JP2015140466A - Cu核ボール、はんだ継手、フォームはんだおよびはんだペースト - Google Patents

Cu核ボール、はんだ継手、フォームはんだおよびはんだペースト Download PDF

Info

Publication number
JP2015140466A
JP2015140466A JP2014014702A JP2014014702A JP2015140466A JP 2015140466 A JP2015140466 A JP 2015140466A JP 2014014702 A JP2014014702 A JP 2014014702A JP 2014014702 A JP2014014702 A JP 2014014702A JP 2015140466 A JP2015140466 A JP 2015140466A
Authority
JP
Japan
Prior art keywords
ball
core
solder
core ball
dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014014702A
Other languages
English (en)
Other versions
JP5680773B1 (ja
Inventor
浩由 川▲崎▼
Hiroyoshi Kawasaki
浩由 川▲崎▼
友朗 西野
Tomoaki Nishino
友朗 西野
六本木 貴弘
Takahiro Roppongi
貴弘 六本木
相馬 大輔
Daisuke Soma
大輔 相馬
佐藤 勇
Isamu Sato
勇 佐藤
勇司 川又
Yuji Kawamata
勇司 川又
浩彦 平尾
Hirohiko Hirao
浩彦 平尾
淳 田阪
Atsushi Tasaka
淳 田阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Chemicals Corp
Senju Metal Industry Co Ltd
Original Assignee
Shikoku Chemicals Corp
Senju Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Chemicals Corp, Senju Metal Industry Co Ltd filed Critical Shikoku Chemicals Corp
Priority to JP2014014702A priority Critical patent/JP5680773B1/ja
Priority to KR1020150014259A priority patent/KR101550560B1/ko
Application granted granted Critical
Publication of JP5680773B1 publication Critical patent/JP5680773B1/ja
Publication of JP2015140466A publication Critical patent/JP2015140466A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53233Copper alloys

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

【課題】Cu核ボールの電極上への実装時のアライメント性を確保しつつ、ソフトエラーの発生を抑制する。【解決手段】Cu核ボールは、Cuボールと、Cuボール表面に形成されたAgめっき被膜とを備える。Cuボールは、純度が99.9%以上99.995%以下であり、Uの含有量が5ppb以下であり、Thの含有量が5ppb以下であり、PbまたはBiの含有量もしくはPbおよびBiの両方を併せた含有量の合計量が1ppm以上、真球度が0.95以上であり、α線量が0.0200cph/cm2以下である。Agめっき被膜は、膜厚が5μm以下である。【選択図】図1

Description

本発明は、α線量が少ないCu核ボール、はんだ継手、フォームはんだおよびはんだペーストに関する。
近年、小型情報機器の発達により、搭載される電子部品では急速な小型化が進行している。電子部品は、小型化の要求により接続端子の狭小化や実装面積の縮小化に対応するため、裏面に電極が設置されたボールグリッドアレイ(以下、「BGA」と称する。)が適用されている。
BGAを適用した電子部品には、例えば半導体パッケージがある。半導体パッケージでは、電極を有する半導体チップが樹脂で封止されている。半導体チップの電極には、はんだバンプが形成されている。このはんだバンプは、はんだボールを半導体チップの電極に接合することによって形成されている。BGAを適用した半導体パッケージは、加熱により溶融したはんだバンプとプリント基板の導電性ランドが接合することにより、プリント基板に搭載される。また、更なる高密度実装の要求に対応するため、半導体パッケージが高さ方向に積み重ねられた3次元高密度実装が検討されている。
しかし、3次元高密度実装がなされた半導体パッケージにBGAが適用されると、半導体パッケージの自重によりはんだボールが潰れてしまうことがある。もしそのようなことが起きると、はんだが電極からはみ出し、電極間が接続してしまい、短絡が発生することも考えられる。
そこで、はんだペーストを用いて電子部品の電極上にCuボールを電気的に接合するはんだバンプが検討されている。Cuボールを用いて形成されたはんだバンプは、電子部品がプリント基板に実装される際、半導体パッケージの重量がはんだバンプに加わっても、はんだの融点では溶融しないCuボールにより半導体パッケージを支えることができる。したがって、半導体パッケージの自重によりはんだバンプが潰れることがない。関連技術として例えば特許文献1が挙げられる。
ここで、Cuボールは、酸化されやすい性質を有しており、保管環境の温度や湿度に応じてCuボール表面に酸化膜が形成される。この酸化膜が形成されたCuボールを電極上に実装した後にリフローすると、Cuボールとはんだとの間で濡れ不良が発生する場合がある。その結果、実装したはんだボールが電極上から脱落したり、はんだボールが電極の中心から位置ずれして実装されてしまうという問題が発生する。
図6Aは電極230上に実装したCuボール210が位置ずれしていない状態を示し、図6Bは電極230上に実装したCuボールが位置ずれした状態を示す図である。電極230上には、はんだペースト220が印刷されている。図6Bに示すように、酸化膜212が一部に形成されたCuボール210を電極230上に実装してリフロー処理を行うと、濡れ不良を起こし、Cuボール210が電極230の中心から位置ずれして実装されてしまう。
このように、Cuボールが電極の所定の位置からずれて接合された場合、はんだバンプを含めた各電極の高さがばらつく。高さが高い電極はランドと接合することができるが、高さが低い電極はランドと接合することができない。Cuボールが所定の位置からずれて接合された電子部品は不良として取り扱われる。また、Cuボールが電極から脱落すると接合不良として取り扱われる。したがって、Cuボールはアライメント性が高いレベルで要求されている。
そこで、特許文献2には、Cuボールのアライメント性を確保するため、Cuボールの表面にAgめっきを被覆したCu核ボールを用いることが記載されている。また、特許文献2に関連して特許文献3、4には、Cuボール表面にAgめっきを被覆させる技術が記載されている。さらに、特許文献5には、Cuボールに被覆した銀被覆層の明度から銀被覆層の均一性を評価する技術が記載されている。
ところで、近年では、電子部品の小型化に伴い高密度実装が実現されているが、高密度実装が進むにつれてソフトエラーという問題を引き起こすことになった。ソフトエラーは、半導体集積回路(以下、「IC」と称する。)のメモリセル中にα線が進入することにより記憶内容が書き換えられる可能性があるというものである。α線は、はんだ合金中のU、Th、210Poなどの放射性元素がα崩壊することにより放射されると考えられている。そこで、近年では放射性元素の含有量を低減した低α線のはんだ材料の開発が行われている。
関連文献として例えば特許文献6が挙げられる。特許文献6には、α線量が低いSnインゴットの発明が開示されており、α線量を低減するため、単に電解精錬を行うのではなく、電解液に吸着剤を懸濁することによりPbやBiを吸着してα線量を低減することが記載されている。特許文献7には、α線量が低いAgおよびAg合金が記載されている。特許文献8には、α線量が低いCu及びCu合金が記載されている。
国際公開第95/24113号パンフレット 特開平9−282935号公報 国際公開第2006/126527号パンフレット 特開2013−1917号公報 特許第4660701号公報 特許第4472752号公報 特開2011−214040号公報 国際公開第2012/120982号パンフレット
しかし、特許文献1〜5では、Cu核ボールのα線量を低減するという課題は一切考慮されておらず、高密度実装においてソフトエラーの発生を抑制することができないという問題がある。
また、特許文献6、7には、上述したように、電解液や電極が静止した状態で行う電解精錬によって、Sn、Agインゴット中のPbやBiを除去してα線量を低減することが記載されている。しかし、同文献には、CuボールにAgめっきを行ってCu核ボールの実装時の位置ずれ等を防止することについては一切開示されていない。また、同文献に記載の電解精錬では、電解析出面が一方向に限られるため、Cuボールのような微小ワークに膜厚が均一なめっきを形成することができない。さらに特許文献6と特許文献7には、CuボールにBiやPbを含有させることにより、α線量が低く、かつ真球度が高いCuボールを実現するという本願の思想は一切開示されていないため、両文献を組み合わせたとしても、本発明の思想に到達することはできない。さらに、特許文献8には、Cuボールについての記述はなく、Cuボール中のBi、Pbの添加量とCuボールの真球度の関係については一切開示されていない。
そこで、本発明は、上記課題を解決するために、電極上への実装時のアライメント性を確保しつつ、ソフトエラーの発生を抑制することが可能なCu核ボール、はんだ継手、フォームはんだおよびはんだペーストを提供する。
本発明者らは、まずCu核ボールに使用するCuボールについて選定を行った。その結果、CuボールにPbまたはBiの含有量もしくはPbおよびBiの両方を併せた含有量が一定量含有されていなければ、Cuボールの真球度が低下し、Agめっきを行っても、真球度が低い状態のままめっきされてしまうため、結局、得られるCu核ボールの真球度が低下することを知見した。
次に、Cu核ボールを構成するAgめっき被膜のα線量を低減するため、めっき法を用いてAgめっき被膜を形成する点に着目して鋭意検討を行った。その結果、本発明者らは、めっき液中のPb、Biや、これらの元素の崩壊により生成されるPoを低減するため、Cuボールやめっき液を流動させながらCuボールにめっき被膜を形成する際に、予想外にも、吸着剤を懸濁させなくてもこれらPb、Bi、Poの元素が塩を形成した。そして、めっき被膜にこれらの元素が取り込まれず、Cu核ボールを構成するAgめっき被膜のα線量が低減する知見を得た。
ここに、本発明は次の通りである。
(1)Cuボールと、当該Cuボールの表面を被覆するAgめっき被膜とを備えるCu核ボールであって、
前記Cuボールの純度が99.9%以上99.995%以下であり、Uの含有量が5ppb以下であり、Thの含有量が5ppb以下であり、PbまたはBiの含有量もしくはPbおよびBiの両方を併せた含有量の合計量が1ppm以上であり、真球度が0.95以上であり、α線量が0.0200cph/cm2以下であり、前記Agめっき被膜の膜厚が5μm以下である
ことを特徴とするCu核ボール。
(2)α線量が0.0200cph/cm2以下である、上記(1)に記載のCu核ボール。
(3)α線量が0.0020cph/cm2以下である、上記(1)に記載のCu核ボール。
(4)α線量が0.0010cph/cm2以下である、上記(1)に記載のCu核ボール。
(5)明度が80以上である、上記(1)〜(4)のいずれか1つに記載のCu核ボール。
(6)直径が1〜1000μmである、上記(1)〜(5)のいずれか1つに記載のCu核ボール。
(7)Cuボールは、前記Agめっき被膜で被覆される前に予めNiおよびCoから選択される1元素以上からなるめっき層で被覆されている、上記(1)〜(6)のいずれか1つに記載のCu核ボール。
(8)Cu核ボールの真球度が0.95以上である、上記(1)〜(7)のいずれか1つに記載のCu核ボール。
(9)Cu核ボールの全体がフラックスで被覆されている上記(1)〜(8)のいずれか1つに記載のCu核ボール。
(10)(1)〜(9)のいずれか1つに記載のCu核ボールを使用したはんだ継手。
(11)(1)〜(9)のいずれか1つに記載のCu核ボールを使用したフォームはんだ。
(12)(1)〜(9)のいずれか1つに記載のCu核ボールを使用したはんだペースト。
本発明によれば、Cuボールのα線量を0.0200cph/cm2以下にし、Agめっき被膜の膜厚を5μm以下にするので、本発明のCu核ボールを使用してはんだ継手を形成した際、ソフトエラーの発生を抑制することができる。また、Cuボール表面をAgめっき被膜により被覆するので、Cuボール表面の酸化膜の形成を防止することができ、その結果、Cu核ボールの電極上への実装時のアライメント性を確保することができる。
図1は、本発明に係るCu核ボールの構成例を示した図である。 図2は、明度・黄色度・赤色度と、Cuボールの浸漬時間との関係を示すグラフである。 図3は、Cu核ボールおよび電極間の円心間距離と、Cuボールの浸漬時間との関係例を示すグラフである。 図4は、本発明に係るCu核ボールが搭載されたはんだバンプの光学顕微鏡写真である。 図5は、比較例におけるCu核ボールが搭載されたはんだバンプの光学顕微鏡写真である。 図6Aおよび図6Bは、従来におけるCuボールを電極上に実装した際に発生する位置ずれを説明するための図である。
本発明を以下により詳しく説明する。本明細書において、Cu核ボールのAgめっき被膜の組成に関する単位(ppm、ppb、および%)は、特に指定しない限りAgめっき被膜の質量に対する割合(質量ppm、質量ppb、および質量%)を表す。また、Cuボールの組成に関する単位(ppm、ppb、および%)は、特に指定しない限りCuボールの質量に対する割合(質量ppm、質量ppb、および質量%)を表す。
図1は、本発明に係るCu核ボールの構成の一例を示している。図1に示すように、本発明に係るCu核ボール11は、Cuボール1と、このCuボール1の表面を被覆するAgめっき被膜2とを備えており、以下に示す特徴を有する。Cuボール1は、純度が99.9%以上99.995%以下であり、PbまたはBiの含有量もしくはPbおよびBiの両方を併せた含有量の合計量が1ppm以上、真球度が0.95以上であり、α線量が0.0200cph/cm2以下である。Agめっき被膜2のめっき膜厚は5μm以下である。本発明に係るCu核ボール11によれば、上記条件を採用することによりはんだ継手のα線量を低減することが可能となる。
以下に、Cu核ボール11の構成要素であるAgめっき被膜2およびCuボール1について詳しく説明する。
1.Agめっき被膜
まず、本発明を構成するAgめっき被膜2について説明する。Agめっき被膜2は、Cuボール1の表面を酸化から防止し、良好なはんだ付け性を実現するための保護膜として機能する。
・Agめっき被膜の膜厚:5μm以下
図1のTで示すAgめっき被膜2の膜厚は5μm以下である。これは、Agめっき被膜2の膜厚を5μm以下に設定しておくと、Agめっき自体のα線量が0.0200cph/cm2を超えていたとしても、はんだ継手を形成する際に、AgめっきがCu核ボール11と電極間を接合するために使用するはんだ(ペースト)中に拡散するため、はんだ継手のα線量が0.0200cph/cm2以下になるからである。Agめっき被膜2の膜厚は、はんだ継手のα線量を低減しソフトエラーを抑制する観点から、好ましくは3μm以下、より好ましくは1μm以下である。
これに対し、Agめっき被膜2の膜厚が5μmを超える場合には、Cu核ボール11と電極間を接合するために使用するはんだ(ペースト)としてAgの量が少ないはんだ組成を使用してはんだバンプを形成しようとする際、Agめっき被膜2のAgの拡散によりはんだバンプ中のAgの含有量が増大してしまうため、はんだバンプ組成を均一化することが難しくなるからである。よって、Agめっき被膜2の膜厚を厚くし過ぎることは適切ではない。また、Agめっき被膜2の膜厚に応じてAgの量も増えるので、コストアップにもつながる。Agめっき被膜2の膜厚を5μm超とする場合には、Agめっきの処理時間の増加や球径分布の分散の問題が発生したり、めっき方法が制限されてしまうという問題もある。これらの観点から、Agめっき被膜2のα線量が0.0200cph/cm2以下である場合にも、Agめっき被膜2の膜厚は5μm以下であることが好ましい。
また、Agめっき被膜2の膜厚は後述するCu核ボール11の明度とAgめっき被膜2の膜厚との間に相関性があることから、少なくともCu核ボール11の明度が80以上となるようにAgめっき被膜2の膜厚を規定する必要がある。なお、Agめっき被膜2は、真球度を高め、電極へ搭載する際の精度を上げるため、Cuボール1表面に均一な膜厚で形成することが好ましい。
・Cu核ボールのα線量:0.0200cph/cm2以下
本発明に係るCu核ボール11のα線量は0.0200cph/cm2以下である。これは、電子部品の高密度実装においてソフトエラーが問題にならない程度のα線量である。本発明に係るCu核ボール11のα線量は、Cu核ボール11を構成するCuボール1のα線量が0.0200cph/cm2以下であり、Agめっき被膜2の膜厚が5μmであることにより達成される。したがって、本発明に係るCu核ボール11は、このようなCuボール1及びこのCuボール1を被覆するAgめっき被膜2で被覆されているために低いα線量を示す。α線量は、更なる高密度実装でのソフトエラーを抑制する観点から、好ましくは0.0020cph/cm2以下であり、より好ましくは0.0010cph/cm2以下である。
・明度:80以上
本発明に係るCu核ボール11は明度が80以上である。ここに、明度とは、L***表色系のL*値(以下、単に、L*値と言うこともある。)である。明度が80以上であると、Cuボール1表面に所定の膜厚のAgめっき被膜2が形成されるので、Cuボール1表面に酸化膜が形成されることを防止することができ、その結果、Cu核ボール11の実装時における位置ずれの発生を防止することができる。また、CCDカメラなどで撮影した画像によりCu核ボール11の欠損や位置ずれを確認する場合に、これらの確認の精度も高まる。また、Cu核ボール11の明度とAgめっき被膜2の膜厚との間には相関関係があることから、撮像手段により撮影した画像のCu核ボール11の明度からAgめっき被膜2の膜厚を把握することができる。つまり、Agめっき被膜2の膜厚を明度による指標で規定することができる。これにより、Agめっき被膜2の膜厚を測定するための高価な設備が不要となり、測定時間が短縮される。また、レーザ波長計によりはんだバンプの高さばらつきを測定する場合、高さばらつきの測定精度も向上する。この結果、電子部品の検査精度が向上して電子部品の製品歩留まりが向上する。
これに対し、Cu核ボール11の明度が80未満であると、Cuボール表面が露出したり、Agめっき被膜2の膜厚が薄くなることで、Cu2OやCuO等で構成される酸化膜がCuボール1の表面に形成されることになり、はんだペースト中のはんだ粒子との濡れ不良を引き起こしてアライメント性が低下する。例えば、Cu核ボール11の明度が50の場合には、Agめっき被膜2の膜厚が薄くなるので、電極上にCuボール1を直接接合するような場合に位置ずれの発生が顕著となってしまう。Cuボール1表面に酸化膜が形成されると、Cuボール1は金属光沢を失うため、撮像手段を用いた電子部品の検査精度は劣化する。また、Cuボール1表面の酸化膜によりCuボール1の電気伝導度や熱伝導率が低下する。
・Agめっき被膜の組成
Agめっき被膜2の組成は、不可避不純物を除けば、Agが100%である。
2.Cuボール
次に、本発明を構成するCuボール1について詳述する。
本発明を構成するCuボール1は、Cu核ボール11がはんだバンプに用いられる際、はんだ付けの温度で溶融しないため、はんだ継手の高さばらつきを抑制することができる。したがって、Cuボール1は真球度が高く直径のバラツキが少ない方が好ましい。また、前述のように、Cuボール1のα線量もAgめっき被膜2と同様に低いことが好ましい。以下にCuボール1の好ましい態様を記載する。
・U:5ppb以下、Th:5ppb以下
UおよびThは放射性同位元素であり、ソフトエラーを抑制するにはこれらの含有量を抑える必要がある。UおよびThの含有量は、Cuボール1のα線量を0.0200cph/cm2以下とするため、各々5ppb以下にする必要がある。また、現在または将来の高密度実装でのソフトエラーを抑制する観点から、UおよびThの含有量は、好ましくは、各々2ppb以下である。
・Cuボールの純度:99.9%以上99.995%以下
本発明を構成するCuボール1は純度が99.9%以上99.995%以下であることが好ましい。Cuボール1の純度がこの範囲であると、Cuボール1の真球度が高まるための十分な量の結晶核を溶融Cu中に確保することができる。真球度が高まる理由は以下のように詳述される。
Cuボール1を製造する際、所定形状の小片に形成されたCu材は、加熱により溶融し、溶融Cuが表面張力によって球形となり、これが凝固してCuボール1となる。溶融Cuが液体状態から凝固する過程において、結晶粒が球形の溶融Cu中で成長する。この際、不純物元素が多いと、この不純物元素が結晶核となって結晶粒の成長が抑制される。したがって、球形の溶融Cuは、成長が抑制された微細結晶粒によって真球度が高いCuボール1となる。一方、不純物元素が少ないと、相対的に結晶核となるものが少なく、粒成長が抑制されずにある方向性をもって成長する。この結果、球形の溶融Cuは表面の一部分が突出して凝固してしまう。このようなCuボール1は真球度が低い。不純物元素としては、Sn、Sb、Bi、Zn、As、Ag、Cd、Ni、Pb、Au、P、S、U、Thなどが考えられる。
純度の下限値は特に限定されないが、α線量を抑制し、純度の低下によるCuボール1の電気伝導度や熱伝導率の劣化を抑制する観点から、好ましくは99.9%以上である。
ここで、Agめっき被膜2では純度が高い方がα線量を低減することができるのに対して、Cuボール1では純度を必要以上に高めなくてもα線量を低減することができる。Cuの方がSnより融点が高く、製造時の加熱温度はCuの方が高い。本発明では、Cuボール1を製造する際、後述のようにCu材に従来では行わない加熱処理を行うため、210Po、210Pb、210Biを代表とする放射性元素が揮発する。特に、これらの放射性元素の中でも210Poが揮発し易い。
・α線量:0.0200cph/cm2以下
本発明を構成するCuボール1のα線量は、好ましくは0.0200cph/cm2以下である。これは、電子部品の高密度実装においてソフトエラーが問題にならない程度のα線量である。本発明では、Cuボール1を製造するために通常行っている工程に加え再度加熱処理を施している。このため、Cuの原材料にわずかに残存する210Poが揮発し、Cuの原材料と比較してCuボール1の方がより一層低いα線量を示す。α線量は、更なる高密度実装でのソフトエラーを抑制する観点から、好ましくは0.0020cph/cm2以下であり、より好ましくは0.0010cph/cm2以下である。
・PbまたはBiの含有量もしくはPbおよびBiの両方を併せた含有量が合計で1ppm以上
本発明を構成するCuボール1は、不純物元素としてSn、Sb、Bi、Zn、As、Ag、Cd、Ni、Pb、Au、P、S、U、Thなどを含有するが、特にPbまたはBiの含有量もしくはPbおよびBiの両方を併せた含有量が合計で1ppm以上含有することが好ましい。本発明では、はんだ継手の形成時にCuボール1が露出した場合であっても、α線量を低減する上でCuボール1のPbまたはBiの含有量もしくはPbおよびBiの両方を併せた含有量を極限まで低減する必要がない。これは以下の理由による。
210Pbおよび210Biはβ崩壊により210Poに変化する。α線量を低減するためには、不純物元素であるPbおよびBiの含有量も極力低い方が好ましい。
しかし、PbおよびBiに含まれている210Pbや210Biの含有比は低い。PbやBiの含有量がある程度低減されれば、210Pbや210Biはほとんど除去されると考えられる。本発明に係るCuボール1は、Cuの溶解温度が従来よりもやや高めに設定されるか、Cu材および/または造粒後のCuボール1に加熱処理が施されて製造される。この温度は、PbやBiの沸点より低い場合であっても気化は起こるため不純物元素量は低減する。また、Cuボール1の真球度を高めるためには不純物元素の含有量が高い方がよい。したがって、本発明のCuボール1は、PbまたはBiの含有量もしくはPbおよびBiの両方を併せた含有量が合計で1ppm以上である。PbおよびBiのいずれも含まれる場合は、PbおよびBiの合計含有量が1ppm以上である。
このように、PbおよびBiの少なくとも一方はCuボール1を製造した後でもある程度の量が残存するため含有量の測定誤差が少ない。さらに前述したようにBiおよびPbはCuボール1の製造工程における溶融時に結晶核となるため、Cu中にBiやPbが一定量含有されていれば真球度の高いCuボール1を製造することができる。したがって、PbやBiは、不純物元素の含有量を推定するために重要な元素である。このような観点からも、PbまたはBiの含有量もしくはPbおよびBiの両方を併せた含有量は合計で1ppm以上であることが好ましい。PbまたはBiの含有量もしくはPbおよびBiの両方を併せた含有量は、より好ましくは合計で10ppm以上である。上限値は特に限定されないが、Cuボール1の電気伝導度の劣化を抑制する観点から、より好ましくはPbまたはBiの含有量もしくはPbおよびBiの両方を併せた含有量が合計で1000ppm未満であり、さらに好ましくは100ppm以下である。Pbの含有量は、より好ましくは10ppm〜50ppmであり、Biの含有量は、より好ましくは10ppm〜50ppmである。
・Cuボールの真球度:0.95以上
本発明を構成するCuボール1は、スタンドオフ高さを制御する観点から真球度が0.95以上である。Cuボール1の真球度が0.95未満であると、Cuボール1が不定形状になるため、バンプ形成時に高さが不均一なバンプが形成され、接合不良が発生する可能性が高まる。さらに、Cu核ボール11を電極に搭載してリフローを行う際、Cu核ボール11が位置ずれを起こしてしまい、セルフアライメント性も悪化する。真球度は、より好ましくは0.990以上である。本発明において、真球度とは真球からのずれを表す。真球度は、例えば、最小二乗中心法(LSC法)、最小領域中心法(MZC法)、最大内接中心法(MIC法)、最小外接中心法(MCC法)など種々の方法で求められる。詳しくは、真球度とは、500個の各Cuボールまたは各Cu核ボールの直径を長径で割った際に算出される算術平均値であり、値が上限である1.00に近いほど真球に近いことを表す。本発明での長径の長さ、および直径の長さとは、ミツトヨ社製のウルトラクイックビジョン、ULTRA QV350−PRO測定装置によって測定された長さをいう。
・Cuボールの直径:1〜1000μm
本発明を構成するCuボール1の直径は1〜1000μmであることが好ましい。この範囲にあると、球状のCuボール1を安定して製造でき、また、端子間が狭ピッチである場合の接続短絡を抑制することができる。
ここで、例えば、本発明に係るCu核ボール11の直径が1〜300μm程度である場合、「Cu核ボール」の集合体は「Cu核パウダ」と称されてもよい。ここに、「Cu核パウダ」は、上述の特性を個々のCu核ボール11が備えた、多数のCu核ボール11の集合体である。例えば、はんだペースト中の粉末として配合されるなど、単一のCu核ボール11とは使用形態において区別される。同様に、はんだバンプの形成に用いられる場合にも、集合体として通常扱われるため、そのよう形態で使用される「Cu核パウダ」は単一のCu核ボール11とは区別される。
本発明に係るCu核ボール11は、Agめっき被膜2が形成される前に、予めCuボール1の表面が別の金属のめっき層で被覆されていてもよい。特に、Cuボール1表面が予めNiめっき層やCoめっき層等で被覆されていると、電極への接合時において、はんだ中へのCuの拡散を低減することができるため、Cuボール1のCu食われを抑制することが可能となる。また、めっき層を構成する金属は単一金属に限られず、Ni、Co等の中から2元素以上を組み合わせた合金であっても良い。
また本発明に係るCu核ボール11の真球度は0.95以上であることが好ましい。Cu核ボール11の真球度が低い場合、Cu核ボール11を電極に搭載してリフローを行う際、Cu核ボール11が位置ずれを起こしてしまい、セルフアライメント性も悪化する。真球度は、より好ましくは0.990以上である。
さらに、本発明に係るCu核ボール11全体をフラックスにより被覆することができる。また、本発明に係るCu核ボール11をはんだ中に分散させることで、フォームはんだとすることができる。また、本発明に係るCu核ボール11を含有するはんだペーストとすることもできる。また、本発明に係るCu核ボール11は、電子部品の端子同士を接合するはんだ継手の形成に使用することもできる。
本発明に係るCu核ボール11の製造方法の一例を説明する。
材料となるCu材はセラミックのような耐熱性の板(以下、「耐熱板」という。)に置かれ、耐熱板とともに炉中で加熱される。耐熱板には底部が半球状となった多数の円形の溝が設けられている。溝の直径や深さは、Cuボール1の粒径に応じて適宜設定されており、例えば、直径が0.8mmであり、深さが0.88mmである。また、Cu細線が切断されて得られたチップ形状のCu材(以下、「チップ材」という。)は、耐熱板の溝内に一個ずつ投入される。溝内にチップ材が投入された耐熱板は、アンモニア分解ガスが充填された炉内で1100〜1300℃に昇温され、30〜60分間加熱処理が行われる。このとき炉内温度がCuの融点以上になると、チップ材は溶融して球状となる。その後、炉内が冷却され、耐熱板の溝内でCuボール1が成形される。冷却後、成形されたCuボール1は、Cuの融点未満の温度である800〜1000℃で再度加熱処理が行われる。
また、別の方法としては、るつぼの底部に設けられたオリフィスから溶融Cuが滴下され、この液滴が冷却されてCuボール1が造粒されるアトマイズ法や、Cuカットメタルを熱プラズマで1000℃以上に加熱して造粒する方法がある。このように造粒されたCuボール1は、それぞれ800〜1000℃の温度で30〜60分間再加熱処理が施されても良い。
本発明のCu核ボール11の製造方法では、Cuボール1を造粒する前にCuボール1の原料であるCu材を800〜1000℃で加熱処理してもよい。
Cuボール1の原料であるCu材としては、例えばペレット、ワイヤー、ピラーなどを用いることができる。Cu材の純度は、Cuボール1の純度を下げすぎないようにする観点から99.9〜99.99%でよい。
さらに高純度のCu材を用いる場合には、前述の加熱処理を行わず、溶融Cuの保持温度を従来と同様に1000℃程度に下げてもよい。このように、前述の加熱処理はCu材の純度やα線量に応じて適宜省略や変更されてもよい。また、α線量の高いCuボール1や異形のCuボール1が製造された場合には、これらのCuボール1が原料として再利用されることも可能であり、さらにα線量を低下させることができる。
また、上述のようにして作製されたCuボール1にAgめっき被膜2を形成する方法としては、公知の無電解めっき法等の方法がある。
Agめっき液には、例えば、銀イオンと、第一の錯化剤として3,5−ジニトロサリチル酸と、第二の錯化剤としてアミノカルボン酸化合物、ヒドロキシカルボン酸化合物及びトリアゾール化合物から選ばれる一種以上を含むものを用いることができる。銀めっき液のpHとしては、0.2〜2の範囲とすることが好ましい。
Cuボール1をめっき液に浸漬させると、Cuボール1のCu原子がCu2+イオンとしてめっき液に溶け出し、その際に生じる電子とめっき液中のAg+イオンとが反応してCuとAgとが置換される。このとき、めっき液中のPb、Biや、これらの元素の崩壊により生成されるPoを低減するため、Cuボール1やめっき液を流動させながらCuボール1にAgめっき被膜2を形成することが好ましい。これにより、吸着剤を懸濁させなくてもPb、Bi、Poの元素の塩を形成することができ、その結果、Agめっき被膜2にこれらの元素を取り込ませることなく、Cu核ボール11を構成するAgめっき被膜2のα線量を低減させることができる。このようにして、Cuボール1表面にAgめっき被膜2が形成される。めっき処理後、大気中やN2雰囲気中で乾燥して本発明に係るCu核ボール11を得ることができる。めっき処理後、必要に応じてCu核ボール11の表面を(イオン交換)水や有機溶剤で洗浄してもよい。
なお、上記実施例では、無電解めっき法によりAgめっき被膜2を形成したが、これに限定されることはない。例えば、バレルめっき等の電解めっき法によりAgめっき被膜2を形成することもできる。バレルめっきを行う場合、Agめっき液としては、シアン化銀:15〜25g/l、シアン化カリウム:43〜73g/l、炭酸カリウム:10g/lの組成のものを用いることができる。陰極電流密度としては0.5A/m2が好ましく、温度は20〜30℃に設定することが好ましい。
以下に本発明の実施例を説明するが、本発明はこれらに限定されるものではない。本実施例では真球度が高いCuボールを作製し、このCuボールの表面にAgめっき被膜を形成してα線量を測定した。
・Cuボールの作製
真球度が高いCuボールの作製条件を調査した。純度が99.9%のCuペレット、純度が99.995%以下のCuワイヤー、および純度が99.995%を超えるCu板を準備した。各々をるつぼの中に投入した後、るつぼの温度を1200℃に昇温し、45分間加熱処理を行い、るつぼ底部に設けたオリフィスから溶融Cuを滴下し、生成した液滴を冷却してCuボールに造粒した。これにより平均粒径が250μmのCuボールを作製した。作製したCuボールの元素分析結果および真球度を表1に示す。元素分析は、UおよびThについては誘導結合プラズマ質量分析(ICP−MS分析)、その他の元素については誘導結合プラズマ発光分光分析(ICP−AES分析)により行われた。以下に、真球度の測定方法を詳述する。
・真球度
真球度はCNC画像測定システムで測定された。装置は、ミツトヨ社製のウルトラクイックビジョン、ULTRA QV350−PROである。
α線量の測定方法は以下の通りである。
・α線量
α線量の測定にはガスフロー比例計数器のα線測定装置を用いた。測定サンプルは300mm×300mmの平面浅底容器にCuボールを容器の底が見えなくなるまで敷き詰めたものである。この測定サンプルをα線測定装置内に入れ、PR−10ガスフローにて24時間放置した後、α線量を測定した。
なお、測定に使用したPR−10ガス(アルゴン90%−メタン10%)は、PR−10ガスをガスボンベに充填してから3週間以上経過したものである。3週間以上経過したボンベを使用したのは、ガスボンベに進入する大気中のラドンによりα線が発生しないように、JEDEC(Joint Electron Device Engineering Council)で定められたJEDEC STANDARD−Alpha Radiation Measurement in Electronic Materials JESD221に従ったためである。
作製したCuボールの元素分析結果、α線量を表1に示す。
Figure 2015140466
表1に示すように、純度が99.9%のCuペレットおよび99.995%以下のCuワイヤーを用いたCuボールは、いずれも真球度が0.990以上を示した。一方、表1に示すように、純度が99.995%を超えるCu板を用いたCuボールは、真球度が0.95を下回った。
・実施例1−1
次に、純度99.9%のCuペレットで製造したCuボール表面にAgめっき被膜を形成してCu核ボールを作製した。詳しくは、100ccのガラス瓶にAgめっき液として70ccのSSP−700M(四国化成工業株式会社製)を入れた。Agめっき液の原料であるAgチップ材のα線量は、0.0053cph/cm2であった。続けて、ガラス瓶に直径250μmのCuボールを1g加えて、速やかに蓋をした後、3分間、ガラス瓶を撹拌した。所定時間の経過後、吸引濾過により沈殿したCuボールを分離し、分離したCuボールをイオン交換水にて洗浄した。なお、イオン交換水に代えて、乾燥しやすい有機溶剤(例えばイソプロピルアルコール)を用いてCuボールを洗浄しても良い。その後、100℃で1分間乾燥を行うことにより、直径250μmのCuボール表面にAgめっきが均一に被覆されたCu核ボールを得た。
Cu核ボールのα線量は、前述のCuボールと同様に測定された。またCu核ボールの真球度についてもCuボールと同じ条件で測定を行った。これらの測定結果を表2に示す。
・実施例1−2、1−3
実施例1−2では、表1に示した純度が99.995%以下のCuワイヤーを用いたCuボールを用いて、実施例1−1と同様の方法によりAgめっき処理を行い、Cuボール表面にAgめっき被膜が形成されたCu核ボールを作製し、実施例1−1と同様の評価を行った。作製したCu核ボールについて、実施例1−1と同様に、α線量、真球度を測定した。測定結果を表2に示す。
実施例1−3では、表1に示した純度が99.995%を超えるCu板を用いたCuボールを用いて、実施例1−1と同様の方法によりAgめっき処理を行い、Cuボール表面にAgめっき被膜が形成されたCu核ボールを作製し、実施例1−1と同様の評価を行った。作製したCu核ボールについて、実施例1−1と同様に、α線量、真球度を測定した。測定結果を表2に示す。
Figure 2015140466
表2に示すように、実施例1−1のCu核ボールのα線量は、0.0010cph/cm2未満を示した。この結果から、無電解めっき法によりAgめっき被膜をCuボール表面に被覆した場合でも、Cu核ボール全体としてα線量が低減されることが立証された。また、実施例1−1で作成したCu核ボールのα線量は、表2に示してはいないが、作成後1年を経過してもα線の上昇は見られなかった。
同様に、実施例1−2,1−3のCu核ボールでも、α線量は0.0010cph/cm2未満を示した。この結果から、無電解めっき法によりAgめっき被膜をCuボール表面に被覆した場合でも、Cu核ボール全体としてα線量が低減されることが立証された。また、実施例1−2,1−3で作成したCu核ボールのα線量は、表2に示してはいないが、作成後1年を経過してもα線の上昇は見られなかった。
次に、本発明に係るCu核ボールを使用したはんだ継手のはんだ部分のα線量を算出した。本実施例では、電極上にはんだペーストが印刷された基板を用い、本発明に係るCu核ボールの上下のそれぞれを基板の電極で挟持したはんだ継手構造を仮定した。また、Cuボールはリフローにより溶融せず、Agがはんだ中に均一に拡散するバンプ形成を想定した。さらに、比率によってはAgとSnが合金層を形成できないほど、いわゆる固溶限を超える場合もあるが、はんだ部分のα線が最も高くなる、Agが全体に均一に拡散した形態を仮定した。
ここで、基板に設けた電極の開口径を240μmとし、はんだペーストの印刷厚を100μm(+レジスト高さ15μm、計115μm)とした。また、はんだペースト中のはんだ重量を50%(フラックス重量は50%)とした。また、はんだペースト中のはんだ粉末組成をSn100%とし、その比重を7.365g/cm3とし、上下のはんだペーストを合わせたはんだ重量を3.83×10-8gとした。
まず、Cu核ボール中のAg重量を算出した。実施例2−1では、実施例1−1と同様の方法によりAgめっき処理を行い、直径が300μmのCuボールに膜厚(図1のT)が0.3μmのAgめっき被膜を形成したCu核ボールを想定した。この場合、Agの比重を10.490g/cm3とすると、Cu核ボール中にめっきされたAg重量は8.92×10-10gとなる。
比較例2−1では、実施例1−1と同様の方法によりAgめっき処理を行い、直径が300μmのCuボールに膜厚(図1のT)が6.0μmのAgめっき被膜を形成したCu核ボールを想定した。この場合、Agの比重を10.490g/cm3とすると、Cu核ボール中にめっきされたAg重量は1.53×10-8gとなる。
続けて、上記実施例2−1および比較例2−1のはんだ継手におけるはんだ部分の平均α線の計算を行った。はんだ部分の平均α線量は、以下の式(1)によって計算した。なお、Agの拡散により金属部分の体積変化やα線の変化がないものとする。
(平均α線量)={(Agの重量)×(Agのα線量)+(Snの重量)×(Snのα線量)}/{(Agの重量)+(Snの重量)}・・・(1)
上記式(1)において、Snのα線量を0.0000cph/cm2とし、Agのα線量を0.0700cph/cm2と仮定した。式(1)の計算結果を下記表3に示す。
Figure 2015140466
表3の実施例2−1に示すように、Agめっきのα線量が0.0700cph/cm2であっても、Agめっき被膜の膜厚Tが5μm以下である場合には、はんだ継手のはんだ部分のα線量が0.0200cph/cm2以下となることがわかった。これは、Agめっき被膜の膜厚が5μm以下であれば、はんだ中に拡散するAgめっきのはんだに対する体積比が小さくなり、はんだ部分のα線量が低くなるからである。
これに対し、表3の比較例2−1に示すように、Agめっきのα線量が0.0700cph/cm2であり、Agめっき被膜の膜厚が5μmを越える場合には、Agめっきがはんだ(Sn)中に拡散したとしても、はんだ中に拡散するAgめっきのはんだに対する体積比が大きくなる(含有量が多くなる)ので、はんだ部分のα線量が0.0200cph/cm2を越えてしまうことがわかった。
次に、Cu核ボールの明度とCu核ボールを電極に実装した際の位置ずれとの関係を調査するため、製造直後の明度が異なる種々のCu核ボールのアライメント性の検討を行った。以下に示す実施例および比較例では、いずれも表1に示した純度99.995%以下のCuワイヤー材で製造したCuボールを用いて種々の検討を行った。
・明度の測定
明度は、MINOLTA製 SPECTROPHOTOMETER CM−3500dを用いて、D65光源、10度視野でJIS Z 8722「色の測定方法−反射及び透過物体色」に準じて分光透過率を測定し、(L*,a*,b*)から求めた。明度の測定は1時間以内に行った。なお、(L*,a*,b*)は、JIS Z 8729「色の表示方法−L***表色系及びL***表色系」にて規定されているものである。L*は明度であり、a*は赤色度であり、b*は黄色度である。
・アライメント性の評価
本実施例では、Agめっき液に異なる時間浸漬させた複数のCu核ボールのそれぞれを電極に実装してリフローした際に、Cu核ボールが電極に対してどの程度位置ずれしているかを測定した。Cu核ボールの電極に対する位置ずれは、円心間距離測定により行った。円心間距離測定とは、Cu核ボールの円周を3点プロットすると共に電極の円周を3点プロットし、Cu核ボールの3点のプロットの中心点と電極の3点のプロットの中心点との間の距離(円心間距離)を測定するものである。なお、プロット数は3点に限定されるものではない。円心間距離の測定には、KEYENCE製VH−S30を用いた。
本実施例では、測定により得た複数個の円心間距離の平均値を最終的な円心間距離とした。具体的には、まず、全く同じ条件で作成した10個のCu核ボールを用いて、10個のはんだバンプを作成した。次に、1つのはんだバンプの円心間距離を5回測定して、その平均値であるXを算出する方法を用いて、各10個のはんだバンプごとにXを算出し、算出した10個のXの平均値であるYを円心間距離とした。以上の作業を各実施例、比較例ごとに行い各円心間距離を算出した。そして、算出した円心間距離に基づいてアライメント性の評価を行った。
・実施例3−1〜3−5、比較例3−1について
まず、実施例3−1〜3−5では、Agめっき処理は実施例1−1と同様の方法であるが、CuボールをAgめっき液に異なる時間浸漬させることにより形成したCu核ボールの製造直後の明度、赤色度、黄色度を測定した。続けて、シャーレの中に各実施例3−1〜3−5で形成したCu核ボールを入れ、シャーレごと恒温槽に入れ、200℃で10分間加熱して、Cu核ボールが意図的に酸化しやすい条件を与えた。その後、各Cu核ボールを恒温槽から取り出し、100μm厚のメタルマスクによりはんだペースト(千住金属工業株式会社製:M705−GRN360−K2−V)が印刷された電極上に各Cu核ボールを実装してリフロー(加熱)し、その際の各Cu核ボールの電極に対するアライメント性の評価を行った。基板としては、Cu電極に水溶性プリフラックス(OSP:Organic Solderability Preservative)の表面処理がされた、開口径240μm、レジスト厚15μmの基板を使用した。リフロー加熱については、N2雰囲気でピーク温度を245℃とし、予備加熱を140〜160℃で20秒、本加熱を220℃以上で40秒行った。
比較例3−1では、Agめっきを施さない場合の製造直後のCuボールの明度、赤色度、黄色度を測定した。続けて、シャーレの中にCu核ボールを入れ、シャーレごと恒温槽に入れ、200℃で10分間加熱して、Cu核ボールを意図的に酸化しやすくした。その後、実施例3−1〜3−5と同様の条件で比較例3−1で形成したCu核ボールを電極上に実装してリフローした場合におけるCu核ボールの電極に対するアライメント性の評価を行った。
実施例3−1〜3−5、比較例3−1の各Cu核ボールの製造直後の明度、赤色度、黄色度の測定結果を下記表4に示す。また、表4に示した、CuボールのAgめっき液への浸漬時間とCu核ボールの明度・赤色度・黄色度との関係を図2のグラフに示す。
Figure 2015140466
次に、実施例3−1〜3−5、比較例3−1の各Cu核ボールを電極上に実装してリフローした場合における円心間距離およびアライメント性を下記表5に示す。なお、表5において、Cu核ボールにおける円心間距離が15μm以下である場合にはアライメント性が良いとして「○」で示し、Cu核ボールにおける円心間距離が15μm超である場合にはアライメント性が悪いとして「×」で示す。また、表4に示すCuボールの浸漬時間と表5に示すCu核ボールおよび電極間の円心間距離との関係を図3のグラフに示す。
Figure 2015140466
実施例3−1〜3−5では、表4および図2に示すように、CuボールをAgめっき液に所定時間浸漬させることでCuボール表面にAg被膜が形成されたことにより、何れも明度が80以上となった。また、表5および図3に示すように、明度が80以上を示す実施例3−1では、Cu核ボールの位置ずれ平均が15μm以下となり、アライメント性が全て「○」となった。図4に、実施例3−1のCu核ボール11を電極13上に実装した際のはんだバンプの状態を光学顕微鏡で撮影した写真を示す。図4からも明らかなように、Cu核ボール11が半導体チップ10の電極13の中央に搭載されており、Cu核ボール11が電極13上で位置ずれしていないことがわかる。
実施例3−2〜3−5においても、表4および図2に示すように、円心間距離が何れも15μm以下であり、アライメント性が全て「○」となった。なお、実施例3−2〜3−5のCu核ボールを電極上に実装した際のはんだバンプの状態は、実施例3−1とほぼ同様で位置ずれが発生していないことから、便宜上省略している。
一方、比較例3−1では、表4および図2に示すように、Cuボール表面にAg被膜が形成されないので、明度が80未満となった。また、表5および図3に示すように、明度が80未満を示す比較例3−1では、Cuボールの位置ずれ平均が15μmを上回り、アライメント性が「×」となった。図5に、比較例3−1のCu核ボール21を電極23上に実装した際のはんだバンプの状態を光学顕微鏡で撮影した写真を示す。図5からも明らかなように、Agめっき被膜が形成されていない場合には、Cu核ボール21が電極23の中央から位置ずれしていることがわかる。
以上から、明度とアライメント性との相関関係が示され、Cu核ボールのアライメント性が明度を用いて判定することができることが明らかになった。
次に、Cu核ボールのAgめっきの被覆の程度を赤色度で判定できるか否かを検討した。表4の実施例3−1〜3−5に示したように、CuボールをAgめっき液に所定の時間浸漬させると、Cuボール表面に所定の膜厚のAgめっき被膜が形成され、Cu核ボール全体が赤色から白色に変化した。これにより、赤色度は、浸漬時間が0.5分以上になると10以下の値を示した。赤色度が10以下となる場合、表5に示すように、円心間距離は15mm以下となり、アライメント性が「○」となった。したがって、赤色度においても、赤色度とアライメント性との相関関係が示され、Cu核ボールのアライメント性が赤色度を用いて判定できることが明らかになった。
さらに、Cu核ボールのAgめっきの被覆の程度を黄色度で判定できるか否かを検討した。表4の実施例3−1〜3−5に示したように、CuボールをAgめっき液に所定の時間浸漬させると、Cuボール表面に所定の膜厚のAgめっき被膜が形成され、Cu核ボール全体が黄色から白色に変化した。これにより、黄色度は、浸漬時間が0.5分以上になると14以下の値を示した。黄色度が14以下になる場合、表5に示すように、円心間距離は15mm以下となり、アライメント性が「○」となった。したがって、黄色度においても、黄色度とアライメント性との相関関係が示され、Cu核ボールのアライメント性が黄色度を用いて判定できることが明らかになった。
なお、本発明の技術範囲は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。
(5) * * * 表色系における明度が80以上である、上記(1)〜(4)のいずれか1つに記載のCu核ボール。

Claims (12)

  1. Cuボールと、当該Cuボールの表面を被覆するAgめっき被膜とを備えるCu核ボールであって、
    前記Cuボールの純度が99.9%以上99.995%以下であり、Uの含有量が5ppb以下であり、Thの含有量が5ppb以下であり、PbまたはBiの含有量もしくはPbおよびBiの両者を併せた含有量の合計量が1ppm以上であり、真球度が0.95以上であり、α線量が0.0200cph/cm2以下であり、
    前記Agめっき被膜の膜厚が5μm以下である
    ことを特徴とするCu核ボール。
  2. α線量が0.0200cph/cm2以下である、請求項1に記載のCu核ボール。
  3. α線量が0.0020cph/cm2以下である、請求項1に記載のCu核ボール。
  4. α線量が0.0010cph/cm2以下である、請求項1に記載のCu核ボール。
  5. 明度が80以上である、請求項1〜4のいずれか1項に記載のCu核ボール。
  6. 直径が1〜1000μmである、請求項1〜5のいずれか1項に記載のCu核ボール。
  7. Cuボールは、前記Agめっき被膜で被覆される前に予めNiおよびCoから選択される1元素以上からなるめっき層で被覆されている、請求項1〜6のいずれか1項に記載のCu核ボール。
  8. Cu核ボールの真球度が0.95以上である、請求項1〜7のいずれか1項に記載のCu核ボール。
  9. Cu核ボール全体がフラックスで被覆されていることを特徴とする請求項1〜8のいずれか1項に記載のCu核ボール。
  10. 請求項1〜9のいずれか1項に記載のCu核ボールを使用したはんだ継手。
  11. 請求項1〜10のいずれか1項に記載のCu核ボールを使用したフォームはんだ。
  12. 請求項1〜9のいずれか1項に記載のCu核ボールを使用したはんだペースト。
JP2014014702A 2014-01-29 2014-01-29 Cu核ボール、はんだ継手、フォームはんだおよびはんだペースト Active JP5680773B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014014702A JP5680773B1 (ja) 2014-01-29 2014-01-29 Cu核ボール、はんだ継手、フォームはんだおよびはんだペースト
KR1020150014259A KR101550560B1 (ko) 2014-01-29 2015-01-29 Cu 코어 볼, 땜납 이음, 폼 땜납 및 땜납 페이스트

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014014702A JP5680773B1 (ja) 2014-01-29 2014-01-29 Cu核ボール、はんだ継手、フォームはんだおよびはんだペースト

Publications (2)

Publication Number Publication Date
JP5680773B1 JP5680773B1 (ja) 2015-03-04
JP2015140466A true JP2015140466A (ja) 2015-08-03

Family

ID=52684809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014014702A Active JP5680773B1 (ja) 2014-01-29 2014-01-29 Cu核ボール、はんだ継手、フォームはんだおよびはんだペースト

Country Status (2)

Country Link
JP (1) JP5680773B1 (ja)
KR (1) KR101550560B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5935938B1 (ja) * 2015-12-28 2016-06-15 千住金属工業株式会社 導電接合シートおよび導電接合シートの製造方法。

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170125557A (ko) * 2016-05-04 2017-11-15 덕산하이메탈(주) 솔더볼, 이의 제조방법 및 이를 이용한 전자부품

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199646A (ja) * 1984-10-20 1986-05-17 Tanaka Denshi Kogyo Kk 半導体素子のボンデイング用銅線
WO1995024113A1 (fr) * 1994-03-01 1995-09-08 Sumitomo Special Metals Company Limited Boule en cuivre et procede de production de cette derniere
JP2007115857A (ja) * 2005-10-20 2007-05-10 Nippon Steel Chem Co Ltd マイクロボール
JP5375343B2 (ja) * 2009-06-04 2013-12-25 日立金属株式会社 接合材料及びその製造方法、並びにそれを用いた実装方法
WO2011118009A1 (ja) * 2010-03-25 2011-09-29 田中電子工業株式会社 高純度Cuボンディングワイヤ
JP5633776B2 (ja) * 2010-03-30 2014-12-03 日立金属株式会社 電子部品用複合ボールの製造方法
JP5690917B2 (ja) * 2011-03-07 2015-03-25 Jx日鉱日石金属株式会社 銅又は銅合金、ボンディングワイヤ、銅の製造方法、銅合金の製造方法及びボンディングワイヤの製造方法
KR102016864B1 (ko) * 2012-12-06 2019-08-30 센주긴조쿠고교 가부시키가이샤 Cu 볼
US10147695B2 (en) * 2013-06-19 2018-12-04 Senju Metal Industry Co., Ltd. Cu core ball

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5935938B1 (ja) * 2015-12-28 2016-06-15 千住金属工業株式会社 導電接合シートおよび導電接合シートの製造方法。

Also Published As

Publication number Publication date
KR20150090858A (ko) 2015-08-06
KR101550560B1 (ko) 2015-09-04
JP5680773B1 (ja) 2015-03-04

Similar Documents

Publication Publication Date Title
JP5534122B1 (ja) 核ボール、はんだペースト、フォームはんだ、フラックスコート核ボールおよびはんだ継手
JP5408401B1 (ja) Cu核ボール
JP5967316B2 (ja) Cu核ボール、はんだペースト、フォームはんだ及びはんだ継手
TWI527643B (zh) Copper balls, copper ball, soft solder joints, soft solder paste and foam solder
JP5846341B1 (ja) はんだ材料、はんだペースト、フォームはんだ、はんだ継手、およびはんだ材料の管理方法
JP5590259B1 (ja) Cu核ボール、はんだペーストおよびはんだ継手
JP5652560B1 (ja) Cu核ボール、はんだペースト、フォームはんだ及びはんだ継手
TWI595948B (zh) A copper ball, a method of bonding the electrode to the electrode, and a method of selecting the same
JP6485580B1 (ja) Cu核ボール、はんだ継手、はんだペースト及びフォームはんだ
TWI761683B (zh) Cu核球、焊接頭、焊膏及泡沫焊料
JP5510623B1 (ja) Niボール、Ni核ボール、はんだ継手、フォームはんだ、はんだペースト
JP5585750B1 (ja) Cu核ボール、はんだ継手、フォームはんだ、およびはんだペースト
JP5576004B1 (ja) OSP処理Cuボール、はんだ継手、フォームはんだ、およびはんだペースト
JP5680773B1 (ja) Cu核ボール、はんだ継手、フォームはんだおよびはんだペースト
WO2019111898A1 (ja) Cuボール、OSP処理Cuボール、Cu核ボール、はんだ継手、はんだペースト、フォームはんだ及びCuボールの製造方法
JP6572997B1 (ja) Cu核ボール、はんだ継手、はんだペースト及びフォームはんだ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150107

R150 Certificate of patent or registration of utility model

Ref document number: 5680773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250