JP2015052269A - 鋼管コンクリート複合杭 - Google Patents
鋼管コンクリート複合杭 Download PDFInfo
- Publication number
- JP2015052269A JP2015052269A JP2014229451A JP2014229451A JP2015052269A JP 2015052269 A JP2015052269 A JP 2015052269A JP 2014229451 A JP2014229451 A JP 2014229451A JP 2014229451 A JP2014229451 A JP 2014229451A JP 2015052269 A JP2015052269 A JP 2015052269A
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- concrete
- pile
- strength
- yield strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 338
- 239000010959 steel Substances 0.000 title claims abstract description 338
- 239000004567 concrete Substances 0.000 title claims abstract description 203
- 239000002131 composite material Substances 0.000 title claims abstract description 81
- 238000013461 design Methods 0.000 claims abstract description 29
- 238000003466 welding Methods 0.000 claims description 17
- 238000004804 winding Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 abstract description 57
- 238000007596 consolidation process Methods 0.000 description 15
- 239000002689 soil Substances 0.000 description 11
- 238000005452 bending Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 238000010276 construction Methods 0.000 description 8
- 239000011178 precast concrete Substances 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000004568 cement Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011372 high-strength concrete Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Piles And Underground Anchors (AREA)
Abstract
【解決手段】鋼管内側にコンクリートをライニングまたは充填した鋼管コンクリート複合杭において、鋼管の設計降伏強度をσyd(N/mm2)、コンクリートの圧縮強度をσc(N/mm2)としたときに、325N/mm2<σyd≦5.15σcという関係を満たすことを特徴とする鋼管コンクリート複合杭。
【選択図】 図1
Description
(a)設計降伏強度
設計降伏強度(σyd)は、建築,道路,港湾分野などをはじめとした各種設計基準、あるいは国土交通大臣認定によって定められた設計計算に用いる降伏値を意味する。なお、設計降伏強度は実際の降伏強度のバラツキを考慮し、バラツキ範囲内での下限値付近(規格下限値)で設定されている。現状の杭基礎分野においては、鋼管杭および鋼管コンクリート複合杭として使用される鋼管の材質規格はJISA5525に規定されるSKK400、SKK490の2種類であり、それぞれ設計降伏強度は通常、235N/mm2,315または325N/mm2とされる。
(b)実降伏強度
実降伏強度(σyr)は、材料が実際に有している降伏値を意味する。なお、鋼管杭および鋼管コンクリート複合杭として使用される材質規格SKK490鋼管の実降伏強度のばらつき上限は、400N/mm2程度である。
(c)降伏強度
降伏強度は、上記設計降伏強度及び実降伏強度の両方を含む概念とする。
そこで、これに対する対処方法として、鋼管とコンクリートを複合化して、曲げ性能の向上を図るなどの方法がとられている。
鋼管コンクリート複合杭の主な構造としては、図9に示すように、建設現場において鋼管3の内面にコンクリート5を充填して形成する「コンクリート充填鋼管杭」と、例えば特許文献1にも記載されているように、両端に端板1を有し、あらかじめ工場において遠心力成形等により鋼管3の内周面にコンクリート5を一体化する「鋼管巻き既成コンクリート杭(SC杭)」(図10参照)がある。
図4は地震時の鋼管コンクリート複合杭断面のひずみ分布、コンクリート及び鋼管の応力分布を説明する説明図であり、図4には鋼管3の内部にコンクリート5を充填した杭の断面と、杭断面におけるひずみ分布線図、コンクリート及び鋼管の応力分布線図がそれぞれ示されている。
図4に示されるように、鋼管コンクリート複合杭においては、杭に作用する圧縮力は主としてコンクリート5が負担し、杭に作用する引張り力は主として鋼管3が負担すると考えられる。
ところが、現状においては、鋼管杭あるいは鋼管コンクリート複合杭として用いられている鋼管の設計降伏強度(公称値)は、道路橋示方書、鉄道構造物等設計標準、建築基礎構造設計指針などのいずれの設計基準においても、JIS A 5525「鋼管杭」に適用する品質として325N/mm2以下(SKK490材)、換言すれば設計降伏強度(公称値)は325N/mm2が最大であり、現状では設計降伏強度(公称値)が325N/mm2のものを用いて設計がなされており、このため、基礎杭形状のスリム化には限界があった。
しかしながら、鋼管コンクリート複合杭における鋼管およびコンクリートの相互作用は、鋼管の早期座屈やコンクリート圧壊による杭の強度低下、あるは鋼管拘束度合いによるコンクリート強度増減など複雑であり、単純に鋼管やコンクリートの高強度化を図ればよいというものではない。
ところが、現状では、高強度の鋼材を用いた場合における鋼管コンクリート複合杭の最適な構造について示した文献等はなく、その開発が望まれている。
以下においては、発明者が得た第1、第2の知見についてそれぞれ説明する。
上述した地震時の複合荷重に対する基礎杭の耐力を増大させることを考えた場合、前記の圧縮耐力と引張り耐力をバランス良く向上させることが必要であるとの着想の下、発明者は、コンクリート圧縮強度を一定にして、鋼管(φ1200)の降伏強度を変化させた場合の基礎杭断面耐力の解析実験を、複数種類の圧縮強度のコンクリートについて行なった。
図5に示されるように、コンクリート圧縮強度が一定の場合、鋼管の降伏強度を増大させていくと基礎杭断面耐力は増加して行くが、その増加はある地点で頭打ちとなり、それ以上鋼管の降伏強度を大きくしても基礎杭断面耐力向上には寄与しない。この傾向は、コンクリート圧縮強度が変わったとしてもそれぞれの圧縮強度のものについて共通している。
もっとも、前述したように、鋼管コンクリート複合杭として用いられている従来の鋼管の設計降伏強度(公称値)は325N/mm2以下であり、また実降伏強度は450N/mm2未満であり、本発明がこれらよりも降伏強度が高強度のものを用いることを前提としていることから、鋼管降伏強度としてはこれらの値以上のものを用いる。
以下、第2の知見について説明する。
地震力作用時における鋼管コンクリート複合杭の終局状態としては、コンクリートが圧縮力を受け破壊ひずみに達し圧壊するケースと、鋼管が引張力を受け破断ひずみに到達し破断するケースとが想定される。通常、鋼管の破断ひずみは十分大きいことから、先にコンクリートが圧壊して終局状態になるものと考えられる。しかしながら、鋼管の肉厚が杭径に対して小さい場合、圧縮力を受けた鋼管に早期に座屈が生じ、地震力の揺さぶりにより座屈箇所に引張り力が作用した場合、通常よりも小さい変形(ひずみ)で鋼管が破断することが考えられる。鋼管の破断で基礎杭が終局を迎えた場合、荷重低下が大きく基礎杭の靭性が不足する事態が懸念される。
図7は、鋼管座屈発生ひずみεsuとコンクリート圧縮破壊ひずみεcuの比(εsu/εcu)と鋼管の径と肉厚の比D/tとの関係を示すグラフであり、縦軸がεsu/εcuで横軸がD/tを示している。
以上の結果より、鋼管の先行破壊を防止するため、鋼管の径と肉厚の比D/tの上限値として、D/t≦80+80×(2・R/ D)1/4とした。これが、第2の知見である。
なお、上記(1)の本発明は、高強度材料を用いたときの最適な構造を有する鋼管コンクリート複合杭という物の発明として表現したものであるが、視点を変えれば、高強度材料を用いたときの最適な構造を有する鋼管コンクリート複合杭を設計する方法として表現することもできる。この場合、例えば、鋼管内側にコンクリートをライニングまたは充填した鋼管コンクリート複合杭の設計方法において、鋼管の設計降伏強度をσyd(N/mm2)、コンクリートの圧縮強度をσc(N/mm2)としたときに、325N/mm2<σyd≦5.15σcという関係を満たすように鋼管の設計降伏強度σyd(N/mm2)、コンクリートの圧縮強度σc(N/mm2)を設定するというように表現できる。
なお、上記(2)の本発明は、上記(1)で述べたのと同様に、高強度材料を用いたときの最適な構造を有する鋼管コンクリート複合杭という物の発明として表現したものであるが、視点を変えれば、高強度材料を用いたときの最適な構造を有する鋼管コンクリート複合杭を設計する方法として表現することもできる。この場合、例えば、鋼管内側にコンクリートをライニングまたは充填した鋼管コンクリート複合杭の設計方法において、鋼管の実降伏強度をσyr(N/mm2)、コンクリートの圧縮強度をσc(N/mm2)としたときに、450N/mm2<σy≦5.15σcという関係を満たすように鋼管の実降伏強度σyr(N/mm2)、コンクリートの圧縮強度σc(N/mm2)を設定するというように表現できる。
なお、上記(7)の本発明は、鋼管の先行破壊を防止できる鋼管コンクリート複合杭という物の発明として表現したものであるが、視点を変えれば、鋼管の先行破壊を防止できる鋼管コンクリート複合杭を設計する方法として表現することもできる。この場合、例えば、鋼管径D(mm)、鋼管板厚(mm)t、コンクリート厚R(mm)の関係において、D/t≦80+80×(2・R/D)1/4という関係を満たすように鋼管径D、鋼管板厚t、コンクリート厚Rを設定することを特徴とする鋼管コンクリート複合杭の設計方法と表現することができる。
本発明の実施形態1を以下に示す実施例1、2として説明する。
図1(a)に示す実施例1は、上端に端板1が設置された鋼管3の内面にコンクリート5がライニングされ、中央が中空になった「鋼管巻き既成コンクリート杭(SC杭)」において、高強度鋼管を用いた場合の例を示したものであり、鋼管3には径1000mmで肉厚9mm、設計降伏強度485N/mm2の材料を使用し、コンクリート5には圧縮強度100N/mm2の材料を使用した例である。
また、図1(b)に示す従来例では、従来「鋼管巻き既成コンクリート杭(SC杭)」として用いられている強度の材料を用いて、実施例1と同程度の断面耐力となるように仕様を決めた例を示す。この比較例は、鋼管3は径1200mmで肉厚9mm、設計降伏強度325N/mm2の材料を使用し、コンクリート5には圧縮強度100N/mm2の材料を使用している。
実施例1と従来例の仕様を表1に示す。なお、表1には実施例1の他の例として、径1000mmで肉厚9mm、設計降伏強度450N/mm2の材料を使用し、コンクリート5には圧縮強度120N/mm2の材料を使用したものも示している。
また、表1には、本発明の適用範囲外の例を合わせて示しており、この例は設計降伏強度を580N/mm2にしたものである。この場合には、実施例1と鋼管サイズは同一であるが、無駄に強度を高くしたことになり、鋼管材料費が高くなるという欠点がある。
このように、実施例1によれば、鋼管巻き既成コンクリート杭(SC杭)を構成する鋼管に降伏強度の高い高強度鋼管を利用することで、従来例に対して鋼材量及び排土量で大きな削減を実現できると共に、鋼管材料費を抑えた合理的な鋼管コンクリート複合杭が実現できている。
図2(a)に示す実施例2は、鋼管3の内面にコンクリート5を充填した「コンクリート充填鋼管杭」において、高強度鋼管を用いた場合の例を示したものであり、鋼管3には径1000mmで肉厚19mm、設計降伏強度355N/mm2の材料を使用し、現場打設のコンクリート5には圧縮強度75N/mm2の材料を使用した例である。
また、図2(b)に示す従来例では、従来「コンクリート充填鋼管杭」として用いられている強度の材料を用いて、実施例2と同程度の断面耐力となるように仕様を決めた例を示す。この従来例においては、鋼管3は径1200mmで肉厚19mm、設計降伏強度325N/mm2の材料を使用し、現場打設のコンクリート5には圧縮強度50N/mm2の材料を使用している。
実施例2と従来例の仕様を表2に示す。
また、表2には、本発明の適用範囲外の例を合わせて示しており、この例は設計降伏強度を580N/mm2にしたものである。この場合には、実施例2と鋼管サイズは同一であるが、無駄に強度を高くしたことになり、鋼管材料費が高くなるという欠点がある。
このように、実施例2によれば、コンクリート充填鋼管杭の場合においても、実施例1の場合と同様に、降伏強度の高い高強度鋼管を利用することで、従来例に対して鋼材量及び排土量で大きな削減を実現できると共に、鋼管材料費を抑えた合理的な鋼管コンクリート複合杭が実現できている。
本発明の実施形態2を以下に示す実施例3として説明する。
また、比較例として、従来「鋼管巻き既成コンクリート杭(SC杭)」として用いられている強度の材料を用いて、実施例3と同程度の断面耐力となるように仕様を決めた例を示す。この比較例は、鋼管3は径1200mmで肉厚9mm、実降伏強度325N/mm2の材料を使用し、コンクリート5には圧縮強度100N/mm2の材料を使用している。
実施例3と従来例の仕様を表3に示す。なお、表3には実施例3の他の例として、径1000mmで肉厚9mm、実降伏強度450N/mm2の材料を使用し、コンクリート5には圧縮強度120N/mm2の材料を使用したものも示している。
また、表3には、本発明の適用範囲外の例を合わせて示しており、この例は実降伏強度を580N/mm2にしたものである。この場合には、実施例1と鋼管サイズは同一であるが、無駄に強度を高くしたことになり、鋼管材料費が高くなるという欠点がある。
このように、実施例3によれば、鋼管巻き既成コンクリート杭(SC杭)を構成する鋼管に降伏強度の高い高強度鋼管を利用することで、従来例に対して鋼材量及び排土量で大きな削減を実現できると共に、鋼管材料費を抑えた合理的な鋼管コンクリート複合杭が実現できている。
通常、杭用の鋼管はコイルなどの鋼板から成形される。主な成形方法としては、(i)鋼板を対称に曲げて、それぞれの端部を溶接して鋼管に成形する「電縫管」、「UOE管」、(ii)スパイラル形状に巻き上げ溶接して形成する「スパイラル管」がある。
一般に、鋼管杭あるいは鋼管コンクリート複合杭として高頻度で使用される鋼管サイズは、径が600〜2000mm、板厚が6〜19mm程度であるが、このサイズにおける高強度鋼管(設計降伏強度σyd>325N/mm2、実降伏強度σyr(N/mm2≧450N/mm2)は「スパイラル管」が最も製造コストが安く、最も有利な製法となる。
そこで、本実施の形態では、コンクリート複合杭を構成する鋼管として、鋼製コイルをスパイラル形状に巻き上げて溶接して形成されたスパイラル管からなる高強度鋼管を用いたものである。
表4に、スパイラル鋼管の製造費用を1.0としたときの鋼管の製造コストを、他の製造方法の鋼管と比較した比較表を示す。
なお、「電縫管」および「UOE管」については、ラインパイプ用鋼管でSKK490の規格強度を上回る強度を有する材質の鋼管があるが、スパイラル管ではこれまでにSKK490の規格を上回る鋼管は無く、本明細書によって初めて開示されたものである。
図11、図12に基づいて本実施の形態を説明する。
本実施の形態に係る鋼管コンクリート複合杭用の鋼管は、図11に示すように、スパイラル鋼管を用いたものであって、該スパイラル鋼管は、そのスパイラル角度β(°)が40°<β≦60°に設定されていることを特徴とするものである。
スパイラル鋼管は、鋼板をスパイラル形状に巻き上げた上で、溶接して鋼管を形成するため、鋼管の管軸方向および管軸直角方向とコイルの圧延方向および圧延直交方向は一致せずに、傾きβ(スパイラル溶接角度)が生じる。
従って、鋼管の管軸方向および管軸直角方向(周方向)の降伏強度は,(同じコイルを用いたとしても)スパイラル溶接角度βにより変化する。
これは、コンクリートの圧壊により終局状態を迎えるため、脆性破壊を生ずるからである。
コンクリートの脆性破壊を抑える手段としては、コンクリートの周囲をより強度の高い構造で拘束することが有効である。これを実現する構造として、鋼管の管軸直角方向(周方向)の降伏強度をできるだけ大きくすることが有効となる。
従って、比較的降伏強度の高いコイル圧延直角方向(コイル幅方向W)が管軸直角方向(周方向)と一致する鋼管(β=90°)が最も望ましい構造といえるが、スパイラル製法ではこのような構造は製造不可能である。
現実的なコイル幅Wが500mm≦W≦2000mm程度であること、鋼管コンクリート複合杭用の鋼管径Dが400mm≦D≦2000mm程度であることから、スパイラル角度βは60°程度が上限である。なお、スパイラル角度β、コイル幅W、鋼管径Dには、D=W/(πsinβ)の関係がある。
この実験結果によりスパイラル角度βは40°超で、管軸直角方向(周方向)の降伏強度が向上することが確認され、スパイラル角度βの下限値としては40°超が好ましい。
したがって、スパイラル溶接角度β(°)が40°<β≦60°となるスパイラル製造鋼管を鋼管コンクリート複合杭用に適用することが最適となる。
実施の形態5を図13、図14に基づいて説明する。
鋼管コンクリート複合杭では、鋼管の端部に内在するコンクリートの成形および鋼管との一体化の目的で鋼管の端部に端板が取り付けられている。一般的な鋼管コンクリート複合杭11に設置される端板13は、図13に示すように、ドーナツ状の円形鋼板からなり、該円形鋼板を鋼管15の端部に突き合わせ溶接により取り付けられている。
端板13同士を突き合わせて溶接でつなぐと、継手部16には、図13に示すように、端板13同士を接合する溶接部17、端板13、端板13と鋼管15を接合する溶接部19が存在する。
そのため、継手部16が杭本体部である鋼管15と同等の曲げ強度を有するためには、以下の要件が必要とされる。第一に、端板13に用いる鋼材が鋼管15と同等以上の強度を有すること。第二に、端板13と鋼管15を溶接する溶接材料及び端板同士を溶接する溶接材料が鋼管15と同等以上の強度を有すること。
このため、継手部16に杭本体部と同等の曲げ強度を持たせようとすると、鋼管コンクリート複合杭11に用いる鋼管強度にあわせて端板13や溶接材料の強度も変更する必要があり、製造時の手間や端板13の材質や種類管理の煩雑さを招いていた。
継ぎ側の端部を上記のような構造にすることで、図14に示すように、鋼管部25同士を溶接で繋ぐことができ、継手部27の強度が端板23の材料強度に影響を受けない。そのため、鋼管部25の強度に応じて端板23の材質を変更しなくても、溶接部29を形成する溶接材料の強度を鋼管の強度と同等以上にすれば継手部27の強度を鋼管強度と同等に確保することができる。
なお、本実施の形態の端板23は継手部27において構造部材として機能しないので、従来例のように端板23同士を接合する場合よりも薄くしたり、端板23の材質を低強度のものにしたりして端板23の強度を鋼管部25の強度より小さくすることができる。
本実施の形態を図15に基づいて説明する。図15は杭体の上部を示すものであり、杭体における中心線の右側が断面図であり、左側が側面図になっている。
本実施の形態に係る鋼管コンクリート複合杭31は、鋼管33に、コンクリート定着用スリット35を設けたものである。なお、本実施の形態では、杭体の下部をコンクリート杭36で形成し、その上部に鋼管コンクリート複合杭31を継杭してなるものである。
鋼管にコンクリート定着用スリット35を設けることで鋼管33とコンクリート34の付着効果により一体化が強まり、より強固な鋼管コンクリート複合杭となる。
コンクリート定着用スリット35のサイズは、鋼管内に充填またはライニングするコンクリートの骨材が目詰まりしないように縦(a)100mm、幅(b)30mm程度とすればよい(図16参照)。また、スリット間隔(p)は、鋼管径Dによって調整すればよいが、例えば鋼管径D=1000mmの場合であれば、鋼管周方向に約300mmピッチとすればよい(図16参照)。
なお、コンクリート定着用スリット35の形状は、長方形、三角形、円形または楕円形などいずれの形状でもよい。
また、鋼管コンクリート複合杭(SC杭)で鋼管とコンクリートを一体化させるため用いられている端板を簡易な形状にすることができる。
また、通常、従来のコンクリートに比べ高強度コンクリートの養生時には、コンクリートは体積収縮(乾燥収縮)が大きくなるため、一体性を確保するため膨張材などの混和材が用いられるが、コンクリート定着用スリットによる付着効果により膨張材が不用となる。
本実施の形態は、鋼管径D(mm)、鋼管板厚t(mm)、コンクリート厚R(mm)の関係において、D/t≦80+80×(2・R/D)1/4という関係を満たす場合の一例を実施例として示すものである。
本実施の形態では、表5に示す3種類の鋼管コンクリート複合杭(本発明適用範囲、適用範囲外)について曲げ実験を実施し、杭の性能および破壊要因を調べた。結果を表5に示す
これに対して、本発明適用範囲外のものは、想定通り鋼管の座屈により破壊しており、耐荷力性能および靭性ともに本発明適用範囲のものに比べて低下した。
近年、杭の先端部に根固め部を設けて鉛直支持力を高める工法が実用化されてきたことから、その実績を受けて鋼管とコンクリートによって構成される杭においても先端部を拡大し支持力を高めようとする動きが出ている。すなわち、杭先端部を拡大掘削し、根固め液(セメントミルク)を注入して拡大球根部を築造することにより、従来よりも高い鉛直支持力を有する先端拡大根固め杭が開発されている。
先端拡大根固め杭の一般的な施工法を示すと以下の通りである。
(i)掘削液を噴出しながら所定深度までの土砂を連続的に掘削・泥土化するとともに、先端部を所定の区間で拡大掘削する。
(ii)拡大掘削した範囲に根固め液(セメントミルク)を注入し拡大球根部を築造するとともに、
(iii)杭を掘削孔内の所定の深度まで建て込み完了する。
杭基礎の鉛直支持力が増大することに伴って、杭に作用する押込み力、引抜き力、曲げモーメントも増大するため、杭基礎性能向上のためには、各作用力に対して杭体が破壊しないように部材強度を向上させる必要がある(図20参照)。
一方、引抜き力、曲げモーメントの増大については、引張り応力の増大に対処することが必要であるため、圧縮部材であるコンクリートの材料強度向上では対応ができない。
したがって、引張り応力の増大に対処するのは、もう一つの部材である鋼管になる。
しかしながら、鋼管については[発明が解決しようとする課題]において先述のとおり、現状では各設計基準において、JIS A5525「鋼管杭」に適用する品質として325N/mm2以下(SKK490材)、換言すれば設計降伏強度(公称値)は325N/mm2が最大であることから、引抜き力、曲げモーメントの増大に対処するためには鋼管径や板厚を大きくする必要がある。しかし、鋼管径や板厚を大きくすることは、製造上や施工面で困難が生じるとともに、コスト増大にも繋がる。そのため、先端拡大根固めの有効性が必ずしも発揮されていないのが実情である。
実際の杭基礎事例(杭径318.5mm〜1200mm、コンクリート強度105N/mm2、鋼管板厚9〜19mm)をもとに先端根固め径Dgを変えて計算した場合の[先端根固め径Dg/杭径Dp]および地震時に杭の鉛直支持力上限に達した際の[地震時作用モーメント/杭断面係数(=鋼管に作用する応力)]との関係を求めた。図21はこの関係を示すグラフであり、横軸が[先端根固め径Dg/杭径Dp]で縦軸が[地震時作用モーメント/杭断面係数]である。
なお、通常の先端拡大根固め杭の先端根固め径Dg/杭径Dpは1.2以上である。
従って、杭基礎性能を最大限に発揮するためには、鋼管の降伏強度σyは、[作用モーメント/杭断面係数(=鋼管に作用する応力)]の値を上回るようにすることが望ましい。
したがって、本事例から、鋼管とコンクリートによって構成される先端拡大根固め杭において、根固め径と杭径の比Dg/Dpに対し、降伏強度σyを325+(Dg/Dp−1)0.8×125(N/mm2)以上とすれば、杭基礎性能を十分に発揮できる強度となる。
3 鋼管
5 コンクリート
7 基礎杭
9 上部構造物
11 鋼管コンクリート複合杭
13 端板
15 鋼管
16 継手部
17 溶接部
19 溶接部
21 鋼管コンクリート複合杭
23 端板
25 鋼管部
27 継手部
29 溶接部
31 鋼管コンクリート複合杭
33 鋼管
34 コンクリート
35 コンクリート定着用スリット
36 コンクリート杭
37 基礎梁(フーチング)
39 補強金物
41 地盤
43 支持地盤
45 先端根固め部
47 定着用突起
49 下杭
51 上杭
Claims (6)
- 鋼管内側にコンクリートをライニングまたは充填した鋼管コンクリート複合杭において、鋼管の設計降伏強度をσyd(N/mm2)、コンクリートの圧縮強度をσc(N/mm2)としたときに、325N/mm2<σyd≦5.15σcという関係を満たすことを特徴とする鋼管コンクリート複合杭。
- 鋼管内側にコンクリートをライニングまたは充填した鋼管コンクリート複合杭において、鋼管の実降伏強度をσyr(N/mm2)、コンクリートの圧縮強度をσc(N/mm2)としたときに、450N/mm2≦σyr≦5.15σcという関係を満たすことを特徴とする鋼管コンクリート複合杭。
- 前記鋼管が、鋼製コイルをスパイラル形状に巻き上げて溶接して形成されたスパイラル鋼管であることを特徴とする請求項1又は2に記載の鋼管コンクリート複合杭。
- 前記スパイラル鋼管は、そのスパイラル角度β(°)が40°<β≦60°に設定されていることを特徴とする請求項3に記載の鋼管コンクリート複合杭。
- 現場継ぎ杭を行う杭端部を有する鋼管コンクリート複合杭であって、継ぎ側の端部に降伏強度が前記鋼管の降伏強度よりも小さい端板を有し、該端板がその全部または一部が鋼管部内に挿入配置され、継ぎ杭の際に前記鋼管部を溶接可能になっていることを特徴とする請求項1乃至4のいずれか一項に記載の鋼管コンクリート複合杭。
- 前記鋼管に、コンクリート定着用スリットを設けたことを特徴とする請求項1乃至5のいずれか一項に記載の鋼管コンクリート複合杭。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014229451A JP5896004B2 (ja) | 2008-09-29 | 2014-11-12 | 鋼管コンクリート複合杭 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008250216 | 2008-09-29 | ||
JP2008250216 | 2008-09-29 | ||
JP2014229451A JP5896004B2 (ja) | 2008-09-29 | 2014-11-12 | 鋼管コンクリート複合杭 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009223539A Division JP5808074B2 (ja) | 2008-09-29 | 2009-09-28 | 鋼管コンクリート複合杭 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015052269A true JP2015052269A (ja) | 2015-03-19 |
JP5896004B2 JP5896004B2 (ja) | 2016-03-30 |
Family
ID=42292024
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009223539A Active JP5808074B2 (ja) | 2008-09-29 | 2009-09-28 | 鋼管コンクリート複合杭 |
JP2014229451A Active JP5896004B2 (ja) | 2008-09-29 | 2014-11-12 | 鋼管コンクリート複合杭 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009223539A Active JP5808074B2 (ja) | 2008-09-29 | 2009-09-28 | 鋼管コンクリート複合杭 |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP5808074B2 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5967862B2 (ja) * | 2011-01-14 | 2016-08-10 | Jfeスチール株式会社 | 鋼管杭式桟橋 |
CN103866761B (zh) * | 2014-03-21 | 2016-04-06 | 李全民 | 端板重复利用预制混凝土桩的机械连接桩头及其制造方法 |
JP2015155645A (ja) * | 2015-04-23 | 2015-08-27 | Jfeスチール株式会社 | 鋼管杭式桟橋、鋼管杭 |
JP6288070B2 (ja) * | 2015-12-28 | 2018-03-07 | ジャパンパイル株式会社 | 外殻鋼管付きコンクリート杭及び外殻鋼管付きコンクリート杭の製造方法 |
JP7048273B2 (ja) * | 2017-03-24 | 2022-04-05 | ジャパンパイル株式会社 | 杭頭接合部の設計方法、製造方法、及び、杭頭用定着筋の取付位置確認用装置 |
JP6687860B2 (ja) * | 2017-12-06 | 2020-04-28 | ジャパンパイル株式会社 | 外殻鋼管付きコンクリート杭 |
JP6958527B2 (ja) * | 2018-10-01 | 2021-11-02 | Jfeスチール株式会社 | 地すべり抑止用杭およびその設計方法 |
JP6958528B2 (ja) * | 2018-10-01 | 2021-11-02 | Jfeスチール株式会社 | 地すべり抑止用杭およびその設計方法 |
JP7488792B2 (ja) | 2021-05-25 | 2024-05-22 | 大成建設株式会社 | 杭頭免震構造 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61202536U (ja) * | 1985-06-10 | 1986-12-19 | ||
JPS6223715A (ja) * | 1985-07-24 | 1987-01-31 | 南日本高圧コンクリ−ト株式会社 | 仮性プレストレストsc杭の製造方法 |
JPH0347602A (ja) * | 1989-07-13 | 1991-02-28 | Kawasaki Steel Corp | 突起付き鋼板の製造方法 |
JP2003090051A (ja) * | 2001-09-18 | 2003-03-28 | Sumitomo Metal Ind Ltd | 杭と柱との接合構造 |
JP2006161363A (ja) * | 2004-12-06 | 2006-06-22 | Shimizu Corp | 杭の設計システム |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08269943A (ja) * | 1995-03-31 | 1996-10-15 | Nippon Steel Corp | 面内嵌合型サンドイッチ構造 |
-
2009
- 2009-09-28 JP JP2009223539A patent/JP5808074B2/ja active Active
-
2014
- 2014-11-12 JP JP2014229451A patent/JP5896004B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61202536U (ja) * | 1985-06-10 | 1986-12-19 | ||
JPS6223715A (ja) * | 1985-07-24 | 1987-01-31 | 南日本高圧コンクリ−ト株式会社 | 仮性プレストレストsc杭の製造方法 |
JPH0347602A (ja) * | 1989-07-13 | 1991-02-28 | Kawasaki Steel Corp | 突起付き鋼板の製造方法 |
JP2003090051A (ja) * | 2001-09-18 | 2003-03-28 | Sumitomo Metal Ind Ltd | 杭と柱との接合構造 |
JP2006161363A (ja) * | 2004-12-06 | 2006-06-22 | Shimizu Corp | 杭の設計システム |
Also Published As
Publication number | Publication date |
---|---|
JP5808074B2 (ja) | 2015-11-10 |
JP2010101159A (ja) | 2010-05-06 |
JP5896004B2 (ja) | 2016-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5896004B2 (ja) | 鋼管コンクリート複合杭 | |
JP5154338B2 (ja) | プレストレスト鉄筋コンクリート杭 | |
KR101620380B1 (ko) | 스파이럴 강관 말뚝 | |
JP2020002610A (ja) | 露出型柱脚構造及び建物 | |
KR101877369B1 (ko) | 터널의 보강 시공 방법 및 그 시공 구조 | |
KR100915099B1 (ko) | 수평 아치형 구조재에 의한 흙막이 벽체 단위 지보구조 및이를 시공하는 방법 | |
KR200414056Y1 (ko) | 강관 버팀보 연결구조 | |
KR20120045423A (ko) | 리브형태가 포함된 압연 형강을 이용하여 좌굴에 대한 저항성능을 강화시킨 각형강관 및 그 제조방법 | |
JP5407266B2 (ja) | 摩擦杭 | |
JP2009280957A (ja) | プレストレスト基礎梁および基礎梁へのプレストレス導入方法 | |
CN106337512B (zh) | 底部加强型钢管混凝土边框高强混凝土组合剪力墙及制作方法 | |
KR20120102480A (ko) | 선단 지지력이 강화된 phc 말뚝 및 이를 이용한 phc 말뚝 매입 공법 | |
CN217325942U (zh) | 一种钢套筒和波纹管混合连接装配式剪力墙 | |
JP2016223208A (ja) | 杭基礎構造 | |
WO2011036908A1 (ja) | 鋼管コンクリート複合杭とその製造方法、及び鋼管コンクリート複合杭に用いられる鋼管 | |
KR102252011B1 (ko) | 이종강종으로 이루어진 합성 엄지말뚝 | |
KR20080059951A (ko) | 가시설 겸용 파일기초와 지하옹벽 시공방법 및 그를 위한전단마찰 보강재 | |
JP5516288B2 (ja) | トンネル接続構造およびトンネル施工方法 | |
JP6836853B2 (ja) | ブレース接合構造 | |
JP2000291001A (ja) | 部分的に鋼管で被覆された多方向x形配筋補強場所打ちコンクリート杭 | |
JP7506964B2 (ja) | 地盤改良複合杭基礎、地盤改良複合杭併用独立フーチング基礎、及び、地盤改良複合杭併用独立フーチング基礎の設計方法 | |
KR102291349B1 (ko) | 합벽 시공이 가능한 흙막이용 phc 파일 | |
JP2015045212A (ja) | 既設橋脚の耐震補強構造及び新設の橋脚構造 | |
CN201089905Y (zh) | 高层建筑用扩底桩 | |
KR20090015190A (ko) | 서로 다른 직경을 가지는 지반공사용 기초파일의 확두형연결구조 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150716 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150728 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5896004 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |