JP2015078946A - 距離測定型光電センサ及びその投光スポット制御方法 - Google Patents

距離測定型光電センサ及びその投光スポット制御方法 Download PDF

Info

Publication number
JP2015078946A
JP2015078946A JP2013217218A JP2013217218A JP2015078946A JP 2015078946 A JP2015078946 A JP 2015078946A JP 2013217218 A JP2013217218 A JP 2013217218A JP 2013217218 A JP2013217218 A JP 2013217218A JP 2015078946 A JP2015078946 A JP 2015078946A
Authority
JP
Japan
Prior art keywords
light
optical path
path length
detection
photoelectric sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013217218A
Other languages
English (en)
Inventor
泰範 川口
Yasunori Kawaguchi
泰範 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keyence Corp
Original Assignee
Keyence Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keyence Corp filed Critical Keyence Corp
Priority to JP2013217218A priority Critical patent/JP2015078946A/ja
Priority to US14/481,014 priority patent/US20150108376A1/en
Publication of JP2015078946A publication Critical patent/JP2015078946A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/32Measuring distances in line of sight; Optical rangefinders by focusing the object, e.g. on a ground glass screen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/14Mountings, adjusting means, or light-tight connections, for optical elements for lenses adapted to interchange lenses
    • G02B7/16Rotatable turrets

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】検出光のスポット径の大きさを自在に変更することができる距離測定型光電センサを提供する。
【解決手段】検出光L1を生成する発光素子11と、発光素子11の光軸上に配置され、検出光L1を検出領域に向けて投光するための投光レンズ13と、発光素子11から投光レンズ13に至る検出光L1の光路長を調整する光路長調整機構と、検出領域において検出対象部から反射された検出光L1を受光し、受光信号を生成する受光素子22と、受光信号に基づいて、検出光L1の伝搬時間から検出対象物までの距離を測定する距離演算部104により構成される。光路長調整機構により、距離の測定に用いる検出光L1のスポット径の大きさが選択自在である。
【選択図】図2

Description

本発明は、距離測定型の光電センサ及びその投光スポット制御方法に係り、さらに詳しくは、検出光を投光してその反射光を受光する光電センサの改良に関する。
距離測定型の光電センサは、検出光を検出領域に向けて投光し、検出領域においてワークから反射された検出光を受光し、ワークまでの距離を求めて、ワークの有無を示す判定信号を生成する。また、距離測定型の光電センサは、距離の測定値を表示部に表示し、或いは、判定信号や距離の測定値を示すアナログ信号を外部機器へ出力する。例えば、ワークまでの距離は、イメージセンサを用いて1次元の受光量分布を検出することにより、三角測量の原理を利用して求められる。或いは、投光から受光に至るまでの検出光の伝搬時間を計測するTOF(Time Of Flight)法を利用して、ワークまでの距離が求められる。上記判定信号は、ワークまでの距離を閾値と比較した比較結果に基づいて生成される。
一般に、距離測定型の光電センサは、測定範囲が規定されており、その測定範囲内で所望の性能を満たすよう、投光ビームの形状が設計されている。例えば、ワークまでの距離が変わっても投光スポットのスポット径が概ね一定となるように設計され、或いは、測定範囲の中央付近で最小のビーム径(スポット径)となるように設計されている。特に、三角測量の原理を利用する光電センサは、イメージセンサの長手方向に関してスポット径の小さい投光スポットが望まれている。
しかしながら、ワーク表面の状態によっては、ビーム径(スポット径)を小さくすることが必ずしも良い結果とならない場合があり、三角測量の原理を利用する光電センサでは、対応することができない。
また、ワーク表面の状態を見ただけでは、予めどの程度のビーム径(スポット径)が良いのかを判断することは困難である。例えば、手前にある障害物の穴越しに小さなワークを検出したい場合は、どのような投光ビームが最適であるのかを事前に把握することは困難である。
本発明は、上記事情に鑑みてなされたものであり、検出光のスポット径の大きさを自在に変更することができる距離測定型光電センサを提供することを目的とする。特に、検出領域における検出光のスポット径の大きさを自在に変更することができる距離測定型光電センサを提供することを目的とする。
また、本発明は、上述した様な距離測定型光電センサにおける投光スポットの制御方法を提供することを目的とする。
第1の本発明による距離測定型光電センサは、検出光を生成する発光素子と、上記発光素子の光軸上に配置され、上記検出光を検出領域に向けて投光するための投光レンズと、上記発光素子から上記投光レンズに至る上記検出光の光路長を調整する光路長調整機構と、上記検出領域において検出対象部から反射された上記検出光を受光し、受光信号を生成する受光素子と、上記受光信号に基づいて、上記検出光の伝搬時間から上記検出対象物までの距離を測定する距離演算部とを備え、上記光路長調整機構により、距離の測定に用いる上記検出光のスポット径の大きさが選択自在であるように構成される。
この距離測定型光電センサでは、発光素子から投光レンズに至る検出光の光路長を調整することにより、投光レンズの出射側から見た場合における発光素子の見かけの位置が光軸方向に移動するので、検出領域における検出光のスポット径の大きさを自在に変更することができる。
第2の本発明による距離測定型光電センサは、上記構成に加え、上記光路長調整機構が、互いに平行な入射面及び出射面を有する光路長変換素子を上記発光素子及び上記投光レンズ間に選択的に配置することにより、上記光路長の調整を行うように構成される。
この様な構成によれば、発光素子又は投光レンズを物理的に移動させる可動機構が不要であるので、発光素子及び投光レンズ間で光軸のずれを生じ難くすることができる。また、互いに平行な入射面及び出射面を有する光路長変換素子を検出光が通過する場合、光路長変換素子の位置や向きに僅かなずれが生じても、光路長への影響は小さい。このため、振動などの機械的負荷や周囲の温度変化の影響を受け難く、検出光のスポット径の大きさを正確に制御することができる。
また、発光素子及び投光レンズ間に光路長変換素子を選択的に配置することにより、光路長の調整を行うので、距離測定型光電センサの投光軸方向のサイズが大型化するのを抑制することができる。さらに、光路長変換素子を頑強な構造によって保持する必要がないので、装置の大型化や製造コストの増大を抑制することができる。
第3の本発明による距離測定型光電センサは、上記構成に加え、上記光路長調整機構が、距離の測定に用いる上記検出光のスポット径の大きさを段階的に切り替えるように構成される。この様な構成によれば、スポット径を連続的に切り替える場合に比べ、スポット径を調整する際の再現性を良くすることができる。
第4の本発明による距離測定型光電センサは、上記構成に加え、上記距離を予め定められた閾値と比較し、その比較結果に基づいて、判定信号を生成する判定信号生成部を備えて構成される。この距離測定型光電センサでは、検出対象物の有無に応じた判定信号を外部機器へ出力することができる。
第5の本発明による距離測定型光電センサは、上記構成に加え、上記入射面及び上記出射面の距離が互いに異なる2以上の上記光路長変換素子を備え、上記光路長調整機構が、上記発光素子の光軸上に上記光路長変換素子のいずれか一つを選択的に配置するように構成される。
光路長変換素子の入射面から出射面に至る光路長は、入射面及び出射面間の距離に比例する。上記距離測定型光電センサでは、入射面及び出射面の距離が互いに異なる2以上の光路長変換素子の中からいずれか一つを発光素子の光軸上に選択的に配置するので、発光素子から投光レンズに至る光路長を予め定められた範囲内で調整することができる。
第6の本発明による距離測定型光電センサは、上記構成に加え、屈折率が互いに異なる透明性部材からなる2以上の上記光路長変換素子を備え、上記光路長調整機構が、上記発光素子の光軸上に上記光路長変換素子のいずれか一つを選択的に配置するように構成される。
光路長変換素子の入射面から出射面に至る光路長は、透明性部材の屈折率に比例する。上記距離測定型光電センサでは、屈折率が互いに異なる2以上の光路長変換素子の中からいずれか一つを発光素子の光軸上に選択的に配置するので、発光素子から投光レンズに至る光路長を予め定められた範囲内で調整することができる。
第7の本発明による距離測定型光電センサは、上記構成に加え、回転軸を中心とする周方向の異なる位置に2以上の上記光路長変換素子を保持する変換素子ホルダを備え、上記光路長調整機構が、上記回転軸を中心とする上記変換素子ホルダの回転角度を選択することにより、上記発光素子の光軸上に上記光路長変換素子のいずれか一つを配置するように構成される。この様な構成によれば、回転軸を中心として変換素子ホルダを回転させることにより、発光素子から投光レンズに至る光路長を予め定められた範囲内で調整することができる。
第8の本発明による距離測定型光電センサは、上記構成に加え、上記変換素子ホルダが、上記発光素子の光軸と略平行な回転軸を有するように構成される。この様な構成によれば、発光素子の光軸と略平行な回転軸を中心として変換素子ホルダを回転させるので、距離測定型光電センサの投光軸方向のサイズが大型化するのを抑制することができる。
第9の本発明による距離測定型光電センサの投光スポット制御方法は、検出光を検出領域に向けて投光し、上記検出領域において検出対象物から反射された上記検出光を受光する距離測定型光電センサの投光スポット制御方法であって、上記検出光を生成する発光素子から投光レンズに至る上記検出光の光路上に、互いに平行な入射面及び出射面を有する光路長変換素子を選択的に配置することにより、上記光路の長さを調整することを特徴としている。
本発明によれば、検出光のスポット径の大きさを自在に変更することができる距離測定型光電センサを提供することができる。特に、本発明による距離測定型光電センサでは、検出領域における検出光のスポット径の大きさを自在に変更することができる。
また、本発明によれば、上述した様な距離測定型光電センサにおける投光スポットの制御方法を提供することができる。
本発明の実施の形態1による距離測定型光電センサ1の一構成例を示した外観図である。 図1の距離測定型光電センサ1の機能構成の一例を示したブロック図である。 図2の変換素子ホルダ12の構成例を示した図であり、変換素子ホルダ12を投光レンズ13側から見た場合が示されている。 発光素子11を光軸方向に移動させて検出光L1のスポット径を変更する光電センサHRの動作を比較例として示した図である。 図2の距離測定型光電センサ1の動作の一例を示した図であり、光路長変換素子12aを選択的に配置して検出光L1のスポット径を変更する場合が示されている。 図1の距離測定型光電センサ1を分解して示した斜視図である。 図6の光路長調整機構30の構成例を示した斜視図である。 光路長調整機構30と光学ベース50を示した図である。 図8の光学ベース50の構成例を示した断面図であり、光学ベース50をA1−A1切断線により切断した場合の切断面が示されている。 図2の距離測定型光電センサ1の動作の一例を示した図であり、検出光L1の光路長を調整することにより、スポット径の分布が変化する様子が示されている。 図1の距離測定型光電センサ1の構成例を示した図であり、本体ケース40の投受光面が示されている。 図11の距離測定型光電センサ1の構成例を示した断面図であり、本体ケース40をA2−A2切断線により切断した場合の切断面が示されている。 本発明の実施の形態2による距離測定型光電センサ1の一構成例を示した斜視図である。 図2の距離測定型光電センサ1の他の構成例を示した図であり、光路長変換素子12aの存在しない領域を選択可能な変換素子ホルダ12が示されている。 距離測定型光電センサ1のその他の構成例を示した斜視図であり、光軸KJと交差する方向へ直線的に移動させる変換素子ホルダ12が示されている。 距離測定型光電センサ1の他の構成例を示した図であり、回転角度に応じて入射面及び出射面の距離が段階的に変化する光路長変換素子12aが示されている。 距離測定型光電センサ1の他の構成例を示した図であり、回転角度に応じて入射面及び出射面の距離が連続的に変化する光路長変換素子12aが示されている。 距離測定型光電センサ1の他の構成例を示した図であり、2つのくさび形状の光学部材12dからなる光路長変換素子12aが示されている。
実施の形態1.
<距離測定型光電センサ1>
図1は、本発明の実施の形態1による距離測定型光電センサ1の一構成例を示した外観図であり、図中の(a)には、距離測定型光電センサ1を斜め前方から見た場合が示され、(b)には、距離測定型光電センサ1を斜め後方から見た場合が示されている。この距離測定型光電センサ1は、検出光L1を検出対象物に照射して検出対象物からの反射光L2を受光し、検出対象物の有無を示す判定信号を生成する検出スイッチである。例えば、距離測定型光電センサ1は、受光結果から検出対象物までの距離を求めて判定信号を生成する測距方式の光電センサである。また、検出光L1には、可視光線が用いられる。
距離測定型光電センサ1は、検出光L1を検出対象物に向けて投光するための投光窓10と、検出対象物による反射光L2を受光するための受光窓20と、表示灯2、セットキー3、セレクトキー4,5及び画面表示部6と、トリマ操作部31とを備えて構成されている。投光窓10及び受光窓20は、筐体前面に配設され、表示灯2、セットキー3、セレクトキー4,5及び画面表示部6は、筐体上面に配設されている。
表示灯2は、検出対象物の有無、受光状態等を発光色、点灯状態によって示す表示装置である。セットキー3、セレクトキー4及び5は、各種入力、画面切替のための操作キーであり、押下型の接点式スイッチからなる。画面表示部6は、距離の測定値、判定閾値等を画面表示するための表示装置である。
この距離測定型光電センサ1では、互いに平行な入射面及び出射面を有する光路長変換素子を用いて、発光素子から投光レンズに至る検出光L1の光路長を調整することにより、検出光L1を検出対象物に照射した際に検出対象物上に形成される投光スポットのスポット径の大きさを自在に変更することができる。トリマ操作部31は、上記光路長を調整するための操作子であり、筐体背面に配設されている。
図2は、図1の距離測定型光電センサ1の機能構成の一例を示したブロック図である。この距離測定型光電センサ1は、画面表示部6、発光素子11、変換素子ホルダ12、投光レンズ13、受光レンズ21、受光素子22、投光タイミング制御部101、発光素子駆動回路102、受光回路103、距離演算部104、操作部105、表示制御部106、判定閾値記憶部107及び判定信号生成部108により構成される。図中には、TOF法を利用して検出対象物までの距離を求める距離測定型光電センサ1の機能構成が示されている。
発光素子11は、検出光L1を生成する光源装置である。例えば、発光素子11には、赤色レーザー光を生成するLD(レーザーダイオード)が用いられる。投光レンズ13は、発光素子11の光軸上に配置され、検出光L1を所定の検出領域に向けて投光するための1又は2以上の光学レンズからなり、発光素子11からの検出光L1を集光し、或いは、拡散させる。
変換素子ホルダ12は、入射面NM及び出射面SMの距離が互いに異なる2以上の光路長変換素子12aを保持する保持手段であり、発光素子11及び投光レンズ13間に配置されている。光路長変換素子12aは、互いに平行な入射面NM及び出射面SMを有し、入射面NMから出射面SMに至る光路の長さを光路長変換素子12aがない場合よりも長くする光学素子である。
この変換素子ホルダ12は、発光素子11の光軸と略平行な回転軸12bを有し、回転軸12bを中心として回転させることができる。また、変換素子ホルダ12の回転角度を選択することにより、発光素子11の光軸上に光路長変換素子12aのいずれか一つが配置され、発光素子11から投光レンズ13に至る検出光L1の光路長が調整される。
受光レンズ21は、検出対象物からの反射光L2を集光し、受光素子22上に結像する1又は2以上の光学レンズからなる。受光素子22は、検出対象物からの反射光L2を受光し、反射光L2の光量に応じた受光信号を生成する光電変換素子であり、受光レンズ21の光軸上に配置されている。反射光L2は、検出領域において検出対象物により反射された検出光L1である。例えば、受光素子22は、PD(フォトダイオード)からなり、受光強度に応じて電流値が変化する受光信号を生成する。
投光タイミング制御部101は、投光タイミングを制御するためのタイミング信号を生成し、発光素子駆動回路102及び距離演算部104へ出力する。発光素子駆動回路102は、タイミング信号に基づいて、発光素子11を点灯させる。
受光回路103は、受光素子22からの受光信号を差動増幅するとともに、コンパレータを用いて二値化し、距離演算部104へ出力する。距離演算部104は、二値化された受光信号をサンプリングして受光波形を取得し、その受光波形に基づいて、検出対象物までの距離を測定する。具体的には、投光パルスに対応する受光パルスの立ち上がりを検知して、検出光L1が投光窓10から出射され、その反射光L2が受光窓20で受光されるまでの伝搬時間と、光の速さとに基づいて、投光窓10から検出対象物までの距離が求められる。
判定信号生成部108は、距離演算部104によって求められた距離の測定値に基づいて、検出対象物の有無を示す判定信号を生成する。判定信号は、距離の測定値を判定閾値と比較した比較結果に基づいて生成される。判定閾値記憶部107には、予め定められた判定閾値が保持される。表示制御部106は、操作部105からの入力信号に基づいて画面表示部6を制御し、距離の測定値、判定閾値を表示する。なお、距離測定型光電センサ1は、判定信号を生成する判定信号生成部108に代えて、距離の測定値を示すアナログ信号を生成するアナログ信号生成部を備える構成であっても良い。或いは、距離測定型光電センサ1は、判定信号を生成する判定信号生成部108に加えて、距離の測定値を示すアナログ信号を生成するアナログ信号生成部を備える構成であっても良い。判定信号やアナログ信号は、外部機器へ出力される。
<変換素子ホルダ12>
図3は、図2の変換素子ホルダ12の構成例を示した図であり、変換素子ホルダ12を投光レンズ13側から見た場合が示されている。この変換素子ホルダ12は、回転軸12bを中心とする周方向の異なる位置に複数の光路長変換素子12aを保持するホルダであり、螺旋階段状に厚さを変化させた形状からなる。
また、変換素子ホルダ12の入射面NMは、発光素子11の光軸と略垂直であり、平坦面からなる。各光路長変換素子12aは、回転軸12bを中心とする扇形形状の領域内に配置され、扇形領域の厚さを段階的に変化させることにより、光路長変換素子12a間で入射面NM及び出射面SMの距離を異ならせている。この例では、8つの光路長変換素子12aが一定間隔で配置され、発光素子11から投光レンズ13に至る光路長を8段階で調整することができる。
図4は、発光素子11を光軸方向に移動させて発光素子11及び投光レンズ13間の距離を変化させることにより、検出光L1のスポット径の大きさを変更する光電センサHRの動作を比較例として示した図である。図中の(a)には、焦点位置FPが投光レンズ13から近い位置に形成される場合が示され、(b)には、焦点位置FPが投光レンズ13から遠い位置に形成される場合が示されている。
発光素子11から出射され、投光レンズ13によって集光された検出光L1は、焦点位置FPにおいて、ビーム径が最小となり、ワークW上に投光スポットを形成する(図4の(a))。ワークWは、検出対象物である。図4の(a)の状態から発光素子11を投光レンズ13に近づけて、発光素子11及び投光レンズ13間の距離を短縮すれば、検出光L1の焦点位置FPは投光レンズ13から遠い位置に移動し、ワークW上の投光スポットは小さくなる(図4の(b))。発光素子11及び投光レンズ13間の距離は、連続的に変化させることができる。
この様な光電センサHRによれば、発光素子11又は投光レンズ13を光軸方向に移動させて、発光素子11及び投光レンズ13間の距離を変化させることにより、投光スポットのサイズ、検出光L1の焦点位置FPを制御することができる。しかしながら、光電センサHRでは、発光素子11又は投光レンズ13を物理的に移動させる可動機構を必要とすることから、可動機構のがたつきによって発光素子11及び投光レンズ13間で距離ずれや光軸のずれが生じ易い。
図5は、図2の距離測定型光電センサ1の動作の一例を示した図であり、発光素子11の光軸KJ上に光路長変換素子12aのいずれか一つを選択的に配置することにより、検出光L1のスポット径の大きさを変更する場合が示されている。図中の(a)には、厚さの薄い光路長変換素子12aを光軸KJ上に配置した場合が示され、(b)には、厚さの厚い光路長変換素子12aを光軸KJ上に配置した場合が示されている。
光電センサHRの場合、発光素子11から出射された検出光L1は、投光レンズ13に近づくに従って、ビーム径が一定の傾きで増加している。これに対し、距離測定型光電センサ1では、発光素子11から出射された検出光L1は、光路長変換素子12aを透過して投光レンズ13に入射する。光路長変換素子12aの透光領域は、検出光L1の光路をカバーする形状及びサイズからなる。
一般に、入射面NMから出射面SMに至る光路長は、光路長変換素子12aを構成する透明性部材の屈折率nと、入射面NM及び出射面SM間の距離(物理的距離)、すなわち、透明性部材の厚さDとの積によって表される光学的距離からなる。屈折率nは1よりも大きいことから、光路長変換素子12aを光軸KJ上に配置することにより、光路長変換素子12aが存在しない場合に比べ、発光素子11から投光レンズ13に至る光路長を長くすることができる。つまり、発光素子11の見かけの発光位置を投光レンズ13側へ近づけることができる。
或いは、厚さDの厚い光路長変換素子12aを光軸KJ上に配置することにより、厚さDの薄い光路長変換素子12aを配置する場合に比べ、発光素子11から投光レンズ13に至る光路長を長くすることができる。
光軸KJを中心としてビーム径が拡がる拡散光が透明性部材からなる平行板を通過すると、平行板の前後でビームの広がり角は同一であるものの、平行板内でビームの広がり角がやや小さくなる。このため、投光レンズ13の出射側から見た場合の光源の仮想的な位置VP、すなわち、発光素子11の見かけの位置は、発光素子11の実際の位置よりも投光レンズ13に近い位置に形成される。光源の仮想的な位置VPは、透明性部材の厚さDが増すほど、投光レンズ13に近い位置に形成される。
距離測定型光電センサ1では、上述した仕組みを利用することにより、発光素子11及び投光レンズ13間の距離を変化させることなく、投光レンズ13を透過した検出光L1の拡がりを制御することができる。特に、光軸KJ上に厚さDの異なる光路長変換素子12aのいずれか一つを選択的に配置することにより、投光スポットのスポット径を段階的に調整することができる。
また、光路長変換素子12aの位置が変化し、或いは、光路長変換素子12aが光軸KJに対して傾いたとしても、投光スポットのサイズや検出光L1の焦点位置に与える影響は小さい。このため、光路長変換素子12aの位置決め精度は、発光素子12や投光レンズ13に比べて、相対的に低くて良い。
図6は、図1の距離測定型光電センサ1を分解して示した斜視図である。この図では、検出光L1の投光軸に平行な方向を前後方向とするとともにz方向と呼び、投光軸に垂直な平面内において、左右方向をx方向、上下方向をy方向とそれぞれ呼んでいる。
距離測定型光電センサ1は、発光素子11、投光レンズ13、投光レンズカバー14、鏡筒15、受光レンズ21、受光素子22、受光レンズカバー23、光路長調整機構30、トリマ操作部31、本体ケース40、表示灯カバー41、キートップ42、画面カバー43、光学ベース50、メイン基板51、本体カバー52、表示基板60、スイッチ接点部61、表示素子62,63、投光基板70及び受光基板80により構成される。
<光学ベース50>
光学ベース50は、光学部材を保持するための土台部材であり、強度を確保するための形状を有する構造体からなる。光学ベース50には、光路長調整機構30、発光素子11、投光レンズ13、鏡筒15、受光レンズ21、受光素子22、メイン基板51、投光基板70及び受光基板80が取り付けられる。この光学ベース50は、高強度の樹脂材料、例えば、ガラス繊維によって強化した樹脂材料からなる。
光路長調整機構30は、変換素子ホルダ12を含む組立体からなり、発光素子11及び投光レンズ13間に光路長変換素子12aを選択的に配置することにより、発光素子11から投光レンズ13に至る検出光L1の光路長を調整する光路長調整手段である。この光路長調整機構30は、回転軸12bを中心として変換素子ホルダ12を回転可能に支持し、本体ケース40を介してトリマ操作部31が取り付けられる。トリマ操作部31は、変換素子ホルダ12を回転させて光路長を調整するための操作子からなる。
鏡筒15は、発光素子11からの検出光L1が距離測定型光電センサ1の内部で受光素子22に回り込むのを防止する光学部材である。投光レンズカバー14は、投光レンズ13を保護するための光学部材であり、透明材料、例えば、アクリル樹脂材料からなる。投光レンズ13は、光学ガラスからなる。
受光レンズカバー23は、受光レンズ21を保護するための光学部材であり、透明材料、例えば、投光レンズカバー14と同様のアクリル樹脂材料からなる。受光レンズ21は、透明材料、例えば、透明樹脂材料からなる。
投光基板70は、発光素子11が前面に配設された配線基板である。受光基板80は、受光素子22が形成された配線基板である。メイン基板51は、投受光制御などの主要な制御を行う制御回路が配設された回路基板である。
鏡筒15、投光レンズ13及び受光レンズ21は、光学ベース50のフロント部に取り付けられ、光路長調整機構30、投光基板70及び受光基板80は、光学ベース50のリア部に取り付けられ、メイン基板51は、光学ベース50の左サイド部に取り付けられる。
<本体ケース40>
本体ケース40は、光学ベース50、表示基板60及び表示素子63を収容するための内部空間を有し、投光レンズカバー14、受光レンズカバー23、表示灯カバー41、画面カバー43及び本体カバー52が取り付けられる直方体形状の筐体部材である。この本体ケース40は、高強度、高剛性の金属材料、例えば、亜鉛合金からなり、前面が投受光面である。
表示素子63は、配線基板上に形成された矩形形状の表示画面を有し、距離の測定値や判定閾値を表示する表示装置である。例えば、表示素子63には、発光層が有機化合物からなるOLED(Organic Light-Emitting Diode:有機発光ダイオード)が用いられる。スイッチ接点部61は、キートップ42による押圧力によって導通する面実装タイプの電気接点からなる。表示素子62は、検出対象物の有無や受光状態を表示するための表示装置である。表示基板60は、3つのスイッチ接点部61と表示素子62とが配設された配線基板であり、フレキシブル基板からなる。
光学ベース50は、本体ケース40内に収容され、本体ケース40にねじ止めされる。表示基板60及び表示素子63は、表示画面が本体ケース40の上面に設けられた画面用開口を介して露出し、また、表示素子62が表示灯用開口を介して露出するように、本体ケース40内に収容される。
投光レンズカバー14及び受光レンズカバー23は、本体ケース40の前面の開口をそれぞれ覆うように、本体ケース40に取り付けられる。表示灯カバー41は、表示灯用開口を覆うように、本体ケース40に取り付けられる。画面カバー43は、画面用開口を覆うように、本体ケース40に取り付けられる。本体カバー52は、本体ケース40の左側面の開口を塞ぐためのカバー部材であり、本体ケース40にねじ止めされる。
<光路長調整機構30>
図7は、図6の光路長調整機構30の構成例を示した斜視図である。図中の(a)には、光路長調整機構30を斜め前方から見た場合が示され、(b)には、光路長調整機構30を斜め後方から見た場合が示されている。
この光路長調整機構30は、変換素子ホルダ12、トリマ操作部31、ベース部材32、回転軸支持部材33、連結部材34、封止部材35及び抜け止め部材36により構成される。また、光路長調整機構30は、回転軸12bを中心とする変換素子ホルダ12の回転角度を選択することにより、発光素子11の光軸KJ上に光路長変換素子12aのいずれか一つを配置する。
z方向の回転軸12bを有する変換素子ホルダ12と、回転軸12bを中心とする周方向の位置を互いに異ならせて配置された複数の光路長変換素子12aとは、透明材料、例えば、透明樹脂材料を用いて、一体的に形成される。この変換素子ホルダ12は、投光レンズ側の端面に螺旋階段状の段差が形成された円柱体からなる。また、光路長変換素子12aの入射面NM及び出射面SMには、反射を抑えるための反射抑制膜が形成される。
回転軸支持部材33は、変換素子ホルダ12を軸支するためのアーム部33aと、連結部材34と係合する係合部33bと、連結部材34をz方向に押圧保持するためのアーム部33cとを有し、ベース部材32に固定されている。
アーム部33aは、x方向に延びる形状からなる。変換素子ホルダ12は、このアーム部33aとベース部材32とにより、回転軸12bを中心として回転可能に支持されている。トリマ操作部31及び連結部材34は、回転軸12bと同軸に配置される。
連結部材34は、トリマ操作部31と変換素子ホルダ12とを連結し、トリマ操作部31からの回転力を変換素子ホルダ12に伝達する軸部材である。この連結部材34は、周方向に凹凸が形成された周面を有するフランジ部と、回転軸12bの方向、すなわち、z方向に延びる軸部とからなり、この軸部がベース部材32を介して変換素子ホルダ12に結合されている。係合部33bが上記フランジ部と係合することにより、回転軸12bを中心とする変換素子ホルダ12の回転角度が段階的に選択される。
トリマ操作部31は、ねじ回し等の工具を係合させる台座頭と、z方向に延びる軸部とからなる。上記軸部は、その先端部が連結部材34に連結され、アーム部33cにより回転可能に支持されている。トリマ操作部31及び連結部材34の連結は、所定の軸継手機構、例えば、キーとキー溝とを嵌め合うことによって動力を伝達させるジョイント機構により行われる。
ねじ回し等の工具を用いてトリマ操作部31を所定の回転角度だけ回転させることにより、投光スポットのスポット径を変更することができる。例えば、トリマ操作部31を左に回すことにより、スポット径を大きくすることができ、右に回すことにより、スポット径を小さくすることができる。スポット径の大きさは段階的に切り替えられるので、スポット径を連続的に切り替える場合に比べ、スポット径を調整する際の再現性を良くすることができ、使用者による誤差を生じ難くすることができる。
封止部材35は、トリマ操作部31用のパッキンであり、トリマ操作部31の軸部が挿通されるリング状の弾性部材、例えば、フッ素ゴム部材からなる。抜け止め部材36は、トリマ操作部31が本体ケース40から抜け落ちるのを防止するための係止部材であり、トリマ操作部31の軸部に係合されている。
図8は、光路長調整機構30と光学ベース50を示した図である。図中の(a)には、光学ベース50を斜め後方から見た斜視図が示され、(b)には、光学ベース50を上方から見た場合が示されている。また、図9は、図8の光学ベース50の構成例を示した断面図であり、光学ベース50をA1−A1切断線により切断した場合の切断面が示されている。
発光素子11及び投光レンズ13は、光軸を一致させて光学ベース50に固定されている。発光素子11及び投光レンズ13が光学ベース50に固定されるので、光軸のずれやぶれが生じ難い。
光路長調整機構30は、変換素子ホルダ12の光路長変換素子12aが検出光L1の光路上に配置された状態で、光学ベース50に固定されている。トリマ操作部31は、台座頭31a及び軸部31bからなり、台座頭31aが本体ケース40から露出する状態で、軸部31bが連結部材34に連結される。
図10は、図2の距離測定型光電センサ1の動作の一例を示した図であり、検出光L1の光路長を調整することにより、スポット径の分布が変化する様子が示されている。図中には、横軸を距離測定型光電センサ1からの距離とし、縦軸を投光スポットのスポット径として、光路長変換素子12aの厚さが互いに異なる4つのスポット径分布TS1〜TS4が示されている。
スポット径分布TS1〜TS4は、距離測定型光電センサ1から投光軸方向に離間した各位置における検出光L1のビーム径を表している。スポット径分布TS1及びTS2は、検出光L1が集束光からなる場合の分布曲線であり、スポット径は、距離測定型光電センサ1から遠ざかるに従って、値Sから単調に減少し、焦点位置FP,FPにおいてそれぞれ最小になっている。
スポット径分布TS3は、検出光L1が平行光からなる場合の分布曲線であり、スポット径は、距離測定型光電センサ1からの距離にかかわらず、一定値Sからなる。スポット径分布TS4は、検出光L1が拡散光からなる場合の分布曲線であり、スポット径は、距離測定型光電センサ1から遠ざかるに従って、値Sから単調に増加している。この様に検出光L1の光路長を調整することにより、所定距離におけるスポット径を拡げ、或いは、絞り、また、焦点位置FPを投光軸方向に移動させることができる。
図11は、図1の距離測定型光電センサ1の構成例を示した図であり、本体ケース40の投受光面が示されている。また、図12は、図11の距離測定型光電センサ1の構成例を示した断面図であり、本体ケース40をA2−A2切断線により切断した場合の切断面が示されている。本体ケース40の投受光面は、本体ケース40の前面に形成された投光用開口を覆う投光レンズカバー14と、本体ケース40の前面に形成された受光用開口を覆う受光レンズカバー23により構成される。投光レンズカバー14からなる投光エリアは、周囲の大部分が受光エリアに隣接している。
投光レンズカバー14及び受光レンズカバー23は、投光用開口及び受光用開口をそれぞれ封止している。本体ケース40には、検出光L1の光路が形成される投光空間と、反射光L2の光路が形成される受光空間とに内部空間を分離する隔壁40aが形成され、隔壁40aの一端40bは、外部空間に露出している。
一端40bは、投光レンズカバー14及び受光レンズカバー23よりも突出している。この様な一端40bを隔壁40aに設けることにより、投光レンズカバー14の表面や、投光レンズカバー14に付着した異物によって反射した検出光L1の一部が受光空間に入射し、外乱光となるのを防止することができる。
本実施の形態によれば、発光素子11と投光レンズ13との実際の距離を変えることなく、発光素子11から投光レンズ13に至る検出光L1の光路長を調整することにより、投光レンズ13の出射側から見た場合における発光素子11の見かけの位置が光軸方向に移動するので、検出領域における検出光L1のスポット径の大きさを自在に変更することができる。
また、発光素子11又は投光レンズ13を物理的に移動させる可動機構が不要であるので、発光素子11及び投光レンズ13間で光軸のずれを生じ難くすることができる。また、互いに平行な入射面NM及び出射面SMを有する光路長変換素子12aを検出光L1が通過する場合、光路長変換素子12aの位置や向きに僅かなずれが生じても、光路長への影響は小さい。このため、振動などの機械的負荷や周囲の温度変化の影響を受け難く、スポット径の大きさを正確に制御することができる。
また、発光素子11及び投光レンズ13間に光路長変換素子12aを選択的に配置することにより、光路長の調整を行うので、距離測定型光電センサ1の投光軸方向のサイズが大型化するのを抑制することができる。さらに、光路長変換素子12aを頑強な構造によって保持する必要がないので、装置の大型化や製造コストの増大を抑制することができる。
また、発光素子11及び投光レンズ13は、光学ベース50に固定されるので、これらの光学部材の取付構造を小型化及び簡素化することができる。さらに、光路長変換素子12aは、検出光L1の光路を十分にカバーすることができる形状及びサイズの透光領域を有している。このため、連結部材34と回転軸支持部材33の係合部33bとにより構成されるストッパー機構の遊び、トリマ操作部31から伝わる振動の影響により、光路長変換素子12aの位置や向きにずれが生じた場合であっても、投光スポットのサイズが変化することはなく、周囲環境の影響を受け難い。
実施の形態2.
実施の形態1では、変換素子ホルダが入射面NM及び出射面SMの距離の異なる複数の光路長変換素子12aを備える場合の例について説明した。これに対し、本実施の形態では、変換素子ホルダ12が屈折率nの異なる2以上の光路長変換素子12aを備える場合について説明する。
図13は、本発明の実施の形態2による距離測定型光電センサ1の一構成例を示した斜視図であり、屈折率nが互いに異なる2以上の光路長変換素子12aを備えた変換素子ホルダ12が示されている。図中には、6つの光路長変換素子12aを備え、6段階で光路長の調整が可能な変換素子ホルダ12が示されている。
各光路長変換素子12aは、発光素子11の光軸KJに垂直な入射面及び出射面を有し、屈折率nが互いに異なる透明性部材からなる。各光路長変換素子12aにおける入射面及び出射面間の距離は同一である。変換素子ホルダ12は、光軸KJと平行な回転軸12bを有し、回転軸12bを中心とする周方向の異なる位置に光路長変換素子12aを保持している。
例えば、添加物の含有量を調整することにより、屈折率nの異なる透明性部材を得ることができる。回転軸12bを中心とする変換素子ホルダ12の回転角度を選択することにより、検出光L1の光路上に光路長変換素子12aのいずれか一つを配置することができる。
なお、実施の形態1では、変換素子ホルダ12の回転角度を選択することにより、8つの光路長変換素子12aの中からいずれか一つが検出光L1の光路上に配置される場合の例について説明したが、本発明は変換素子ホルダ12の構成をこれに限定するものではない。例えば、1つの光路長変換素子12aを検出光L1の光路上に配置するか否かが選択可能であり、光路長変換素子12aを検出光L1の光路上に配置するか否かにより、光路長の調整を行うような構成であっても良い。或いは、光路長変換素子12aの存在しない切り欠き領域を変換素子ホルダ12に形成し、この切り欠き領域が検出光L1の光路上に配置可能な構成であっても良い。
図14は、図2の距離測定型光電センサ1の他の構成例を示した図であり、光路長変換素子12aの存在しない切り欠き領域12cを選択可能な変換素子ホルダ12が示されている。この変換素子ホルダ12は、図3の変換素子ホルダ12と比較すれば、回転軸12bを中心とする扇形形状の領域の一つが切り欠き領域12cとなっている。
変換素子ホルダ12の回転角度を選択することにより、7つの光路長変換素子12aと切り欠き領域12cとの中からいずれか一つを検出光L1の光路上に配置することができ、8段階で光路長を調整することができる。
また、実施の形態1では、回転軸12bを中心とする変換素子ホルダ12の回転角度を選択することにより、検出光L1の光路上に光路長変換素子12aのいずれか一つが配置される場合の例について説明したが、本発明は、光路長調整機構30の構成をこれに限定するものではない。例えば、変換素子ホルダ12は、同一方向に向けた状態で直線上に配置された2以上の光路長変換素子12aを保持する。この変換素子ホルダ12を発光素子11の光軸KJと交差する方向へ直線的に移動させることにより、検出光L1の光路上に光路長変換素子12aのいずれか一つを配置するような構成であっても良い。
図15は、距離測定型光電センサ1のその他の構成例を示した斜視図であり、発光素子11の光軸KJと交差する方向へ直線的に移動させる変換素子ホルダ12が示されている。図中には、厚さが異なる4つの光路長変換素子12aを備え、4段階で光路長の調整が可能な変換素子ホルダ12が示されている。この変換素子ホルダ12は、投光レンズ側の面に直線階段状の段差が形成された板状体からなる。
各光路長変換素子12aは、矩形形状の透光領域を有している。また、光路長変換素子12a及び変換素子ホルダ12は、透明材料を用いて一体的に形成されている。この変換素子ホルダ12を光軸KJに垂直なスライド方向へ移動させ、スライド方向の位置を選択することにより、検出光L1の光路上に光路長変換素子12aのいずれか一つを配置することができる。また、光路長変換素子12aの存在しない領域も選択可能とすることにより、5段階で光路長を調整することができる。
また、実施の形態1では、光軸KJと平行な回転軸12bを中心とする変換素子ホルダ12の回転角度を選択することにより、検出光L1の光路上に光路長変換素子12aのいずれか一つが配置される場合の例について説明したが、本発明は光路長変換素子12aの構成をこれに限定するものではない。例えば、光路長変換素子12aは、回転角度に応じて入射面及び出射面の距離が変化するような構成であっても良い。
図16は、距離測定型光電センサ1の他の構成例を示した図であり、図中の(a)〜(c)には、回転角度に応じて入射面及び出射面の距離が段階的に変化する光路長変換素子12aが示されている。この図には、5段階で光路長の調整が可能な光路長変換素子12aが示されている。この光路長変換素子12aは、発光素子11の光軸KJと垂直な回転軸12bを有し、板面に垂直な回転軸12bを中心とする周面上に階段状の段差が形成された平行板からなる。
光路長変換素子12aでは、回転軸12bを中心とする回転角度に応じて、入射面及び出射面間の距離が段階的に変化する。この例では、回転止め用のストッパー部KSが光路長変換素子12aに設けられている。ストッパー部KSは、回転軸12bを中心とする光路長変換素子12aの回転角度を選択するための係合部であり、突出形状又は凹み形状からなる。この様なストッパー部KSにより、光路長変換素子12aの回転角度が選択され、光路長を調整することができる。
図17は、距離測定型光電センサ1の他の構成例を示した図であり、図中の(a)〜(c)には、回転角度に応じて入射面及び出射面の距離が連続的に変化する光路長変換素子12aが示されている。この光路長変換素子12aは、発光素子11の光軸KJと垂直な回転軸12bを有し、板面に垂直な回転軸12bを中心とする径方向のサイズが単調に増加する形状の平行板からなる。
光路長変換素子12aでは、回転軸12bを中心とする回転角度に応じて、入射面及び出射面間の距離が連続的に変化する。この様な構成であっても、周囲環境の影響を受け難くしつつ、検出光L1のスポット径の大きさを自在に変更することができる。
図18は、距離測定型光電センサ1の他の構成例を示した図であり、傾斜面を対向させて配置した2つのくさび形状の光学部材12dからなる光路長変換素子12aが示されている。一方の光学部材12dは、発光素子11側に配置され、光軸KJと直交する入射面NMと、光軸KJに対して傾斜した傾斜面とを有する透明性部材からなる。他方の光学部材12dは、投光レンズ13側に配置され、光軸KJと直交する出射面SMと、光軸KJに対して傾斜した傾斜面とを有する透明性部材からなる。
例えば、投光レンズ側の光学部材12dは、光学ベース50に固定され、発光素子側の光学部材12dは、傾斜方向に移動可能に保持される。発光素子側の光学部材12dを傾斜方向へ移動させることにより、入射面NM及び出射面SM間の距離が連続的に変化することから、光路長の調整をシームレスに行うことができる。
なお、実施の形態1及び2では、光路長変換素子12aを発光素子11及び投光レンズ13間に選択的に配置することにより、発光素子11から投光レンズ13に至る検出光L1の光路長が調整される場合の例について説明したが、本発明は、距離の測定に用いる検出光L1のスポット径の大きさを調整するための光路長調整方法をこれに限定するものではない。例えば、発光素子11又は投光レンズ13を光軸方向に移動させて、発光素子11及び投光レンズ13間の距離を変更することにより、発光素子11から投光レンズ13に至る検出光L1の光路長を調整するような構成であっても良い。
1 距離測定型光電センサ
10 投光窓
11 発光素子
12 変換素子ホルダ
12a 光路長変換素子
12b 回転軸
12c 切り欠き領域
13 投光レンズ
20 受光窓
22 受光素子
30 光路長調整機構
31 トリマ操作部
32 ベース部材
33 回転軸支持部材
34 連結部材
40 本体ケース
50 光学ベース
101 投光タイミング制御部
102 発光素子駆動回路
103 受光回路
104 距離演算部
107 判定閾値記憶部
108 判定信号生成部
FP 焦点位置
KJ 光軸
L1 検出光
W ワーク

Claims (9)

  1. 検出光を生成する発光素子と、
    上記発光素子の光軸上に配置され、上記検出光を検出領域に向けて投光するための投光レンズと、
    上記発光素子から上記投光レンズに至る上記検出光の光路長を調整する光路長調整機構と、
    上記検出領域において検出対象部から反射された上記検出光を受光し、受光信号を生成する受光素子と、
    上記受光信号に基づいて、上記検出光の伝搬時間から上記検出対象物までの距離を測定する距離演算部とを備え、
    上記光路長調整機構により、距離の測定に用いる上記検出光のスポット径の大きさが選択自在であることを特徴とする距離測定型光電センサ。
  2. 上記光路長調整機構は、互いに平行な入射面及び出射面を有する光路長変換素子を上記発光素子及び上記投光レンズ間に選択的に配置することにより、上記光路長の調整を行うことを特徴とする請求項1に記載の距離測定型光電センサ。
  3. 上記光路長調整機構は、距離の測定に用いる上記検出光のスポット径の大きさを段階的に切り替えることを特徴とする請求項1又は2に記載の距離測定型光電センサ。
  4. 上記距離を予め定められた閾値と比較し、その比較結果に基づいて、判定信号を生成する判定信号生成部を備えたことを特徴とする請求項1〜3のいずれかに記載の距離測定型光電センサ。
  5. 上記入射面及び上記出射面の距離が互いに異なる2以上の上記光路長変換素子を備え、
    上記光路長調整機構は、上記発光素子の光軸上に上記光路長変換素子のいずれか一つを選択的に配置することを特徴とする請求項2に記載の距離測定型光電センサ。
  6. 屈折率が互いに異なる透明性部材からなる2以上の上記光路長変換素子を備え、
    上記光路長調整機構は、上記発光素子の光軸上に上記光路長変換素子のいずれか一つを選択的に配置することを特徴とする請求項2に記載の距離測定型光電センサ。
  7. 回転軸を中心とする周方向の異なる位置に2以上の上記光路長変換素子を保持する変換素子ホルダを備え、
    上記光路長調整機構は、上記回転軸を中心とする上記変換素子ホルダの回転角度を選択することにより、上記発光素子の光軸上に上記光路長変換素子のいずれか一つを配置することを特徴とする請求項5又は6に記載の距離測定型光電センサ。
  8. 上記変換素子ホルダは、上記発光素子の光軸と略平行な回転軸を有することを特徴とする請求項7に記載の距離測定型光電センサ。
  9. 検出光を検出領域に向けて投光し、上記検出領域において検出対象物から反射された上記検出光を受光する距離測定型光電センサの投光スポット制御方法であって、
    上記検出光を生成する発光素子から投光レンズに至る上記検出光の光路上に、互いに平行な入射面及び出射面を有する光路長変換素子を選択的に配置することにより、上記光路の長さを調整することを特徴とする距離測定型光電センサの投光スポット制御方法。
JP2013217218A 2013-10-18 2013-10-18 距離測定型光電センサ及びその投光スポット制御方法 Pending JP2015078946A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013217218A JP2015078946A (ja) 2013-10-18 2013-10-18 距離測定型光電センサ及びその投光スポット制御方法
US14/481,014 US20150108376A1 (en) 2013-10-18 2014-09-09 Distance Measuring Photoelectric Sensor And Method For Controlling Light Projection Spot Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013217218A JP2015078946A (ja) 2013-10-18 2013-10-18 距離測定型光電センサ及びその投光スポット制御方法

Publications (1)

Publication Number Publication Date
JP2015078946A true JP2015078946A (ja) 2015-04-23

Family

ID=52825362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013217218A Pending JP2015078946A (ja) 2013-10-18 2013-10-18 距離測定型光電センサ及びその投光スポット制御方法

Country Status (2)

Country Link
US (1) US20150108376A1 (ja)
JP (1) JP2015078946A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019500639A (ja) * 2016-07-08 2019-01-10 イェノプティック アドバンスト システムズ ゲーエムベーハーJenoptik Advanced Systems Gmbh 光学ビーム整形ユニット、距離測定装置およびレーザ照明器
WO2021140948A1 (ja) * 2020-01-09 2021-07-15 ソニーセミコンダクタソリューションズ株式会社 測距装置、および測距方法
KR20220052874A (ko) * 2020-03-03 2022-04-28 주식회사 오토닉스 다광축 센서
JP2022119748A (ja) * 2021-02-04 2022-08-17 アップル インコーポレイテッド 光路エクステンダを有する光干渉近接センサ
WO2023112993A1 (ja) * 2021-12-15 2023-06-22 古河電気工業株式会社 光学装置および光学装置の製造方法
JP7504182B2 (ja) 2021-12-30 2024-06-21 セメス株式会社 テスト基板を含む基板処理装置及び距離測定センサーを用いたオートティーチング方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6774174B2 (ja) 2015-10-08 2020-10-21 株式会社キーエンス 光電スイッチ
US9958329B2 (en) 2015-10-08 2018-05-01 Keyence Corporation Photoelectric switch
JP6674770B2 (ja) 2015-12-14 2020-04-01 株式会社キーエンス 光電スイッチ
JP6838710B2 (ja) * 2017-10-02 2021-03-03 オムロン株式会社 光電センサ
JP2019152616A (ja) * 2018-03-06 2019-09-12 オムロン株式会社 光測距センサ
JP2021168269A (ja) * 2020-04-10 2021-10-21 株式会社キーエンス 変位センサ
JP7503412B2 (ja) 2020-04-10 2024-06-20 株式会社キーエンス 光学式変位センサ
CN112179384A (zh) * 2020-09-11 2021-01-05 上海索迪龙自动化有限公司 一种便于调节的检测用光电传感器
CN116632130B (zh) * 2023-04-18 2024-09-13 深圳市志奋领科技有限公司 光斑大小可调的光电传感器及方法
USD1029664S1 (en) * 2023-07-20 2024-06-04 Reekon Tools, Inc. Tape measure device
USD1030525S1 (en) * 2023-07-20 2024-06-11 Reekon Tools, Inc. Tape measure device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063814A (en) * 1976-04-06 1977-12-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optical scanner
JPS59117980U (ja) * 1983-01-31 1984-08-09 日産自動車株式会社 光レ−ダ装置
JPH0395980U (ja) * 1990-01-23 1991-09-30
JPH09292225A (ja) * 1996-02-27 1997-11-11 Nikon Corp レーザ投光装置
JP2006078371A (ja) * 2004-09-10 2006-03-23 Keyence Corp 測距センサ及びその設定方法
US8107056B1 (en) * 2008-09-17 2012-01-31 University Of Central Florida Research Foundation, Inc. Hybrid optical distance sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1191306B1 (en) * 2000-09-26 2006-11-22 Fuji Photo Film Co., Ltd. Distance information obtaining apparatus and distance information obtaining method
JP2004071366A (ja) * 2002-08-07 2004-03-04 Omron Corp 光電センサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063814A (en) * 1976-04-06 1977-12-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optical scanner
JPS59117980U (ja) * 1983-01-31 1984-08-09 日産自動車株式会社 光レ−ダ装置
JPH0395980U (ja) * 1990-01-23 1991-09-30
JPH09292225A (ja) * 1996-02-27 1997-11-11 Nikon Corp レーザ投光装置
JP2006078371A (ja) * 2004-09-10 2006-03-23 Keyence Corp 測距センサ及びその設定方法
US8107056B1 (en) * 2008-09-17 2012-01-31 University Of Central Florida Research Foundation, Inc. Hybrid optical distance sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019500639A (ja) * 2016-07-08 2019-01-10 イェノプティック アドバンスト システムズ ゲーエムベーハーJenoptik Advanced Systems Gmbh 光学ビーム整形ユニット、距離測定装置およびレーザ照明器
US11237399B2 (en) 2016-07-08 2022-02-01 Jenoptik Optical Systems Gmbh Optical beam shaping unit, distance measuring device and laser illuminator
WO2021140948A1 (ja) * 2020-01-09 2021-07-15 ソニーセミコンダクタソリューションズ株式会社 測距装置、および測距方法
KR20220052874A (ko) * 2020-03-03 2022-04-28 주식회사 오토닉스 다광축 센서
KR102511558B1 (ko) * 2020-03-03 2023-03-20 주식회사 오토닉스 다광축 센서
JP2022119748A (ja) * 2021-02-04 2022-08-17 アップル インコーポレイテッド 光路エクステンダを有する光干渉近接センサ
WO2023112993A1 (ja) * 2021-12-15 2023-06-22 古河電気工業株式会社 光学装置および光学装置の製造方法
JP7504182B2 (ja) 2021-12-30 2024-06-21 セメス株式会社 テスト基板を含む基板処理装置及び距離測定センサーを用いたオートティーチング方法

Also Published As

Publication number Publication date
US20150108376A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
JP2015078946A (ja) 距離測定型光電センサ及びその投光スポット制御方法
US10302749B2 (en) LIDAR optics alignment systems and methods
US9182226B2 (en) Hand-held laser distance measuring device
KR102095895B1 (ko) 공유 송광/수광 경로를 갖는 회전하는 lidar 플랫폼에 대한 디바이스 및 방법
CN110045386B (zh) 用于光检测与测距光学对准的方法与系统
US8081299B2 (en) Distance measuring apparatus
EP2103902B1 (en) Surveying Device and Surveying System
JP3960653B2 (ja) 電気光学的装置
JP7066322B2 (ja) 測量システム
US20120224164A1 (en) Optical distance measuring apparatus
JP2012118076A (ja) 距離計
JP2017009524A (ja) レーザ距離測定モジュール及びレーザ距離測定装置
US11209527B2 (en) Optical scanning device
TW200846986A (en) Optical navigation device that utilizes a vertical cavity surface emitting laser (VCSEL) configured to emit visible coherent light
CN209961911U (zh) 一种光学测距装置及移动机器人
JP2017187386A (ja) レーザ測距計
US10527496B2 (en) Detector assembly for analysis of elemental composition of a sample using optical emission spectroscopy
TWI696945B (zh) 模組資訊電器和操作模組的方法
US20060197747A1 (en) Photosensing device
KR20070015267A (ko) 변위 측정 장치
JP2019015602A (ja) 測量システム
JP2019070625A (ja) 距離測定装置
JP2002243543A (ja) 光電センサ
JP4317441B2 (ja) 光電センサの検出ヘッド及び投光ヘッド並びにウエハ検出センサの検出ヘッド
CN108254735A (zh) 激光测距装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171219