JP2006280159A - コージェネレーションシステム - Google Patents

コージェネレーションシステム Download PDF

Info

Publication number
JP2006280159A
JP2006280159A JP2005098745A JP2005098745A JP2006280159A JP 2006280159 A JP2006280159 A JP 2006280159A JP 2005098745 A JP2005098745 A JP 2005098745A JP 2005098745 A JP2005098745 A JP 2005098745A JP 2006280159 A JP2006280159 A JP 2006280159A
Authority
JP
Japan
Prior art keywords
power
unit
surplus
output value
detection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005098745A
Other languages
English (en)
Inventor
Naoki Tougeda
直樹 峠田
Yoshikazu Hamaya
佳和 濱谷
Shin Iwata
伸 岩田
Takeshi Tomio
剛至 富尾
Masahiko Yagi
政彦 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Noritz Corp
Noritz Electronics Technology Corp
Original Assignee
Osaka Gas Co Ltd
Noritz Corp
Noritz Electronics Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Noritz Corp, Noritz Electronics Technology Corp filed Critical Osaka Gas Co Ltd
Priority to JP2005098745A priority Critical patent/JP2006280159A/ja
Publication of JP2006280159A publication Critical patent/JP2006280159A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

【課題】 カレントトランスなどの検知部が故障した場合などにも、逆潮流の発生を未然に防ぐことが可能なコージェネレーションシステムを提供する。
【解決手段】 本発明のコージェネレーションシステム1には、発電部10と、余剰電力使用部12と、検知部13と、制御部15とが設けられ、外部電源80の引き込み線80aの電流は検知部13で検知される。そして、引き込み線80aでの電力の方向を、余剰電力使用部12の使用電力を変化させて確認する。
【選択図】 図1

Description

本発明はコージェネレーションシステムに関するものである。
従来より、コージェネレーションシステムが用いられている。そして、コージェネレーションシステムは、エンジンなどを運転して発電及び発熱するものであり、発電によって発生した電気を外部に設置された電化製品などに用い、また、発熱によって発生した熱を暖房や給湯などに用いる。
電化製品などの電力使用量とエンジンなどで発電した発電量とを、できるだけ差を無くすのが望ましいが、使用者の電気使用量を完全に予測することができない。そのため、このような電化製品は、商用電源の電気も使用することができる構成となっており、電気の使用量が多い場合には、商用電源から不足分の電気を供給する。そして、利便性を維持しつつ、省エネルギーを図ることが行われている。
このようなコージェネレーションシステムは、特許文献1等に記載されている。
特開2004−92458号公報
電化製品の電気の使用量が少ない場合には発電された電気が余るが、上記したように、商用電源と接続されている場合には、この発電された電気が商用電源側に逆流する、逆潮流が発生する。
逆潮流の発生は商用電源側の電圧上昇などにより問題となる場合がある。そのため、逆潮流をできるだけ発生させないようにする必要がある。また、仮に逆潮流が発生した場合にも、所定の時間内(例えば350ミリ秒以内)として、このような問題が発生しないようにする必要がある。
そのため、商用電源の引き込み線の電流又は電力を監視し、また、余剰電力使用部(例えばヒータ)を接続する構成として、逆潮流が発生、又は、発生するおそれがある場合に、この余剰電力使用部を作動させて電気を有効に使用してエネルギーを無駄にすることなく、逆潮流による問題を防止するようにしている。
商用電源の引き込み線の電流又は電力の監視は、カレントトランスなどが用いられている。カレントトランスは、交流の電流を非接触で測定することができるものであるので、設置しやすいという利点がある。
しかしながら、カレントトランスが断線などによって故障している場合、電流や電力の監視ができなくなり、エンジンや余剰電力使用部の正しい制御が困難となってしまう。
また、カレントトランスが断線などによって故障している場合には、カレントトランスに電流が流れなくなるので、商用電源の引き込み線の電流が流れていない状態と同じ状態と判断してしまう。
商用電源の引き込み線に電流が流れず、電力の流れを生じない状態は、コージェネレーションシステムの運転中にも発生する。そのため、カレントトランスに電流が流れなくなった状態を検出することにより、カレントトランスの故障判定として用いることができない。特に、商用電源の引き込み線の電流が流れていない状態は、商用電源による電気が使用されず、発電された電気と使用される電気が同じとなる状態であり、省エネルギー性が高い状態である。そのため、コージェネレーションシステムはこのような状態となるように運転の制御が行われるので、このような状況が発生しやすい。
さらに、カレントトランスなどの故障を判定する故障判定手段を新たに設けるのは、装置が複雑となって実用的でない。
そして、カレントトランスなどの故障を判定するため、余剰電力使用部によって電気を使用して、電力の流れの変化を確認する方法が考えられるが、余剰電力使用部を最大能力付近で使用している場合には、このような方法を用いることができない。
そこで、本発明は、カレントトランスなどの検知部が故障した場合などにも、逆潮流の発生を未然に防ぐことが可能なコージェネレーションシステムを提供することを課題とするものである。
そして、上記した目的を達成するための請求項1に記載の発明は、発電可能な発電部と、使用電力を可変させることができる余剰電力使用部と、前記発電部及び余剰電力使用部の運転を制御することができる制御部とを有し、前記発電部及び余剰電力使用部は、外部電源及び電力使用装置と接続されており、外部電源は、外部から電気を供給することができるものであり、電力使用装置は、発電部及び外部電源から供給される電気を使用することができるものであり、外部電源の引き込み線の電流、又は、外部電源の引き込み線に流れる電力を確認することができる検知部が設けられ、検知部によって出力される出力値により外部電源に対して流出入する電流又は電力を確認することができ、発電中に検知部によって出力された出力値が検知部の故障時に出力される出力値近傍となった場合に、余剰電力使用部の使用電力を変化させ、当該変化による検知部の出力値の変化により、検知部の故障の有無を確認することができ、検知部が故障であると判断した場合には、発電部を停止するように制御するものであり、余剰電力使用部の使用電力を変化させる操作は、増加操作及び減少操作のいずれの操作も可能であり、余剰電力使用部の能力と余剰電力使用部の使用電力とを比較して、増加操作又は減少操作を選択するものであることを特徴とするコージェネレーションシステムである。
請求項1に記載の発明によれば、発電部及び余剰電力使用部は、外部電源及び電力使用装置と接続され、外部電源の引き込み線の電流又は電力を確認することができる検知部が設けられており、余剰電力使用部の使用電力を変化させて、当該変化による検知部の出力値の変化により、検知部の故障を確認することができ、検知部の故障による逆潮流の発生を防止することができる。また、検知部が故障であると判断した場合には、発電部を停止するように制御するものであるので、逆潮流の発生を未然に防ぐことができる。
また、余剰電力使用部の能力と余剰電力使用部の使用電力とを比較して、増加操作又は減少操作を選択して、余剰電力使用部の使用電力を変化させるので、通常は使用電力を増加操作させることが可能となり、使用電力を減少操作させた場合に発生の可能性のある逆潮流の発生を低減することができる。
請求項2に記載の発明は、余剰電力使用部の使用電力を減少操作させる場合には、逆潮流の許容時間を超えない時間だけ行うものであることを特徴とする請求項1に記載のコージェネレーションシステムである。
請求項2に記載の発明によれば、余剰電力使用部の使用電力を減少操作させる場合には、逆潮流の許容時間を超えない時間だけ行うものであるので、余剰電力使用部による使用電力を減少変化させた場合に発生の可能性のある逆潮流の発生時間を短時間とすることができる。
請求項3に記載の発明は、検知部が故障であると判断した場合に、所定の情報を使用者に報知する報知部が設けられていることを特徴とする請求項1又は2に記載のコージェネレーションシステムである。
請求項3に記載の発明によれば、検知部が故障であると判断した場合に、所定の情報を使用者に報知する報知部が設けられているので、使用者は異常が有ったことを確認することができる。
本発明のコージェネレーションシステムによれば、検知部が故障した場合などにも、逆潮流の発生を未然に防ぐことができる。
以下さらに本発明の具体的実施例について説明する。図1は、本発明のコージェネレーションシステムを示すブロック図である。図2は、本発明のコージェネレーションシステムの制御を示すフローチャートである。図3は、検知部の故障を判定する方法を示すフローチャートである。
本発明の第1の実施形態におけるコージェネレーションシステム1は、図1に示されるように、発電部10、余剰電力使用部12、検知部13、熱貯留部14、制御部15、報知部16が設けられている。
発電部10は、具体的には燃料によって運転を行うことができるエンジンであり、発電部10を運転させることによって、発電及び発熱し、電気と熱を供給することができる。
そして、発電部10は余剰電力使用部12と接続されて余剰電力使用部12に電気を供給することができ、さらに、発電部10及び余剰電力使用部12は、配電盤84を介して外部電源80や電力使用装置81と接続されている。
また、熱貯留部14は、外部に設けられた熱使用装置82に接続されており、熱貯留部14の熱を熱使用装置82へ供給することができる。熱使用装置82は、具体的には給湯装置である。
外部電源80は、外部から電気を供給することができるものであって、具体的には商用電源が接続される。また、このコージェネレーションシステム1と外部電源80とは引き込み線80aを介して接続され、外部電源80から供給される電気は全て引き込み線80aを流れる。そして、外部電源80は、配電盤84を介して、電力使用装置81、発電部10、余剰電力使用部12と、常時、接続されている。
また、電力使用装置81は、外部に設置される装置であり、発電部10及び外部電源80から供給される電気を使用することができるものである。具体的には、冷蔵庫や洗濯機などの家電製品である。
余剰電力使用部12は、具体的には電気ヒータであり、複数の電気ヒータが使用されている。そして、余剰電力使用部12は、タンクである熱貯留部14内に配置され、熱貯留部14内の熱媒体である水を加熱することができる。
検知部13は非接触式のものが用いられており、カレントトランス13aと、電力演算用IC13bとを有している。そして、検知部13から電力出力値S及び電流出力値Iが出力され、電力出力値Sにより外部電源80の引き込み線80aに流れる電力を確認することができ、電流出力値Iにより外部電源80の引き込み線80aに流れる電流を確認することができ、外部電源80に対して流出入する電流又は電力を確認することができる。
カレントトランス13aは、引き込み線80a付近に設置されている。そして、引き込み線80aの電流に応じて検出電流データが出力される。そして、このカレントトランス13aの出力側の配線は電力演算用IC13bに接続されており、カレントトランス13aから出力された検出電流データがに入力される。
また、コージェネレーションシステム1内の配線の電圧の位相は、外部電源80に同期しており、図1に示されるように、電力演算用IC13bをコージェネレーションシステム1内の配線に接続することにより、外部電源80の出力電圧データが電力演算用IC13bに入力される。
そして、カレントトランス13aから出力された交流の電圧信号(電流信号が電圧に変換されたもの)と、外部電源80の電圧信号とが電力演算用IC13bに入力され、この信号に基づいて電力演算用IC13bから電力出力値S及び電流出力値Iが制御部15に出力される。
電力演算用IC13bでの具体的な演算は、カレントトランス13aから出力された交流の電圧信号をA/D変換し、また、外部電源80の電圧信号をA/D変換して、これらを乗じ、この乗じた値に基づいて電力出力値Sが演算される。
また、カレントトランス13aから出力された交流の電圧信号をA/D変換し、この値を2乗し、所定の周期で積算して平均した値に基づいて電流出力値Iが演算される。
そして、この電力出力値S及び電流出力値Iは制御部15に出力される。
このように演算されるので、電力出力値Sは正〜負の値の範囲で出力される。また、電流出力値Iは0以上の値の範囲で出力される。そして、電力出力値Sの絶対値は引き込み線80aの電力に比例し、また、電力出力値Sの値の正負の符号は、引き込み線80aでの電力の流れの方向に対応し、逆潮流かどうかを判断することができる。また、引き込み線80aの電流値が大きくなるほど、電流出力値Iが大きくなる。
なお、カレントトランス13aの引き込み線80aに設置される向きによって、電力出力値Sの正負の符号は反対となり、逆潮流かどうかの判断が逆となってしまうこととなる。
そのため、コージェネレーションシステム1を設置する際に、発電部10を作動させずに余剰電力使用部12を作動させて電力出力値Sの値が正の値か負の値かどうかを確認して、制御部15などに設けられた図示しない記憶部などにこの情報を記憶しておく。そして、実使用時に電力出力値Sがこの記憶された正負の符号と合致した場合には、正常潮流、合致しない場合には逆潮流と判定する。
検知部13はこのようなものを用いているので、引き込み線80aを切断することなく設置することができ、電力出力値Sを確認することができる。
なお、直流に整流する回路をカレントトランス13a及び制御部15との間に設け、制御部15に出力するようにしてもよい。この場合には、出力される値は引き込み線80aでの電流値に比例する。
熱貯留部14は、具体的には水を加熱することにより生成した湯を貯留することができるタンクであり、使用者はこの湯を用いることができる。水の加熱は、発電部10の運転の際に発生する熱や、余剰電力使用部12を使用する場合に発生する熱を用いて行われる。余剰電力使用部12の熱を用いる場合、エンジンを循環する循環水を加熱して、この加熱された熱を用いて、熱貯留部14内の水を加熱することができる。
さらに、熱貯留部14で貯留された熱は、外部に設けられた熱使用装置82で使用することができる。熱使用装置82の例としては、給湯装置などがある。
制御部15は、発電部10及び余剰電力使用部12の運転を制御するものである。そして、制御部15によって、発電部10及び余剰電力使用部12の稼働状態・停止状態の選択や、稼働状態の場合での発電量Hや使用電力Eなどの調整を行うことができる。
本実施形態のように、発電部10がガスエンジンの場合には、発電部10が運転状態の時には発電量Hがほぼ一定値であるので、必要に応じて余剰電力使用部12の使用電力Eを調整する。また、発電部10が燃料電池の場合には、発電量Hを変更することができるので、発電部10の発電量H及び余剰電力使用部12の使用電力Eの一方又は両方を必要に応じて調整する。
制御部15は、検知部13によって検知される電力出力値Sや電流出力値Iによって制御が行われている。この電力出力値Sや電流出力値Iは、前記したように、引き込み線80aの電力や電流に対応して増加・減少するものであり、外部電源80から供給される電力をできるだけ小さくするようにして、省エネルギーとなるように発電部10や余剰電力使用部12の運転の制御が行われる。
そして、検知部13による電力出力値Sなどにより、発電部10や、余剰電力使用部12の運転を制御する。また、この制御部15による制御は、他の条件、例えば、電気や熱の必要量を予測した値を用いて発電部10や、余剰電力使用部12を制御することもできる。
上記のように、検知部13は、引き込み線80aでの電力の流れの方向を確認するのに必要なものである。しかしながら、カレントトランス13aが断線などによって破損した場合には、電力出力値Sは常に0付近となる。このような場合、発電部10で発電された電気と、余剰電力使用部12及び電力使用装置81で使用される電気とが釣り合っているのかどうかが判断できない。
そのため、検知部13の故障によって電力出力値Sが0となっているのに、発電されている電力と使用される電力とが釣り合っていると判断してしまうと、正常に制御できなくなって省エネルギーとならないだけでなく、逆潮流を防止することができない。
そこで、本発明のコージェネレーションシステム1では、このようなことが発生しないように、以下のような制御が行われる。
なお、上記したように、カレントトランス13aの引き込み線80aに設置される向きによって、電力出力値Sの正負の符号は反対となり、逆潮流かどうかの判断など、電力出力値Sによる判断が逆となってしまうこととなる。そのため、以下に示す実施形態の説明では電力出力値Sの符号が正の時には、電力の流れは、外部電源80からコジェネレーションシステム1への方向、すなわち、正常潮流となる場合について説明する。そして、カレントトランス13aの引き込み線80aに設置される向きが、この場合とは逆の場合には、電力出力値Sによる判断において、増加・減少が逆となるように制御される。
図3に示されるように、余剰電力使用部12の使用電力Eを確認して、余剰電力使用部12の能力と比較し、使用電力Eを増加操作するか減少操作するかを判断する(STEP30〜35)。使用電力Eの増加操作は、余剰電力使用部12での電力の使用を多くして使用電力Eを増加させ、使用電力Eの減少操作は、余剰電力使用部12での電力の使用を少なくして使用電力Eを減少させるものである。
具体的には、まず、STEP30で、余剰電力使用部12の使用電力Eを確認する。そして、余剰電力使用部12の能力と、使用電力Eとを比較して、使用電力Eが能力の上限付近かどうかを確認する(STEP31)。そして、上限付近でない場合には、STEP32に進む。この場合には、使用電力Eを増加操作することが可能であるので使用電力Eを増加操作して、電力出力値Sの変化を確認し(STEP33)、電力出力値Sが増加変化したかどうかを確認する(STEP34)。
そして、電力出力値Sが増加変化した場合にはSTEP38に進み、正常判定する。また、増加変化しない場合には、STEP39に進み、故障判定する。
また、STEP31の説明に戻るが、余剰電力使用部12の使用電力Eが能力の上限付近の場合には、余剰電力使用部12の使用電力Eを増加させることができないので、STEP35に進み、使用電力Eを減少変化させる操作を行う。そして、電力出力値Sの変化を確認し(STEP36)、電力出力値Sが減少変化したかどうかを確認する(STEP37)。
電力出力値Sが減少変化した場合には、STEP38に進み、正常判定する。また、減少変化しない場合には、STEP39に進み故障判定する。
上記の電力出力値Sの変化を確認する場合、元々電力出力値Sは0付近であるので、この値から変化するかどうかを確認する。
検知部13の故障を判定する場合に、使用電力Eを変化させれば、検知部13の故障の判定ができる。しかし、使用電力Eを減少させると、発電部10からの電気が余って外部電源80へ流れて逆潮流が発生しやすくなる。そこで、上記した方法のように、使用電力Eが余剰電力使用部12の上限付近でない場合などの特別な場合以外は、原則として、使用電力Eを増加させて変化させることが望ましい。
また、使用電力Eを減少させて判定する場合には、逆潮流が発生した場合にもできるだけ短時間となるように、変化をさせる時間を、逆潮流の許容時間を超えない時間だけ行うようにすることが望ましい。具体的には、逆潮流の許容時間が350ミリ秒である場合に、使用電力Eを変化させてその状態を維持する時間を100ミリ秒とする。
電力出力値Sは、引き込み線80aに流れる電力に対応する値となるので、外部に設けられる電力使用装置81の使用電力E1及び使用電力Eの合計と、発電部10での発電量Hとがほぼ等しい時には、電力出力値Sが0付近となることがある。
そのため、電力出力値Sが0になった場合すぐに判定操作を行うと、頻繁に判定操作が行われてしまう。そこで、このような場合に、頻繁に判定操作がされないように、一定時間連続して電力出力値Sが0付近となった場合に、この判定を行うようにすることができる。すなわち、故障して電力出力値Sが0付近となった場合には、その状態が続くが、使用電力E1と使用電力Eとの合計が、発電量Hと等しい場合には、一時的な場合が多いので、このように制御することにより、故障の場合には確実に判定操作して、判定操作の発生頻度を小さくすることができる。
このように制御を行う場合には、電力出力値Sを連続的、或いは、断続的に出力するようにし、一定期間の電力出力値Sが連続して0付近となることにより、判定操作を行い、余剰電力使用部12の使用電力Eを変化させる。
本発明のコージェネレーションシステム1の具体的な制御は、以下の通りである。
図2に示すように、発電部10を運転し(STEP1)、出力される出力値Sを検知しする(STEP2)。そして、この電力出力値Sが0であるかどうかを判断する(STEP3)。電力出力値Sが0であった場合には、STEP4で所定の時間の経過を待ち、所定の時間の間、電力出力値Sが0を維持し続けた場合には、STEP5に進み、図3に示す検知部13の故障判定操作を行う。
なお、この電力出力値Sの0の判定は、検知部13が故障した場合に出力する値であり、0付近の値も含むものである。
そして、故障判定操作により故障判定を行い(STEP6)、故障判定がされた場合、発電部10を停止し(STEP7)、さらに、報知部16によって所定の情報を使用者に報知する(STEP12)。この報知は、操作用のリモコンなどに表示したり、音声により報知することもできる。この使用者に報知される所定の情報としては、検知部13が故障した旨の情報でも良く、故障の詳細な内容を表示することなく、単に故障である旨の情報でも良い。
このように、故障判定がされた場合には、発電部10を停止させることにより、逆潮流が発生するおそれがなくなる。
また、故障判定とならなかった場合には、再びSTEP2に戻り、同様の動作を繰り返す。
STEP3で電力出力値Sが0とならなかった場合には、STEP8に進み、引き込み線80aを流れる電力の方向の判定を行うかどうかを判断する。この判断は、所定の時間間隔で実施しても良く、何らかの条件を元に実施しても良く、常に行っても良い。そして、引き込み線80aに流れる電力の方向の判定を行うと判断されると、逆潮流状態かどうかが確認される(STEP10)。
そして、電力出力値Sが負の値の場合、STEP10で逆潮流と判定され、逆潮流回避操作が行われる(STEP11)。この逆潮流回避操作は、コージェネレーションシステム1で余る電力(発電量Hから余剰電力使用部12の使用電力Eを引いたもの)を電力使用装置81で消費される電力よりも小さくするものであり、具体的には、発電部10の発電量Hを小さくしたり、余剰電力使用部12の使用電力Eを大きくしたりする。
そして再びSTEP2に戻り、同様の動作を繰り返す。
このように、本発明のコージェネレーションシステム1では、カレントトランス13aが故障した場合などにも、逆潮流の発生を未然に防ぐことができる。
そして、引き込み線80aに電流がほとんど流れない場合など、検知部13による電力出力値Sが0付近である場合には、通常は、このような余剰電力使用部12の使用電力Eを変化させることはないが、本発明のコージェネレーションシステム1では、このような場合に余剰電力使用部12の使用電力Eを変化させて、カレントトランス13aの故障などを確認することができる。
また、上記した電力出力値Sは、引き込み線80aに流れる電力に比例する値であったが、電流に比例する値を用いることができる。この場合には、電流出力値Iを用いても良く、また、直流に整流する回路をカレントトランス13a及び制御部15との間に設け、制御部15に出力するようにすることができる。
本発明のコージェネレーションシステムを示すブロック図である。 本発明のコージェネレーションシステムの制御を示すフローチャートである。 検知部の故障を判定する方法を示すフローチャートである。
符号の説明
1 コージェネレーションシステム
10 発電部
12 余剰電力使用部
13 検知部
15 制御部
16 報知部
80 外部電源
80a 引き込み線
81 電力使用装置
E 使用電力
H 発電量
S 電力出力値

Claims (3)

  1. 発電可能な発電部と、使用電力を可変させることができる余剰電力使用部と、前記発電部及び余剰電力使用部の運転を制御することができる制御部とを有し、前記発電部及び余剰電力使用部は、外部電源及び電力使用装置と接続されており、
    外部電源は、外部から電気を供給することができるものであり、電力使用装置は、発電部及び外部電源から供給される電気を使用することができるものであり、外部電源の引き込み線の電流、又は、外部電源の引き込み線に流れる電力を確認することができる検知部が設けられ、検知部によって出力される出力値により外部電源に対して流出入する電流又は電力を確認することができ、
    発電中に検知部によって出力された出力値が検知部の故障時に出力される出力値近傍となった場合に、余剰電力使用部の使用電力を変化させ、当該変化による検知部の出力値の変化により、検知部の故障の有無を確認することができ、検知部が故障であると判断した場合には、発電部を停止するように制御するものであり、
    余剰電力使用部の使用電力を変化させる操作は、増加操作及び減少操作のいずれの操作も可能であり、余剰電力使用部の能力と余剰電力使用部の使用電力とを比較して、増加操作又は減少操作を選択するものであることを特徴とするコージェネレーションシステム。
  2. 余剰電力使用部の使用電力を減少操作させる場合には、逆潮流の許容時間を超えない時間だけ行うものであることを特徴とする請求項1に記載のコージェネレーションシステム。
  3. 検知部が故障であると判断した場合に、所定の情報を使用者に報知する報知部が設けられていることを特徴とする請求項1又は2に記載のコージェネレーションシステム。
JP2005098745A 2005-03-30 2005-03-30 コージェネレーションシステム Pending JP2006280159A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098745A JP2006280159A (ja) 2005-03-30 2005-03-30 コージェネレーションシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098745A JP2006280159A (ja) 2005-03-30 2005-03-30 コージェネレーションシステム

Publications (1)

Publication Number Publication Date
JP2006280159A true JP2006280159A (ja) 2006-10-12

Family

ID=37214287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098745A Pending JP2006280159A (ja) 2005-03-30 2005-03-30 コージェネレーションシステム

Country Status (1)

Country Link
JP (1) JP2006280159A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219975A (ja) * 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd コジェネレーション装置と該コジェネレーション装置における電流検出手段の配線確認方法
JP2009118673A (ja) * 2007-11-08 2009-05-28 Panasonic Corp 分散型電源システム
WO2012002449A1 (ja) * 2010-06-30 2012-01-05 三洋電機株式会社 エネルギー管理システム
JP5501757B2 (ja) * 2007-02-20 2014-05-28 パナソニック株式会社 発電装置及びその運転方法
GB2510153A (en) * 2013-01-25 2014-07-30 Farrsight Ltd Consumption control for grid connected micro-generation system
JP2017050929A (ja) * 2015-08-31 2017-03-09 大阪瓦斯株式会社 熱電併給システム
JP2022158380A (ja) * 2021-04-02 2022-10-17 株式会社 ソーラージャパン 交流電源制御方法及び交流電源制御装置システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004092458A (ja) * 2002-08-30 2004-03-25 Chofu Seisakusho Co Ltd コージェネレーションシステムの制御装置
JP2004260916A (ja) * 2003-02-26 2004-09-16 Noritz Corp コージェネレーションシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004092458A (ja) * 2002-08-30 2004-03-25 Chofu Seisakusho Co Ltd コージェネレーションシステムの制御装置
JP2004260916A (ja) * 2003-02-26 2004-09-16 Noritz Corp コージェネレーションシステム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5501757B2 (ja) * 2007-02-20 2014-05-28 パナソニック株式会社 発電装置及びその運転方法
JP2008219975A (ja) * 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd コジェネレーション装置と該コジェネレーション装置における電流検出手段の配線確認方法
JP2009118673A (ja) * 2007-11-08 2009-05-28 Panasonic Corp 分散型電源システム
WO2012002449A1 (ja) * 2010-06-30 2012-01-05 三洋電機株式会社 エネルギー管理システム
GB2510153A (en) * 2013-01-25 2014-07-30 Farrsight Ltd Consumption control for grid connected micro-generation system
JP2017050929A (ja) * 2015-08-31 2017-03-09 大阪瓦斯株式会社 熱電併給システム
JP2022158380A (ja) * 2021-04-02 2022-10-17 株式会社 ソーラージャパン 交流電源制御方法及び交流電源制御装置システム
JP7264519B2 (ja) 2021-04-02 2023-04-25 株式会社 ソーラージャパン 交流電源制御方法及び交流電源制御装置システム

Similar Documents

Publication Publication Date Title
JP5501757B2 (ja) 発電装置及びその運転方法
JP2006280159A (ja) コージェネレーションシステム
JP5648121B2 (ja) 分散型発電システム及びその運転方法
JPWO2007066707A1 (ja) 電力回収用コンバータ
EP2613164A1 (en) Distributed power generation device and method for operating same
JP4859707B2 (ja) コジェネレーション装置と該コジェネレーション装置における電流検出手段の配線確認方法
KR101582850B1 (ko) Hvdc 시스템의 전원 이중화 장치 및 그 제어방법
JP4873029B2 (ja) 分散型電源装置
JP4967380B2 (ja) 燃料電池発電装置システム
JP2012222923A (ja) 分散型発電装置
JP2008092767A (ja) 発電装置
JP2014011834A (ja) パワーコンディショナー並びに燃料電池発電システム
JP6065641B2 (ja) 分散型電源システムおよびその診断方法
JP2006280097A (ja) 発電システム
JP2013079746A (ja) 熱電併給システム
JP2010283942A (ja) コージェネレーション装置
JP2010142085A (ja) パワーコンディショナ
JP2013243794A (ja) 電力供給システムおよび電力供給方法
KR101032487B1 (ko) 태양광 발전 전력제어장치
JP5387145B2 (ja) コージェネレーション装置及びコージェネレーション装置の運転方法
JP2010071493A (ja) コージェネレーションシステム、運転制御装置、コージェネレーションシステムの運転方法及びプログラム
JP2015043642A (ja) パワーコンディショナ
JP6209337B2 (ja) 給電システム、給電プログラムおよび給電方法
JP5939568B2 (ja) 自然エネルギーによる発電電力適正使用システム
JP2011154849A (ja) 燃料電池発電装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100422