JP2015122819A - 分散型電源システム及び電流センサの接続確認方法 - Google Patents

分散型電源システム及び電流センサの接続確認方法 Download PDF

Info

Publication number
JP2015122819A
JP2015122819A JP2013263833A JP2013263833A JP2015122819A JP 2015122819 A JP2015122819 A JP 2015122819A JP 2013263833 A JP2013263833 A JP 2013263833A JP 2013263833 A JP2013263833 A JP 2013263833A JP 2015122819 A JP2015122819 A JP 2015122819A
Authority
JP
Japan
Prior art keywords
phase
sensor
current
current sensor
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013263833A
Other languages
English (en)
Inventor
裕朗 渡辺
Hiroaki Watanabe
裕朗 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2013263833A priority Critical patent/JP2015122819A/ja
Publication of JP2015122819A publication Critical patent/JP2015122819A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】電流センサの配置確認を行えない場合を抑制する分散型電源システム及び電流センサの接続確認方法を提供する。
【解決手段】分散型電源システム1は、分散型電源10と、第1の電圧線21に接続されるべき第1の電流センサ31と、第2の電圧線22に接続されるべき第2の電流センサ32と、判定部53とを備える。判定部53は、第1及び第2の電流センサ31、32の接続予定位置と分散型電源10の間の第1及び第2の電圧線21、22に接続された電力負荷91、92へ、系統電源PSから所定の時間の電力供給を複数回行わせ、第1及び第2の電流センサ31、32の接続有無、接続位置及び接続方向の正誤を判定する。而して、電力負荷91、92への電力供給のタイミングを他の負荷に対する供給電力の変動のタイミングとずらすことができ、電流センサ31、32の接続確認を行うことができ得る。また、電流センサ31、32の接続個数を確認できる。
【選択図】図1

Description

本発明は分散型電源システム及び電流センサの接続確認方法に関し、特に電流センサの配置の確認を行う分散型電源システム及び電流センサの接続確認方法に関する。
燃料電池等の分散型電源は、送電ロスを削減することができる等の利点を有するのみならず、系統電源による電力供給低下時の対応として、設置台数が増加している。系統電源に連系している分散型電源による発電電力が多くなって余剰電力が生じると、余剰電力が系統電源に逆潮流し得ることになるが、電力品質確保の観点から逆潮流が認められていない場合が多い。そのため、分散型電源と系統電源とを接続する配線に電流センサを設け、逆潮流が行われないように監視することが行われている。
電流センサは、取り付ける位置や方向に誤りがあると、電流を正しく計測することができず、逆潮流の有無を正しく判断することができなくなる。このような不都合をふまえ、電流センサが設置されている電線及びその設置方向を判断することができる分散型発電システムとして、第1〜第3の電線のうち第3の電線が中性線である3線式の電力系統(単相3線式)に連系する分散型発電システムであって、第1電流センサが第1の電線の電流値を検出するように設定され、第2電流センサが第2の電線の電流値を検出するように設定され、任意の2本の電線を内部電力負荷と接続する前後における第1電流センサ及び第2電流センサが検知する電流値の変化量が、内部電力負荷の消費電力量に対応した変化量であるかどうかを判定することにより、第1電流センサ及び第2電流センサが配置されている電線及びその設置方向を判断するものがある(例えば、特許文献1参照。)。
国際公開第2011/093109号
しかしながら、特許文献1に記載の分散型発電システムでは、電流センサの配置の確認のために内部電力負荷に電力を供給したときに、別の電力負荷にも電力需要が生じた場合、電流センサの電流値の変化量が内部電力負荷の消費電力量に対応した変化量とならない場合があり、電流センサの配置の確認を行うことができない場合があった。さらに、予定された個数の電流センサが設置されていない場合に、その接続の不具合を確認することができない場合があった。
本発明は上述の課題に鑑み、電流センサの配置の確認を行うことができない場合を抑制する分散型電源システム及び電流センサの接続確認方法を提供することを目的とする。
上記目的を達成するために、本発明の第1の態様に係る分散型電源システムは、例えば図1に示すように、系統電源PSに対して、第1の電圧線21と、第2の電圧線22と、中性線23と、を介して接続された分散型電源10と;系統電源PSから分散型電源10の方に向けて供給される電流を検知する第1の電流センサ31であって、第1の電圧線21に接続されるべき第1の電流センサ31と;系統電源PSから分散型電源10の方に向けて供給される電流を検知する第2の電流センサ32であって、第2の電圧線22に接続されるべき第2の電流センサ32と;第1の電流センサ31が接続されるべき位置と分散型電源10との間の第1の電圧線21に接続された電力負荷91、及び第2の電流センサ32が接続されるべき位置と分散型電源10との間の第2の電圧線22に接続された電力負荷92へ、系統電源PSから所定の時間の電力供給を行わせ、第1の電流センサ31の接続有無、接続位置及び接続方向並びに第2の電流センサ32の接続有無、接続位置及び接続方向の正誤を判定する判定部53とを備え;判定部53が、系統電源PSから電力負荷91、92への所定の時間の電力供給を複数回行わせるように構成されている。
このように構成すると、電力負荷への所定の時間の電力供給のタイミングが、他の負荷に対する供給電力の変動と一致した場合でも、次の電力負荷への所定の時間の電力供給によって電流センサの接続確認を行うことができ得る。また、予定された個数の電流センサが設置されていない場合に、その接続の不具合を確認することができる。
また、本発明の第2の態様に係る分散型電源システムは、例えば図1を参照して示すと、上記本発明の第1の態様に係る分散型電源システム1において、判定部53が、系統電源PSから電力負荷91、92への所定の時間の電力供給を連続して少なくとも3回行わせ、1回目の電力供給と2回目の電力供給との間隔と、2回目の電力供給と3回目の電力供給との間隔とが異なる間隔となるように構成されている。
このように構成すると、電力負荷への所定の時間の電力供給のタイミングが、定期的に発生する負荷ノイズの周期と常に一致してしまうことを回避することができ、電流センサの接続確認を行うことができる。
また、本発明の第3の態様に係る分散型電源システムは、例えば図1を参照して示すと、上記本発明の第1の態様又は第2の態様に係る分散型電源システム1において、判定部53が、系統電源PSから電力負荷91への所定の時間の電力供給を3回以上行わせ、第1の電流センサ31及び第2の電流センサ32が電流の変化の有無を検知した結果に基づいた多数決で、第1の電流センサ31の接続有無、接続位置及び接続方向並びに第2の電流センサ32の接続有無、接続位置及び接続方向の正誤を判定するように構成されている。
このように構成すると、負荷ノイズの検知を抑制することができ、電流センサの接続確認の信頼性を高めることができる。
上記目的を達成するために、本発明の第4の態様に係る電流センサの接続確認方法は、例えば図1及び図4を参照して示すと、第1の電流センサ31が接続されているはずの第1の電圧線21と、第2の電流センサ32が接続されているはずの第2の電圧線22と、中性線23と、を介して系統電源PSに接続された分散型電源10を備える分散型電源システム1の、第1の電流センサ31及び第2の電流センサ32の接続有無、接続位置及び接続方向の正誤を判定する方法であって;第1の電圧線21を流れる電流を所定の時間変化させて、第1の電流センサ31及び第2の電流センサ32が検知した電流の大きさ及び向きを取得することを複数回行う第1の電流検知工程(S52)と;第2の電圧線22を流れる電流を所定の時間変化させて、第1の電流センサ31及び第2の電流センサ32が検知した電流の大きさ及び向きを取得することを複数回行う第2の電流検知工程(S55)と;第1の電流検知工程(S52)及び第2の電流検知工程(S55)における結果に基づいて第1の電流センサ31の接続有無、接続位置及び接続方向並びに第2の電流センサ32の接続有無、接続位置及び接続方向の正誤を判定する判定工程(S58)とを備える。
このように構成すると、電力負荷への所定の時間の電力供給のタイミングが、他の負荷に対する供給電力の変動と一致した場合でも、次の電力負荷への所定の時間の電力供給によって電流センサの接続確認を行うことができ得る。また、予定された個数の電流センサが設置されていない場合に、その接続の不具合を確認することができる。
本発明によれば、電力負荷への所定の時間の電力供給のタイミングが、他の負荷に対する供給電力の変動と一致した場合でも、次の電力負荷への所定の時間の電力供給によって電流センサの接続確認を行うことができ得る。また、予定された個数の電流センサが設置されていない場合に、その接続の不具合を確認することができる。
本発明の実施の形態に係る燃料電池システムの概略構成を示すブロック図である。 R相線における電流センサの接続状況のチェックの手順を示すフローチャートである。 T相線における電流センサの接続状況のチェックの手順を示すフローチャートである。 連系ケーブルにおける電流センサの接続状況の判定の手順を示すフローチャートである。 R相線及びT相線における電流センサの接続状況のチェック結果と、R相センサ及びT相センサの接続有無、接続位置及び向きとの関係を示すテーブルの図である。 R相線及びT相線における電流センサの接続状況のチェック結果と、R相センサ及びT相センサの接続有無、接続位置及び向きとの関係を示すテーブルの図である。 R相線及びT相線における電流センサの接続状況のチェック結果と、R相センサ及びT相センサの接続有無、接続位置及び向きとの関係を示すテーブルの図である。 本発明の実施の形態の変形例に係る燃料電池システムの電力負荷まわりの概略構成を示す部分ブロック図である。
以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。
まず図1を参照して、本発明の実施の形態に係る燃料電池システム1を説明する。図1は、燃料電池システム1の概略構成を示すブロック図である。燃料電池システム1は、分散型電源システムの一形態である。燃料電池システム1は、分散型電源としての燃料電池10と、第1の電流センサとしてのR相センサ31と、第2の電流センサとしてのT相センサ32と、制御装置50とを備えている。
燃料電池10は、典型的には、水素に富む燃料ガスと酸素を含有する酸化剤ガスとを導入して発電するセルスタックと、セルスタックで発電した電力を調整するパワーコンディショナと、燃料ガスを生成する改質器と、燃料ガスの原料・酸化剤ガスを供給する各ブロワや、セルスタックの冷却水を循環させるポンプ等の補機類とを含んで構成されている。燃料電池10は、3本の電線で系統電源PSと接続されている。系統電源PSは、電力会社が保有する商用の配電線網から供給される電源である。燃料電池10と系統電源PSとを接続する3本の電線は、第1の電圧線としてのR相線21と、第2の電圧線としてのT相線22と、中性線としてのN相線23とで構成されている。以下、R相線21、T相線22、N相線23を、総称して連系ケーブル20という場合もある。本実施の形態では、R相線21とN相線23との間の電圧及びT相線22とN相線23との間の電圧がそれぞれ実効値で100V、R相線21とT相線22との間の電圧が実効値で200Vとなっている。燃料電池10は、水素に富む燃料ガスと酸素を含有する酸化剤ガスとの電気化学的反応により直流電力を発電し、発生した直流電力を昇圧及び交流に変換して、交流電力として供給できるように構成されている。このようにして、燃料電池システム1は、系統電源PSと連系している。
R相センサ31及びT相センサ32は、共に、交流電流の大きさ及び向きを検知することができる電流センサであり、本実施の形態ではクランプ式電流センサが用いられている。クランプ式電流センサは、ケーブル(電線)を流れる交流電流によって変化する磁場を相互インダクタンスで結合された出力巻線に伝達することによって電流を出力するカレントトランスが開閉可能なクランプに構成されており、カレントトランスの出力巻線をケーブルの上から囲むだけでケーブルを伝搬する電流を検知することができるものである。このため、クランプ式電流センサを用いると、設置及びメンテナンスが簡便になるという利点がある。
R相センサ31は、R相線21に接続されることが予定されている。接続されることが予定されているとは、そのセンサが本来接続されるべきケーブルに接続されず、過誤等により他のケーブルに接続されてしまう場合や、そのセンサと制御装置50とを接続する信号ケーブルの誤配線や断線等により電流値を検知することができない場合もあることを意味している。なお、センサがケーブルに接続されるとは、ケーブルを流れる電流をセンサが検知することができる状態にあることをいい、センサとケーブルとが接触しているか否かを問わない。したがって、クランプ式電流センサのクランプがケーブルを囲んでいる状態も、接続されていることに含まれる。R相センサ31が接続されるべき位置と燃料電池10との間のR相線21には、第1分線71が接続されている。T相センサ32は、T相線22に接続されることが予定されている。T相センサ32が接続されるべき位置と燃料電池10との間T相線22には、第2分線72が接続されている。N相線23には、第3分線73が接続されている。第1分線71、第2分線72、第3分線73を総称して分岐ケーブル70という。
分岐ケーブル70には、電力負荷としてのR相負荷91及びT相負荷92が接続されている。R相負荷91及びT相負荷92は、系統電源PSから供給された電力を消費するものであり、本実施の形態では燃料電池システム1の内部に配置された負荷(例えばヒータ等)であるが、家庭用電気機器等の燃料電池システム1外に設置された負荷であってもよい。R相負荷91は、両端がそれぞれ第1分線71と第3分線73とに接続された第1取出線81に配設されている。つまり、R相負荷91は、第1分線71、第3分線73及び第1取出線81を介して連系ケーブル20に接続されている。第1取出線81には、Rスイッチ81sが配設されている。T相負荷92は、両端がそれぞれ第2分線72と第3分線73とに接続された第2取出線82に配設されている。つまり、T相負荷92は、第2分線72、第3分線73及び第2取出線82を介して連系ケーブル20に接続されている。第2取出線82には、Tスイッチ82sが配設されている。Rスイッチ81s、Tスイッチ82sは、物理的に回路が開閉するものだけでなく、電気的に回路が開閉するものでもよい。R相負荷91及びT相負荷92は、それぞれ、単相3線式の3本の電線のうちの2本に接続されている。
制御装置50は、検知部51と、記憶部52と、判定部53と、報知部54と、補正部55と、制御部56とを有している。検知部51は、R相センサ31及びT相センサ32のそれぞれと信号ケーブルで接続されており、R相センサ31及びT相センサ32で検知した電流の大きさ及び向きの情報を信号として受信することができるように構成されている。記憶部52は、検知部51がR相センサ31及びT相センサ32から受信した情報を記憶することができるように構成されている。判定部53は、記憶部52に記憶された情報に基づいて、R相センサ31及びT相センサ32の接続有無、接続位置及び接続方向の正誤を判定するように構成されている。判定部53には、R相センサ31及びT相センサ32の接続有無、接続位置及び接続方向の正誤を判定するテーブルが記憶されている。報知部54は、R相センサ31及び/又はT相センサ32の接続有無及び/又は接続位置及び/又は接続方向に誤りがあると判定部53が判定したときに、誤りがあることを通知する信号を発信するように構成されている。報知部54は、例えば、アラーム(不図示)に対してアラームを鳴らす信号を発信し、あるいは状態表示器(不図示)に誤りがある旨の信号を発信するように構成されていてもよい。補正部55は、R相センサ31及び/又はT相センサ32の接続位置及び/又は接続方向に誤りがあるものの、その接続状態を変えずに電流を検知することができる場合に、正しい電流の大きさ及び向きに補正して出力することができるように構成されている。制御部56は、Rスイッチ81s及びTスイッチ82sとそれぞれ信号ケーブルで接続されており、それらの開閉をすることができるように構成されている。また、制御部56は、燃料電池10と信号ケーブルで接続されており、燃料電池10の運転を制御することができるように構成されている。
上述のように構成された燃料電池システム1は、R相センサ31及びT相センサ32で連系ケーブル20を流れる電流を検知することができるので、燃料電池10から系統電源PSへの逆潮流があるか否か監視することができるはずである。しかしながら、R相センサ31及び/又はT相センサ32の接続有無及び/又は接続位置及び/又は接続方向に誤りがあると、燃料電池10から系統電源PSへの逆潮流の有無を正しく検知することができないこととなる。そこで、燃料電池システム1では、以下のようにして、R相センサ31及び/又はT相センサ32の接続有無及び/又は接続位置及び/又は接続方向に誤りがあるか否かを判定することとしている。
図2は、R相線21における電流センサの接続状況のチェックの手順を示すフローチャートである。チェックの開始前には、Rスイッチ81s及びTスイッチ82s共に開(電流が流れない状態)となっている。また、燃料電池10は停止している。チェックに先立って繰り返し回数nrをリセットする(S11)。ここで、繰り返し回数nrとは、これから説明するR相線21における電流センサの接続状況のチェックを行った回数である。繰り返し回数nrをリセットしたら(S11)、R相負荷91に通電する前におけるR相センサ31及びT相センサ32が検知した電流の大きさ及び向きを記憶部52に記憶する(S12)。次に、制御部56がRスイッチ81sを閉(電流が流れる状態)にして、R相負荷91に通電する(S13)。このとき、電流は、R相線21、第1分線71、第1取出線81、第3分線73、N相線23を流れることとなる。
R相負荷91に通電したら(S13)、その状況のR相センサ31及びT相センサ32が検知した電流の大きさ及び向きを記憶部52に記憶する(S14)。記憶したら、制御部56は、Rスイッチ81sを開にして、R相負荷91への通電を遮断する(S15)。R相負荷91に通電してから(S13)通電を遮断するまで(S15)の時間は所定の時間であり、典型的にはR相センサ31及びT相センサ32の作動の有無が確認できる程度の短時間である。その後、判定部53は、T相センサ32が検知した電流について、R相負荷91への通電前後の電流値の変化量を算出する(S16)。そして、判定部53は、算出した電流値の変化量に基づいて、T相センサ32の変化量が、所定の判断値の分増加したか否かを判断する(S17)。所定の判断値は、R相負荷91が通電していない状態から通電した状態になったときに増加するであろう電流値を基準として、誤差の範囲を拡張した範囲の値である。T相センサ32の変化量が所定の判断値の分増加している場合は、R相判定時におけるT相センサ32が正(以下「R相判定時・T相正」と表す)の項目をカウントアップする(S18)。
T相センサ32の変化量が所定の判断値の分増加したか否かを判断する工程(S17)において、所定の判断値の分増加していない場合、T相センサ32の変化量が、所定の判断値の分減少したか否かを判断する(S19)。T相センサ32の変化量が所定の判断値の分減少している場合は、R相判定時におけるT相センサ32が逆(以下「R相判定時・T相逆」と表す)の項目をカウントアップする(S20)。T相センサ32の変化量が所定の判断値の分減少したか否かを判断する工程(S19)において所定の判断値の分減少していない場合、あるいはR相判定時・T相正の項目をカウントアップ(S18)した後、又はR相判定時・T相逆の項目をカウントアップ(S20)した後、判定部53は、R相センサ31が検知した電流について、R相負荷91への通電前後の電流値の変化量を算出する工程(S21)に進む。次いで、判定部53は、算出した電流値の変化量に基づいて、R相センサ31の変化量が、所定の判断値の分増加したか否かを判断する(S22)。R相センサ31の変化量が所定の判断値の分増加している場合は、R相判定時におけるR相センサ31が正(以下「R相判定時・R相正」と表す)の項目をカウントアップする(S23)。
R相センサ31の変化量が所定の判断値の分増加したか否かを判断する工程(S22)において、所定の判断値の分増加していない場合、R相センサ31の変化量が、所定の判断値の分減少したか否かを判断する(S24)。R相センサ31の変化量が所定の判断値の分減少している場合は、R相判定時におけるR相センサ31が逆(以下「R相判定時・R相逆」と表す)の項目をカウントアップする(S25)。R相センサ31の変化量が所定の判断値の分減少したか否かを判断する工程(S24)において所定の判断値の分減少していない場合、あるいはR相判定時・R相正の項目をカウントアップ(S23)した後、又はR相判定時・R相逆の項目をカウントアップ(S25)した後、判定部53は、あらかじめ定められた時間待機する工程(S26)に進む。あらかじめ定められた時間については後述する。
あらかじめ定められた時間が経過したら、判定部53は、繰り返し回数nrをカウントアップする(S27)。次に、判定部53は、繰り返し回数nrが所定の回数より小さいか否かを判断する(S28)。繰り返し回数nrが所定の回数より小さい場合は、R相負荷91に通電する前におけるR相センサ31及びT相センサ32が検知した電流の大きさ及び向きを記憶部52に記憶する工程(S12)に戻り、以降、上述のフローを繰り返す。他方、繰り返し回数nrが所定の回数より小さくない場合、すなわち、繰り返し回数nrが所定の回数に到達した場合は、R相線21における電流センサの接続状況のチェックを終了する。R相線21における電流センサの接続状況のチェックは、第1の電流検知工程に相当する。
上述のフローにおいて、Rスイッチ81sの開閉によりR相負荷91に通電してR相センサ31及びT相センサ32の作動状況を確認すること(S12〜S25)を繰り返し(複数回)行うのは、R相負荷91に通電したタイミングで、R相負荷91以外の負荷(例えば家庭内負荷99)に連系ケーブル20を介して電力が供給された場合に、R相センサ31及び/又はT相センサ32が検知する電流値が所定の判断値にならず、R相センサ31及びT相センサ32の接続状況が正しく把握できないため、接続状況を正しく判定するための試行を担保するためである。つまり、R相センサ31及びT相センサ32の作動状況の確認を複数回行うと、R相負荷91への所定の時間の電力供給のタイミングが、R相負荷91以外の負荷への供給電力の変動と一致した場合であっても、次のR相負荷91への所定の時間の電力供給によって、R相センサ31及びT相センサ32の接続状況の確認を行うことができる。
なお、繰り返し回数nrが所定の回数より小さいか否かを判断する工程(S28)における所定の回数は、3回以上とすることが好ましい。所定の回数を3回以上とすると、接続状況の判定結果に異なる結果が含まれていた場合に、多数決で判定結果を決定することができる。多数決で判定結果を決定する際は、R相センサ31及びT相センサ32について、別々に、正・逆・無反応(正逆のいずれでもない)のいずれであるかを決定する。また、所定の回数を3回以上とした場合、一旦R相負荷91に通電してR相センサ31及びT相センサ32の作動状況を確認(S12〜S25)した後、次にR相負荷91に通電してR相センサ31及びT相センサ32の作動状況を確認(S12〜S25)するまでの間隔、すなわち、あらかじめ定められた時間待機する工程(S26)における、あらかじめ定められた時間は、1回目に待機する時間と2回目に待機する時間とが異なる時間となり、2回目に待機する時間と3回目に待機する時間とが異なる時間となるように、少なくとも、隣接する待機する時間が異なる時間となるようにするとよい。このようにすると、R相負荷91以外の負荷に周期的に電力が供給される場合があっても、R相負荷91への電力供給が当該周期と一致することを回避することができ、R相センサ31及びT相センサ32の接続状況の確認を行うことができる。あらかじめ定められた時間待機する工程(S26)が3回以上行われる場合、各回のすべてで異なる時間としてもよい。
なお、図2に示すフローチャートにおいて、説明の便宜上、工程(S16)、工程(S17)、工程(S19)、工程(S21)、工程(S22)、工程(S24)の順に行うこととしたが、工程(S21)、工程(S22)、工程(S24)の後に、工程(S16)、工程(S17)、工程(S19)を行うこととしてもよい。また、工程(S17)と工程(S19)、工程(S22)と工程(S24)は、それぞれ順番が逆であってもよい。また、工程(S16)及び工程(S21)を同時に行い、その後に工程(S17)、工程(S19)、工程(S22)、工程(S24)を任意の順番で行うこととしてもよい。
次に図3を参照して、T相線22における電流センサの接続状況のチェックについて説明する。図3は、T相線22における電流センサの接続状況のチェックの手順を示すフローチャートである。図3に示すT相線22における電流センサの接続状況のチェックの手順は、図2を参照して説明したR相線21における電流センサの接続状況のチェックの手順と同様のことをT相線22について行うものであり、各工程における意味内容は、図2に示すR相線21における電流センサの接続状況のチェックの手順と同様である。ただし、T相線22における電流センサの接続状況のチェックは、Tスイッチ82sの操作でT相負荷92に通電する点で、R相線21における電流センサの接続状況のチェックと異なっている。以下、T相線22における電流センサの接続状況のチェックの手順の概要を説明する。
チェックの開始前には、Rスイッチ81s及びTスイッチ82s共に開となっており、燃料電池10は停止している。まず、繰り返し回数ntをリセットする(S31)。次いで、T相負荷92に通電する前におけるR相センサ31及びT相センサ32が検知した電流の大きさ及び向きを記憶部52に記憶する(S32)。そして、制御部56がTスイッチ82sを閉にして、T相負荷92に通電する(S33)。次に、その状況のR相センサ31及びT相センサ32が検知した電流の大きさ及び向きを記憶部52に記憶する(S34)。記憶したら、制御部56は、Tスイッチ82sを開にして、T相負荷92への通電を遮断する(S35)。
T相負荷92への通電を遮断したら(S35)、判定部53は、T相センサ32が検知した電流について、T相負荷92への通電前後の電流値の変化量を算出する(S36)。そして、判定部53は、算出した電流値の変化量に基づいて、T相センサ32の変化量が、所定の判断値の分増加したか否かを判断する(S37)。ここでの所定の判断値は、T相負荷92が通電していない状態から通電した状態になったときに増加するであろう電流値を基準として、誤差の範囲を拡張した範囲の値である。T相センサ32の変化量が所定の判断値の分増加している場合は、T相判定時におけるT相センサ32が正(以下「T相判定時・T相正」と表す)の項目をカウントアップする(S38)。他方、T相センサ32の変化量が所定の判断値の分増加していない場合、T相センサ32の変化量が、所定の判断値の分減少したか否かを判断する(S39)。T相センサ32の変化量が所定の判断値の分減少している場合は、T相判定時におけるT相センサ32が逆(以下「T相判定時・T相逆」と表す)の項目をカウントアップする(S40)。T相センサ32の変化量が所定の判断値の分減少したか否かを判断する工程(S39)において所定の判断値の分減少していない場合、あるいはT相判定時・T相正の項目をカウントアップ(S38)した後、又はT相判定時・T相逆の項目をカウントアップ(S40)した後、判定部53は、R相センサ31が検知した電流について、T相負荷92への通電前後の電流値の変化量を算出する工程(S41)に進む。
判定部53は、算出した電流値の変化量に基づいて、R相センサ31の変化量が、所定の判断値の分増加したか否かを判断する(S42)。R相センサ31の変化量が所定の判断値の分増加している場合は、T相判定時におけるR相センサ31が正(以下「T相判定時・R相正」と表す)の項目をカウントアップする(S43)。他方、R相センサ31の変化量が所定の判断値の分増加していない場合、R相センサ31の変化量が、所定の判断値の分減少したか否かを判断する(S44)。R相センサ31の変化量が所定の判断値の分減少している場合は、T相判定時におけるR相センサ31が逆(以下「T相判定時・R相逆」と表す)の項目をカウントアップする(S45)。R相センサ31の変化量が所定の判断値の分減少したか否かを判断する工程(S44)において所定の判断値の分減少していない場合、あるいはT相判定時・R相正の項目をカウントアップ(S43)した後、又はT相判定時・R相逆の項目をカウントアップ(S45)した後、判定部53は、あらかじめ定められた時間待機する工程(S46)に進む。
あらかじめ定められた時間が経過したら、判定部53は、繰り返し回数ntをカウントアップする(S47)。次に、判定部53は、繰り返し回数ntが所定の回数より小さいか否かを判断する(S48)。繰り返し回数ntが所定の回数より小さい場合は、T相負荷92に通電する前におけるR相センサ31及びT相センサ32が検知した電流の大きさ及び向きを記憶部52に記憶する工程(S32)に戻り、以降、上述のフローを繰り返す。他方、繰り返し回数ntが所定の回数より小さくない場合、T相線22における電流センサの接続状況のチェックを終了する。T相線22における電流センサの接続状況のチェックは、第2の電流検知工程に相当する。なお、T相線22における電流センサの接続状況のチェックにおいても、多数決で判定結果を決定する場合は、R相センサ31及びT相センサ32について、別々に、正・逆・無反応(正逆のいずれでもない)のいずれであるかを決定する。
図3に示すフローチャートにおいても、説明の便宜上、工程(S36)、工程(S37)、工程(S39)、工程(S41)、工程(S42)、工程(S44)の順に行うこととしたが、工程(S41)、工程(S42)、工程(S44)の後に、工程(S36)、工程(S37)、工程(S39)を行うこととしてもよい。また、工程(S37)と工程(S39)、工程(S42)と工程(S44)は、それぞれ順番が逆であってもよい。また、工程(S36)及び工程(S41)を同時に行い、その後に工程(S37)、工程(S39)、工程(S42)、工程(S44)を任意の順番で行うこととしてもよい。
次に図4を参照して、上述のR相線21における電流センサの接続状況及びT相線22における電流センサの接続状況を考慮した、連系ケーブル20における電流センサの接続状況の判定について説明する。図4は、連系ケーブル20における電流センサの接続状況の判定の手順を示すフローチャートである。まず、前回使用した判定用カウンタをクリアする(S51)。判定用カウンタは、図2に示すフローを実行して得られたR相線21における電流センサの接続状況のチェック結果及び図3に示すフローを実行して得られたT相線22における電流センサの接続状況のチェック結果である。
前回使用した判定用カウンタをクリアしたら(S51)、図2のフローチャートに示すR相線21における電流センサの接続状況のチェックを行う(第1の電流検知工程:S52)。先に説明した、R相線21における電流センサの接続状況のチェック(図2参照)は、本実施の形態ではこのタイミングで行われる。次に、判定部53は、チェック結果に偏りがあるか否かを判断する(S53)。ここで、チェック結果に偏りがあるとは、Rスイッチ81sの開閉によりR相負荷91に通電してR相センサ31及びT相センサ32の作動状況を確認すること(図2における工程S12〜S25)を複数回行い、その結果がR相センサ31及びT相センサ32のそれぞれについて、2種類以上にわたって同等になっておらずに多数決等によって明らかに結果に差異が認められた1つのチェック結果を得ることができる状況である。チェック結果に偏りがあるか否かを判断する工程(S53)において、偏りがない場合(少なくとも一方のセンサに同等のチェック結果が複数あって1つの結果に定まらない場合)は、R相線21における電流センサの接続状況のチェックを行う工程(S52)で得られたチェック結果のカウントをクリアして(S54)、R相線21における電流センサの接続状況のチェックを行う工程(S52)に戻る。他方、チェック結果に偏りがあるか否かを判断する工程(S53)において、偏りがある場合、図3のフローチャートに示すT相線22における電流センサの接続状況のチェックを行う工程(第2の電流検知工程:S55)に進む。先に説明した、T相線22における電流センサの接続状況のチェック(図3参照)は、本実施の形態ではこのタイミングで行われる。
T相線22における電流センサの接続状況のチェックを行ったら(S55)、判定部53は、チェック結果に偏りがあるか否かを判断する(S56)。チェック結果に偏りがない場合は、T相線22における電流センサの接続状況のチェックを行う工程(S55)で得られたチェック結果のカウントをクリアし(S57)、T相線22における電流センサの接続状況のチェックを行う工程(S55)に戻る。他方、チェック結果に偏りがあるか否かを判断する工程(S56)において偏りがある場合、判定部53は、判定用カウンタから、連系ケーブル20におけるR相センサ31及びT相センサ32の接続状況の判定を行う(判定工程:S58)。この判定は、図5乃至図7に示すテーブルを参照して行う。
図5乃至図7は、R相線21及びT相線22における電流センサの接続状況のチェック結果と、R相センサ31及びT相センサ32の接続有無、接続位置及び接続方向との関係を示すテーブルの図である。図5乃至図7に示すテーブルは、判定部53にあらかじめ記憶されている。図5乃至図7に示すテーブル中、「R相チェック時」の欄の、「R+」は「R相判定時・R相正」を、「R−」は「R相判定時・R相逆」を、「T+」は「R相判定時・T相正」を、「T−」は「R相判定時・T相逆」を、それぞれ意味している。また、「T相チェック時」の欄の、「R+」は「T相判定時・R相正」を、「R−」は「T相判定時・R相逆」を、「T+」は「T相判定時・T相正」を、「T−」は「T相判定時・T相逆」を、それぞれ意味している。そして、「R相チェック時」の欄及び「T相チェック時」の欄中の「○」がついている部分が、チェック結果で得られた項目に対応する。なお、チェック結果は、各欄中のセンサごと(R+、R−のペア、及びT+、T−のペア別)に1つの結果が得られ、「○」がついていない場合は無反応(正逆のいずれでもない)であったことを示している。例えば、ケース1では、「R相判定時・R相正」及び「R相判定時・T相無反応」並びに「T相判定時・R相無反応」及び「T相判定時・T相正」の結果が得られた場合に該当し、ケース2では、「R相判定時・R相正」及び「R相判定時・T相正」並びに「T相判定時・R相無反応」及び「T相判定時・T相逆」の結果が得られた場合に該当し、ケース10では、「R相判定時・R相逆」及び「R相判定時・T相逆」並びに「T相判定時・R相無反応」及び「T相判定時・T相無反応」の結果が得られた場合に該当する。
上記のチェック結果をふまえて、R相センサ31及びT相センサ32がどの位置にどのような向きで接続されているかを、図5乃至図7に示すテーブル中の「R相線」の欄、「N相線」の欄及び「T相線」の欄に示している。これらの欄中の、「R正」は、R相センサ31が順方向(正しい向き)に接続されていることを、「R逆」は、R相センサ31が逆方向(逆向き)に接続されていることを、「T正」は、T相センサ32が順方向(正しい向き)に接続されていることを、「T逆」は、T相センサ32が逆方向(逆向き)に接続されていることを、それぞれ意味している。そして、「R正」、「R逆」、「T正」、「T逆」が、「R相線」の欄、「N相線」の欄及び「T相線」の欄のどこに示されているかによって、R相センサ31及びT相センサ32が接続されている位置が分かるようになっている。例えば、ケース1では、R相センサ31がR相線21に順方向で接続され、T相センサ32がT相線22に順方向で接続されていることを示している。この結果から、ケース1では、R相センサ31及びT相センサ32がそれぞれ位置及び方向共に正しく接続されていることが分かる。また、ケース2では、R相センサ31がR相線21に順方向で接続され、T相センサ32がN相線23に順方向で接続されていることを示している。また、ケース7では、R相センサ31がR相線21に順方向で接続され、T相センサ32がいずれの線にも接続されていないことを示している。このケース7の場合、電流センサが1つのみしか接続されていないことが分かる。また、ケース10では、R相センサ31がR相線21に逆方向で接続され、T相センサ32がR相線21に順方向で接続されていることを示している。つまり、ケース10では、R相線21に電流センサが複数接続され、かつ、そのうちの1つの電流センサが逆方向に接続されていることが分かる。さらに、ケース49においては、R相センサ31及びT相センサ32共に、いずれの線にも接続されていないことを示しており、R相センサ31及びT相センサ32共に未接続状態であることが分かる。
連系ケーブル20におけるR相センサ31及びT相センサ32の接続状況の判定を行う工程(S58)において、判定部53は、記憶部52に記憶されているチェック結果を、あらかじめ判定部53に記憶されている図5乃至図7に示すテーブルに照らし、R相センサ31及びT相センサ32の接続状況(接続有無、接続位置及び接続方向)を判定する。連系ケーブル20におけるR相センサ31及びT相センサ32の接続状況を判定したら(S58)、判定フローを終了する。
上述の要領で電流センサの接続状況を判定した結果、R相センサ31及び/又はT相センサ32の接続有無及び/又は接続位置及び/又は接続方向に誤りがあると判定部53が判定したとき、報知部54は、誤りがあることを通知する信号を発信する。これにより、例えばアラーム(不図示)が鳴る、及び/又は状態表示器(不図示)に誤りがある旨が表示され、それを認識したメンテナンス員等により、誤りがある電流センサの接続有無及び/又は接続位置及び/又は接続方向を是正することができる。状態表示器(不図示)に表示する内容として、図5に示すケース3の場合に、R相線21に電流センサが複数接続されていることより、例えば「R相に電流センサが複数接続されています。電流センサの再接続を行って下さい!」とすることが挙げられる。
あるいは、R相センサ31及び/又はT相センサ32の接続位置及び/又は接続方向に誤りがあると判定部53が判定したときに、誤りがあることを通知する信号を報知部54が発信することに代えて、又は誤りがあることを通知する信号を報知部54が発信すると共に、R相センサ31及び/又はT相センサ32の接続位置及び/又は接続方向を変えずに、補正部55が正しい電流の大きさ及び向きに補正して出力することとしてもよい。補正は、R相センサ31及びT相センサ32の一方のセンサが、R相線21及びT相線22の一方の線に接続され、他方のセンサが他方の線に接続されていると判定された場合に行うことができる。例えば、連系ケーブル20におけるR相センサ31及びT相センサ32の接続状況の判定を行う工程(S58)において、図7に示すケース38のように、R相センサ31がT相線22に逆方向で接続され、T相センサ32がR相線21に順方向で接続されていると判定された場合、補正部55は、検知部51が、T相センサ32からの順方向の電流を受信したときにR相線21に順方向の電流が流れたと出力し、T相センサ32からの逆方向の電流を受信したときにR相線21に逆方向の電流が流れたと出力し、R相センサ31からの逆方向の電流を受信したときにT相線22に順方向の電流が流れたと出力し、R相センサ31からの順方向の電流を受信したときにT相線22に逆方向の電流が流れたと出力する。このように、補正することで、誤りがあるR相センサ31及び/又はT相センサ32の接続位置及び/又は接続方向を修正せずに、連系ケーブル20を流れる電流の位置及び方向を検知することができ、燃料電池10からの逆潮流の有無を確認することができる。
最後に、R相線21における電流センサの接続状況のチェックを行う工程(S52)及びT相線22における電流センサの接続状況のチェックを行う工程(S55)における、1つのチェック結果を得る際の、多数決の実行手順の例を補足説明する。ここでは、R相線21における電流センサの接続状況のチェック結果(図5乃至図7において「R相チェック時」欄の○の付け方)を例に説明する。Rスイッチ81sの開閉によりR相負荷91に通電してR相センサ31及びT相センサ32の作動状況を確認すること(図2のS12〜S25)を所定の回数繰り返し、「R相判定時・R相正」をカウントアップした回数をRr1、「R相判定時・R相逆」をカウントアップした回数をRr2、「R相判定時・T相正」をカウントアップした回数をRt1、「R相判定時・T相逆」をカウントアップした回数をRr2と表すこととする。また、所定の回数(ここでは「F」と表す)の作動状況の確認において、R相判定時におけるR相センサ31が正逆いずれも検知しなかった回数をRr3、R相判定時におけるT相センサ32が正逆いずれも検知しなかった回数をRt3と表すこととする。Rr3は、「Rr3=F−Rr1−Rr2」で算出される。Rt3は、「Rt3=F−Rt1−Rt2」で算出される。本例示における多数決では、R相センサ31及びT相センサ32のそれぞれにつき、所定の回数行ったチェックにおいて、検知又は算出された各回数項目のうち、1番多い項目の回数と2番目に多い項目の回数との差が所定の差以上の場合に、1番多い項目をチェック結果として採用する。例えば、ケース1の場合(R相センサ31がR相線21に順方向で接続され、T相センサ32がT相線22に順方向で接続されている場合)において、所定の回数が10回で、所定の差を2とした場合は、以下のようになる。Rスイッチ81sの開閉によりR相負荷91に通電した際に、外的擾乱がない場合、まず、R相線21におけるR相センサ31についてみると、Rr1が10回で、Rr2及びRr3は0回となる。この場合は、1番多い項目(Rr1)の回数(10回)と2番目に多い項目(Rr2、Rr3)の回数(0回)との差(10)が所定の差(2)以上であるので、多数決が採用され、R相センサ31については、図5に示すケース1の「R相チェック時」欄に見られるように、「R+」に○がつけられる。次に、R相線21におけるT相センサ32についてみると、外的擾乱がない場合、Rt1及びRt2が0回で、Rt3が10回となる。この場合は、1番多い項目(Rt3)の回数(10回)と2番目に多い項目(Rt1、Rt2)の回数(0回)との差(10)が所定の差(2)以上であるので、多数決が採用され、図5に示すケース1の「R相チェック時」欄に見られるように、「T+」及び「T−」のいずれにも○がつけられない。これが、仮に、Rスイッチ81sの開閉によりR相負荷91に通電した際に、外的擾乱があり、Rr1が4回でRr2が3回(このときRr3は3回となる)、Rt1が3回でRt2が2回(このときRt3は5回となる)の結果が得られたとき、T相センサ32については1番多い項目(Rt3)の回数(5回)と2番目に多い項目(Rt1)の回数(3回)との差(2)が所定の差(2)以上であるので無反応との多数決結果が得られるものの、R相センサ31については1番多い項目(Rr1)の回数(4回)と2番目に多い項目(Rr2、Rr3)の回数(3回)との差(1)が所定の差(2)以上でないので多数決結果が得られず、チェック結果に偏りがないとして(図4の工程S53でNo)、R相線21のチェック結果がクリアされ(S54)、改めてR相線21における電流センサの接続状況のチェック(S52)が行われる。なお、上記では、R相線21における電流センサの接続状況のチェック結果(図5乃至図7において「R相チェック時」欄の○の付け方)を例に説明したが、T相線22における電流センサの接続状況のチェック結果(図5乃至図7において「T相チェック時」欄の○の付け方)についても同様の手順で多数決を実行してもよいことはいうまでもない。また、上記の例示では、所定の差を2と設定したが、適宜変更してもよい。例えば、R相センサ31及びT相センサ32の作動状況を確認する所定の回数を3回にした場合は、一般に所定の差は1となる。あるいは、所定の回数を5回以上とした場合は、より多数決の結果を正確にする観点から、所定の差を3以上にしてもよい。
以上で説明したように、本実施の形態に係る燃料電池システム1によれば、単相3線で系統電源PSと連系している状況下で、1つの配線のみに1つの電流センサが接続されている場合、1つの配線のみに2つの電流センサが接続されている場合、2つの配線にそれぞれ1つずつ電流センサが接続されている場合、3つの配線のいずれにも電流センサが接続されていない場合等、様々なタイプの接続状況を判定することができる。また、R相線21における電流センサの接続状況のチェック及びT相線22における電流センサの接続状況のチェックを行う際に、電力負荷91、92に通電してR相センサ31及びT相センサ32の作動状況を確認することを複数回行うので、電力負荷91、92への所定の時間の電力供給のタイミングが、電力負荷91、92以外の負荷への供給電力の変動と一致した場合であっても、次の電力負荷91、92への所定の時間の電力供給によって、R相センサ31及びT相センサ32の接続状況の確認を行うことができる。また、電力負荷91、92に通電してR相センサ31及びT相センサ32の作動状況を確認することを3回以上行う際に、隣接する待機する時間が異なる時間となるようにするので、電力負荷91、92以外の負荷に周期的に電力が供給される場合があっても、電力負荷91、92への電力供給が当該周期と一致することを回避することができ、R相センサ31及びT相センサ32の接続状況の確認を行うことができる。
以上の説明では、分散型電源が燃料電池10であるとしたが、太陽電池等の燃料電池以外の分散型電源であってもよい。
以上の説明では、制御装置50が補正部55を有することとしたが、R相センサ31及び/又はT相センサ32の接続位置及び/又は接続方向に誤りがあると判定部53が判定したときに、誤りがあることを通知する信号を報知部54が発信することにとどめ、補正を行わない場合は、補正部55を省略することができる。
以上の説明では、外部負荷としてR相負荷91及びT相負荷92の2つの負荷を有することとしたが、以下に示すように、1つの負荷を共用して用いてもよい。
図8は、変形例に係る外部負荷の接続状態を示す部分ブロック図である。図8に示す変形例では、第1取出線81及び第2取出線82に加えて、一端が第3分線73に接続された第3取出線83を有している。第3取出線83には、電力負荷としての共通負荷93が配設されている。第3取出線83の、第3分線73に接続されていない方の他端には、切替スイッチ83sが設けられている。そして、この変形例では、第1取出線81及び第2取出線82には電力負荷が設置されておらず、また、第1取出線81及び第2取出線82の一方の端部が、第3分線73に接続されていない。第1取出線81及び第2取出線82の、第3分線73に接続されていない端部は、切替スイッチ83sが接触することができるようになっている。切替スイッチ83sは、第1取出線81及び第2取出線82の一方に選択的に接触することで、共通負荷93に供給される電力を、R相線21及び第1分線71を介して得るのか、T相線22及び第2分線72を介して得るのかを選択することができるように構成されている。この変形例では、R相線21における電流センサの接続状況のチェックを行うときは切替スイッチ83sが第1取出線81と接触し、T相線22における電流センサの接続状況のチェックを行うときは切替スイッチ83sが第2取出線82と接触するように構成されている。共通負荷93を用いて回路を切り替えて電流センサの接続状況のチェックを行うことで、負荷動作の環境が均一となり、電流センサの接続状況のチェックの性能を向上させることができる。
1 燃料電池システム
10 燃料電池
21 R相線
22 T相線
23 N相線
31 R相センサ
32 T相センサ
53 判定部
91 電力負荷
PS 系統電源

Claims (4)

  1. 系統電源に対して、第1の電圧線と、第2の電圧線と、中性線と、を介して接続された分散型電源と;
    前記系統電源から前記分散型電源の方に向けて供給される電流を検知する第1の電流センサであって、前記第1の電圧線に接続されるべき第1の電流センサと;
    前記系統電源から前記分散型電源の方に向けて供給される電流を検知する第2の電流センサであって、前記第2の電圧線に接続されるべき第2の電流センサと;
    前記第1の電流センサが接続されるべき位置と前記分散型電源との間の前記第1の電圧線に接続された電力負荷、及び前記第2の電流センサが接続されるべき位置と前記分散型電源との間の前記第2の電圧線に接続された電力負荷へ、前記系統電源から所定の時間の電力供給を行わせ、前記第1の電流センサの接続有無、接続位置及び接続方向並びに前記第2の電流センサの接続有無、接続位置及び接続方向の正誤を判定する判定部とを備え;
    前記判定部が、前記系統電源から前記電力負荷への所定の時間の電力供給を複数回行わせるように構成された;
    分散型電源システム。
  2. 前記判定部が、前記系統電源から前記電力負荷への所定の時間の電力供給を連続して少なくとも3回行わせ、1回目の電力供給と2回目の電力供給との間隔と、前記2回目の電力供給と3回目の電力供給との間隔とが異なる間隔となるように構成された;
    請求項1に記載の分散型電源システム。
  3. 前記判定部が、前記系統電源から前記電力負荷への所定の時間の電力供給を3回以上行わせ、前記第1の電流センサ及び前記第2の電流センサが電流の変化の有無を検知した結果に基づいた多数決で、前記第1の電流センサの接続有無、接続位置及び接続方向並びに前記第2の電流センサの接続有無、接続位置及び接続方向の正誤を判定するように構成された;
    請求項1又は請求項2に記載の分散型電源システム。
  4. 第1の電流センサが接続されているはずの第1の電圧線と、第2の電流センサが接続されているはずの第2の電圧線と、中性線と、を介して系統電源に接続された分散型電源を備える分散型電源システムの、前記第1の電流センサ及び前記第2の電流センサの接続有無、接続位置及び接続方向の正誤を判定する電流センサの接続確認方法であって;
    前記第1の電圧線を流れる電流を所定の時間変化させて、前記第1の電流センサ及び前記第2の電流センサが検知した電流の大きさ及び向きを取得することを複数回行う第1の電流検知工程と;
    前記第2の電圧線を流れる電流を所定の時間変化させて、前記第1の電流センサ及び前記第2の電流センサが検知した電流の大きさ及び向きを取得することを複数回行う第2の電流検知工程と;
    前記第1の電流検知工程及び前記第2の電流検知工程における結果に基づいて前記第1の電流センサの接続有無、接続位置及び接続方向並びに前記第2の電流センサの接続有無、接続位置及び接続方向の正誤を判定する判定工程とを備える;
    電流センサの接続確認方法。
JP2013263833A 2013-12-20 2013-12-20 分散型電源システム及び電流センサの接続確認方法 Pending JP2015122819A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013263833A JP2015122819A (ja) 2013-12-20 2013-12-20 分散型電源システム及び電流センサの接続確認方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013263833A JP2015122819A (ja) 2013-12-20 2013-12-20 分散型電源システム及び電流センサの接続確認方法

Publications (1)

Publication Number Publication Date
JP2015122819A true JP2015122819A (ja) 2015-07-02

Family

ID=53533993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013263833A Pending JP2015122819A (ja) 2013-12-20 2013-12-20 分散型電源システム及び電流センサの接続確認方法

Country Status (1)

Country Link
JP (1) JP2015122819A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199502A (ja) * 2016-04-26 2017-11-02 京セラ株式会社 燃料電池装置及び電流センサの異常検出方法
JP2018007366A (ja) * 2016-06-29 2018-01-11 アイシン精機株式会社 系統連系制御装置
JP2018004330A (ja) * 2016-06-28 2018-01-11 京セラ株式会社 電力管理装置、電流センサの設置方向の判定方法及び電力管理システム
WO2018079782A1 (ja) * 2016-10-31 2018-05-03 京セラ株式会社 燃料電池装置及び電流センサの異常を検出する方法
JP2020112387A (ja) * 2019-01-09 2020-07-27 住友電気工業株式会社 センサ異常検出装置、分散型電源ユニット、及びセンサ異常判定方法
JP2020112386A (ja) * 2019-01-09 2020-07-27 住友電気工業株式会社 センサ異常検出装置及び方法、分散型電源ユニット、及びコンピュータプログラム
JP2020204597A (ja) * 2019-06-19 2020-12-24 ニチコン株式会社 電力供給システム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199502A (ja) * 2016-04-26 2017-11-02 京セラ株式会社 燃料電池装置及び電流センサの異常検出方法
JP2018004330A (ja) * 2016-06-28 2018-01-11 京セラ株式会社 電力管理装置、電流センサの設置方向の判定方法及び電力管理システム
JP2018007366A (ja) * 2016-06-29 2018-01-11 アイシン精機株式会社 系統連系制御装置
WO2018079782A1 (ja) * 2016-10-31 2018-05-03 京セラ株式会社 燃料電池装置及び電流センサの異常を検出する方法
JPWO2018079782A1 (ja) * 2016-10-31 2019-08-08 京セラ株式会社 燃料電池装置及び電流センサの異常を検出する方法
JP2020112387A (ja) * 2019-01-09 2020-07-27 住友電気工業株式会社 センサ異常検出装置、分散型電源ユニット、及びセンサ異常判定方法
JP2020112386A (ja) * 2019-01-09 2020-07-27 住友電気工業株式会社 センサ異常検出装置及び方法、分散型電源ユニット、及びコンピュータプログラム
JP7215175B2 (ja) 2019-01-09 2023-01-31 住友電気工業株式会社 センサ異常検出装置、分散型電源システム、及びセンサ異常判定方法
JP7279364B2 (ja) 2019-01-09 2023-05-23 住友電気工業株式会社 センサ異常検出装置及び方法、分散型電源ユニット、及びコンピュータプログラム
JP2020204597A (ja) * 2019-06-19 2020-12-24 ニチコン株式会社 電力供給システム
JP7294606B2 (ja) 2019-06-19 2023-06-20 ニチコン株式会社 電力供給システム

Similar Documents

Publication Publication Date Title
JP2015122819A (ja) 分散型電源システム及び電流センサの接続確認方法
JP5501757B2 (ja) 発電装置及びその運転方法
JP5352743B2 (ja) 分散型電源システム及びその制御方法
JP6870449B2 (ja) 電流センサの取付状態判定装置
JP4820461B2 (ja) 分散型電源システム
JP2011160562A (ja) 分散型発電装置
EP2613164A1 (en) Distributed power generation device and method for operating same
US10079491B2 (en) Dispersed power supply system and power conditioner
JP2007006674A (ja) 配電設備制御システム
JP2012222923A (ja) 分散型発電装置
JP6362837B2 (ja) 零相変流器、地絡電流検出装置、パワーコンディショナ、及び零相変流器の故障検出方法
TWM506411U (zh) 電源切換選擇器
EP2798721B1 (en) System and method for maintaining proper phase neutral wiring in a power system
JP2006280159A (ja) コージェネレーションシステム
JP2005245136A (ja) 逆潮流防止型系統連系システム
JP2009095114A (ja) 蓄電装置
JP2015077050A (ja) 出力制御装置及び電源システム
KR102018235B1 (ko) Dc 전원 자동 절체기
JP2014130057A (ja) 電流センサ検出方法および電力制御システム
JP2014217177A (ja) 電力供給システムおよび蓄電装置
JP7151715B2 (ja) 系統連系蓄電システム及び電流センサの取り付け異常検出方法
JP2008066006A (ja) 燃料電池システム
JP6408356B2 (ja) 分散型電源システムの単独運転判定方法、分散型電源システム、及びパワーコンディショナ
JP6734797B2 (ja) 電力システム
JP2016189684A (ja) 分散型電源装置