電池用セパレータおよびそれを含む鉛蓄電池
US11081700B2 (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP6269914B2 (ja) 蓄電デバイス用電極、電極用スラリー、および蓄電デバイス
JP2015141773A (ja) 二次電池用負極の製造方法
JP2013229300A (ja) リチウムイオン二次電池
JP2015141822A (ja) 電極ペースト、電極板の製造方法、及び、電池の製造方法
JPWO2022191150A5 (ja)
JP2018113125A (ja) リチウムイオン二次電池用のセパレータ層付き負極
JP2014143064A (ja) 二次電池およびその製造方法
JP6780604B2 (ja) 二次電池用の負極の製造方法
JP2021093313A (ja) 蓄電デバイス用正極および蓄電デバイス