JP2015063781A - エアジェット織機におけるエア漏れ検知方法 - Google Patents

エアジェット織機におけるエア漏れ検知方法 Download PDF

Info

Publication number
JP2015063781A
JP2015063781A JP2013199078A JP2013199078A JP2015063781A JP 2015063781 A JP2015063781 A JP 2015063781A JP 2013199078 A JP2013199078 A JP 2013199078A JP 2013199078 A JP2013199078 A JP 2013199078A JP 2015063781 A JP2015063781 A JP 2015063781A
Authority
JP
Japan
Prior art keywords
pressure
air
main
compressed air
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013199078A
Other languages
English (en)
Other versions
JP5842889B2 (ja
Inventor
牧野 洋一
Yoichi Makino
洋一 牧野
雅彰 澤木
Masaaki Sawaki
雅彰 澤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2013199078A priority Critical patent/JP5842889B2/ja
Priority to BE2014/0703A priority patent/BE1022163B1/fr
Priority to CN201410496521.0A priority patent/CN104514072B/zh
Publication of JP2015063781A publication Critical patent/JP2015063781A/ja
Application granted granted Critical
Publication of JP5842889B2 publication Critical patent/JP5842889B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/28Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed
    • D03D47/30Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed by gas jet
    • D03D47/3026Air supply systems
    • D03D47/3033Controlling the air supply
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/28Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed
    • D03D47/30Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed by gas jet
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/28Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed
    • D03D47/30Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed by gas jet
    • D03D47/3006Construction of the nozzles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2815Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements

Abstract

【課題】電空レギュレータを用いたエアジェット織機のエア漏れを正確に検知する。
【解決手段】微風回路の絞り弁を操作して微風の流通を遮断し、スタートボタン43を操作し、電空レギュレータにおける空気ばね圧調整部の圧力制御を停止して圧縮エアの排気を無くす。エア供給源側の開閉弁を閉じると、圧力計が元圧力P1、メイン圧力P2、サブ圧力P3を計測し、圧力線図画面42に圧力線L3〜L6を表示する。圧縮エアがメイン圧力P2から低下した圧縮エアに集束後、配管系の圧縮エアは、基準圧力PSよりも低下する。制御装置は、配管系の圧縮エアが圧力線L6のように基準圧力PSより減圧したことによりエア漏れと判断し、圧力線L4のようにサブ圧力P3より低いメイン圧力P2を把握して、メインエアタンク側にエア漏れが生じていると判断する。
【選択図】図5

Description

本願発明は、エアジェット織機における圧縮エアの配管系のエア漏れ検知方法に関する。
エアジェット織機では、圧縮エアの配管系を構成するバルブや配管等の破損、あるいは配管系の組み付け不備や調整不備によりエア漏れを生じる恐れがある。エア漏れが生じると、緯入れ時に圧縮エアの消費量が増加し、また、緯入れ時以外でも不要な圧縮エアが流出するため、エネルギーの無駄が生じる。また、配管系におけるエア漏れは、必要な圧縮エアの流量や圧力が低下し、緯入れ性能に影響を及ぼすため、エアジェット織機の運転継続を困難にする恐れがある。
エア漏れの影響を防止するために、例えば、特許文献1のように、エアジェット織機の配管系における圧縮エアのエア漏れ検知方法が開示されている。特許文献1では、エア供給源に接続する配管が開閉弁を介してエアジェット織機側の配管に接続している。エアジェット織機側には、エア供給源から供給される圧縮エアの開閉弁及び圧縮エアの元圧力を計測する圧力計が設けられている。元圧力の圧力計の下流側には、メインレギュレータ、メインタンク、メインバルブを介してメインノズルに接続する管路と、サブレギュレータ、サブタンク、サブバルブを介してサブノズル群に接続する管路とが設けられている。エア供給源に接続する配管の開閉弁、メインノズル側の管路及びサブノズル群側の管路は、エアジェット織機における圧縮エアの配管系を構成している。また、配管系には、メインタンクとサブタンクとにそれぞれ圧縮エアの圧力計が設けられている。
特許文献1の発明は、エアジェット織機の停止時に、開閉弁を閉じてエア供給源との接続を断ち、圧力計により、エア供給源側の元圧力、メインタンクのメイン圧力及びサブタンクのサブ圧力の減圧状態を計測する。計測された元圧力、メイン圧力及びサブ圧力の減圧時間に基づく減圧パターンは、予め設定されている減圧パターンと比較される。両者の減圧パターンが異なる場合は、メインタンク側あるいはサブタンク側にエア漏れが生じていると判断され、配管系に対して必要な対策を講じることができる。
特開2013−83016号公報
特許文献1に開示されたメインレギュレータ及びサブレギュレータは、メインタンク及びサブタンクにおける圧縮エアの圧力を一定に保つ機能を有し、一般的には、手動式レギュレータが使用されている。手動式レギュレータの場合、エア供給源からの圧縮エアの供給を停止し、微風の供給を停止した時、配管系に残留した圧縮エアの圧力は、図6(a)のように変化する。エア供給源側の圧縮エアの元圧力P1は、点線で示した圧力線L11のように急激に減圧する。また、メインタンク側の圧縮エアのメイン圧力P2は、点線で示した圧力線L12のように変化の無い状態で推移する。減圧した元圧力がメイン圧力P2と同一圧力に集束した後、配管系の圧縮エアは、点線で示した圧力線L13のように、実質的に一定の状態を保持する。従って、特許文献1に記載されたように、エア供給源からの圧縮エアの供給を停止した後、圧力計により配管系における圧縮エアの減圧パターンを計測することにより、エア漏れを検知することができる。
しかし、エアジェット織機における圧縮エアの配管系には、手動式レギュレータに代えて、電気的な圧力制御により自動的に圧力調整を行う電空レギュレータを使用する場合がある。電空レギュレータは、エアジェット織機を停止し、エア供給源からの圧縮エアの供給を停止した後も、圧力の調整が行われるように構成されている。
電空レギュレータは、圧縮エアが空気ばね圧調整部へ供給される作用と、空気ばね圧調整部の圧縮エア及び電空レギュレータの出口側の圧縮エアが外部へ排気される作用とにより、設定された目標圧力を得られるように圧力調整する。このため、エア供給源からの圧縮エアの供給停止後、圧力計により配管系の圧縮エアの圧力を計測すると、圧縮エアは、図6(b)に実線で示した圧力線L23のように、手動式レギュレータを用いた場合と比べて大きく減圧する。即ち、エア供給源側の圧縮エアは、圧力線L21のように、元圧力P1から急激に減圧され、圧力線L22で示すように、メイン圧力P2から減圧しているメインタンク側の圧縮エアの圧力に集束する。その後、配管系の圧縮エアは、圧力線L23に示すように、さらに大きく減圧変化する。
電空レギュレータは、エアジェット織機を停止した後も、空気ばね圧調整部の圧力制御を継続するため、電空レギュレータからの圧縮エアの排気作用が断続的に行われ、配管系の圧縮エアは、手動レギュレータを使用した場合のエア漏れ発生時と同等の減圧傾向を示す。従って、配管系に電空レギュレータを使用したエアジェット織機では、手動式レギュレータを使用した場合と同じ基準値(しきい値)を用いると、エア漏れが発生していないにも拘わらずそれを誤検知してしまう。
本願発明は、電空レギュレータを用いたエアジェット織機のエア漏れを正確に検知することを目的とする。
請求項1は、メインノズルに供給する圧縮エアを貯蔵するメインエアタンク、サブノズルに供給する圧縮エアを貯蔵するサブエアタンクを備え、エア供給源に接続する配管に元圧開閉弁を備え、前記エア供給源と前記メインエアタンク及び前記サブエアタンクとを前記元圧開閉弁及び電空レギュレータを介して接続することにより圧縮エアの配管系を構成し、前記配管系に設置した圧力計を用いて前記配管系のエア漏れを検知するエアジェット織機のエア漏れ検知方法において、前記エアジェット織機を停止するとともに前記元圧開閉弁を閉弁し、前記配管系のエア漏れを検知するために前記圧力計により前記配管系の圧力を計測している期間中は前記電空レギュレータにおける空気ばね圧調整部の圧力制御を停止することを特徴とする。
請求項1によれば、電空レギュレータを用いたエアジェット織機においても、手動レギュレータを用いた時と同等の基準値で配管系のエア漏れを正確に検知することができる。
請求項2は、前記圧力計は、前記メインエアタンク及び前記サブエアタンクに設置されていることを特徴とする。請求項2によれば、配管系のエア漏れがメインエアタンク側あるいはサブエアタンク側のどちらで生じているかを検知することができる。
請求項3は、前記配管系において、前記メインノズルに絞り弁を備えた微風回路が接続され、前記絞り弁を閉じた後、前記圧力計により前記配管系の圧力を測定することを特徴とする。請求項3によれば、エア漏れの検知中にメインノズルから噴射される微風の影響を無くすことができ、配管系のエア漏れを正確に検知することができる。
本願発明は、電空レギュレータを用いたエアジェット織機におけるエア漏れを正確に検知することができる。
エアジェット織機の圧縮エアの配管系を示す概略説明図である。 電空レギュレータの概略説明図である。 エア漏れ検知の操作を説明する初期表示画面である。 正常時のエア漏れ検知結果を示す表示画面である。 エア漏れ時のエア漏れ検知結果を示す表示画面である。 (a)手動式レギュレータを使用した配管系の減圧変化を示す線図、(b)電空レギュレータを使用した配管系の減圧変化を示す線図である。
本実施形態を図1〜図5に基づいて説明する。図1は、エアジェット織機1の緯入れ装置における圧縮エアの配管系2をブロック図で示したものである。織布工場内に設置されたエア供給源3は、エアコンプレッサー及びドライヤー等の関連機器(図示せず)から構成され、配管4により圧縮エアを個々のエアジェット織機1に供給している。配管4は圧縮エアの供給、停止を行う元圧開閉弁5を介してエアジェット織機1側の配管6と接続している。
エアジェット織機1では、配管6はフィルタ7を介して、圧力計8に接続する。圧力計8は、エア供給源3から供給される圧縮エアの元圧力P1(図4参照)を計測する。元圧力P1はエアジェット織機1の緯入れに使用する圧力よりも高い圧力で供給されるように設定されている。圧力計8に接続した配管6は、電空レギュレータ9を介してメインエアタンク10と接続する。また、メインエアタンク10には、圧力計11が設けられている。
電空レギュレータ9は、圧縮エアの元圧力P1を予め設定されている緯入れに適したメイン圧力P2(図4参照)に調整し、メイン圧力P2に調整された圧縮エアをメインエアタンク10に供給し、貯蔵する。なお、メイン圧力P2と元圧力P1との関係は、P2<P1となるように設定されている。圧力計11は、メインエアタンク10に貯留された圧縮エアの圧力を計測し、圧縮エアが設定されたメイン圧力P2に調整されているか否かをチェックすることができる。メインエアタンク10は、配管6によりメインエアバルブ12を介してメインノズル13と接続し、メインエアバルブ12の開閉動作により、圧縮エアがメインノズル13に供給され、緯入れが行われる。
圧力計8と電空レギュレータ9とを接続する配管6から分岐された配管14は、絞り弁15を介してメインエアバルブ12とメインノズル13とを接続する配管6に接続し、微風回路を構成している。従って、絞り弁15により調整された微量の圧縮エアは、緯入れ停止中に常時メインノズル13に供給されている。メインノズル13は、微風を緯入れ停止中常時噴射することにより、緯入れ後の緯糸先端を安定した状態で保持する。
一方、圧力計8と電空レギュレータ9とを接続する配管6からさらに分岐された配管16は、電空レギュレータ9と同一の構造、機能を有する電空レギュレータ17を介してサブエアタンク18に接続する。また、サブエアタンク18には、圧力計19が設けられている。電空レギュレータ17は、エア供給源3から供給された圧縮エアの元圧力P1を緯入れに適したサブ圧力P3(図4参照)に調整する。このため、サブエアタンク18には、サブ圧力P3に調整された圧縮エアが貯蔵される。なお、サブ圧力P3と元圧力P1及びメイン圧力P2との関係は、P3<P1、P3=P2となるように設定されている。
サブエアタンク18は、緯入れ方向に沿って配設された4つのサブエアバルブ20にそれぞれ配管16によって接続される。緯入れ方向に4つの群に分割されたサブノズル群21は、それぞれ複数本のサブノズルを備え、各サブエアバルブ20は各サブノズル群21の各サブノズルに配管16によって接続される。従って、各サブノズル群21には、各サブエアバルブ20の作動によりサブエアタンク18からサブ圧力P3の圧縮エアが供給され、緯入れが行われる。
圧力計8、11、19はファンクションパネル22を備えた制御装置23に電気的に接続され、計測した圧縮エアの元圧力P1、メイン圧力P2、サブ圧力P3のデータを制御装置23に送信している。制御装置23には、圧力計8、11、19から送信されるデータや設定値等を記憶する記憶部(図示せず)及び元圧力P1、メイン圧力P2、サブ圧力P3のデータを基に各種計算を行う演算部(図示せず)が備えられる。また、制御装置23には、元圧力P1、メイン圧力P2、サブ圧力P3の計測時間を測定する計時手段(図示せず)及び電空レギュレータ9及び電空レギュレータ17への電力供給を遮断する電源遮断回路(図示せず)が備えられている。制御装置23は、エアジェット織機1を運転するために必要な各種プログラムを備え、緯入れ時にメインエアバルブ12及びサブエアバルブ20に信号を送信し、緯入れ動作の開始及び停止を制御する。
電空レギュレータ9及び電空レギュレータ17は、同一構造を有している。従って、本実施形態では、電空レギュレータ9の構成を図2に基づいて説明する。電空レギュレータ9は、空気ばね圧調整部24、パイロット式開閉弁25、排気弁26、給気用電磁弁27及び排気用電磁弁28から構成されている。空気ばね圧調整部24は、筺体内に配設されたダイヤフラム29とダイヤフラム29の一方側に形成された一次側空間30、他方側に形成された二次側空間31とを備えている。ダイヤフラム29は、一次側空間30内の圧力及び二次側空間31内の圧力の差により、一次側空間30側あるいは二次側空間31側に変位される。
一次側空間30は、管路32を介して給気用電磁弁27及び排気用電磁弁28に接続されている。給気用電磁弁27及び排気用電磁弁28は、それぞれ制御装置23に電気的に接続され、制御装置23からの指令により開閉動作を行う。給気用電磁弁27は、管路33を介してエア供給源3に接続する配管6に接続されている。従って、給気用電磁弁27が開弁した時、元圧力P1の圧縮エアは管路32を介して一次側空間30に供給される。排気用電磁弁28は、外部に開放された排気口34を備え、排気用電磁弁28が開弁した時、一次側空間30内の圧縮エアが排気口34から外部に放出される。
パイロット式開閉弁25は、エア供給源3側の配管6に接続する入口35と、メインエアタンク10側の配管6に接続する出口36とを備えている。また、パイロット式開閉弁25は、空気ばね圧調整部24のダイヤフラム29に連結されているため、ダイヤフラム29の変位により開閉動作を行う。例えば、パイロット式開閉弁25は、一次側空間30が二次側空間31より高圧になると開弁し、二次側空間31が一次側空間30とバランス状態にあるか、高圧状態になると閉弁する。パイロット式開閉弁25の開弁時には、エア供給源3側の圧縮エアがメインエアタンク10側に供給される。なお、パイロット式開閉弁25の出口36に接続する配管6は、管路37によって二次側空間31と連通している。
排気弁26は、二次側空間31に連通する管路38と排気口39とを備え、パイロット式開閉弁25と同様にダイヤフラム29の変位により開閉動作を行う。例えば、排気弁26は、一次側空間30が二次側空間31とバランス状態にあるか、高圧状態になると閉弁する。二次側空間31が一次側空間30より高圧になると、排気弁26が開弁され、二次側空間31内の圧縮エア、即ち、パイロット式開閉弁25の出口36側の圧縮エアが管路37及び二次側空間31を介して排気口39から放出される。
パイロット式開閉弁25の出口36に接続する配管6には、圧力計40が設置され、配管6内の圧縮エアの圧力を常時計測している。圧力計40は、制御装置23と電気的に接続され、計測した圧縮エアの圧力データを制御装置23に送信している。制御装置23では、予め設定されたメインエアタンク10に貯留する圧縮エアの圧力が記憶されており、圧力計40から送信される圧力データが設定圧力と比較されている。制御装置23は、比較結果に基づき、給気用電磁弁27及び排気用電磁弁28に制御信号を送信し、一次側空間30に圧縮エアを供給する作用と、一次側空間30の圧縮エアを外部へ放出する作用とのいずれかを選択的に制御する。
電空レギュレータ9は、パイロット式開閉弁25の出口36側における圧縮エアの圧力が制御装置23に記憶されている設定圧力となるように、常に圧力調整を行っている。例えば、出口36側の圧力が設定圧力より低いと、排気用電磁弁28を閉弁し、給気用電磁弁27を開弁する。給気用電磁弁27が開くと、エア供給源3側の高圧の圧縮エアが一次側空間30に供給され、ダイヤフラム29を二次側空間31側に変位させて排気弁26を閉弁させるとともにパイロット式開閉弁25を開弁する。パイロット式開閉弁25の開弁により、エア供給源3側の圧縮エアがメインエアタンク10側に流れ、圧縮エアの圧力が上昇する。
出口36側の圧力が設定圧力より高い場合、給気用電磁弁27が閉弁されるとともに排気用電磁弁28が開弁されて一次側空間30内の圧縮エアが排気口34から排出される。また、出口36側の高圧の圧縮エアが二次側空間31に流入してダイヤフラム29を一次側空間30側へ変位してパイロット式開閉弁25を閉弁状態に維持するとともに排気弁26を開弁して出口36側の圧縮エアを排気口39から外部へ放出し、メインエアタンク10側の圧縮エアの圧力を下げる。
電空レギュレータ9及び電空レギュレータ17を使用する配管系2を備えたエアジェット織機1におけるエア漏れ検知方法を図3〜図6に基づき説明する。制御装置23には、エア漏れ検知に関するプログラムが設定されており、エアジェット織機1の運転を停止してから、ファンクションパネル22を操作することにより、エア漏れ検知モードの初期表示画面41が表示される。初期表示画面41には、時間軸と圧力軸を描いた圧力線図画面42、スタートボタン43及びコメント画面44が表示されている。圧力線図画面42には、予め設定されたエア漏れを判断する基準圧力PSが一点鎖線で表示され、コメント画面44には、エア漏れ検知のための操作を促すコメント「メインノズル微風目盛を零にしてください。」及び「スタートキーを押し、元圧開閉弁を閉じてください。」が表示されている。
初期表示画面41において、コメント画面44のコメントに基づき、作業者は微風回路の絞り弁15を操作して目盛を零にし、微風の流通を遮断する。続いて、スタートボタン43を押すと、制御装置23の指令により電空レギュレータ9、17と電源との接続が遮断されて、電空レギュレータ9、17への電力供給が停止され、エア漏れを検知するために圧力計8、11、19により圧力を計測している期間中は電空レギュレータ9、17における空気ばね圧調整部24の圧力制御が停止する。このため、電空レギュレータ9、17における空気ばね圧調整部24の圧力制御に起因する圧縮エアの排気が無くなる。
次に、作業者が元圧開閉弁5を閉じると、圧力計8、11、19は、予め設定された一定時間、配管系2に残留する圧縮エアの元圧力P1、メイン圧力P2、サブ圧力P3を計測する。図4に示すように、計測データに基づいた元圧力の圧力線L3、メイン圧力及びサブ圧力の圧力線L4が、圧力線図画面42に、時間軸に沿って表示される。図4において、計測初期の時点で、エア供給源3側に残留する比較的高圧の圧縮エアは、電空レギュレータ9、17を通してメインエアタンク10及びサブエアタンク18側へ流出する。このため、高圧の圧縮エアは急速に減圧し、元圧力P1からメイン圧力P2及びサブ圧力P3に集束する。元圧力P1の減圧後、メイン圧力P2及びサブ圧力P3に集束した配管系2の圧縮エアは、一定時間経過しても基準圧力PSよりも高い圧力状態に維持されている。このため、制御装置23はエア漏れが無いと判断し、コメント画面44にコメント「エア漏れはありません。」を表示する。
エア漏れ検知に関する作業が終了すると、作業者はエア供給源3側の元圧開閉弁5を開き、エア供給源3の圧縮エアがエアジェット織機1の配管系2に供給される。圧力計8は配管6内の圧縮エアの圧力を計測し、圧力に関する信号を制御装置23に送信する。制御装置23は、圧力計8からの信号により配管6内の圧縮エアの圧力が予め記憶されている元圧力P1に復帰したことを確認すると、電空レギュレータ9、17と電源とを自動的に接続する。電空レギュレータ9、17は、電力供給により空気ばね圧調整部24の圧力制御を開始し、設定された圧力であるメイン圧力P2、サブ圧力P3に調整された圧縮エアをメインエアタンク10、サブエアタンク18に供給する。この一連の作業により、エアジェット織機1の製織開始の準備が完了する。なお、電空レギュレータ9、17への電力供給の開始は、エアジェット織機1の起動ボタンを操作することにより行うように構成しても良い。
図5には、エア漏れが生じている場合の圧力線L3、L4、L5、L6が圧力線図画面42に表示されている。圧力線L3はエア供給源3側の圧縮エアの圧力変化を示し、圧力線L4はメインエアタンク10側の圧縮エアの圧力変化を示し、圧力線L5はサブエアタンク18側の圧縮エアの圧力変化を示し、圧力線L6はエア供給源3側とメインエアタンク10側及びサブエアタンク18側との圧力が同一になった後の配管系2の圧縮エアの圧力変化を示す。
圧力線図画面42に表示された圧力線図では、計測初期の時点で、圧力線L4に示すように、メイン圧力P2がサブ圧力P3より低い。圧力線L3に示すように、元圧力P1から急速に減圧する圧縮エア及び圧力線L5に示すように、サブ圧力P3から減圧する圧縮エアが、圧力線L4に示すように、メイン圧力P2から低下した圧縮エアの圧力に集束する。集束後の配管系2の圧縮エアは、圧力線L6で示すように、時間経過とともにさらに減圧し、基準圧力PSよりも低い圧力に低下する。制御装置23は、配管系2の圧縮エアの圧力が基準圧力PSより低下した時点でエア漏れと判断するとともに、計測初期の時点で、メイン圧力P2がサブ圧力P3より低下している状態を把握することにより、メインエアタンク10側にエア漏れが生じていると判断する。
コメント画面44には、メインエアタンク10側にエア漏れが生じていることを現すコメント「エア漏れがあります(メインノズル)。」が表示される。コメント画面44にエア漏れが表示された場合、作業者は、エア漏れ箇所が表示されているため、直ちにメインエアタンク10側の配管等をチェックし、エア漏れ箇所の修復作業を行うことができる。なお、サブエアタンク18側にエア漏れが生じている場合、圧力線図画面42には、計測初期の段階で、サブ圧力P3がメイン圧力P2より低下しているため、制御装置23はサブエアタンク18側のエア漏れであることを正確に判断することができる。エア漏れ検知作業及びエア漏れ箇所の修復作業が終了すると、図4で説明したエア漏れ検知作業後の一連の操作と同様の操作を行うことにより、エアジェット織機1は製織開始の準備を完了する。
本実施形態では、電空レギュレータ9、17への電力の供給を遮断し、空気ばね圧調整部24の圧力制御を中断することにより、電空レギュレータ9、17特有の空気ばね圧調整部24の圧力制御に起因する圧縮エアの排気を無くすことができるため、正確なエア漏れ検知を行うことができる。また、メインエアタンク10に圧力計11を設け、サブエアタンク18に圧力計19を設けることにより、エア漏れがメインエアタンク10側及びサブエアタンク18側のどちらで生じているかを判断することができ、エア漏れ箇所の修復作業を容易に行うことができる。
本願発明は、前記した実施形態の構成に限定されるものではなく、本願発明の趣旨の範囲内で種々の変更が可能であり、次のように実施することができる。
(1)本実施形態において、エアジェット織機1の停止後、微風回路の絞り弁15、エア供給源3側の元圧開閉弁5及び初期表示画面41のスタートボタン43の操作順序は、明細書記載の順序に限らず、自由に変えることができる。
(2)本実施形態において、圧力計11及び圧力計19は、メインエアタンク10及びサブエアタンク18に設置する必要は無く、配管6及び配管16に設けるように構成しても良い。
(3)本実施形態は、メインノズル13へ微風を供給する微風回路を設置しない構成において実施することができる。
(4)本実施形態は、メインノズル13を複数設置したいわゆる多色用エアジェット織機において実施することができる。この実施例では、複数のメインノズル13用に複数のメインエアタンク10を設置する構成とした場合、メインエアタンク10毎に圧力計11を設けることが好ましい。
(5)本実施形態におけるメインエアタンク10の圧力計11及びサブエアタンク18の圧力計19は、いずれか一方の圧力計を無くしても良い。
(6)本実施形態では、電空レギュレータ9、17への電力供給を停止したが、電空レギュレータ9、17における空気ばね圧調整部24の圧力制御を一時的に無効化するように給気用電磁弁27及び排気用電磁弁28を制御しても良い。また、エア漏れ検知時に閉弁する開閉弁を管路32に設けても良い。
1 エアジェット織機
2 配管系
3 エア供給源
5 元圧開閉弁
8、11、19 圧力計
9、17 電空レギュレータ
10 メインエアタンク
13 メインノズル
15 絞り弁
18 サブエアタンク
21 サブノズル群
22 ファンクションパネル
23 制御装置
24 空気ばね圧調整部
25 パイロット式開閉弁
26 排気弁
27 給気用電磁弁
28 排気用電磁弁
29 ダイヤフラム
30 一次側空間
31 二次側空間
41 初期表示画面
42 圧力線図画面
43 スタートボタン
44 コメント画面
L3、L4、L5、L6、L11、L12、L13、L21、L22、L23 圧力線
P1 元圧力
P2 メイン圧力
P3 サブ圧力
PS 基準圧力

Claims (3)

  1. メインノズルに供給する圧縮エアを貯蔵するメインエアタンク、サブノズルに供給する圧縮エアを貯蔵するサブエアタンクを備え、エア供給源に接続する配管に元圧開閉弁を備え、前記エア供給源と前記メインエアタンク及び前記サブエアタンクとを前記元圧開閉弁及び電空レギュレータを介して接続することにより圧縮エアの配管系を構成し、前記配管系に設置した圧力計を用いて前記配管系のエア漏れを検知するエアジェット織機のエア漏れ検知方法において、
    前記エアジェット織機を停止するとともに前記元圧開閉弁を閉弁し、前記配管系のエア漏れを検知するために前記圧力計により前記配管系の圧力を計測している期間中は前記電空レギュレータにおける空気ばね圧調整部の圧力制御を停止することを特徴とするエアジェット織機におけるエア漏れ検知方法。
  2. 前記圧力計は、前記メインエアタンク及び前記サブエアタンクに設置されていることを特徴とする請求項1に記載のエアジェット織機におけるエア漏れ検知方法。
  3. 前記配管系において、前記メインノズルに絞り弁を備えた微風回路が接続され、前記絞り弁を閉じた後、前記圧力計により前記配管系の圧力を測定することを特徴とする請求項1又は請求項2に記載のエアジェット織機におけるエア漏れ検知方法。
JP2013199078A 2013-09-26 2013-09-26 エアジェット織機におけるエア漏れ検知方法 Expired - Fee Related JP5842889B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013199078A JP5842889B2 (ja) 2013-09-26 2013-09-26 エアジェット織機におけるエア漏れ検知方法
BE2014/0703A BE1022163B1 (fr) 2013-09-26 2014-09-18 Procede de detection d'une fuite d'air dans un metier a tisser a jet d'air
CN201410496521.0A CN104514072B (zh) 2013-09-26 2014-09-25 检测喷气织机中的空气泄漏的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013199078A JP5842889B2 (ja) 2013-09-26 2013-09-26 エアジェット織機におけるエア漏れ検知方法

Publications (2)

Publication Number Publication Date
JP2015063781A true JP2015063781A (ja) 2015-04-09
JP5842889B2 JP5842889B2 (ja) 2016-01-13

Family

ID=52577568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013199078A Expired - Fee Related JP5842889B2 (ja) 2013-09-26 2013-09-26 エアジェット織機におけるエア漏れ検知方法

Country Status (3)

Country Link
JP (1) JP5842889B2 (ja)
CN (1) CN104514072B (ja)
BE (1) BE1022163B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695445A (zh) * 2020-12-21 2021-04-23 西安工程大学 一种电磁引纬通道闭合装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022116513A (ja) * 2021-01-29 2022-08-10 株式会社豊田自動織機 エアジェット織機の緯入れ装置
CN116558708B (zh) * 2023-07-10 2023-09-08 常州赫尔绒纺织有限公司 一种喷气织机气压检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121000A (ja) * 1986-11-07 1988-05-25 Fukuda:Kk リークテスト方法
JPH02284213A (ja) * 1989-04-26 1990-11-21 Koganei Ltd 電空レギュレータ
JPH06257034A (ja) * 1993-02-26 1994-09-13 Toyota Central Res & Dev Lab Inc ジェットルームにおける緯入れ制御装置
JP2002069800A (ja) * 2000-09-01 2002-03-08 Tsudakoma Corp 流体噴射式織機の緯入れ制御装置
JP2013083016A (ja) * 2011-10-11 2013-05-09 Toyota Industries Corp エアジェット織機におけるエア漏れ検知方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311744A (ja) * 1995-05-17 1996-11-26 Toyota Autom Loom Works Ltd ジェットルームにおける圧縮空気使用制御方法及びジェットルームに用いる圧縮空気供給装置
JPH10153177A (ja) * 1996-11-25 1998-06-09 Toyota Autom Loom Works Ltd 圧縮空気供給装置における冷却液供給制御方法及び装置
CN201793870U (zh) * 2010-08-27 2011-04-13 苏州纺织机械有限公司 喷气织机引纬节能系统
CN202023038U (zh) * 2011-04-02 2011-11-02 吴江明士达纺织有限公司 一种喷气织机智能节气控制系统
EP2721206B1 (en) * 2011-06-15 2016-08-03 Picanol Air supply system for an airjet weaving machine
CN102286832B (zh) * 2011-07-21 2013-11-20 北京经纬纺机新技术有限公司 喷气织机气压调控系统及其方法
CN103215732B (zh) * 2013-05-07 2014-04-30 江苏万工科技集团有限公司 带排气阀的辅助喷嘴供气系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121000A (ja) * 1986-11-07 1988-05-25 Fukuda:Kk リークテスト方法
JPH02284213A (ja) * 1989-04-26 1990-11-21 Koganei Ltd 電空レギュレータ
JPH06257034A (ja) * 1993-02-26 1994-09-13 Toyota Central Res & Dev Lab Inc ジェットルームにおける緯入れ制御装置
JP2002069800A (ja) * 2000-09-01 2002-03-08 Tsudakoma Corp 流体噴射式織機の緯入れ制御装置
JP2013083016A (ja) * 2011-10-11 2013-05-09 Toyota Industries Corp エアジェット織機におけるエア漏れ検知方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695445A (zh) * 2020-12-21 2021-04-23 西安工程大学 一种电磁引纬通道闭合装置

Also Published As

Publication number Publication date
BE1022163B1 (fr) 2016-02-22
CN104514072A (zh) 2015-04-15
CN104514072B (zh) 2016-05-04
JP5842889B2 (ja) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5842889B2 (ja) エアジェット織機におけるエア漏れ検知方法
WO2014162817A1 (ja) タイヤ試験装置の空気圧回路
JP5780102B2 (ja) エアジェット織機におけるエア漏れ検知方法
EP2733243B1 (en) Air jet loom comprising an apparatus for showing compressed air flow rate
CA2483365A1 (en) Method and apparatus for performing diagnostics in a control loop of a control valve
JP2007092927A (ja) ガス供給装置
EP2352869B1 (en) Method and device for monitoring an insertion system for a weaving machine
JP2018179840A (ja) エアリークテスタ、エアリークテスト方法
US10908623B2 (en) Remote gas regulating and control systems and related devices
JP6119557B2 (ja) エアジェット織機おける圧縮エア圧力制御装置
CN108291563A (zh) 流体控制装置及用于操作流体控制装置的方法
JPH09257195A (ja) ガス供給装置
JP4284702B2 (ja) ガス漏れ検出装置
CN204494086U (zh) 一种用于压缩空气系统的压力控制设备
KR102130639B1 (ko) 압력 조절용 캡의 검사 장치
CN207946219U (zh) 一种切断阀在线检测系统
KR20210006729A (ko) 멀티 검사가 가능한 가스 누출 결함 검사 시스템
JPH07190300A (ja) ガス供給装置
JP2010236433A (ja) 液圧制御装置
CN104613316A (zh) 一种用于压缩空气系统的压力控制设备
KR101127571B1 (ko) 다중 압축기의 제어시스템
CN112540003B (zh) 全自动耐水压测试机
CN205642808U (zh) 石油化工中锅炉炉膛压力开关校验装置
JP6007293B2 (ja) 二流体噴霧装置
CN112444351A (zh) 用于检测气压元件的气密性的气路系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R151 Written notification of patent or utility model registration

Ref document number: 5842889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees