JP2015071694A - 樹脂組成物、多層シート、包装材及び容器 - Google Patents

樹脂組成物、多層シート、包装材及び容器 Download PDF

Info

Publication number
JP2015071694A
JP2015071694A JP2013207782A JP2013207782A JP2015071694A JP 2015071694 A JP2015071694 A JP 2015071694A JP 2013207782 A JP2013207782 A JP 2013207782A JP 2013207782 A JP2013207782 A JP 2013207782A JP 2015071694 A JP2015071694 A JP 2015071694A
Authority
JP
Japan
Prior art keywords
ethylene
resin composition
evoh
mol
vinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013207782A
Other languages
English (en)
Other versions
JP6454462B2 (ja
Inventor
河合 宏
Hiroshi Kawai
宏 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2013207782A priority Critical patent/JP6454462B2/ja
Priority to US15/026,673 priority patent/US10093795B2/en
Priority to CN201480054557.1A priority patent/CN105579524B/zh
Priority to ES14851176.9T priority patent/ES2675504T3/es
Priority to PCT/JP2014/076441 priority patent/WO2015050223A1/ja
Priority to EP14851176.9A priority patent/EP3053961B1/en
Publication of JP2015071694A publication Critical patent/JP2015071694A/ja
Application granted granted Critical
Publication of JP6454462B2 publication Critical patent/JP6454462B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】ロングラン時のフローマーク、着色及び臭気が抑制され、かつ加熱延伸性に優れ樹脂組成物を提供することを目的とする。【解決手段】本発明は、エチレン含有量が20モル%以上50モル%以下のエチレン−ビニルアルコール共重合体(A)、エチレン含有量が30モル%以上60モル%以下のエチレン−ビニルアルコール共重合体(B)及び飽和ケトン(C)を含有し、上記エチレン−ビニルアルコール共重合体(B)のエチレン含有量からエチレン−ビニルアルコール共重合体(A)のエチレン含有量を減じた値が8モル%以上であり、上記エチレン−ビニルアルコール共重合体(A)のエチレン−ビニルアルコール共重合体(B)に対する質量比(A/B)が60/40以上95/5以下であり、上記飽和ケトン(C)の樹脂分に対する含有量が0.01ppm以上100ppm未満である樹脂組成物である。【選択図】なし

Description

本発明は、樹脂組成物、多層シート、包装材及び容器に関する。
エチレン−ビニルアルコール共重合体(以下、「EVOH」と略すことがある)は、酸素等の各種ガス遮蔽性、耐油性、非帯電性、機械強度等に優れた有用な高分子材料であり、フィルム、シート、容器、包装材等に成形され、各種包装材料として広く用いられる。しかし、EVOHは分子内に水酸基を多く有し、高い結晶性及び結晶化速度を有し、柔軟性に乏しいため、食品等の包装材等に成形する際の二次加工適性、特に加熱延伸性が低く、成形時にクラックが発生し、製品の歩留まりが低下するという不都合や、厚み斑に起因する機械強度の低下、ガスバリア性の低下等が起こり、品質安定性に欠けるという不都合がある。
上記二次加工適性を改善するために、EVOHにエチレン−酢酸ビニル共重合体(EVA)等の各種エラストマーをブレンドすることが試みられている。しかし、これらのエラストマーはEVOHとの相溶性が低く、得られる組成物は透明性が低くなるという不都合がある。
かかる点に鑑み、上記二次加工適性を確保しつつ透明性を改善する方法として、エチレン含有量の異なるEVOHをブレンドする方法が開発されている。具体的には、ケン化度が95モル%以上及び70モル%以上の2種のエチレン−酢酸ビニル共重合体ケン化物並びに末端カルボキシル基を調整したポリアミドを含有する樹脂組成物(特開平8−239528号公報参照)、ケン化度98モル%以上のEVOHと、再酢化することでケン化度を下げたEVOHとを含有する樹脂組成物(特開2000−212369号公報参照)並びにエチレン含有量が異なる3種のEVOHからなる樹脂組成物(特開2001−31821号公報参照)が検討されている。
しかし、上記従来の技術によれば、透明性及び加熱延伸性は改善されるが、ポリアミドや再酢化したEVOHを用いているため、長時間運転特性(ロングラン性)が低く、ロングラン時のゲル状ブツの発生が多くなる等の不都合がある。また、このような異なるEVOHを使用する方法では、通常1種のEVOHのみでは生じないフローマークが生じ、特にロングランでの運転時に顕著となる。このフローマークは、長時間運転した際に2種のEVOH間で粘度差が生じ、溶融成形時の流動先端部、いわゆるフローフロントの不安定流動が生じることで発生する。このフローマークは、得られる製品において、着色と共に外観不良の原因となる。加えて、環境面の観点からは、成形時の臭気についての配慮も必要となる。
特開平8−239528号公報 特開2000−212369号公報 特開2001−31821号公報
本発明は以上のような事情に基づいてなされたものであり、その目的は、ロングラン時のフローマーク、着色及び臭気が抑制され、かつ加熱延伸性に優れる樹脂組成物を提供することにある。
上記課題を解決するためになされた発明は、エチレン含有量が20モル%以上50モル%以下のエチレン−ビニルアルコール共重合体(A)、エチレン含有量が30モル%以上60モル%以下のエチレン−ビニルアルコール共重合体(B)及び飽和ケトン(C)を含有し、上記エチレン−ビニルアルコール共重合体(B)のエチレン含有量からエチレン−ビニルアルコール共重合体(A)のエチレン含有量を減じた値が8モル%以上であり、上記エチレン−ビニルアルコール共重合体(A)のエチレン−ビニルアルコール共重合体(B)に対する質量比(A/B)が60/40以上95/5以下であり、上記飽和ケトン(C)の樹脂分に対する含有量が0.01ppm以上100ppm未満である樹脂組成物である。
本発明の樹脂組成物は、上記各特定範囲のエチレン含有量の2種のEVOHと飽和ケトン(C)とを上記各特定量含有することで、ロングラン時のフローマーク、着色及び臭気が抑制され、かつ加熱延伸性に優れる。当該樹脂組成物が上記効果を奏する理由については、例えば2種のEVOHを含有することにより加熱延伸性が向上し、これに上記範囲の適度な量の飽和ケトン(C)を含有させることで、架橋等の作用によりフローマークが抑制できること等が推察される。
上記エチレン−ビニルアルコール共重合体(A)の融点と上記エチレン−ビニルアルコール共重合体(B)の融点との差としては15℃以上が好ましい。このように2種のEVOHの融点が上記の差を有することで加熱延伸性が向上する。
上記エチレン−ビニルアルコール共重合体(B)は下記式(1)で表される構造単位を有し、この構造単位の全ビニルアルコール単位に対する含有率は0.3モル%以上40モル%以下が好ましい。
Figure 2015071694
(式(1)中、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1〜10の炭化水素基又は炭素数1〜10のアルコキシ基である。上記炭化水素基が有する水素原子の一部又は全部が水酸基、アルコキシ基、カルボキシル基又はハロゲン原子で置換されていてもよい。また、RとRとが互いに結合して環構造を形成していてもよい。)
当該樹脂組成物は、エチレン−ビニルアルコール共重合体(B)が上記特定の構造単位を有することで、加熱延伸性がさらに向上する。
上記飽和ケトン(C)の炭素数としては3から8が好ましく、アセトン、メチルエチルケトン、2−ヘキサノンがより好ましい。上記飽和ケトン(C)として上記特定の飽和ケトンを含有することで、上述のロングラン時のフローマーク、着色及び臭気がより抑制され、かつ加熱延伸性により優れる。
本発明の多層シートは、当該樹脂組成物から形成されるバリア層と、このバリア層の少なくとも一方の面に積層される熱可塑性樹脂層とを備える。当該多層シートは、上述の特性を有する樹脂組成物から形成したバリア層と、熱可塑性樹脂層とを備えることで、外観性及び加熱延伸性に優れる。
当該多層シートは、上記バリア層と熱可塑性樹脂層とが共押出成形法により積層されるとよい。当該多層シートは、上記2種の層が共押出成形法により積層されることで、簡便かつ確実に製造することができ、その結果上記高い外観性及び加熱延伸性を効果的に達成することができる。
本発明の包装材は、当該多層シートを加熱延伸成形法により成形してもよい。当該包装材は、上述の当該多層シートを用い、上記特定の成形法により形成されることで、簡便かつ確実に製造することができ、また外観性に優れ、フローマークが抑制されている。また、本発明の容器は、当該多層シートを真空圧空成形法により成形してなる。当該容器は、上述の当該多層シートを用い、上記特定の成形法により形成されることで、簡便かつ確実に製造することができ、外観性に優れ、フローマークが抑制されており、また樹脂組成物層の連続性が保持され、その結果ガスバリア性に優れる。
以上説明したように、本発明の樹脂組成物は、ロングラン時のフローマーク、着色及び臭気が抑制され、かつ加熱延伸性に優れるので、外観性に優れ、フローマークが抑制された成形体を成形することができる。本発明の多層シートは、外観性及び加熱延伸性に優れる。本発明の包装材は、外観性に優れ、フローマークが抑制される。本発明の容器は、外観性に優れ、フローマーク特性に優れると共に、樹脂組成物層の連続性が保持され、その結果ガスバリア性に優れる。従って、当該樹脂組成物、多層シート、包装材及び容器は、外観性、二次加工適性、機械的強度等に優れる包装材料等として好適に用いることができる。
以下、本発明の実施の形態について説明するが、本発明はこれらに限定されない。また、例示される材料は、特に記載がない限り、1種を単独で用いてもよいし、2種以上を併用してもよい。
<樹脂組成物>
当該樹脂組成物は、異なるエチレン単位含有量を有する2種のEVOH(A)及びEVOH(B)、並びに飽和ケトン(C)を含有する。また、当該樹脂組成物は、本発明の効果を損なわない範囲において、ホウ素化合物、共役ポリエン化合物、酢酸類、リン化合物等の任意成分を含有していてもよい。以下に、各成分について説明する。
[EVOH(A)]
EVOH(A)は、エチレンとビニルエステルとの共重合体をケン化したエチレンとビニルアルコール共重合体である。
上記ビニルエステルとしては、例えば酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル等が挙げられ、酢酸ビニルが好ましい。これらのビニルエステルは、単独で使用しても2種以上を併用してもよい。
EVOH(A)は、エチレン及びビニルエステル以外の単量体に由来する他の構造単位を含んでいてもよい。このような単量体としては、例えばビニルシラン系化合物、その他の重合性化合物等が挙げられる。上記他の構造単位の含有量としては、EVOH(A)の全構造単位に対して、例えば0.0002モル%以上0.2モル%以下が好ましい。
上記ビニルシラン系化合物としては、例えばビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(β−メトキシ−エトキシ)シラン、γ−メタクリルオキシプロピルトリメトキシシラン等が挙げられる。これらの中でも、ビニルトリメトキシシラン、ビニルトリエトキシシランが好ましい。
上記その他の重合性化合物としては、例えばプロピレン、ブチレン等の不飽和炭化水素;(メタ)アクリル酸等の不飽和カルボン酸;N−ビニルピロリドン等のビニルピロリドンなどが挙げられる。
EVOH(A)のエチレン含有量としては、20モル%以上50モル%以下であり、24モル%以上46モル%以下が好ましく、27モル%以上43モル%以下がより好ましく、27モル%以上40モル%以下がさらに好ましく、27モル%以上36モル%以下が特に好ましい。エチレン含有量が上記下限未満であると、溶融押出時の熱安定性が低下してゲル化しやすくなり、ストリーク、フィッシュアイ等の欠陥が発生し易くなるおそれがある。特に、一般的な溶融押出し時の条件よりも高温又は高速の条件下で長時間運転を行うとゲル化する可能性が高くなる。一方、エチレン含有量が上記上限を超えると、ガスバリア性等が低下し、EVOHが有する有利な特性を十分に発揮できないおそれがある。
EVOH(A)のビニルエステルに由来の構造単位のケン化度としては、通常85%以上であり、90%以上が好ましく、98%以上がより好ましく、99%以上がさらに好ましい。このケン化度が85%未満であると、熱安定性が不十分となるおそれがある。
[EVOH(B)]
EVOH(B)は、EVOH(A)と同様にエチレン−ビニルエステル共重合体をケン化して得られるエチレン−ビニルアルコール共重合体である。
製造に用いるビニルエステル種や適用可能な範囲である共重合成分及びその使用量に関してはEVOH(A)と同様である。
EVOH(B)のエチレン含有量としては、30モル%以上60モル%以下であり、35モル%以上55モル%以下が好ましく、38モル%以上52モル%以下がより好ましい。エチレン含有量が上記下限未満だと、当該樹脂組成物の柔軟性、二次加工性、加熱延伸性の効果が満足されないおそれがある。一方、エチレン含有量が上記上限を越えると、当該樹脂組成物の各種ガス遮蔽性が低下するおそれがある。
EVOH(B)中のビニルエステル単位のケン化度の下限としては、85モル%が好ましく、90モル%がより好ましく、95モル%がさらに好ましく、99モル%が特に好ましい。また、上記ケン化度の上限としては、99.99モル%が好ましく、99.98モル%がより好ましく、99.95モル%がさらに好ましい。EVOH(B)のケン化度を上記範囲とすることで、熱安定性及びガスバリア性を阻害せずに樹脂組成物の加熱延伸性をより向上させることができる。上記ケン化度が上記下限未満だと、当該樹脂組成物の熱安定性が不十分となるおそれがある。上記ケン化度が上記上限を超えると、ケン化に要する時間が増大し、EVOH(B)の生産性が低下するおそれがある。
EVOH(B)としては、樹脂組成物の柔軟性、二次加工特性、加熱延伸性の向上の観点から、変性エチレン−ビニルアルコール共重合体(以下、「変性EVOH」と略すことがある)でもよい。変性EVOHとしては、例えば下記式(1)で表される構造単位(I)を有するEVOH等が挙げられる。構造単位(I)のEVOH(B)を構成する全ビニルアルコール単位に対する含有率の下限としては、0.3モル%が好ましく、0.5モル%がより好ましく、1モル%がさらに好ましく、1.5モル%が特に好ましい。一方、上記構造単位(I)の含有率の上限としては、40モル%が好ましく、20モル%がより好ましく、15モル%がさらに好ましく、10モル%が特に好ましい。なお、EVOHを構成するビニルアルコール単位とは、−CHCH(OH)−で表される構造単位と、この構造単位の水酸基の水素原子が他の基で置換された構造単位とをいう。
Figure 2015071694
上記式(1)中、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1〜10の炭化水素基又は炭素数1〜10のアルコキシ基である。上記炭化水素基が有する水素原子の一部又は全部が水酸基、アルコキシ基、カルボキシル基又はハロゲン原子で置換されていてもよい。また、RとRとが互いに結合して環構造を形成していてもよい。
上記変性EVOHを製造する方法は特に限定されないが、例えばEVOHと分子量500以下のエポキシ化合物とを反応させることにより得る方法等が挙げられる。上記変性EVOHの原料として用いられるEVOHとしては、上述のEVOHと同様のものを使用することができる。
分子量500以下のエポキシ化合物としては、炭素数が2〜8のエポキシ化合物が好ましい。化合物の取り扱いの容易さ、及びEVOHとの反応性の観点からは、炭素数2〜6のエポキシ化合物がより好ましく、炭素数2〜4のエポキシ化合物がさらに好ましい。これらの中でも、EVOHとの反応性、及び得られるEVOH(B)のガスバリア性の観点から、分子量500以下のエポキシ化合物としては、1,2−エポキシブタン、2,3−エポキシブタン、エポキシプロパン、エポキシエタン及びグリシドールが好ましく、エポキシプロパン及びグリシドールがより好ましい。
EVOH(B)のエチレン含有量からEVOH(A)のエチレン含有量を減じた値の下限としては、8モル%であり、12モル%が好ましく、15モル%がより好ましく、18モル%がさらに好ましい。また、上記値の上限としては、40モル%が好ましく、30モル%がより好ましく、20モル%がさらに好ましい。EVOH(A)とEVOH(B)とのエチレン含有量差が上記下限未満だと、当該樹脂組成物の加熱延伸性が不十分となるおそれがある。逆に、上記エチレン含有量差が上記上限を超えると、当該樹脂組成物のロングラン時のフローマークの抑制性が不十分となるおそれがある。
EVOH(A)の融点とEVOH(B)の融点との差の下限としては、15℃が好ましく、22℃がより好ましい。EVOH(A)の融点とEVOH(B)の融点との差の上限としては、80℃が好ましく、40℃がより好ましく、34℃がさらに好ましく、28℃が特に好ましい。上記融点の差が上記下限未満だと、当該樹脂組成物の加熱延伸性が不十分となるおそれがある。逆に、上記融点の差が上記上限を超えると、当該樹脂組成物のロングラン時のフローマークの抑制性が不十分となるおそれがある。
当該樹脂組成物中のEVOH(A)及びEVOH(B)の含有量は、EVOH(A)のEVOH(B)に対する質量比(A/B)の下限としては、60/40であり、65/35が好ましく、70/30がより好ましい。また、上記質量比の上限としては、95/5であり、90/10が好ましく、85/15がより好ましい。上記質量比が上記下限未満だと、当該樹脂組成物の各種ガス遮蔽性及び耐油性が低下する場合がある。一方、上記質量比が上記上限を超えると、当該樹脂組成物の柔軟性、加熱延伸性及び二次加工性が低下する場合がある。
当該樹脂組成物における樹脂分に対するEVOH(A)及びEVOH(B)の合計質量としては、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、100質量%が特に好ましい。
[飽和ケトン(C)]
本発明の樹脂組成物は、飽和ケトン(C)を含有するため、ロングラン時のフローマーク、着色及び臭気が抑制され、かつ加熱延伸性に優れるので、外観性に優れ、フローマークが抑制された成形体を成形することができる。ここで、飽和ケトン(C)とは分子内のカルボニル基以外の部分に不飽和結合を含まないケトンをいう。飽和ケトン(C)は、カルボニル基以外の部分に不飽和結合を含まない限りは、直鎖状のケトンであっても、分枝状のケトンであっても、分子内に環構造を有するケトンであってもよい。飽和ケトン(C)の分子内のカルボニル基の数は、1であっても2以上であってもよい。
飽和ケトン(C)としては、例えば飽和脂肪族ケトン、飽和環状ケトン等が挙げられる。
飽和脂肪族ケトンとしては、例えばアセトン、メチルエチルケトン、2−ペンタノン、3−ペンタノン、3−メチル−2−ブタノン、2−ヘキサノン、3−ヘキサノン、4−メチル−2−ペンタノン、2−メチル−3−ペンタノン、3,3−ジメチル−2−ブタノン、2−ヘプタノン、3−ヘプタノン、4−ヘプタノン、4−メチル−2−ヘキサノン、5−メチル−2−ヘキサノン、2,4−ジメチル−3−ペンタノン、2−オクタノン、3−メチル−2−ヘプタノン、5−メチル−3−ヘプタノン、3−オクタノン、6−メチル−2−ヘプタノン、2−ノナノン、5−ノナノン、2,6−ジメチル−4−ヘプタノン、2,2,4,4−テトラメチル−3−ペンタノン、6−ウンデカノン、2−ウンデカノン、7−トリデカノン、メチルシクロペンチルケトン、メチルシクロヘキシルケトン等が挙げられる。
飽和環状ケトンとしては、例えばシクロブタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、シクロノナノン、シクロデカノン、シクロウンデカノン、シクロドデカノン等が挙げられる。
飽和ケトン(C)の炭素数としては、飽和ケトン(C)の水溶性向上の観点から、3〜50が好ましく、3〜15がより好ましく、3〜8がさらに好ましい。飽和ケトン(C)としては、例示した中でも、溶融成形による欠陥の発生及び着色を抑制し、ロングラン性を改善する観点から、飽和脂肪族ケトンが好ましく、アセトン、メチルエチルケトン、2−ヘキサノンがより好ましく、アセトンがさらに好ましい。
飽和ケトン(C)は、本発明の効果を損なわない範囲において、水素原子の一部又は全部が置換基により置換されていてもよい。置換基としては、例えばハロゲン原子、ヒドロキシ基、アミノ基、アミド基、シアノ基等が挙げられる。
飽和ケトン(C)の含有量の下限としては、樹脂分に対して、0.01ppm以上であり、0.05ppm以上が好ましく、0.1ppm以上がより好ましく、0.15ppm以上がさらに好ましく、0.2ppm以上が特に好ましい。一方、飽和ケトン(C)の含有量の上限としては、樹脂分に対して、100ppm未満であり、95ppm以下が好ましく、50ppm以下がより好ましく、30ppm以下がさらに好ましく、20ppm以下が特に好ましい。上記含有量が上記下限未満だと、当該樹脂組成物のロングラン時のフローマークの抑制性が不十分となる。逆に、上記含有量が上記以上であると、溶融成形時の当該樹脂組成物の飽和ケトン(C)による架橋が顕著に起こり、ゲル状ブツの発生を誘発するおそれがあり、また樹脂組成物が着色し易くなる。ここで、当該樹脂組成物中の飽和ケトン(C)の含有量とは、当該樹脂組成物中の樹脂分に対する割合、すなわち樹脂成分の合計質量に対する質量割合であり、具体的には、乾燥させた当該樹脂組成物中の樹脂分に対する割合をいう。
[任意成分]
(ホウ素化合物)
ホウ素化合物は、溶融成形時のゲル化を抑制すると共に押出成形機等のトルク変動(加熱時の粘度変化)を抑制するものである。
上記ホウ素化合物としては、例えば
オルトホウ酸、メタホウ酸、四ホウ酸等のホウ酸類;ホウ酸トリエチル、ホウ酸トリメチル等のホウ酸エステル;
上記ホウ酸類のアルカリ金属塩又はアルカリ土類金属塩、ホウ砂等のホウ酸塩;
水素化ホウ素類などが挙げられる。これらの中でも、ホウ酸類が好ましく、オルトホウ酸がより好ましい。
当該樹脂組成物のホウ素化合物の含有量の下限としては、100ppmが好ましく、150ppmがより好ましい。ホウ素化合物の含有量の上限としては、5,000ppmが好ましく、4,000ppmがより好ましく、3,000ppmがさらに好ましい。ホウ素化合物の含有量が上記下限未満であると、押出成形機等のトルク変動を十分に抑制することができないおそれがある。一方、ホウ素化合物の含有量が上記上限を超えると、溶融成形時にゲル化を起こし易くなり成形品の外観が悪化するおそれがある。
(共役ポリエン化合物)
共役ポリエン化合物は、溶融成形時の酸化劣化を抑制するものである。ここで、共役ポリエン化合物とは、炭素−炭素二重結合と炭素−炭素単結合が交互に繋がってなる構造を有し炭素−炭素二重結合の数が2個以上である、いわゆる共役二重結合を有する化合物である。この共役ポリエン化合物は、共役二重結合を2個有する共役ジエン、3個有する共役トリエン、又はそれ以上の数を有する共役ポリエンであってもよい。また、上記共役二重結合が互いに共役せずに1分子中に複数組あってもよい。例えば、桐油のように共役トリエン構造が同一分子内に3個ある化合物も上記共役ポリエン化合物に含まれる。
上記共役ポリエン化合物の共役二重結合の数としては、7個以下が好ましい。当該樹脂組成物は、共役二重結合を8個以上有する共役ポリエン化合物を含有すると、成形品の着色が起こる可能性が高くなる。
上記共役ポリエン化合物は、共役二重結合に加えて、カルボキシル基及びその塩、水酸基、エステル基、カルボニル基、エーテル基、アミノ基、イミノ基、アミド基、シアノ基、ジアゾ基、ニトロ基、スルホン基及びその塩、スルホニル基、スルホキシド基、スルフィド基、チオール基、リン酸基及びその塩、フェニル基、ハロゲン原子、二重結合、三重結合等のその他の官能基を有していてもよい。
上記共役ポリエン化合物としては、例えば
イソプレン、2,3−ジメチル−1,3−ブタジエン、2,3−ジエチル−1,3−ブタジエン、2−t−ブチル−1,3−ブタジエン、1,3−ペンタジエン、2,3−ジメチル−1,3−ペンタジエン、2,4−ジメチル−1,3−ペンタジエン、3,4−ジメチル−1,3−ペンタジエン、3−エチル−1,3−ペンタジエン、2−メチル−1,3−ペンタジエン、3−メチル−1,3−ペンタジエン、4−メチル−1,3−ペンタジエン、1,3−ヘキサジエン、2,4−ヘキサジエン、2,5−ジメチル−2,4−ヘキサジエン、1,3−オクタジエン、1,3−シクロペンタジエン、1,3−シクロヘキサジエン、1−フェニル−1,3−ブタジエン、1,4−ジフェニル−1,3−ブタジエン、1−メトキシ−1,3−ブタジエン、2−メトキシ−1,3−ブタジエン、1−エトキシ−1,3−ブタジエン、2−エトキシ−1,3−ブタジエン、2−ニトロ−1,3−ブタジエン、クロロプレン、1−クロロ−1,3−ブタジエン、1−ブロモ−1,3−ブタジエン、2−ブロモ−1,3−ブタジエン、オシメン、フェランドレン、ミルセン、ファルネセン、ソルビン酸、ソルビン酸エステル、ソルビン酸塩等の共役ジエン化合物;
1,3,5−ヘキサトリエン、2,4,6−オクタトリエン−1−カルボン酸、エレオステアリン酸、桐油、コレカルシフェロール、フルベン、トロポン等の共役トリエン化合物;
シクロオクタテトラエン、2,4,6,8−デカテトラエン−1−カルボン酸、レチノール、レチノイン酸等の共役ポリエン化合物などが挙げられる。上記共役ポリエン化合物は、1種を単独で用いてもよいし、2種以上を併用してもよい。
共役ポリエン化合物の炭素数としては4〜30が好ましく、4〜10がより好ましい。例示した共役ジエン化合物のうち、ソルビン酸、ソルビン酸エステル、ソルビン酸塩、ミルセン、これらのうちの2以上の混合物が好ましく、ソルビン酸、ソルビン酸塩、これらの混合物がより好ましい。ソルビン酸、ソルビン酸塩及びこれらの混合物は、高温での酸化劣化の抑制効果が高く、また食品添加剤としても広く工業的に使用されているため衛生性や入手性の観点からも好ましい。
上記共役ポリエン化合物の分子量は、通常1,000以下であり、500以下が好ましく、300以下がより好ましい。上記共役ポリエン化合物の分子量が1,000を超えると、EVOH(A)及びEVOH(B)中への共役ポリエン化合物の分散状態が悪化し、溶融成形後の外観が悪化するおそれがある。
当該樹脂組成物における共役ポリエン化合物の含有量の下限としては、0.01ppmが好ましく、0.1ppmがより好ましく、0.5ppmがさらに好ましく、1ppmが特に好ましい。上記含有量の上限としては、1,000ppmが好ましく、800ppm以下がより好ましく、500ppm以下がさらに好ましい。共役ポリエン化合物の含有量が上記下限未満であると、溶融成形時の酸化劣化を抑制する効果を十分に得られないおそれがある。一方、共役ポリエン化合物の含有量が上記上限を超えると、樹脂組成物のゲル化を促進するおそれがある。
重合の後工程で共役ポリエン化合物を添加することにより成形時にゲル状ブツの発生の少ない樹脂組成物が得られることは特開平9−71620号公報に開示されているが、本発明においては、共役ポリエン化合物に加えて飽和ケトン(C)を併せて添加することで、フィッシュアイ等の欠陥の発生及び着色をより抑制し、成形体の外観性を向上させることができることに加えて、ロングラン性にも優れる樹脂組成物が得られる。
(酢酸類)
酢酸類は、成形品の着色を防止すると共に防止溶融成形時のゲル化を抑制するものである。この酢酸類は、酢酸及び酢酸塩を含む。酢酸類としては、酢酸及び酢酸塩を併用することが好ましく、酢酸及び酢酸ナトリウムを併用することがより好ましい。
当該樹脂組成物における酢酸類の含有量の下限としては、50ppmが好ましく、100ppmがより好ましく、150ppmがさらに好ましく、200ppmが特に好ましい。酢酸類の含有量の上限としては、1,000ppmが好ましく、500ppmがより好ましく、400ppmがさらに好ましい。酢酸類の含有量が上記下限未満であると、十分な着色防止の効果を得られず、成形品に黄変が発生するおそれがある。一方、酢酸類の含有量が上記上限を超えると、溶融成形時、特に長時間に及ぶ溶融成形時にゲル化が生じ易くなり、成形品の外観が悪化するおそれがある。
(リン化合物)
リン化合物は、ストリーク、フィッシュアイ等の欠陥の発生及び着色を抑制すると共に、ロングラン性を向上させるものである。このリン化合物としては、例えばリン酸、亜リン酸等のリン酸塩等が挙げられる。
上記リン酸塩としては、第1リン酸塩、第2リン酸塩及び第3リン酸塩のいずれの形でもよい。また、リン酸塩のカチオン種についても特に限定されるものではないが、アルカリ金属塩、アルカリ土類金属塩が好ましく、これらのうちリン酸2水素ナトリウム、リン酸2水素カリウム、リン酸水素2ナトリウム、リン酸水素2カリウムがより好ましく、リン酸2水素ナトリウム、リン酸水素2カリウムがさらに好ましい。
当該樹脂組成物におけるリン化合物の含有量の下限としては、1ppmが好ましく、2ppmがより好ましく、3ppmがさらに好ましく、5ppmが特に好ましい。リン化合物の含有量の上限としては、200ppmが好ましく、150ppmがより好ましく、100ppmがさらに好ましい。リン化合物の含有量が上記下限未満である場合、又は上記上限を超える場合、熱安定性が低減し、長時間にわたる溶融成形を行なう際のゲル状ブツの発生、着色が生じ易くなるおそれがある。
(その他の任意成分)
当該樹脂組成物は、本発明の効果を損なわない範囲で、その他の任意成分を含有していてもよい。その他の任意成分としては、例えばアルカリ金属又はその塩、酸化防止剤、紫外線吸収剤、可塑剤、帯電防止剤、滑剤、着色剤、充填剤、熱安定剤、他の樹脂、高級脂肪族カルボン酸の金属塩等が挙げられる。当該樹脂組成物は、これらの任意成分を2種以上含有してもよく、任意成分の合計含有量としては、当該樹脂組成物中の1質量%以下が好ましい。
上記アルカリ金属としては、例えばリチウム、ナトリウム、カリウム等が挙げられる。また、上記アルカリ金属の塩としては、例えば1価の金属の脂肪族カルボン酸塩、芳香族カルボン酸塩、金属錯体等が挙げられ、具体的には、酢酸ナトリウム、酢酸カリウム、ステアリン酸ナトリウム、ステアリン酸カリウム、エチレンジアミン四酢酸のナトリウム塩等が挙げられる。これらの中でも、酢酸ナトリウム、酢酸カリウムが好ましい。当該樹脂組成物におけるアルカリ金属の含有量としては、20ppm以上1,000ppm以下が好ましく、50ppm以上500ppm以下がより好ましい。
上記酸化防止剤としては、例えば2,5−ジ−t−ブチルハイドロキノン、2,6−ジ−t−ブチル−p−クレゾール、4,4’−チオビス(6−t−ブチルフェノール)、2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、オクタデシル−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート、4,4’−チオビス(6−t−ブチルフェノール)等が挙げられる。
上記紫外線吸収剤としては、例えばエチレン−2−シアノ−3,3’−ジフェニルアクリレート、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オキトシキベンゾフェノン等が挙げられる。
上記可塑剤としては、例えばフタル酸ジメチル、フタル酸ジエチル、フタル酸ジオクチル、ワックス、流動パラフィン、リン酸エステル等が挙げられる。
上記帯電防止剤としては、例えばペンタエリスリットモノステアレート、ソルビタンモノパルミテート、硫酸化ポリオレフィン類、ポリエチレンオキシド、ポリエチレングリコール(商品名:カーボワックス)等が挙げられる。
上記滑剤としては、例えばエチレンビスステアロアミド、ブチルステアレート等が挙げられる。
上記着色剤としては、例えばカーボンブラック、フタロシアニン、キナクリドン、インドリン、アゾ系顔料、ベンガラ等が挙げられる。
上記充填剤としては、例えばグラスファイバー、ウォラストナイト、ケイ酸カルシウム、タルク、モンモリロナイト等が挙げられる。
上記熱安定剤としては、例えばヒンダードフェノール系化合物、ヒンダードアミン系化合物等が挙げられる。
上記他の樹脂としては、例えばポリアミド、ポリオレフィン等が挙げられる。
上記高級脂肪族カルボン酸の金属塩としては、例えばステアリン酸カルシウム、ステアリン酸マグネシウム等が挙げられる。
なお、ゲル化対策として、例えば上記熱安定剤として例示したヒンダードフェノール系化合物及びヒンダードアミン系化合物、上記高級脂肪酸カルボン酸の金属塩、ハイドロタルサイト系化合物等を添加してもよい。これらは単独で使用しても、2種以上を併用してもよい。ゲル化対策のための化合物の添加量は、通常0.01質量%〜1質量%である。
<樹脂組成物の製造方法>
当該樹脂組成物の製造方法としては、EVOH(A)、EVOH(B)及び飽和ケトン(C)を均一にブレンドできる方法であれば特に限定されない。EVOH(A)及びEVOH(B)は、例えばエチレンとビニルエステルとを共重合させる工程(以下、「工程(1)」ともいう)、及びこの工程(1)により得られる共重合体をケン化する工程(以下、「工程(2)」ともいう)を備える製造方法により得ることができる。
樹脂組成物中に特定量の飽和ケトン(C)を含有させる方法としては、特に限定されないが、例えば工程(1)において特定量の飽和ケトン(C)を添加する方法、工程(2)において特定量の飽和ケトン(C)を添加する方法、工程(2)により得られたEVOH(A)及びEVOH(B)に、特定量の飽和ケトン(C)を添加する方法等が挙げられる。
但し、工程(1)において特定量の飽和ケトン(C)を添加する方法、又は工程(2)において特定量の飽和ケトン(C)を添加する方法を採用する場合には、得られる樹脂組成物中に所望量の飽和ケトン(C)を含有させるために、工程(1)における重合反応、又は工程(2)におけるケン化反応で消費される量を考慮して添加量を多くする必要がある。しかし、飽和ケトン(C)の量が多いとこれらの反応を阻害するおそれがある。また、工程(1)での重合反応や工程(2)でのケン化反応の条件により飽和ケトン(C)が消費される量が変動するため、樹脂組成物中の飽和ケトン(C)の含有量を調節することが難しい。従って、工程(2)より後において、この工程(2)により得られたEVOH(A)及びEVOH(B)に、特定量の飽和ケトン(C)を添加する方法が好ましい。
樹脂に特定量の飽和ケトン(C)を添加する方法としては、例えば飽和ケトン(C)を予め樹脂に配合してペレットを造粒する方法、エチレン−ビニルエステル共重合体のケン化後に析出させるストランドに飽和ケトン(C)を含浸させる方法、析出させるストランドをカットした後に飽和ケトン(C)を含浸させる方法、乾燥樹脂組成物のチップを再溶解したものに飽和ケトン(C)を添加する方法、樹脂及び飽和ケトン(C)を溶融混練する方法、押出機の途中から樹脂の溶融物に飽和ケトン(C)を供給し含有させる方法、飽和ケトン(C)を樹脂の一部に高濃度で配合して造粒したマスターバッチを樹脂とドライブレンドして溶融混練する方法等が挙げられる。
これらの中でも、樹脂中に微量の飽和ケトン(C)を均一に分散することができる観点から、飽和ケトン(C)を添加する方法としては、飽和ケトン(C)を予め樹脂に配合してペレットを造粒する方法が好ましい。具体的には、飽和ケトン(C)の添加は、樹脂を水/メタノール混合溶媒等の良溶媒に溶解させた溶液に、飽和ケトン(C)を添加し、その混合溶液をノズル等から貧溶媒中に押出して析出及び凝固させ、それを洗浄及び乾燥することにより行うことが好ましい。この場合、当該樹脂組成物は、樹脂に飽和ケトン(C)が均一に混合されたペレットとして得られる。
当該樹脂組成物に飽和ケトン(C)以外の各成分を含有させる方法としては、例えば上記ペレットを各成分と共に混合して溶融混練する方法、上記ペレットを調製する際に、飽和ケトン(C)と共に各成分を混合する方法、上記ペレットを各成分が含まれる溶液に浸漬させる方法等が挙げられる。なお、ペレットと他の成分の混合には、リボンブレンダー、高速ミキサーコニーダー、ミキシングロール、押出機、インテンシブミキサー等を用いることができる。
<成形体>
当該樹脂成形体は、当該樹脂組成物から形成される。この樹脂成形体としては、例えばフィルム、シート、容器、パイプ、ホース、繊維、包装材等が挙げられる。フィルムとは、通常300μm未満の厚みを有するものをいい、シートとは、通常300μm以上の厚みを有するものをいう。当該樹脂成形体は、例えば溶融成形により形成され、必要に応じて、二次加工成形を行うことで形成される。この溶融成形の方法としては、例えば押出成形、インフレーション押出、ブロー成形、溶融紡糸、射出成形、射出ブロー成形等が挙げられる。溶融成形温度としては、EVOH(A)の融点等により異なるが、150℃〜270℃程度が好ましい。上記二次加工成形としては、例えば曲げ加工、真空成形、ブロー成形、プレス成形等が挙げられる。
上記成形体としては、当該樹脂組成物から形成されるバリア層(以下、「バリア層」ともいう)のみからなる単層構造の成形体としてもよいが、機能向上の観点から、バリア層と、このバリア層の少なくとも一方の面に積層される他の層とを備える多層構造の成形体とすることが好ましい。
多層構造の成形体としては、例えば多層シート、多層パイプ、多層繊維等が挙げられる。上記多層構造の成形体を構成する他の層としては、例えば熱可塑性樹脂から形成される熱可塑性樹脂層が好ましい。上記多層構造の成形体は、バリア層と熱可塑性樹脂層とを備えることで、外観性及び加熱延伸性に優れる。
上記熱可塑性樹脂としては、例えば、
高密度、中密度又は低密度のポリエチレン;
酢酸ビニル、アクリル酸エステル、又はブテン、ヘキセン等のα−オレフィン類を共重合したポリエチレン;
アイオノマー;
ポリプロピレンホモポリマー;
エチレン、ブテン、ヘキセン等のα−オレフィン類を共重合したポリプロピレン;
ゴム系ポリマーをブレンドした変性ポリプロピレン等のポリオレフィン類;
これらの樹脂に無水マレイン酸を付加又はグラフトした樹脂;
ポリエステルなどが挙げられる。
上記熱可塑性樹脂としてはさらに、ポリアミド、ポリエステル、ポリスチレン、ポリ塩化ビニル、アクリル系樹脂、ポリウレタン、ポリカーボネート、ポリ酢酸ビニル等が挙げられる。
上記熱可塑性樹脂としては、これらの中で、ポリエチレン、ポリプロピレン、ポリアミド、ポリエステルが好ましい。熱可塑性樹脂層を形成する具体的樹脂材としては、無延伸ポリプロピレンフィルム、ナイロン6フィルムが好ましい。
上記多層構造の成形品の層構成に関しては特に限定されるものではないが、成形性及びコスト等の観点から、熱可塑性樹脂層/バリア層/熱可塑性樹脂層、バリア層/接着性樹脂層/熱可塑性樹脂層、熱可塑性樹脂層/接着性樹脂層/バリア層/接着性樹脂層/熱可塑性樹脂層が代表的なものとして挙げられる。これらの層構成の中で、熱可塑性樹脂層/バリア層/熱可塑性樹脂層、熱可塑性樹脂層/接着性樹脂層/バリア層/接着性樹脂層/熱可塑性樹脂層が好ましい。バリア層の両外層に熱可塑性樹脂層を設ける場合は、両外層の熱可塑性樹脂層は互いに異なる樹脂からなる層であってもよいし、同一の樹脂からなる層であってもよい。
上記多層構造の成形体を製造する方法としては、特に限定されるものではないが、例えば押出ラミネート法、ドライラミネート法、押出ブロー成形法、共押出ラミネート法、共押出成形法、共押出パイプ成形法、共押出ブロー成形法、共射出成形法、溶液コート法等が挙げられる。
多層シートを製造する方法としては、これらの中で、共押出ラミネート法、共押出成形法が好ましく、共押出成形法がより好ましい。上記バリア層と熱可塑性樹脂層とが上記方法により積層されることで、簡便かつ確実に製造することができ、その結果当該多層シートは、外観性及び加熱延伸性により優れる。
上記多層シートを用いてさらに成形体を成形する方法としては、例えば加熱延伸成形法、真空成形法、圧空成形法、真空圧空成形法、ブロー成形法等が挙げられる。これらの成形は、通常EVOHの融点以下の温度範囲で行われる。これらの中で、加熱延伸成形法、真空圧空成形法が好ましい。加熱延伸成形法は、多層シートを加熱し、一方向又は複数方向に延伸して成形する方法である。真空圧空成形法は、多層シートを加熱し、真空と圧空を併用して成形する方法である。上記成形体として、上述の多層シートを加熱延伸成形法により成形してなる包装材は、簡便かつ確実に製造することができ、また外観性に優れ、フローマークが抑制されたものとすることができる。上述の多層シートを真空圧空成形法により成形してなる容器は、簡便かつ確実に製造することができ、また外観性に優れ、フローマークが抑制されたものとすることができると共に、樹脂組成物層の連続性が保持され、優れたガスバリア性を発揮することができる。
上記加熱延伸成形法の場合には、用いる熱可塑性樹脂は、下記式(2)で表される加熱延伸温度の範囲で延伸可能な樹脂であることが好ましい。
X−110≦Y≦X−10 ・・・(2)
上記式(2)中、Xは、EVOH(A)の融点(℃)である。Yは、加熱延伸温度(℃)である。上記包装材は、多層シートから加熱延伸成形法を用いて製造する場合、熱可塑性樹脂として上記樹脂を用いることで、外観性をより優れるものにすることができ、またクラック等の欠陥をより抑制することができる。
また、上記成形体は、上述した当該樹脂組成物と他の樹脂組成物とを用いた共射出延伸ブロー成形法によって成形することもできる。共射出延伸ブロー成形法は、2種以上の樹脂組成物を用いる共射出成形により多層構造を有する予備成形体を得た後、この予備成形体を加熱延伸ブロー成形する方法である。上述の特性を有する樹脂組成物から共射出延伸ブロー成形法を用いて成形されることで、上記成形体は、簡便かつ確実に製造することができ、外観性に優れ、フローマークが抑制されたものとすることができる。上記他の樹脂組成物としては、例えば上記熱可塑性樹脂等が挙げられる。
なお、押出成形、ブロー成形等の熱成形等を行う際に発生するスクラップは、上記熱可塑性樹脂層にブレンドして再利用してもよいし、別途回収層として用いてもよい。
上記真空圧空成形法では、例えば多層シートを加熱して軟化させた後に、金型形状に成形される。成形方法としては、真空又は圧空を用い、必要によりさらにプラグを併せ用いて金型形状に成形する方法(ストレート法、ドレープ法、エアスリップ法、スナップバック法、プラグアシスト法等)やプレス成形する方法などが挙げられる。成形温度、真空度、圧空の圧力又は成形速度等の各種成形条件は、プラグ形状や金型形状又は原料フィルムやシートの性質等により適切に設定される。
成形温度は特に限定されるものではなく、成形するのに十分な程度に樹脂が軟化する温度であればよい。例えば、多層シートを熱成形する際には、加熱による多層シートの融解が生じたり、ヒーター板の金属面の凹凸が多層シートに転写したりする程度の高温にはせず、かつ賦形が十分でない程度の低温にしないことが望ましい。具体的に、多層シートの温度としては、50℃〜180℃、好適には60℃〜160℃である。
本発明の容器は、当該多層シートの平面に凹部を形成した形の3次元状に熱成形されてなる容器である。当該容器は、上述の真空圧空成形法により、好適に成形される。凹部の形状は内容物の形状に対応して決定されるが、特に凹部の深さが深いほど、また凹部の形状が滑らかでないほど通常のEVOH積層体では厚みムラを発生し易く、コーナー部等が極端に薄くなるので、本発明による改善効果が大きい。当該容器が全層厚み300μm程度未満の多層シートを成形してなるものである場合、絞り比(S)が、好適には0.2以上、より好適には0.3以上、さらに好適には0.4以上のときに本発明の効果はより有効に発揮される。また、当該容器が全層厚み300μm程度以上の多層シートを成形してなるものである場合、絞り比(S)が、好適には0.3以上、より好適には0.5以上、さらに好適には0.8以上のときに本発明の効果はより有効に発揮される。
ここで、絞り比(S)とは、下記式(3)により算出される値をいう。

S=(容器の深さ)/(容器の開口部に内接する最大径の円の直径)
・・・ (3)

すなわち、絞り比(S)とは、容器の最深部の深さの値を、多層シートの平面に形成された凹部(開口部)の形状に接する最も大きい内接円の直径の値で除した値である。この円の直径は、例えば凹部の形状が円である場合にはその直径、楕円である場合にはその短径、長方形である場合にはその短辺の長さがそれぞれ内接する最大径の円の直径になる。
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、本実施例における各定量は、以下の方法を用いて行った。
[含水EVOHペレットの含水率の測定]
メトラー・トレド社のハロゲン水分率分析装置「HR73」を用い、乾燥温度180℃、乾燥時間20分、サンプル量約10gの条件で、含水EVOHペレットの含水率を測定した。以下に示す含水EVOHの含水率は、EVOHの乾燥質量基準の質量%である。
[EVOH(A)、(B)のエチレン含有量及びけん化度]
核磁気共鳴装置(日本電子社の「JNM−GX−500型」)を用い、DMSO−dを測定溶媒として、H−NMRにより求めた。
[カルボン酸及びカルボン酸イオンの定量]
乾燥EVOHペレットを凍結粉砕により粉砕した。得られた粉砕EVOHを、呼び寸法1mmのふるい(標準フルイ規格JIS Z8801−1〜3準拠)で分けた。上記ふるいを通過したEVOH粉末10gとイオン交換水50mLを共栓付き100mL三角フラスコに投入し、冷却コンデンサーを付けて、95℃で10時間撹拌した。得られた溶液2mLを、イオン交換水8mLで希釈した。この希釈溶液を、横河電機社のイオンクロマトグラフィー「ICS−1500」を用い、下記測定条件に従ってカルボン酸イオンの量を定量することで、カルボン酸及びカルボン酸イオンの量を算出した。なお、定量に際してはモノカルボン酸又は多価カルボン酸を用いて作成した検量線を用いた。
(測定条件)
カラム :DIONEX社の「IonPAC ICE−AS1(9φ×250mm、電気伝導度検出器)」
溶離液 :1.0mmol/L オクタンスルホン酸水溶液
測定温度 :35℃
溶離液流速 :1mL/min.
分析量:50μL
[金属イオンの定量]
乾燥EVOHペレット0.5gをアクタック製のテフロン(登録商標)製耐圧容器に仕込み、和光純薬工業社の精密分析用硝酸5mLをさらに加えた。30分放置後、ラプチャーディスク付きキャップリップにて容器に蓋をし、アクタック社のマイクロウェーブ高速分解システム「スピードウェーブ MWS−2」にて150℃10分、次いで180℃10分処理し、乾燥EVOHペレットを分解させた。乾燥EVOHペレットの分解が完了できていない場合は、処理条件を適宜調節した。得られた分解物を10mLのイオン交換水で希釈し、すべての液を50mLのメスフラスコに移し取り、イオン交換水で定容し、分解物溶液を得た。
上記得られた分解物溶液を、パーキンエルマージャパン社のICP発光分光分析装置「Optima 4300 DV」を用い、以下に示す各観測波長で定量分析することで、金属イオン、リン酸化合物及びホウ素化合物の量を定量した。リン酸化合物の量は、リン元素を定量しリン元素換算質量として算出した。ホウ素化合物の含有量は、ホウ酸換算質量として算出した。
Na :589.592nm
K :766.490nm
Mg :285.213nm
Ca :317.933nm
P :214.914nm
B :249.667nm
Si :251.611nm
Al :396.153nm
Zr :343.823nm
Ce :413.764nm
W :207.912nm
Mo :202.031nm
[共役ポリエン化合物の定量]
乾燥樹脂組成物ペレットを凍結粉砕により粉砕し、呼び寸法0.150mm(100メッシュ)のふるい(JIS規格Z8801−1〜3準拠)によって粗大粒子を除去して得た粉砕物10gをソックスレー抽出器に充填し、クロロホルム100mLを用いて48時間抽出処理した。この抽出液中の共役ポリエン化合物の量を高速液体クロマトグラフィーにて定量分析することで、共役ポリエン化合物の量を定量した。なお、定量に際しては、それぞれの共役ポリエン化合物の標品を用いて作成した検量線を使用した。
<EVOH(A)の合成>
[合成例1]
250Lの加圧反応槽を用いて以下の条件で重合を実施し、エチレン−酢酸ビニル共重合体を合成した。
(仕込み量)
酢酸ビニル:83.0kg
メタノール:17.4kg
2,2’−アゾビスイソブチルニトリル:66.4g
重合温度 :60℃
(重合条件)
重合槽エチレン圧力:3.9MPa
重合時間 :3.5時間
上記重合における酢酸ビニルの重合率は36%であった。得られた共重合反応液にソルビン酸を添加した後、追出塔に供給し、塔下部からのメタノール蒸気の導入により未反応酢酸ビニルを塔頂より除去して、エチレン−酢酸ビニル共重合体の41質量%メタノール溶液を得た。このエチレン−酢酸ビニル共重合体のエチレン含有量は32モル%であった。このエチレン−酢酸ビニル共重合体のメタノール溶液をケン化反応器に仕込み、苛性ソーダ/メタノール溶液(80g/L)を、共重合体中のビニルエステル単位に対して0.4当量となるように添加し、さらにメタノールを加えて共重合体濃度が20質量%になるように調整した。この溶液を60℃に昇温し、反応器内に窒素ガスを吹き込みながら約4時間反応させた。この溶液を円形の開口部を有する金板から水中に押し出して析出させ、切断することで、直径約3mm、長さ約5mmのペレットを得た。このペレットを遠心分離機で脱液した後、さらに大量の水を加えてから脱液する操作を繰り返し行って洗浄し、EVOH(A)のペレットを得た。得られたEVOH(A)のケン化度は99.95モル%であった。
また、上記同様にして、下記表1に示す所定のエチレン含有量のEVOH(A)(ケン化度:99.95モル%)を合成した。
[合成例2]
アセトンを、EVOHに対して0.5ppm含有するように、上記重合時に供給した以外は合成例1と同様にして重合、ケン化、ペレット化及び洗浄を行ってペレットを得た。得られたEVOH(A)のケン化度は99.95モル%であった。
<EVOH(B)の合成>
[合成例3]
上記合成例1のEVOH(A)の合成方法と同様にして、エチレン含有量が44モル%でケン化度が99.95モル%のEVOH(B)のペレットを合成した。
また、これと同様にして、下記表1に示す所定のエチレン含有量のEVOH(B)(ケン化度は99.95モル%)を合成した。
[合成例4]
上記合成例2のEVOH(A)の合成方法と同様にして、エチレン含有量が44モル%でケン化度が90モル%のEVOH(B)のペレットを合成した。
[合成例5]
上記合成例3で得られたエチレン含有量が44モル%でケン化度が99.95モル%のEVOH(B)とエポキシプロパンとを用い、東芝機械社の「TEM−35BS」(37mmφ、L/D=52.5)を使用して、バレルC2及びC3が200℃、バレルC4〜C15が240℃、回転数が400rpmの条件下、エポキシプロパンをC9から圧入することにより、変性EVOH(B)を合成した。得られた変性EVOH(B)の変性度は、全ビニルアルコール単位に対して8モル%であった。
上記得られたEVOHの融点は、ケン化度が99.95モル%の場合、エチレン含有量が48モル%で160℃、44モル%で165℃、35モル%で177℃、32モル%で183℃、27モル%で191℃、15モル%で208℃であった。また、ケン化度が90モル%でエチレン含有量が44モル%の場合、134℃であった。上記変性EVOH(B)の融点は、106℃であった。
<樹脂組成物の調製>
[実施例1〜10、14及び15並びに比較例2〜4]
上記合成例1又は合成例2で得られたEVOH(A)のペレット20kgを、180kgの水/メタノール=40/60(質量比)の混合溶媒中に加え、60℃で6時間攪拌し完全に溶解させた。得られた溶液に所定量のアセトン及びソルビン酸を添加し、さらに1時間攪拌してアセトンを完全に溶解させて樹脂溶液を得た。この樹脂溶液を直径4mmのノズルより、0℃に調整した水/メタノール=90/10(質量比)の凝固浴中に連続的に押出してストランド状に凝固させた。このストランドをペレタイザー導入して多孔質の樹脂チップを得た。得られたチップを酢酸水溶液及びイオン交換水を用いて洗浄した。この洗浄液とチップとを分離して脱液した後、熱風乾燥機を用いて80℃で4時間乾燥を行い、さらに100℃で16時間乾燥を行い、アセトン含有EVOH(A)ペレットを得た。得られたペレットにおける各成分の含有量を上記定量方法により定量し、EVOH(A)における含有量とした。同様に上記合成例3、合成例4で得られたEVOH(B)についても同様の方法により、アセトン含有EVOH(B)ペレットを得た。この際、予め上記定量方法を用いEVOH(B)のアセトン含有量を測定し、本方法でアセトンの添加量、浸漬処理用水溶液の各成分の濃度を調節することにより、EVOH(A)とEVOH(B)との合計質量に対するアセトンの含有量が表1に記載の通りとなるように調製した。
上記調製したアセトン含有EVOH(A)ペレット、及びEVOH(B)ペレット又はアセトン含有EVOH(B)ペレットをそれぞれの含有量が表1に記載の通りになるよう混合、ドライブレンド後、二軸押出機(東洋精機製作所社の「2D25W」、25mmφ,ダイ温度220℃,スクリュー回転数100rpm)を用い、窒素雰囲気下で押出しペレット化を行い目的の樹脂組成物ペレットを得た。
[実施例11]
上記合成例1で得られたEVOH(A)のペレット20kgを、180kgの水/メタノール=40/60(質量比)の混合溶媒中に加え、60℃で6時間攪拌し完全に溶解させた。得られた溶液に所定量のアセトン及びソルビン酸を添加し、さらに1時間攪拌してアセトンを完全に溶解させて樹脂溶液を得た。この樹脂溶液を直径4mmのノズルより、0℃に調整した水/メタノール=90/10(質量比)の凝固浴中に連続的に押出してストランド状に凝固させた。このストランドをペレタイザーに導入して多孔質の樹脂チップを得た。得られたチップを酢酸水溶液及びイオン交換水を用いて洗浄した。この洗浄液とチップとを分離して脱液した後、熱風乾燥機を用いて80℃で4時間乾燥を行い、さらに100℃で16時間乾燥を行い、アセトン含有EVOH(A)ペレットを得た。得られたペレットにおける各成分の含有量を上記定量方法により定量し、EVOH(A)における含有量とした。同様に上記合成例5で得られた変性EVOH(B)についても同様の方法により、アセトン含有EVOH(B)ペレットを得た。この際、予め上記定量方法を用いEVOH(B)のアセトン含有量を測定し、本方法でアセトンの添加量、浸漬処理用水溶液の各成分の濃度を調節することにより、EVOH(A)とEVOH(B)の合計質量に対するアセトンの含有量が表1に記載の通りとなるように、上記同様に樹脂組成物ペレットを調製した。
[実施例12]
上記実施例1においてアセトンの代わりにメチルエチルケトンを用いた以外は実施例1と同様にしてメチルエチルケトンを含む樹脂組成物ペレットを調製した。
[実施例13]
上記実施例1においてアセトンの代わりに2−ヘキサノンを用いた以外は、実施例1と同様して2−ヘキサノンを含む樹脂組成物ペレットを調製した。
[比較例1]
上記合成例2で得られたペレット20kgを酢酸水溶液及びイオン交換水を用いて洗浄した。この洗浄液とチップとを分離して脱液した後、熱風乾燥機を用いて80℃で4時間乾燥を行い、さらに100℃で16時間乾燥を行って、EVOH(A)ペレットを得た。同様に上記合成例4で得られたEVOH(B)についても同様の方法で処理した後、上記同様に樹脂組成物ペレットを調製した。
<樹脂組成物の評価>
このようにして得られた各樹脂組成物について、以下の方法を用いて評価した。評価結果を表1に合わせて示す。
[飽和ケトン(C)の定量]
50質量%の2,4−ジニトロフェニルヒドラジン(DNPH)の水溶液200mgに、1,1,1,3,3,3−ヘキサフルオロイソプロパノール(HFIP)50mL、酢酸11.5mL及びイオン交換水8mLを加え、DNPH溶液を調製した。測定ペレット1gをこのDNPH溶液20mLに加え、35℃にて1時間攪拌し溶解させた。この溶液にアセトニトリルを加えて樹脂分を析出させ沈降させた後、濾過して得られた溶液を濃縮し、抽出サンプルを得た。この抽出サンプルを下記条件の高速液体クロマトグラフィーにて定量分析することで、飽和ケトン(C)を定量した。定量に際しては、それぞれの飽和ケトン(C)の標品をDNPH溶液と反応させて作成した検量線を使用した。なお、飽和ケトン(C)の検出下限は、0.01ppmであった。
カラム:TSKgel ODS−80Ts(東ソー社)
移動相:水/アセトニトリル=52:48(体積比)
検出器:PDA(360nm)、TOF−MS
[成形時の臭気]
樹脂組成物の試料ペレット20gを100mLガラス製サンプル管に入れ、アルミホイルで口部を蓋をした後、熱風乾燥機内で220℃で30分間加熱した。乾燥機から取り出し、室温で30分間放冷した後、サンプル管を2〜3回振り混ぜた後、アルミホイルの蓋を取り臭気を評価した。試料ペレットの臭気の強さを以下のような基準で判定した。
A: 臭気を感じない
B: 弱い臭気を感じる
C: 明らかに臭気を感じる
[フローマーク抑制性]
単軸押出装置(東洋精機製作所社の「D2020」、D(mm)=20、L/D=20、圧縮比=2.0、スクリュー:フルフライト)を用い、上記得られた各樹脂組成物ペレットから厚さ150μmの単層フィルムを作製した。成形条件を以下に示す。
押出温度:210℃
スクリュー回転数:100rpm
ダイス幅:15cm
引取りロール温度:80℃
引取りロール速度:0.9m/分
上記条件で連続運転して単層フィルムを作製し、運転開始から8時間後に作製された各フィルムについて外観を目視評価した。フローマーク抑制性は、フローマークが観測されない場合は「A(良好)」と、フローマークが小さく又は発生頻度が小さい場合は「B(やや良好)」と、フローマークが大きくかつ発生頻度が大きい場合は「C(不良)」と評価した。
[着色抑制性]
上記成形において、8時間後に得られたフィルムを目視にて着色を観察し、下記基準により評価した。
「A(良好)」:無色
「B(やや良好)」:黄変
「C(不良)」:著しく黄変
[加熱延伸性]
上記得られたフィルムを東洋精機社のパンタグラフ式二軸延伸装置にて80℃で30秒間予熱後、延伸倍率3×3倍で同時二軸延伸を行い、延伸フィルムを得た。加熱延伸性は、得られた延伸フィルムを目視で観察し、下記基準により評価した。
「A(良好)」:クラックが全く発生しなかった
「B(やや良好)」:局所的にクラックが発生した
「C(不良)」:全体的にクラックが発生した
Figure 2015071694
表1の結果から明らかなように、実施例の樹脂組成物は、成形時の臭気抑制性、フローマーク抑制性、着色抑制性及び加熱延伸性に優れる。一方、飽和ケトン(C)の含有量、EVOHのエチレン含有量、又はEVOH(A)及びEVOH(B)の質量比が規定範囲外の比較例の樹脂組成物は、フローマーク抑制性、着色抑制性及び加熱延伸性が劣ることがわかった。
<多層シートの製造>
[実施例16]
下記に示す4種7層共押出キャスト製膜設備を使用し、上記得られた樹脂組成物を用いて共押出製膜試験を実施した。
押出機(1):一軸、スクリュー直径65mm、L/D=22、外層ポリオレフィン用
押出機(2):一軸、スクリュー直径40mm、L/D=26、ポリオレフィン用
押出機(3):一軸、スクリュー直径40mm、L/D=22、接着性樹脂用
押出機(4):一軸、スクリュー直径40mm、L/D=26、上記樹脂組成物用
押出機(1)、押出機(2)にポリプロピレン(以下、PP、PP’と略称することがある)を、押出機(3)に無水マレイン酸変性ポリプロピレン系の接着性樹脂(三井化学社の「ADMER QF−500」)を、押出機(4)に実施例3で得た樹脂組成物(a)をそれぞれフィードして共押出製膜を行った。押出温度は、押出機(1)を200℃〜250℃、押出機(2)を200℃〜250℃、押出機(3)を160℃〜250℃、押出機(4)を170℃〜250℃、フィードブロック及びダイは250℃に設定した。製膜した多層シートの構成及び各層厚みは、PP/PP’/接着性樹脂/(a)/接着性樹脂/PP’/PP=30/15/2.5/5/2.5/15/30μmのトータル厚み100μmの4種7層の対象構成とした。
製膜開始から10時間後のシートをサンプリングし、外観を観察したところ、EVOHの凝集による外観不良及び流動異常によるフローマークはほとんど認められず、実用上問題のない多層シートが得られた。
[比較例5]
上記実施例16で用いた樹脂組成物を比較例1で得た樹脂組成物に置き換えた以外は実施例16と同様に共押出製膜試験を行い、製膜開始から10時間後のシートをサンプリングし、外観を観察したところ、EVOHの凝集による外観不良及び流動異常によるフローマークが多数観察される多層シートが得られた。
<容器の製造>
[実施例17]
以下の押出成形の条件で、実施例3で得られた樹脂組成物、ポリオレフィン(a)、ポリオレフィン(a’)、カルボン酸変性ポリオレフィン(b)を別々の押出機に仕込み(a)/(a’)/(b)/樹脂組成物/(b)/(a’)/(a)(各層厚み:200μm/225μm/25μm/100μm/25μm/225μm/200μm)の構成を有する全層厚み1,000μmの4種7層の多層シートを共押出シート成形装置により得た。
各押出機の押出条件
ポリオレフィン(a)の押出機:一軸、スクリュー直径65mm、L/D=22、温度200℃〜240℃ (ポリプロピレン)
実施例3で得られた樹脂組成物の押出機:一軸、スクリュー直径40mm、L/D=26、温度170℃〜210℃
カルボン酸変性ポリオレフィン(b)の押出機:一軸、スクリュー直径40mm、L/D=26、温度160℃〜220℃ (無水マレイン酸変性ポリプロピレン系の接着性樹脂(三井化学社の「ADMER QF−500」)
ポリオレフィン(a’)の押出機:一軸、スクリュー直径40mm、L/D=22、温度160℃〜210℃ (ポリプロピレン)
共押出シート成形装置の成形条件
フィードブロック型ダイ(巾600mm)、温度240℃
得られた多層シートを、ヒーター板温度を100℃にした熱成形機(ムルチバック社の「R530」)にて、1.5秒間加熱し,シート温度を約85℃にした後に、金型形状(タテ:130mm、ヨコ:110mm、深さ:50mmの直方体形状、絞り比S=0.45)に挟み、圧縮空気(圧力5kgf/cm(0.5MPa))を吹き込んで成形し、容器を得た。得られた容器は外観性に優れ、フローマークが抑制されていた。
[実施例18]
実施例14で得られた多層シートを熱成形機(浅野製作所社)にて、温度を150℃にして、カップ形状(金型形状70φ×70mm、絞り比S=1.0)に熱成形した。(熱成形条件:圧縮空気圧力:5kg/cm(0.5MPa)、プラグ:45φ×65mm、シンタックスフォーム、プラグ温度:150℃、金型温度:70℃)。得られたカップ容器は、外観性に優れ、フローマークが抑制されていた。また、以下に示す方法で、カップ容器を切断してその断面を観察したところ、樹脂組成物層の連続性を認めた。
<容器の評価>
得られる各容器について、以下の方法を用いて評価した。評価結果を表2に示す。
[樹脂組成物層の連続性]
上記得られたカップ容器を切断し、切断面を顕微鏡で観察し、本発明の樹脂組成物からなる層の連続性を評価した。樹脂組成物層の連続性が保持されている場合を「A(良好)」と、樹脂組成物層の連続性が失われている場合を「B(不良)」とした。
[酸素透過度(酸素バリア性)]
酸素透過度は、酸素透過量測定装置(モダンコントロール社の「MOCON OX−TRAN2/20」)を用いて測定した。具体的には、測定装置にカップ容器をセットし、温度20℃、湿度65%RH(ASTM D3985)にて測定した。酸素バリア性は、0.8mL/(m・day・atm)未満の場合は「A(良好)」と、0.8mL/(m・day・atm)以上の場合は「B(不良)」とした。
[比較例6]
実施例1で得られたEVOH(A)ペレットのみを用い、実施例16と同様にして樹脂組成物ペレットを多層シートとし、実施例18と同様にして、この多層シートをカップ容器とした。このカップ容器を切断しその断面を観察したところ、容器のコーナー部分で樹脂組成物層の連続性が失われていた。また、容器の酸素透過度は、実施例18に比べて顕著に上昇した。
[比較例7]
実施例1で得られたEVOH(B)ペレットのみを用い、実施例16と同様にして樹脂組成物ペレットを多層シートとし、実施例18と同様にして、この多層シートをカップ容器とした。このカップ容器を切断しその断面を観察したところ、容器のコーナー部分で樹脂組成物層の連続性が失われていた。また、容器の酸素透過度は、実施例18に比べて顕著に上昇した。
[比較例8]
比較例1で得られたEVOH(A)ペレットのみを用い、実施例16と同様にして樹脂組成物ペレットを多層シートとし、実施例18と同様にして、この多層シートをカップ容器とした。このカップ容器を切断しその断面を観察したところ、容器のコーナー部分で樹脂組成物層の連続性が失われていた。また、容器の酸素透過度は、実施例18に比べて顕著に上昇した。
[比較例9]
比較例1で得られたEVOH(B)ペレットのみを用い、実施例16と同様にして樹脂組成物ペレットを多層シートとし、実施例18と同様にして、この多層シートをカップ容器とした。このカップ容器を切断しその断面を観察したところ、容器のコーナー部分で樹脂組成物層の連続性が失われていた。また、容器の酸素透過度は、実施例18に比べて顕著に上昇した。
[比較例10]
実施例3で得られたEVOH(A)ペレット50質量%と、EVOH(B)ペレット50質量%とを混合し、ドライブレンド後、二軸押出機(東洋精機製作所社の「2D25W」、25mmφ,ダイ温度220℃,スクリュー回転数100rpm)を用い、窒素雰囲気下で押出しペレット化を行い樹脂組成物ペレットを得た。実施例16と同様にして、樹脂組成物ペレットを多層シートとし、さらに実施例18と同様にして、カップ容器とした。このカップ容器を切断し、その断面を観察したところ、樹脂組成物層の連続性は認められたが、実施例18に比べてカップ容器の酸素バリア性は顕著に低下した。
[比較例11]
比較例1で得られたEVOH(A)ペレット50質量%と、EVOH(B)ペレット50質量%とを混合し、ドライブレンド後、二軸押出機(東洋精機製作所社の「2D25W」、25mmφ,ダイ温度220℃,スクリュー回転数100rpm)を用い、窒素雰囲気下で押出しペレット化を行い樹脂組成物ペレットを得た。実施例16と同様にして、樹脂組成物ペレットを多層シートとし、さらに実施例18と同様にして、カップ容器とした。このカップ容器を切断し、その断面を観察したところ、樹脂組成物層の連続性は認められたが、実施例18に比べてカップ容器の酸素バリア性は顕著に低下した。
Figure 2015071694
本発明の樹脂組成物は、ロングラン時のフローマーク、着色及び臭気が抑制され、かつ加熱延伸性に優れるので、外観性に優れ、フローマークが抑制された成形体を成形することができる。本発明の多層シートは、外観性及び加熱延伸性に優れる。本発明の包装材は、外観性に優れ、フローマークが抑制されている。本発明の容器は、外観性に優れ、フローマークが抑制されていると共に、樹脂組成物層の連続性が保持されており、ガスバリア性に優れる。従って、当該樹脂組成物、多層シート、包装材及び容器は、外観性、二次加工適性、機械的強度等に優れる包装材料等として好適に用いることができる。

Claims (9)

  1. エチレン含有量が20モル%以上50モル%以下のエチレン−ビニルアルコール共重合体(A)、エチレン含有量が30モル%以上60モル%以下のエチレン−ビニルアルコール共重合体(B)及び飽和ケトン(C)を含有し、
    上記エチレン−ビニルアルコール共重合体(B)のエチレン含有量からエチレン−ビニルアルコール共重合体(A)のエチレン含有量を減じた値が8モル%以上であり、
    上記エチレン−ビニルアルコール共重合体(A)のエチレン−ビニルアルコール共重合体(B)に対する質量比(A/B)が60/40以上95/5以下であり、
    上記飽和ケトン(C)の樹脂分に対する含有量が0.01ppm以上100ppm未満である樹脂組成物。
  2. 上記エチレン−ビニルアルコール共重合体(A)の融点と上記エチレン−ビニルアルコール共重合体(B)の融点との差が15℃以上である請求項1に記載の樹脂組成物。
  3. 上記エチレン−ビニルアルコール共重合体(B)が下記式(1)で表される構造単位を有し、
    この構造単位の全ビニルアルコール単位に対する含有率が0.3モル%以上40モル%以下である請求項1又は請求項2に記載の樹脂組成物。
    Figure 2015071694
    (式(1)中、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1〜10の炭化水素基又は炭素数1〜10のアルコキシ基である。上記炭化水素基が有する水素原子の一部又は全部が水酸基、アルコキシ基、カルボキシル基又はハロゲン原子で置換されていてもよい。また、RとRとが互いに結合して環構造を形成していてもよい。)
  4. 上記飽和ケトン(C)の炭素数が3から8である請求項1、請求項2又は請求項3に記載の樹脂組成物。
  5. 上記飽和ケトン(C)が、アセトン、メチルエチルケトン及び2−ヘキサノンからなる群より選ばれる少なくとも1種である請求項4に記載の樹脂組成物。
  6. 請求項1から請求項5のいずれか1項に記載の樹脂組成物から形成されるバリア層と、
    このバリア層の少なくとも一方の面に積層される熱可塑性樹脂層と
    を備える多層シート。
  7. 上記バリア層と熱可塑性樹脂層とが共押出成形法により積層される請求項6に記載の多層シート。
  8. 請求項6又は請求項7に記載の多層シートを加熱延伸成形法により成形してなる包装材。
  9. 請求項6又は請求項7に記載の多層シートを真空圧空成形法により成形してなる容器。
JP2013207782A 2013-10-02 2013-10-02 樹脂組成物、多層シート、包装材及び容器 Active JP6454462B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013207782A JP6454462B2 (ja) 2013-10-02 2013-10-02 樹脂組成物、多層シート、包装材及び容器
US15/026,673 US10093795B2 (en) 2013-10-02 2014-10-02 Resin composition, multilayer sheet, packaging material and container
CN201480054557.1A CN105579524B (zh) 2013-10-02 2014-10-02 树脂组合物、多层片、包装材料和容器
ES14851176.9T ES2675504T3 (es) 2013-10-02 2014-10-02 Composición de resina, lámina de múltiples capas, material de envasado y recipiente
PCT/JP2014/076441 WO2015050223A1 (ja) 2013-10-02 2014-10-02 樹脂組成物、多層シート、包装材及び容器
EP14851176.9A EP3053961B1 (en) 2013-10-02 2014-10-02 Resin composition, multi-layer sheet, packaging material, and container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013207782A JP6454462B2 (ja) 2013-10-02 2013-10-02 樹脂組成物、多層シート、包装材及び容器

Publications (2)

Publication Number Publication Date
JP2015071694A true JP2015071694A (ja) 2015-04-16
JP6454462B2 JP6454462B2 (ja) 2019-01-16

Family

ID=53014303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013207782A Active JP6454462B2 (ja) 2013-10-02 2013-10-02 樹脂組成物、多層シート、包装材及び容器

Country Status (1)

Country Link
JP (1) JP6454462B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103073A1 (ja) * 2017-11-22 2019-05-31 日本合成化学工業株式会社 エチレン-ビニルアルコール系共重合体組成物、溶融成形用材料、多層構造体および熱成形容器用材料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072653A1 (fr) * 2002-02-26 2003-09-04 Kuraray Co., Ltd. Composition de resine et structures multicouches
JP2004043022A (ja) * 2002-02-15 2004-02-12 Kuraray Co Ltd 共射出延伸ブロー成形容器
JP2005041993A (ja) * 2003-07-22 2005-02-17 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物組成物およびその用途
WO2005014716A1 (ja) * 2003-08-07 2005-02-17 Idemitsu Unitech Co., Ltd. エチレン-ビニルアルコール共重合体樹脂組成物からなる単層又は多層成形品、容器及び回収・再使用による成形品の製造方法
JP2006124668A (ja) * 2004-09-28 2006-05-18 Nippon Synthetic Chem Ind Co Ltd:The エチレン−ビニルアルコール共重合体組成物およびそれを用いた多層構造体
WO2013187455A1 (ja) * 2012-06-13 2013-12-19 株式会社クラレ エチレン-ビニルアルコール樹脂組成物、多層シート、包装材及び容器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043022A (ja) * 2002-02-15 2004-02-12 Kuraray Co Ltd 共射出延伸ブロー成形容器
WO2003072653A1 (fr) * 2002-02-26 2003-09-04 Kuraray Co., Ltd. Composition de resine et structures multicouches
JP2005041993A (ja) * 2003-07-22 2005-02-17 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物組成物およびその用途
WO2005014716A1 (ja) * 2003-08-07 2005-02-17 Idemitsu Unitech Co., Ltd. エチレン-ビニルアルコール共重合体樹脂組成物からなる単層又は多層成形品、容器及び回収・再使用による成形品の製造方法
JP2006124668A (ja) * 2004-09-28 2006-05-18 Nippon Synthetic Chem Ind Co Ltd:The エチレン−ビニルアルコール共重合体組成物およびそれを用いた多層構造体
WO2013187455A1 (ja) * 2012-06-13 2013-12-19 株式会社クラレ エチレン-ビニルアルコール樹脂組成物、多層シート、包装材及び容器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103073A1 (ja) * 2017-11-22 2019-05-31 日本合成化学工業株式会社 エチレン-ビニルアルコール系共重合体組成物、溶融成形用材料、多層構造体および熱成形容器用材料
JPWO2019103073A1 (ja) * 2017-11-22 2020-10-01 三菱ケミカル株式会社 エチレン−ビニルアルコール系共重合体組成物、溶融成形用材料、多層構造体および熱成形容器用材料
EP3715417A4 (en) * 2017-11-22 2020-12-09 Mitsubishi Chemical Corporation ETHYLENE VINYL ALCOHOL COPOLYMER COMPOSITION, MOLDED MATERIAL, MULTILAYER STRUCTURE AND MATERIAL FOR THERMOFORMED CONTAINERS
US11161972B2 (en) 2017-11-22 2021-11-02 Mitsubishi Chemical Corporation Ethylene-vinyl alcohol copolymer composition, melt-forming material, multilayer structure, and container thermoforming material
JP7268356B2 (ja) 2017-11-22 2023-05-08 三菱ケミカル株式会社 エチレン-ビニルアルコール系共重合体組成物、溶融成形用材料、多層構造体および熱成形容器用材料

Also Published As

Publication number Publication date
JP6454462B2 (ja) 2019-01-16

Similar Documents

Publication Publication Date Title
JP6148669B2 (ja) エチレン−ビニルアルコール樹脂組成物、多層シート、包装材及び容器
JP6073860B2 (ja) エチレン−ビニルアルコール共重合体含有樹脂組成物
JP6113723B2 (ja) エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
JP6039650B2 (ja) ブロー成形容器及び燃料容器、並びにブロー成形容器の製造方法
WO2015050223A1 (ja) 樹脂組成物、多層シート、包装材及び容器
WO2015050224A1 (ja) エチレン-ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
WO2015041258A1 (ja) 熱成形容器及びその製造方法
WO2015050222A1 (ja) 樹脂組成物、樹脂成形体及び多層構造体
JP6454460B2 (ja) 樹脂組成物、樹脂成形体及び多層構造体
JP2015071709A (ja) 樹脂組成物、多層構造体及びそれからなる熱成形容器
JP6349067B2 (ja) ブロー成形容器及びブロー成形容器の製造方法
JP2015083496A (ja) 熱成形容器及びその製造方法
JP6473563B2 (ja) 樹脂組成物、多層シート、包装材及び容器
JP6653727B2 (ja) 樹脂組成物、多層構造体、熱成形容器及びその製造方法
JP6454461B2 (ja) 樹脂組成物、樹脂成形体及び多層構造体
JP2015071711A (ja) 樹脂組成物、多層構造体及びそれからなる熱成形容器
JP6454462B2 (ja) 樹脂組成物、多層シート、包装材及び容器
JP6454463B2 (ja) エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
JP6454464B2 (ja) エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
JP6145379B2 (ja) ブロー成形容器及びブロー成形容器の製造方法
JP6653726B2 (ja) 樹脂組成物、多層構造体、熱成形容器及びその製造方法
JP6653728B2 (ja) 樹脂組成物、多層構造体、熱成形容器及びその製造方法
JP2023058035A (ja) 熱成形容器及びその製造方法
JP2015071710A (ja) 樹脂組成物、多層構造体及びそれからなる熱成形容器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180501

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180615

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181217

R150 Certificate of patent or registration of utility model

Ref document number: 6454462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150