JP2015023308A - 半導体装置、及び出力回路のインピーダンス調整方法 - Google Patents

半導体装置、及び出力回路のインピーダンス調整方法 Download PDF

Info

Publication number
JP2015023308A
JP2015023308A JP2013147633A JP2013147633A JP2015023308A JP 2015023308 A JP2015023308 A JP 2015023308A JP 2013147633 A JP2013147633 A JP 2013147633A JP 2013147633 A JP2013147633 A JP 2013147633A JP 2015023308 A JP2015023308 A JP 2015023308A
Authority
JP
Japan
Prior art keywords
circuit
impedance
replica
signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013147633A
Other languages
English (en)
Inventor
悠平 金子
Yuhei Kaneko
悠平 金子
耕平 中村
Kohei Nakamura
耕平 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to JP2013147633A priority Critical patent/JP2015023308A/ja
Priority to US14/331,070 priority patent/US9294072B2/en
Publication of JP2015023308A publication Critical patent/JP2015023308A/ja
Priority to US15/045,124 priority patent/US9614497B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/28Impedance matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor

Landscapes

  • Logic Circuits (AREA)
  • Dram (AREA)

Abstract

【課題】低い電源電圧での使用時において、精度低下や調整期間の大幅な増加なしにインピーダンス調整の下限側のマージン低下を抑制する。【解決手段】インピーダンス調整回路は、カウント値を複数の第1のインピーダンス調整信号として出力するカウンタ回路と、カウント値に関係なく第2のインピーダンス調整信号を活性化/非活性化状態に設定するモード選択回路と、第3のインピーダンス調整信号を活性化状態に固定するレベル固定回路とを含む。前段回路は、データ信号と複数の第1、第2、及び第3のインピンーダンス調整信号に応答して、それぞれ複数の第1、第2、及び第3の出力制御信号を発生する。出力回路は、出力端子と第1の電源線との間に並列に接続された複数の第1、第2、及び第3のトランジスタを含み、各々の制御端子が、複数の第1、第2、及び第3の出力制御信号を受け取る。【選択図】図1

Description

本発明は半導体装置に関し、特に、インピーダンス調整が可能な出力回路を備えた半導体装置に関する。
近年、モバイル機器等の発展により、消費電力が低い半導体記憶装置が望まれている。このような背景に基づき、代表的な半導体記憶装置の1つであるDRAM(Dynamic Random Access Memory)の1つの規格であるDDR3には、電源電圧が1.5Vの通常規格(DDR3)、電源電圧が1.35Vの低電圧規格(DDR3L)、及び電源電圧が1.25Vの超低電圧規格(DDR3U)が存在する。このような電源電圧が異なる3種類の半導体記憶装置の製造は、それぞれを異なるチップとして設計・製造するよりも、同一チップとして設計・製造した後、選別工程でそれぞれの規格に選り分ける方が、コスト的に有利である。具体的には、通常電圧規格品として設計・製造した複数のチップから、低電圧規格や超低電圧規格を満たすチップを選り分ければよい。
また、近年、半導体記憶装置におけるデータ転送(CPUとメモリ間)において、非常に高いデータ転送レートが要求されており、これを実現するため、入出力信号の振幅はますます小振幅化されている。入出力信号が小振幅化すると、出力バッファのインピーダンスに対する要求精度は非常に厳しくなる。このような要求に対しては、通常、インピーダンス調整機能を持った出力バッファが採用される。このような出力バッファに対するインピーダンス調整は、通常、キャリブレーション回路を用いて行われる。
特許文献1は、出力インピーダンス調整が可能な出力回路を開示している。該出力回路は複数の並列接続されたトランジスタを含んで構成され、各々のトランジスタはインピーダンス調整クロック信号ZSCKにより制御される(特許文献1の図2参照)。
特許文献2は、複数の並列接続されたトランジスタを含んで構成される出力バッファに対して、各々のトランジスタをオン/オフ制御することによりインピーダンス調整を行うインピーダンス調整回路を開示している。該インピーダンス調整回路は、出力バッファと実質的に同一の構成を有するレプリカバッファを用いている(特許文献2の図1参照)。
特開2000−49583号公報 特開2010−166299号公報 特開2006−203405号公報
以下の分析は、本発明の観点から与えられる。
しかしながら、上記した通常規格(DDR3)、低電圧規格(DDR3L)、及び超低電圧規格(DDR3U)のような複数の異なる電源電圧規格の半導体記憶装置を同一ダイとして設計・製造する際に、出力バッファのインピーダンス調整に関して以下のような問題があることを本発明者等は見出した。
特許文献1及び2に記載されている並列接続された複数のトランジスタのオン/オフを切り替えてインピーダンスを調整する出力回路では、複数のトランジスタが全てオンとなったときに、出力回路のインピーダンスは最小となる。ここで、電源電圧が低下すると、出力回路を構成する各トランジスタは駆動能力が小さくなるため、各トランジスタのオン抵抗は大きくなる。つまり、電源電圧が低下すると、並列接続された複数のトランジスタのオン抵抗を合成した値は大きくなり、調整可能な最小インピーダンスが上昇する。即ち、特許文献1及び2に記載されたような出力回路では、電源電圧を下げることによって、調整可能な出力インピーダンスの範囲、具体的には、下限側のマージンが低下してしまう。さらに、製造時のバラツキ等により出力回路を構成するトランジスタのしきい値電圧が高くなった場合にも、トランジスタのオン抵抗は大きくなる。従って、上述した問題は、製造バラツキ等によりしきい値電圧が高くなったトランジスタを含む出力回路を低い電圧で使用する場合に特に顕著となる。
上記の問題の対策として、複数のトランジスタのオン抵抗の差を大きくすることで調整範囲を拡げる方法や、並列接続するトランジスタの数を増やす方法が考えられる。しかしながら、前者の場合では、インピーダンスの調整精度が低下してしまう問題があり、一方、後者の場合では、インピーダンス調整に必要な期間が大幅に増加してしまうという問題がある。
本発明の第1の視点による半導体装置は、インピーダンス調整回路、前段回路、第1の電源線、出力端子、及び出力回路を有する。ここで、インピーダンス調整回路は、複数の第1のインピーダンス調整信号、第2のインピーダンス調整信号、及び第3のインピーダンス調整信号を発生するインピーダンス調整回路であって、自身のカウント値を前記複数の第1のインピーダンス調整信号として出力するカウンタ回路と、前記カウンタ回路の前記カウント値に関係なく前記第2のインピーダンス調整信号を活性化状態又は非活性化状態に設定するモード選択回路と、前記第3のインピーダンス調整信号を活性化状態に固定するレベル固定回路とを含む。また、前段回路は、データ信号と前記複数の第1のインピンーダンス調整信号とに応答して複数の第1の出力制御信号を発生し、前記データ信号と前記第2のインピーダンス調整信号とに応答して第2の出力制御信号を発生し、かつ、前記データ信号と前記第3のインピーダンス調整信号に応答して第3の出力制御信号を発生する。また、出力回路は、前記出力端子と前記第1の電源線との間に並列に接続された、複数の第1のトランジスタ、第2のトランジスタ、及び第3のトランジスタを含み、当該複数の第1のトランジスタは、自身の制御端子で前記複数の第1の出力制御信号をそれぞれ受け取るように構成され、当該第2のトランジスタは、自身の制御端子で前記第2の出力制御信号を受け取るように構成され、当該第3のトランジスタは、自身の制御端子で前記第3の出力制御信号を受け取るように構成される。
本発明の第2の視点による出力回路のインピーダンス調整方法は、並列に接続された複数のトランジスタを含む出力回路のインピーダンスを調整する出力回路のインピーダンス調整方法であって、以下のステップを含む。即ち、該出力回路のインピーダンス調整方法は、前記出力回路の前記複数のトランジスタの並列接続と同一の構成を有するレプリカ回路において、所定の判定期間に、当該レプリカ回路の複数のトランジスタのいずれか1つのトランジスタを初期調整トランジスタとしてオフに制御し、前記初期調整トランジスタ以外のトランジスタをオンに制御した状態で、前記レプリカ回路のレプリカインピーダンスを所望の値と比較するステップを含む。また、該出力回路のインピーダンス調整方法は、前記レプリカインピーダンスが前記所望の値よりも大きいことを前記比較結果が示す場合に、前記所定の判定期間後に前記初期調整トランジスタをオンに設定して、前記初期調整トランジスタ以外のトランジスタに対して前記レプリカインピーダンスを調整するステップを含む。また、該出力回路のインピーダンス調整方法は、前記レプリカインピーダンスが前記所望の値よりも小さいことを前記比較結果が示す場合に、前記所定の判定期間後に前記初期調整トランジスタをオフに設定して、前記初期調整トランジスタ以外のトランジスタに対して前記レプリカインピーダンスを調整するステップを含む。さらに、該出力回路のインピーダンス調整方法は、前記レプリカインピーダンスの調整結果に対応して前記出力回路の前記複数のトランジスタのオン/オフを設定するステップを含む。
本発明の半導体装置によれば、低い電源電圧での使用時において、インピーダンス調整の精度低下や調整期間の大幅な増加なしに、インピーダンス調整の下限側のマージン低下を抑制することに貢献しうる半導体装置を提供することができる。
一実施形態に係る半導体装置の構成を示すブロック図である。 第1の実施形態に係る半導体装置の構成を示すブロック図である。 図2のデータ入出力部の構成を示すブロック図である。 図3のキャリブレーション回路の構成を示すブロック図である。 図4のPch/NchLVモード選択回路の回路図である。 図5のPchLVモード選択回路の動作を示す波形図である。 図4のPch側の第1及び第3のインピーダンス調整回路の構成を示すブロック図である。 図4のNch側の第1及び第3のインピーダンス調整回路の構成を示すブロック図である。 図4のレプリカ前段回路の回路図である。 図4のレプリカバッファの回路図である。 図3の前段回路の回路図である。 図3の出力バッファの回路図である。 第1の実施形態に係る半導体装置におけるキャリブレーション回路の動作の例を示す波形図である。 第1の実施形態に係る出力回路のインピーダンス調整方法の原理説明を行うためのフローチャートである。 第1の実施形態に係る出力回路のインピーダンス調整方法の原理説明を行うための図である。 第2の実施形態に係る半導体装置の構成を示すブロック図である。
まず、本発明の一実施形態の概要について説明する。なお、実施形態の概要の説明において付記した図面参照符号は専ら理解を助けるための例示であり、図示の態様に限定することを意図するものではない。
一実施形態における半導体装置1は、図1に示すように、インピーダンス調整回路161、前段回路230、第1の電源線VDD、出力端子DQ、及び出力回路310を有する。ここで、該インピーダンス調整回路161は、複数の第1のインピーダンス調整信号(DRZQPB1〜5)、第2のインピーダンス調整信号VLdetPB、及び第3のインピーダンス調整信号PUMAINBを発生するインピーダンス調整回路であって、自身のカウント値を複数の第1のインピーダンス調整信号(DRZQPB1〜5)として出力するカウンタ回路186と、カウンタ回路186のカウント値に関係なく第2のインピーダンス調整信号VLdetPBを活性化状態又は非活性化状態(例えば、活性化状態はLowレベル、非活性化状態はHighレベル)に設定するモード選択回路181と、第3のインピーダンス調整信号PUMAINBを活性化状態(例えば、Lowレベル)に固定するレベル固定回路189と、を含む。また、該前段回路230は、データ信号Dataと複数の第1のインピンーダンス調整信号(DRZQPB1〜5)とに応答して複数の第1の出力制御信号(231PB〜235PB)を発生し、データ信号Dataと第2のインピーダンス調整信号VLdetPBとに応答して第2の出力制御信号PULOEBを発生し、かつ、データ信号Dataと第3のインピーダンス調整信号PUMAINBに応答して第3の出力制御信号PUOEBを発生する。また、該出力回路310は、出力端子DQと第1の電源線VDDとの間に並列に接続された、複数の第1のトランジスタ(211P〜215P)、第2のトランジスタ216P、及び、第3のトランジスタ217Pを含み、当該複数の第1のトランジスタ(211P〜215P)は、自身の制御端子で複数の第1の出力制御信号(231PB〜235PB)をそれぞれ受け取るように構成され、当該第2のトランジスタ216Pは、自身の制御端子で第2の出力制御信号PULOEBを受け取るように構成され、当該第3のトランジスタ217Pは、自身の制御端子で第3の出力制御信号PUOEBを受け取るように構成される。
また、上記の半導体装置において、上記の第1の電源線はVSS(接地線)で、上記出力回路は、図12に示すPD(プルダウン)部の構成であってもよい。即ち、該出力回路は、出力端子DQと第1の電源線VSSとの間に並列に接続された、複数の第1のトランジスタ(図12の211N〜215N)、第2のトランジスタ(図12の216N)、及び、第3のトランジスタ(図12の217N)を含み、当該複数の第1のトランジスタ(図12の211N〜215N)は、自身の制御端子で複数の第1の出力制御信号(図12の231N〜235N)をそれぞれ受け取るように構成され、当該第2のトランジスタ(図12の216N)は、自身の制御端子で第2の出力制御信号(図12のPDLOE)を受け取るように構成され、当該第3のトランジスタ(図12の217N)は、自身の制御端子で第3の出力制御信号(図12のPDOE)を受け取るように構成される。
上記の半導体装置の構成によれば、低い電源電圧での使用時に、インピーダンス調整の精度低下なしに下限側のマージン低下を回避するために、複数の第1のトランジスタの並列接続部分に新たに第2のトランジスタ(216P、216N)を追加している。また、第2のトランジスタ(216P、216N)の制御端子が第2の出力制御信号(PULOEB、PDLOE)を受け取るようにしている。これにより、第2のトランジスタ(216P、216N)のオン/オフ制御を第2の出力制御信号(PULOEB、PDLOE)に基づいて行うことができるため、第2のトランジスタを追加したことによるインピーダンス調整の調整期間の大幅な増加を回避することができる。即ち、上記の半導体装置によれば、低い電源電圧での使用時において、インピーダンス調整の精度低下や調整期間の大幅な増加なしに、インピーダンス調整の下限側のマージン低下を抑制することに貢献しうる半導体装置を提供することができる。
上記半導体装置において、図10に示すように、出力回路の複数の第1のトランジスタ(図1の211P〜215P)、第2のトランジスタ(図1の216P)、及び第3のトランジスタ(図1の217P)にそれぞれ対応する複数の第4のトランジスタ(111〜115)、第5のトランジスタ116、及び第6のトランジスタ117の並列接続を含むレプリカ回路110をさらに備えることが好ましい。また、カウンタ回路(図1の186)、モード選択回路(図1の181)、及びレベル固定回路(図1の189)は、それぞれ複数の第1のインピーダンス調整信号(図1のDRZQPB1〜5)、第2のインピーダンス調整信号(図1のVLdetPB)、及び第3のインピーダンス調整信号(図1のPUMAINB)に基づいて複数の第4のトランジスタ(111〜115)、第5のトランジスタ116、及び第6のトランジスタ117を制御することにより、レプリカ回路110のレプリカインピーダンスを調整することが好ましい。
上記出力回路のPD部(図12)の構成に対しては、出力回路の複数の第1のトランジスタ(図12の211N〜215N)、第2のトランジスタ(図12の216N)、及び第3のトランジスタ(図12の217N)にそれぞれ対応する、図10(B)に示す複数の第4のトランジスタ(131〜135)、第5のトランジスタ(136)、及び第6のトランジスタ(137)の並列接続を含むレプリカ回路(130)をさらに備えることが好ましい。また、カウンタ回路(図8の286)、モード選択回路(図4の182)、及びレベル固定回路(図8の289)は、それぞれ複数の第1のインピーダンス調整信号(図4のDRZQN)、第2のインピーダンス調整信号(図4のVLdetN)、及び第3のインピーダンス調整信号(図4のPDMAIN)に基づいて複数の第4のトランジスタ(131〜135)、第5のトランジスタ136、及び第6のトランジスタ137を制御することにより、レプリカ回路130のレプリカインピーダンスを調整することが好ましい。
上記半導体装置において、インピーダンス調整回路(図1の161)は、所定の判定期間(図6のLV判定期間)に、複数の第1のインピーダンス調整信号(図1のDRZQPB1〜5)、及び第3のインピーダンス調整信号(図1のPUMAINB)をそれぞれ活性化状態に、第2のインピーダンス調整信号(図1のVLdetPB)を非活性化状態に制御した状態で、リプリカインピーダンスを所望の値(例えば、図3の外部抵抗R)と比較し、インピーダンス調整回路のモード選択回路(図1の181)は、所定の判定期間(図6のLV判定期間)後に、上記比較結果に基づいて第2のインピーダンス調整信号(図1のVLdetPB)を設定することが好ましい。
上記半導体装置において、インピーダンス調整回路のモード選択回路(図1の181)は、所望の値(例えば、図3の外部抵抗R)よりもレプリカインピーダンスが大きいことを上記比較結果が示す場合に、所定の判定期間(図6のLV判定期間)後に、第2のインピーダンス調整信号(図1のVLdetPB)を活性化状態に設定し、所望の値(例えば、図3の外部抵抗R)よりもレプリカインピーダンスが小さいことを上記比較結果が示す場合に、所定の判定期間(図6のLV判定期間)後に、第2のインピーダンス調整信号(図1のVLdetPB)を非活性化状態に設定することが好ましい。
上記半導体装置において、モード選択回路(図1の181)は、所定の判定期間(図6のLV判定期間)が終了したことを示す判定モード終了信号(図5の199)を発生し、インピーダンス調整回路(図1の161)は、判定モード終了信号(図5の199)を受けてカウンタ回路(図1の186)が出力する第1のインピーダンス調整信号(図1のDRZQPB1〜5)によるレプリカインピーダンスの調整を開始するようにしてもよい。
上記半導体装置において、上記所望の値に対応するインピーダンスを有する外部抵抗(図3の外部抵抗R)と、レプリカ回路(図4の110)の一端と外部抵抗の一端とが接続された第1の端子(図4のZQ)と、2つの入力ノードを含む比較回路であって、当該比較回路の入力ノードの一方(図4の151の非反転入力端子)は第1の端子(図4のZQ)に接続され、当該比較回路の他方の入力ノード(図4の151の反転入力端子)には基準電圧が供給された比較回路(図4の151)と、を備え、比較回路(図4の151)が上記比較結果を出力することが好ましい。
上記半導体装置において、上記所望の値に対応するインピーダンスに調整された第2のレプリカ回路(図4の120)と、レプリカ回路(図4の130)の一端と第2のレプリカ回路(図4の120)の一端とが接続された第1のノード(図4のA)と、2つの入力ノードを含む比較回路であって、当該比較回路の入力ノードの一方(図4の152の非反転入力端子)は第1のノード(図4のA)に接続され、当該比較回路の他方の入力ノード(図4の152の反転入力端子)には基準電圧が供給された比較回路(図4の152)と、を備え、比較回路(図4の152)が上記比較結果を出力するようにしてもよい。
上記半導体装置において、第2のトランジスタ(図1の216P)のオン抵抗は、各々の第1のトランジスタ(図1の211P〜215P)のオン抵抗よりも小さいことが好ましい。
上記半導体装置において、第5のトランジスタ(図10(A)の116)のオン抵抗は、各々の第4のトランジスタ(図10(A)の111〜115)のオン抵抗よりも小さいことが好ましい。
一実施形態における出力回路のインピーダンス調整方法は、図14に示すように、並列に接続された複数のトランジスタ(図1の211P〜217P等)を含む出力回路(図1の310)のインピーダンスを調整する出力回路のインピーダンス調整方法であって、以下のステップを含む。即ち、該出力回路のインピーダンス調整方法は、出力回路の複数のトランジスタ(図1の211P〜217P等)の並列接続と同一の構成を有するレプリカ回路(図10(A)の110等)において、所定の判定期間に、当該レプリカ回路の複数のトランジスタのいずれか1つのトランジスタ(例えば、図10(A)の116)を初期調整トランジスタとしてオフに制御し、初期調整トランジスタ以外のトランジスタ(例えば、図10(A)の111〜115、117)をオンに制御した状態で、レプリカ回路(図10(A)の110等)のレプリカインピーダンスを所望の値(図3の外部抵抗R)と比較するステップ(S10)を含む。また、該出力回路のインピーダンス調整方法は、レプリカインピーダンスが所望の値(図3の外部抵抗R)よりも大きいことを上記比較結果が示す場合に、所定の判定期間後に初期調整トランジスタ(例えば、図10(A)の116)をオンに設定して、初期調整トランジスタ以外のトランジスタ(図10(A)の111〜115)に対してレプリカインピーダンスを調整するステップ(S12)を含む。また、該出力回路のインピーダンス調整方法は、レプリカインピーダンスが所望の値(図3の外部抵抗R)よりも小さいことを上記比較結果が示す場合に、所定の判定期間後に初期調整トランジスタ(例えば、図10(A)の116)をオフに設定して、初期調整トランジスタ以外のトランジスタ(図10(A)の111〜115)に対してレプリカインピーダンスを調整するステップ(S13)を含む。さらに、該出力回路のインピーダンス調整方法は、レプリカインピーダンスの調整結果に対応して出力回路の複数のトランジスタ(図1の211P〜217P等)のオン/オフを設定するステップ(S14)を含む。尚、上記の初期調整トランジスタは、前述した第4のトランジスタに相当する。
以下、本発明の各実施形態について、図面を参照して詳しく説明する。
[第1の実施形態]
(原理説明)
まず、図1、図10(A)、図14、図15を参照しながら、第1の実施形態の原理説明を行う。第1の実施形態の出力バッファ210は、実際には、後述する図12に示すようにPU(プルアップ)部及びPD(プルダウン)部を備えており、ZQキャリブレーションは、PU部及びPU部のインピーダンスを夫々所望の値(図3の外部抵抗R)に合わせ込むことを目的とする。但し、ここでの原理説明では説明を簡単にするために、PU部のみを備えた図1の出力バッファ310に対するZQキャリブレーションについて、説明を行うこととする。また、ZQキャリブレーションでは、出力バッファ310を模倣したレプリカ回路110を用いてインピーダンス調整を行った後、レプリカバッファ110による調整結果を出力バッファ310に設定するようにしている。従って、以下の原理説明は、主として図10(A)のレプリカ回路110の動作に着目して説明を行う。
図10(A)において、並列接続されたトランジスタは、個別にオン/オフ切り替えが可能な5つのPMOSトランジスタ(111〜115)と、LV(低電圧電源)対応用に設けられたLV対応用MOSトランジスタ116と、PU部が活性化状態のときにオン状態とされるメイントランジスタ117とを含んでいる。ここで、レプリカ回路110のレプリカインピーダンスは式(1)、式(2)のように表される。

レプリカインピーダンス= R119 + 1/(1/Rmain+1/r) 式(1)

r=1/(1/R111+1/R112+1/R113+1/R114+1/R115+1/R116) 式(2)

ここで、R119は抵抗119の抵抗値、Rmainはメイントランジスタ117のオン抵抗である。また、R111〜R116は、夫々PMOSトランジスタ111〜116の抵抗値であり、オフ時は非導通となり、オン時はオン抵抗を有する。
レプリカインピーダンスは、PMOSトランジスタ111〜116が全てオフの場合に最大値Zmaxをとり、PMOSトランジスタ111〜116が全てオンの場合に最小値Zminをとる。リプリカインピーダンスを外部抵抗R(以降、外部抵抗Rの抵抗値を単に「外部抵抗R」ともいう)に合わせ込むためには、以下の式(3)を満たさなければならない。

Zmin ≦ 外部抵抗R ≦ Zmax 式(3)
レプリカ回路110は、インピーダンス調整範囲を低インピーダンス側に拡げるために、LV対応用MOSトランジスタ116を設けた構成となっているが、LV対応用MOSトランジスタを含まない構成の場合は、式(2)は、以下の式(4)のようになる。

r0 =1/(1/R111+1/R112+1/R113+1/R114+1/R115) 式(4)

PMOSトランジスタ111〜115が全てオンのときに得られるレプリカインピーダンスをZmin0とする。このとき、式(5)の関係になっている。即ち、LV対応用MOSトランジスタ116を設けると、設ける前に比べて、レプリカインピーダンスの下限値が|Zmin−Zmin0|だけ拡がることを意味する。

Zmin < Zmin0 式(5)

また、LV対応用MOSトランジスタ116を含まない構成の場合に、レプリカインピーダンスを外部抵抗Rに合わせ込むためには、式(6)を満たさなければならない。

Zmin0 ≦ 外部抵抗R ≦ Zmax 式(6)
第1の実施形態では、LV対応用MOSトランジスタ116を新たに設けることにより、オン/オフ調整するPMOSトランジスタの数が5つから6つに増加している。このようにトランジスタの数を1つ増加させると、レプリカインピーダンスと外部抵抗Rとの比較回数が最大2倍必要となり、要求期間内にZQキャリブレーションが終了しない可能性があるという問題が発生する。この問題を解消するため、ZQコード(各トランジスタのオン/オフをコード化したもの;DRZPQBに相当)をバイナリサーチ的にキャリブレーションする方法が考えられるがコンパレータの能力限界に起因する誤判定が起きた場合、値が収束しない可能性が生じてしまう。また、PMOSトランジスタの数を同じままで、ZQコードの1step幅を拡げるようにオン抵抗値を選択する方法が考えられるが、その場合、インピーダンス調整の範囲を拡大することはできるが、ZQキャリブレーションの精度が落ちてしまう。
そこで、第1の実施形態によるZQキャリブレーションでは、図14のフローチャートに示す方法により、上記の問題を解決している。図14において、まず、LV対応MOS116をオフ、その他のトランジスタ(111〜115、117)をオンとし、レプリカインピーダンスZmin0を評価する(S10)。Zmin0は、前述したように、LV対応用MOSトランジスタ116をオフとした場合(即ち、LV対応用MOSトランジスタ116を設けない場合)に得られる最小値である。
次に、Zmin0と外部抵抗Rの抵抗値とを比較する(S11)。ステップS11において、Zmin0>外部抵抗Rの場合には、式(6)の条件が満たされない。従って、この場合には、LV対応用MOSトランジスタ116をオンにすべきであると判定し、LV対応用MOSトランジスタ116をオンに状態で、PMOSトランジスタ111〜115のオン/オフ調整により、レプリカインピーダンスを調整する(S12)。
一方、ステップS11において、Zmin0≦外部抵抗Rの場合には、式(6)の条件が満たされる。従って、この場合には、LV対応用MOSトランジスタ116をオフにしたままの状態で、PMOSトランジスタ111〜115のオン/オフ調整により、レプリカインピーダンスを調整する(S13)。
そして、レプリカインピーダンスの調整結果(PMOSトランジスタ111〜115、及びLV対応用MOSトランジスタ116のオン/オフ)を出力バッファ310の対応するトランジスタに夫々設定する。
図15に、図14のフローチャートに基づいてZQキャリブレーションを行った一例を示す。インピーダンス調整の所望の値(TARGET)である外部抵抗Rは240Ωである。図14のステップS10において得られたインピーダンスZmin0は、Zmin0>240(図15の「LV用MOS ON/OFF判定」の箇所)であるため、ステップS12に進む。ステップS12において、LV対応用MOSトランジスタ116をオン状態として、ZQコードに対応してPMOS111〜115のオン/オフを変えることにより、インピーダンスを調整している(同図の「LV用MOS:ON」のカーブを参照)。その結果、ZQコードが16のときに、所望の値240Ωに最も近い条件が得られる。
以上のように、図14に示した方法によれば、LV対応用MOSトランジスタ116の追加に伴う比較回数の増加を、1回(ステップS11)だけとすることができる。これにより、LV対応用MOSトランジスタを設けることで、出力バッファのインピーダンス、及びレプリカバッファのレプリカインピーダンスの下限側のマージンを拡げた場合において、インピーダンス調整の精度低下や調整期間の大幅な増加がないようにすることが可能になる。
尚、LV対応用MOSトランジスタ116のオン/オフは、インピーダンス調整の範囲を大まかに選別するためのものであるから、LV対応用MOSトランジスタ116のオン抵抗を、PMOSトランジスタ111〜115に比べて小さい値に設定することが望ましい。また、出力バッファ310においても、同様に、LV対応用MOSトランジスタ216Pのオン抵抗を、PMOSトランジスタ211P〜215Pに比べて小さい値に設定することが望ましい。
(第1の実施形態の構成)
次に、第1の実施形態に係る半導体装置10の構成について説明する。半導体装置10は、出力バッファ(図3の210)と、前述した原理説明に基づくZQキャブレーションを実行するキャリブレーション回路(図3の100)と、を備えた半導体装置である。
図2は、半導体装置10の構成を示すブロック図である。図2において、半導体装置10は、DRAMなどであって、制御回路部20、メモリセルアレイ30、データ入出力部200、外部クロック、アドレス信号、コマンドの各入力端子CK、ADD、CMD、データ入出力端子DQ0〜n、キャリブレーション端子ZQを備える。
制御回路部20は、外部クロック、アドレス信号、コマンドの各入力端子CK、ADD、CMDから入力した信号に基づいてワード線WL及びビット線BLを活性化させ、活性化されたワード線及びビット線の交点に対応したメモリセルアレイ30中のメモリセルにアクセスする。入力したコマンドが読み出しに係るコマンドである場合、アクセスされたメモリセルのデータは、データ入出力部200を介してデータ入出力端子DQ0〜nに出力される。入力したコマンドが書き込みに係るコマンドである場合、データ入出力端子DQ0〜nから入力されたデータは、データ入出力部200を介して制御回路部20に取り込まれ、アクセスされたメモリセルに書き込まれる。
データ入出力部200は、制御回路部20からの内部クロックiCLK、内部コマンドiCMDによって入出力動作が設定されると共に、キャリブレーション端子ZQの外部インピーダンスに対応して出力バッファ(図3の210)の出力インピーダンスを調整する機能を備える。
次に、図3を参照しながら、データ入出力部200の詳細について説明する。図3は、データ入出力部200の構成を示す図である。データ入出力部200は、キャリブレーション回路100、出力バッファ210、入力バッファ220、前段回路230、及び出力制御回路240を備える。
キャリブレーション回路100は、キャリブレーション動作の実行を指示する内部コマンドiCMDを受けて、出力バッファ210のインピーダンスを調整する機能を有する。キャリブレーション回路100は、キャリブレーション端子ZQの外部に接続される外部抵抗Rを基に、インピーダンス制御信号DRZQPB(DRZQPB1〜5)、DRZQN(DRZQN1〜5)、低電圧モード信号(VLdetPB、VLdetN)、メイントランジスタ制御信号(PUMAINB、PDMAIN)を設定して前段回路230に出力する。尚、キャリブレーション回路100の詳細は後述される。
出力制御回路240は、制御回路部20から出力されるデータ信号Dataを入力し、データ信号Dataの論理レベルに対応して選択信号(240P、240N)の論理レベルを設定して前段回路230に出力する。具体的には、データ信号DataがHighレベルのときには、選択信号240PをHighレベル、選択信号240NをLowレベルとする。一方、データ信号DataがLowレベルのときには、選択信号240PをLowレベル、選択信号240NをHighレベルとする。
前段回路230は、選択信号240P、240Nの論理レベルに応じて、動作信号230PB、230Nの一方を活性化させて、出力バッファ210に出力する。また、前段回路230は、選択信号240P、240Nの論理レベルに応じて、低電圧プルアップ出力イネーブル信号PULOEB、低電圧プルダウン出力イネーブル信号PDLOEの一方を活性化させて、出力バッファ210に出力する。また、前段回路230は、選択信号240P、240Nの論理レベルに応じて、プルアップ出力イネーブル信号PUOEB、プルダウン出力イネーブル信号PDOEの一方を活性化させて、出力バッファ210に出力する。尚、前段回路230の詳細は後述される。
出力バッファ210は、前段回路230より供給される信号(230PB、PULOEB、PUOEB、230N、PDLOE、PDOE)に応じてデータ入出力端子DQを駆動する能力を制御する。即ち、データ入出力端子DQに対する出力インピーダンスを調整してデータ信号Dataに対応する出力信号を出力する。尚、出力バッファ210の詳細は後述される。
入力バッファ220は、データ入出力端子DQから入力される信号をバッファリングしてデータ信号Dataとして制御回路部20に出力する。尚、入力バッファ220の構成については、本発明の要旨と直接関係がないため、本明細書での詳述を省略する。
次に、図4を参照しながら、キャリブレーション回路100について説明する。図4は、キャリブレーション回路100の構成を示す図である。図4において、キャリブレーション回路100は、レプリカ前段回路171、172、173、レプリカバッファ110、120、130、インピーダンス調整回路161、162、比較回路151、152、基準電圧生成回路160、ZQ制御回路183、キャリブレーション端子ZQを備える。ここで、レプリカ前段回路171、レプリカバッファ110、インピーダンス調整回路161、比較回路151は、PU(プルアップ)部のレプリカインピーダンスを調整するためのものである。一方、レプリカ前段回路172、173、レプリカバッファ120、130、インピーダンス調整回路162、比較回路152は、PD(プルダウン)部のレプリカインピーダンスを調整するためのものである。
レプリカ前段回路171は、インピーダンス調整回路161が出力するインピーダンス制御信号DRZQPB、低電圧モード信号VLdetPB、メイントランジスタ制御信号PUMAINBにそれぞれ対応したレプリカ制御信号230PRB、PULREB、PUREBをレプリカバッファ110に出力する。また、レプリカ前段回路172も同様に、インピーダンス調整回路161が出力するインピーダンス制御信号DRZQPB、低電圧モード信号VLdetPB、メイントランジスタ制御信号PUMAINBにそれぞれ対応したレプリカ制御信号230PRB、PULREB、PUREBをレプリカバッファ120に出力する。さらに、レプリカ前段回路173は、インピーダンス調整回路162が出力するインピーダンス制御信号DRZQN、低電圧モード信号VLdetN、メイントランジスタ制御信号PDMAINにそれぞれ対応したレプリカ制御信号230NR、PDLRE、PDREをレプリカバッファ130に出力する。尚、レプリカ前段回路171、172、173の詳細は後述される。
レプリカバッファ110は、レプリカ前段回路171が出力するレプリカ制御信号230PRB、PULREB、PUREBに応じたレプリカインピーダンスでキャリブレーション端子ZQを駆動する。また、レプリカバッファ120は、レプリカ前段回路172が出力するレプリカ制御信号230PRB、PULREB、PUREBに応じたレプリカインピーダンスでノードAを駆動する。さらに、レプリカバッファ130は、レプリカ前段回路173が出力するレプリカ制御信号230NR、PDLRE、PDREに応じたレプリカインピーダンスでノードAを駆動する。尚、レプリカバッファ110、120、130の詳細は後述される。
基準電圧生成回路160は基準電圧VDD/2を発生し、比較回路151、152の一方の比較入力端子(−)に供給する。
比較回路151は、他方の比較入力端子(+)にキャリブレーション端子ZQの電圧を入力し、その比較結果信号COMP1をインピーダンス調整回路161に出力する。
比較回路152は、他方の比較入力端子(+)にノードAの電圧を入力し、その比較結果信号COMP2をインピーダンス調整回路162に出力する。
インピーダンス調整回路161は、図4に示すように、第1及び第3のインピーダンス調整回路141とPch_LVモード選択回路(第2のインピーダンス調整回路)181とにより構成される。同様に、インピーダンス調整回路162は、第1及び第3のインピーダンス調整回路142とNch_LVモード選択回路(第2のインピーダンス調整回路)182とにより構成される。尚、第1及び第3のインピーダンス調整回路141、142とPch_LVモード選択回路181、Nch_LVモード選択回路182の詳細は後述される。
ところで、内部コマンドiCMDのうち、キャリブレーションに係る内部ZQコマンドには、MZQCL(メモリコントローラから発行されるZQロングコマンドZQCLに応じた内部コマンド)の他に、MZQCS(メモリコントローラから発行されるZQショートコマンドZQCSに応じた内部コマンド)が存在する。ZQロングコマンドZQCLに応じたキャリブレーション動作は、ZQショートコマンドZQCSに応じたキャリブレーション動作に比べ、長い期間実施される。ZQロングコマンドZQCLは、例えば、DRAMのイニシャライズ動作時に発行され、ZQショートコマンドZQCSは、通常動作時に周期的に発行される。
ZQ制御回路183は、内部ZQコマンドMZQCL、MZQCSに応じて、各種ZQコントロール信号ZQCTLP、ZQCTLNを発行する。ここで、ZQコントロール信号ZQCTLPを例に説明すると、ZQクロックZQCLKP1は判定回路(図7の185)の動作クロック、ZQクロックZQCLKP2はカウンタ回路(図7の186)の動作クロックである。また、プルアップ調整アクティブ信号ACTPはレプリカ前段回路171を活性化させる信号、リセット信号RESETは、判定回路(図7の185)及びカウンタ回路(図7の186)をリセットする信号である。尚、プルダウン側のZQコントロール信号ZQCTLNに関しても同様の信号が存在する。
ZQ制御回路183は、MZQCLコマンドに応じてプルアップ調整アクティブ信号ACTPを活性化する。さらに、PchLV判定モードEND信号199に応じて、ZQクロックCLKP1、2を活性化する。尚、ZQCLKP1、2は、いずれも内部クロックiCLKに応じた信号であり、ZQCLKP1はZQCLKP2に比べて位相が進んでいる。これは、判定回路(図7の185)がキャリブレーションの終了を示したときにカウンタ回路(図7の186)の動作を止められるようにするためである。
また、ZQ制御回路183は、キャリブレーション動作実行時に内部クロックiCLKに応答してセンスイネーブル信号SENENを発生する。センスイネーブル信号SENENは比較回路151、152を活性化する制御信号である。
また、ZQ制御回路183は、プルアップ判定信号CALENDPに応じてPU側のZQコントロール信号を非活性にすると共に、プルダウン調整開始信号NCALSTARTを活性化すると共に、プルダウン調整アクティブ信号ACTNを活性化する。これは、PU側のZQキャリブレーションを行った後、PD側のZQキャリブレーションを行うためである。PD側における以降の動作は、PU側と実質的に同一である。
次に、図5を参照しながら、Pch_LVモード選択回路181、Nch_LVモード選択回路182について説明する。図5(A)、(B)は、それぞれPch_LVモード選択回路181、Nch_LVモード選択回路182の詳細を示す回路図である。Pch_LVモード選択回路181は、比較結果信号COMP1に基づいて、レプリカバッファ110、120のLV対応用MOSトランジスタ116に対応する低電圧モード信号LVdetPBを出力する。また、Pch_LVモード選択回路181は、比較結果信号COMP2に基づいて、レプリカバッファ130のLV対応用MOSトランジスタ136に対応する低電圧モード信号LVdetNを出力する。
図5(A)に示すように、Pch_LVモード選択回路181は、センスイネーブル信号SENENと内部ZQコマンドMZQCLとを入力するRS−FF(RS型フリップフロップ回路)を備えている。RS−FFの出力信号Qは、D−FF(D型フリップフロップ回路)195のD端子に入力される。D−FF195において、クロック入力端子にセンスイネーブル信号SENENが反転入力されているので、D−FF195はセンスイネーブル信号SENENの立ち下がりエッジをラッチし、信号Aとして出力する。次に、NAND回路193の一方の入力端子には信号Aを論理反転した信号、他方の入力端子にはセンスイネーブル信号SENENが入力される。次に、D−FF196のD端子には、比較結果信号COMP1が入力され、クロック入力端子にはNAND回路193の出力信号Bが入力される。これにより、D−FF196のQ端子は、信号Bの立ち下がりエッジのタイミングで比較結果信号COMP1をラッチし、信号Cを出力する。最後に、NAND回路194は、一方の入力端子に信号Aを、他方の入力端子に信号Cの論理反転を入力し、低電圧モード信号VdetPBを出力している。
また、図5(B)は、Nch_LVモード選択回路182の回路図である。Nch_LVモード選択回路182のPch_LVモード選択回路181に対する差異は、MZQCLに代えてプルダウン調整開始信号NCALSTARTを入力している点と、NAND回路194に代えて、AND回路294を用いている点である。AND回路294にしているのは、LV判定期間において、低電圧モード信号LVdetNをLowレベルにするためと、LV判定期間後は、Pch_LVモード選択回路181と同じ論理の信号を生成するためである。
次に、図6を参照しながら、図5(A)の動作について説明する。図6は、図5のPch_LVモード選択回路の動作を示す波形図である。図6のタイミングt1において、ZQコマンドMZQCLの発行により、1ショットパルスが発生している。それを受けて、RS−FFは、Lowレベルにリセットされる。タイミングt2以降、センスイネーブル信号SENENは所定周期のパルスを発生する。タイミングt2において、RS−FFは、センスイネーブル信号SENENの最初のパルスを受けてセットされ、出力信号QをHighレベルに遷移する。図6におけるτはRS−FFで生じる遅延である。また、センスイネーブル信号SENENは、比較回路(図4の151、152)に供給され、Highレベルの時に比較回路を活性化する。センスイネーブル信号SENENが最初に活性化されるタイミングt2〜t3は、LV判定期間(図14のS10、S11に相当)であり、具体的には、最初にLV対応用MOSトランジスタのオン/オフ判定を行う期間である。
次に、センスイネーブル信号SENENの立ち下がりエッジとなるタイミングt3において、RS−FFの出力Qがラッチされ、信号AはHighレベルに遷移する。図6のタイミングt3において、LV判定期間が終了すると、信号Aを、LV判定期間が終了したことを示すPchLV判定モードEND(199)として、ZQ制御回路183に出力している。
信号Bは(t2+τ)〜t3の期間でLowレベル、それ以外はHighレベルとなる。信号Cは信号Bの立ち下がりエッジのタイミング(即ち、タイミングt2+τ)で、比較結果信号COMP1をラッチした信号となる。つまり、信号Cは、LV判定期間において比較結果信号COMP1をラッチしたものであり、以降、その値は保持される。
最後に、VLdetPBは、信号AがLowレベルであるタイミングt3までは、比較結果信号COMP1に拘わらずHighレベルとなる。また、タイミングt3以降においては、VLdetPBは、比較結果信号COMP1に等しい論理レベルを出力する。
図6には、LV判定期間において、比較判定結果COMP1がLowレベルの場合と、Highレベルの場合とについて、夫々の比較結果信号COMP1、信号C、低電圧モード信号VLdetPBの波形を示している。低電圧モード信号VLdetPBは、タイミングt3までは、どちらの場合もHighレベルであり、タイミングt3以降は、LV判定期間の比較判定結果COMP1に応じて異なる値になっている。
次に、図7を参照しながら、プルアップ側の第1及び第3のインピーダンス調整回路141の構成について、説明する。図7において、第1及び第3のインピーダンス調整回路141は、第1のインピーダンス調整回路184とレベル固定回路(第3のインピーダンス調整回路)189とにより構成される。第1のインピーダンス調整回路184は、判定回路185、カウンタ回路186、LV判定時コード発生回路187、及びセレクタ188を含んで構成される。
判定回路185は、レプリカ回路110のレプリカインピーダンスが調整により外部抵抗Rのインピーダンスと交差したか否かを判定する回路である。具体的には、比較結果信号COMP1の論理レベルが変化した場合に判定信号CALENDPを発生し、レプリカインピーダンスの調整が完了したことをZQ制御回路183に通知している。
次に、比較結果信号COMP1とカウントアップダウン信号CNTUPDOWNPの関係について述べる。まず、比較結果信号COMP1がLowレベルになるのは、ZQ端子の電位がVDD/2よりも低い場合である。これは、レプリカ回路110のレプリカインピーダンスが外部抵抗Rより大きいことを意味している。従って、レプリカインピーダンスを下げるために、レプリカ回路110のPMOSトランジスタ111〜115のうちオンする数を増やすように調整しなければならない。即ち、インピーダンス制御信号DRZQPBをカウントダウンさせる必要がある。従って、COMP1がLowレベルの場合は、カウントアップダウン信号CNTUPDOWNPをLowレベルにし、カウンタ回路186は、Lowレベルのカウントアップダウン信号CNTUPDOWNPを受けてカウントダウンを行うようにすればよい。逆に、COMP1がHighレベルの場合は、カウントアップダウン信号CNTUPDOWNPをHighレベルにし、カウンタ回路186は、Highレベルのカウントアップダウン信号CNTUPDOWNPを受けてカウントアップを行うようにすればよい。
カウンタ回路186は、ZQクロックZQCLKP2に同期して、カウントアップダウン信号CNTUPDOWNPの論理レベルに応じた方向に自身のカウント値を変化させる。カウンタ回路186のカウント値はセレクタ188の一方の入力端子に供給される。
次に、LV判定時コード発生回路187について説明する。LV判定時コード発生回路187は、LV判定期間において、レプリカ回路110のPMOSトランジスタ111〜115(第4のトランジスタ)を全てオンに設定する機能を有する。これは、原理説明で述べたように、図14のステップS10において、LV対応用MOSトランジスタ以外のトランジスタを全てオンするためである。具体的には、#00(5ビット全てがLowレベルの信号)を発生し、セレクタ188の他方の入力端子に供給する。
そして、セレクタ188の選択信号として、PchLV判定モードEND(199)が供給され、セレクタ188はLV判定期間にはLV判定時コード発生回路187からの信号を選択出力し、LV判定期間後にはカウンタ回路186からの信号を選択出力する。
また、図7のレベル固定回路189は、常に電位VSSのメイントランジスタ制御信号PUMAINBを出力する。
次に、図8を参照しながら、PD側の第1及び第3のインピーダンス調整回路142について、説明する。PD側の第1及び第3のインピーダンス調整回路142は、図7に示したPU側の第1及び第3のインピーダンス調整回路141と同じ構成を有しており、重複する説明は省略する。第1及び第3のインピーダンス調整回路142では、図7のCOMP1、ZQCLKP1、ZQCLKP2、PchLV判定モードEND(199)に代えて、COMP2、ZQCLKN1、ZQCLKN2、NchLV判定モードEND(299)が供給される。また、第1及び第3のインピーダンス調整回路142では、図7のDRZQPB、PUMAINBに代えて、DRZQN、PDMAINを出力している。
また、図8のLV判定時コード発生回路287は、図10(B)のレプリカ回路130のNMOSトランジスタ131〜135(第4のトランジスタ)をオンに設定する機能を有する。これは、LV対応用MOSトランジスタ以外のトランジスタを全てオンするためであり、ここでは、NMOSトランジスタであるため、#1F(5ビット全てがHighレベルの信号)を発生する。
また、図8のレベル固定回路289は、常に電位VDDのメイントランジスタ制御信号PDMAINを出力する。
次に、比較結果信号COMP2とカウントアップダウン信号CNTUPDOWNNの関係について述べる。COMP2は、図4に示すように、ノードAの電位を基準電圧生成回路160が発生した電位VDD/2と比較したときの比較結果信号である。ZQキャリブレーションでは、キャリブレーション回路100によりPU部のインピーダンス調整を行い、その後にPD部のインピーダンス調整を行う。具体的には、前半のインピーダンス調整は、PU部のレプリカバッファ110に対して行われ、外部抵抗Rとインピーダンスが等しくなるように合わせ込まれる。そして、後半のPD部のインピーダンス調整時には、レプリカバッファ120に調整済みのレプリカバッファ110と同じ設定がなされた状態とし、PD部のレプリカバッファ130がレプリカバッファ120のインピーダンスと等しくなるように合わせ込まれる。
上記の後半のPD部のインピーダンス調整において、比較結果信号COMP2がLowレベルになるのは、ノードAの電位がVDD/2よりも小さい場合である。これは、レプリカバッファ130のレプリカインピーダンスがレプリカバッファ120のレプリカインピーダンスより小さいことを意味している。従って、レプリカバッファ130のレプリカインピーダンスを高くするために、レプリカ回路130のNMOSトランジスタ131〜135のうちオンする数を減らすように調整しなければならない。即ち、インピーダンス制御信号DRZQNをカウントダウンさせる必要がある。従って、COMP2がLowレベルの場合は、カウントアップダウン信号CNTUPDOWNNをLowレベルにし、カウンタ回路286は、Lowレベルのカウントアップダウン信号CNTUPDOWNNを受けてカウントダウンを行うようにすればよい。逆に、比較結果信号COMP2がHighレベルの場合は、カウントアップダウン信号CNTUPDOWNNをHighレベルにし、カウンタ回路286は、Highレベルのカウントアップダウン信号CNTUPDOWNNを受けてカウントアップを行うようにすればよい。即ち、比較結果信号COMP2とカウントアップダウン信号CNTUPDOWNNの関係は、図7の比較結果信号COMP1とカウントアップダウン信号CNTUPDOWNPの関係と同じにすればよいことが分かる。
次に、図9を参照しながら、レプリカ前段回路171、172、173について説明する。図9(A)、(B)、(C)は、それぞれレプリカ前段回路171、172、173の回路図である。まず、図9(A)のレプリカ前段回路171について説明する。レプリカ前段回路171は、データ入出力部200の前段回路(図11の230;詳細は後述)のPU部と実質的に同一の構成を有する。つまり、レプリカ前段回路171とレプリカバッファ110とを縦続接続した回路は、前段回路230のPU部と出力バッファ210のPU部を縦続接続した回路と同様の構成を有する。
図9(A)に示すように、レプリカ前段回路171は、7つのOR回路301〜307、及びインバータ回路321より構成される。OR回路301〜307の一方の入力端子には、ZQ制御回路183からのプルアップ調整アクティブ信号ACTPがインバータ回路321により論理反転され共通に供給される。また、OR回路301〜307の他方の入力端子には、インピーダンス調整回路161からのインピーダンス制御信号DRZQPB(DRZQPB1〜5)、低電圧モード信号VLdetPB、及びメイントランジスタ制御信号PUMAINBがそれぞれ供給される。OR回路301〜307の各出力は、レプリカ制御信号230PRB(231PRB〜235PRB)、PULREB、PUREBとして、レプリカバッファ110に出力される。
プルアップ調整アクティブ信号ACTPは、PU部のレプリカインピーダンスを調整する時に、Highレベルに活性化される信号である。ACTPがHighレベルのときは、OR回路301〜307の出力は、夫々DRZQPB(DRZQPB1〜5)、VLdetPB、PUMAINBと等しくなる。一方、ACTPがLowレベルのときは、各OR回路301〜307の出力はHighレベルに非活性化される。
図9(B)のレプリカ前段回路172の構成は、図9(A)のレプリカ前段回路171と同じであり、プルアップ調整アクティブ信号ACTPに代えて、プルダウン調整アクティブ信号ACTNを供給する点が相違しているだけである。レプリカ前段回路171と接続されるレプリカ回路120はPD側の調整時に使用されるものであるため、レプリカ前段回路172には、プルダウン調整アクティブ信号ACTNを供給している。
次に、図9(C)のレプリカ前段回路173について説明する。レプリカ前段回路173は、データ入出力部200の前段回路(図11の230;詳細は後述)のPD部と実質的に同一の構成を有する。つまり、レプリカ前段回路173とレプリカ回路130とを縦続接続した回路は、前段回路230のPD部と出力バッファ210のPD部とを縦続接続した回路と同様の構成を有する。
図9(C)に示すように、レプリカ前段回路173は、7つのAND回路311〜317により構成される。AND回路311〜317の一方の入力端子には、ZQ制御回路183からのプルダウン調整アクティブ信号ACTNが共通に供給される。また、AND回路311〜317の他方の入力端子には、インピーダンス調整回路162からのインピーダンス制御信号DRZQN(DRZQN1〜5)、低電圧モード信号VLdetN、及びメイントランジスタ制御信号PDMAINがそれぞれ供給される。AND回路311〜317の出力は、レプリカ制御信号230NR(231NR〜235NR)、PDLRE、PDREとして、レプリカバッファ130に出力される。
次に、図10を参照しながら、レプリカバッファ110、120、130の構成について説明する。図10(A)は、PU側のレプリカバッファ110の構成を示す回路図である。レプリカバッファ110は、出力バッファ210のPU部を模倣したレプリカ回路である。図10(A)に示すように、レプリカバッファ110は、並列接続された7つのPMOSトランジスタ111〜117と、一端がこれらトランジスタのドレインに接続された抵抗119によって構成される。抵抗119の他端は、キャリブレーション端子ZQに接続される。
原理説明のところで前述したように、7つのPMOSトランジスタのうち、111〜115は個別にオン/オフ調整することによりインピーダンス調整するトランジスタであり、116はLV対応用MOSトランジスタであり、117はプルアップ時にオン状態とするメイントランジスタである。PMOSトランジスタ111〜117のゲートには、レプリカ前段回路171からレプリカ制御信号230PRB(231PRB〜235PRB)、PULREB、PUREBが夫々供給される。
PMOSトランジスタ111〜117からなる並列回路は、PU側の選択時に所定のインピーダンス(例えば120Ω)となるように設計されている。しかしながら、トランジスタのオン抵抗は製造条件によってばらつくと共に、動作時における環境温度や電源電圧によって変動することから、必ずしも所定のインピーダンスが得られるとは限らない。このため、実際にインピーダンスを120Ωとするためには、オンさせるべきトランジスタの数を原理説明で述べた方法(図14を参照)を用いて調整する。また、抵抗119の抵抗値は、例えば120Ωに設計されている。これにより、キャリブレーション端子ZQからみたレプリカバッファ110のインピーダンスは、240Ωとなる。
レプリカバッファ120についても、抵抗119の他端がノードAに接続されている他は、図10(A)に示すレプリカバッファ110と同一の回路構成を有している。また、レプリカバッファ120の7つのPMOSトランジスタ111〜117に対して、レプリカバッファ110と同じレプリカ制御信号が供給される。従って、レプリカバッファ110のインピーダンスが240Ωとなった場合、ノードAからみたレプリカバッファ120のインピーダンスも同様に240Ωとなる。
図10(B)は、PD側のレプリカバッファ130の回路図である。図10(B)に示すように、レプリカバッファ130は並列接続された7つのNMOSトランジスタ131〜137と、一端がこれらトランジスタのドレインに接続された抵抗139とにより構成される。抵抗139の他端は、ノードAに接続される。
尚、レプリカバッファ110において、7つのPMOSトランジスタ111〜117のW/L比を以下のように設定することが好ましい。即ち、PMOSトランジスタ111のW/L比に対して、PMOSトランジスタ112〜115のW/L比をそれぞれ2倍、4倍、8倍、16倍にする。このようにすることで、カウンタ回路のカウントアップダウンのステップ幅を均等になるようにすることができる。また、原理説明のところで述べたように、LV対応用MOSトランジスタはインピーダンス調整の範囲を大まかに選別するためのものであるから、LV対応用MOSトランジスタのW/L比は、PMOSトランジスタ111〜115のいずれよりも大きくする(即ち、オン抵抗を小さくする)ことが望ましく、例えば、PMOSトランジスタ111のW/L比の32倍に設定する。また、メイントランジスタ117のW/L比は、LV対応用MOSトランジスタ116よりもさらに大きく設定し、120Ωにある程度近づけておくことが好ましい。これにより、PMOSトランジスタ111〜116によるインピーダンス調整の1ステップを小さくすることができ、キャリブレーション精度を向上させることができる。
尚、PD用のレプリカバッファ130における7つのNMOSトランジスタ131〜137のW/L比についても、同じ理由によりPMOSトランジスタ111〜117と同様に設定することが望ましい。
NMOSトランジスタ131〜137のゲートには、レプリカ前段回路173からレプリカ制御信号230NR(231NR〜235NR)、PDLRE、PDREが夫々供給される。
NMOSトランジスタ131〜137からなる並列回路についても、PD側の選択時に所定のインピーダンス(例えば120Ω)となるように設計されている。実際にインピーダンスを120Ωとするためには、PU側のインピーダンス調整と同様に、オンさせるべきトランジスタの数を調整する。また、抵抗139の抵抗値は、例えば120Ωに設計されている。これにより、キャリブレーション端子ZQからみたレプリカバッファ130のインピーダンスは、レプリカバッファ120と同様、240Ωとなる。
次に、図11を参照しながら、前段回路230の構成について説明する。前段回路230は出力バッファ210に各種の出力制御信号を供給する機能を有する。また、既に説明済みのレプリカ前段回路171〜173(図9)は、この前段回路230を模倣したレプリカ回路である。図11において、前段回路230のPU部はレプリカ前段回路171と同様の構成を有する。また、前段回路230のPD部はレプリカ前段回路173と同様の構成を有する。そのため、図11の詳細な説明は省略する。前段回路230のPU部が出力する出力制御信号は、動作信号230PB(231PB〜235PB)、低電圧プルアップ出力イネーブル信号PULOEB、プルアップ出力イネーブル信号PUOEBからなり、これらは、出力バッファ210のPU部に供給される。また、前段回路230のPD部が出力する出力制御信号は、動作信号230N(231N〜235N)、低電圧プルダウン出力イネーブル信号PDLOE、プルダウン出力イネーブルPDOEは、出力バッファ210のPD部に供給される。
次に、図12を参照しながら、出力バッファ210の構成について説明する。図12に示すように、出力バッファ210は、PU部とPD部とから構成される。PU部は図1の出力回路310と同じ構成である。図12のPU部は、並列接続された7つのPMOSトランジスタ211P〜217Pを備える。また、PD部は、並列接続された7つのNMOSトランジスタ211N〜217Nを備える。これらPMOSトランジスタ211P〜217PとNMOSトランジスタ211N〜217Nとの間には、抵抗218、219が直列に接続されており、抵抗218と抵抗219の接続点がデータ入出力端子DQに接続される。
PU部において、7つのPMOSトランジスタのうち211P〜215Pは個別にオン/オフ調整されるトランジスタであり、216PはLV対応用MOSトランジスタであり、217Pはプルアップ時にオン状態とするメイントランジスタである。211P〜217Pは、夫々、レプリカバッファ110の111〜117に対応している。また、PD部において、7つのNMOSトランジスタのうち211N〜215Nは個別にオン/オフ調整されるトランジスタであり、216NはLV対応用MOSトランジスタであり、217Nはプルダウン時にオン状態とするメイントランジスタである。211N〜217Nは、夫々、レプリカバッファ130の131〜137に対応している。
出力バッファ210のPU部は、レプリカバッファ110を用いたZQキャリブレーションの結果を受けて、レプリカバッファ110のPMOSトランジスタ111〜117のオン/オフ設定と同じ設定が、PMOSトランジスタ211P〜217Pになされる。これにより、レプリカバッファ110のレプリカインピーダンスが外部抵抗R(例えば、240Ω)に合わせ込まれると、入出力端子DQから出力バッファ210のPU部をみたときのインピーダンスが240Ωに調整されることになる。
出力バッファ210のPD部は、レプリカバッファ130を用いたZQキャリブレーションの結果を受けて、レプリカバッファ130のNMOSトランジスタ131〜137のオン/オフ設定と同じ設定が、NMOSトランジスタ211N〜217Nになされる。これにより、レプリカバッファ130のレプリカインピーダンスが、調整済みのレプリカバッファ120のレプリカインピーダンスに合わせ込まれると、入出力端子DQから出力バッファ210のPD部をみたときのインピーダンスも240Ωに調整されることになる。
(第1の実施形態の動作)
次に、図13を参照しながら、第1の実施形態に係る半導体装置10のキャリブレーション動作の例について説明する。図13は、各部の波形を示す波形図である。図13では、PU部のZQキャリブレーション(同図のPU−CAL)を行った後、PD部のZQキャリブレーション(同図のPD−CAL)を行っている。尚、図13のiCMD、SENEN、PchLV判定モードENDについては、図6の波形図と同様であるため、重複する説明は省略する。
タイミングt2において、プルアップ調整アクティブ信号ACTPは内部コマンドiCMDの発行を受けてHighレベルに活性化される。続いて、タイミングt3以降、センスイネーブル信号SENENは周期的なパルスを出力する。図6で示したように、SENEN信号がHighレベルになる最初のパルス(タイミングt3〜t4)は、PU部キャリブレーション(PU−CAL)のLV判定期間である。LV判定期間では、レプリカバッファ110のPMOSトランジスタ111〜115をオンにするため、DRZQPBの5ビットは#00となっている。図13では、このLV判定期間において、比較結果信号COMP1が、Lowレベルとなる場合を示している。これは、図14のS11において、Zmin0>外部抵抗Rとなる場合である。LV判定期間のCOMP1のLowレベルを受けて、タイミングt4以降ではVLdetPBはLowレベルに設定される。
また、タイミングt4から、レプリカバッファ110のPMOSトランジスタ111〜115のオン/オフ調整が開始される。インピーダンス制御信号DRZQPBの初期値は#1Fに設定している。即ち、LV対応用MOSトランジスタをオンにしたときに得られる最大のインピーダンスに設定している。
タイミングt4〜t5は、比較結果信号COMP1がLowレベルであり、これを受けてカウンタ回路186はカウントダウン動作を行ってレプリカバッファ110のレプリカインピーダンスが低くなる方向に調整している。ZQ端子の電位は、レプリカインピーダンスの減少に伴い徐々に上昇している。そして、タイミングt5において比較結果信号COMP1がLowレベルからHighレベルに遷移したところで、カウンタ回路186はその動作をカウントアップ動作に切り替える。すると、タイミングt6で比較結果信号COMP1がLowに戻る。これを受けて、タイミングt7で、判定回路185はインピーダンス調整が完了したと判定し、プルアップ判定信号CALENDPをHighレベルに活性化してZQ制御回路183に出力する。ZQ制御回路183は、プルアップ判定信号CALENDPを受けてプルアップ調整アクティブ信号ACTPを非活性化する。レプリカ前段回路171は、プルアップ調整アクティブ信号ACTPの非活性化によりレプリカ制御信号を非活性化する。これによりレプリカバッファ110の並列接続部が非導通状態となり、ZQ端子の電位がVSSに向けて低下する。
タイミングt8以降は、PD部のZQキャリブレーションの期間である。タイミングt8において、ZQ制御部183は、PD部のZQキャリブレーションの開始を指示するNCALSTARTをHighレベルに活性化してNchモード選択回路182に出力する。これによりNchモード選択回路182が活性化され、それ以降で最初のセンスイネーブル信号SESENのパルスがHighレベルとなる期間(タイミングt8〜t9)がLV判定期間となる。このLV判定期間において、レプリカバッファ130のNMOSトランジスタ131〜135をオンするため、DRZQNの5ビットは#1Fに設定される。図13では、このLV判定期間において、比較判定結果COMP2がHighレベルとなる場合を示している。これは、Zmin0>レプリカバッファ120のレプリカインピーダンス(外部抵抗Rに調整済み)の場合である。LV判定期間のCOMP2のHighレベルを受けて、タイミングt9以降において低電圧モード信号VLdetNはHighレベルに設定される。
タイミングt9から、レプリカバッファ130のNMOSトランジスタ131〜135のオン/オフ調整が開始される。インピーダンス制御信号DRZQNの初期値は#00に設定している。即ち、LV対応用MOSトランジスタをオンにしたときに得られる最大のインピーダンスに設定している。
タイミングt9〜t10は、比較結果信号COMP2がHighレベルであり、これを受けてカウンタ回路286はカウントアップ動作を行ってレプリカバッファ130のレプリカインピーダンスが低くなる方向に調整している。ノードAの電位はレプリカインピーダンスの減少に伴い徐々に減少している。そして、タイミングt10において比較結果信号COMP2がHighレベルからLowレベルに遷移したところで、カウンタ回路286はその動作をカウントダウン動作に切り替える。すると、タイミングt11で比較結果信号COMP2がHighに戻る。これを受けて、タイミングt11で、判定回路285はインピーダンス調整が完了したと判定し、プルダウン判定信号CALENDNをHighレベルに活性化してZQ制御回路183に出力する。ZQ制御回路183は、プルダウン判定信号CALENDNを受けて、タイミングt12でプルダウン調整アクティブ信号ACTNを非活性化する。レプリカ前段回路173は、プルダウン調整アクティブ信号ACTNの非活性化によりレプリカ制御信号を非活性化する。これによりレプリカバッファ130、120が共に非導通状態となりノードAがフローティング状態となる。
以上によりZQキャリブレーションが完了する。ZQキャリブレーションの調整結果である、インピーダンス制御信号DRZQPB(#03)、VLdetPB(Lowレベル)、インピーダンス制御信号DRZQN(#1C)、VLdetN(Highレベル)は、夫々前段回路230に供給され、出力バッファ210に、ZQキャリブレーションの調整結果が反映される。
以上説明したように、第1の実施形態に係る半導体装置10によれば、低い電源電圧での使用時に、インピーダンス調整の下限側のマージン低下を回避するために出力バッファ210における複数のトランジスタの並列接続部分にLV対応用MOSトランジスタ(216P、216N)を追加している。ここで、LV対応用MOSトランジスタ(216P、216N)が、データ信号Dataと第2のインピーダンス調整信号(低電圧モード信号VLdetPB、VLdetN)に応じて発生される第2の出力制御信号(低電圧プルアップイネーブル信号PULOEB、低電圧プルダウンイネーブル信号PDLOE)を制御端子(ゲート)で受け取るようにしている。これにより、LV対応用MOSトランジスタ(216P、216N)のオン/オフ制御を上記の出力制御信号(PULOEB、PDLOE)に基づいて行うことができるため、LV対応用MOSトランジスタ(216P、216N)を追加したことによるインピーダンス調整の調整期間の大幅な増加を回避することができる。即ち、第1の実施形態に係る半導体装置10によれば、低い電源電圧での使用時において、インピーダンス調整の精度低下や調整期間の大幅な増加なしに、インピーダンス調整の下限側のマージン低下を抑制することに貢献しうる半導体装置を提供することができる。
また、第1の実施形態に係る半導体装置10によれば、LV対応用MOSトランジスタをオフにし、その他の並列接続のトランジスタをオンとした場合の最小インピーダンスZmin0を所望の値を比較し、Zmin0が所望の値よりも大きい場合にLV対応用MOSトランジスタをオンにした状態でその他の並列接続のトランジスタのオン/オフ調整を行い、Zmin0が所望の値よりも小さい場合にLV対応用MOSトランジスタをオフにした状態でその他の並列接続のトランジスタのオン/オフ調整を行うようにしている。そのため、LV対応用MOSトランジスタの追加に伴う比較回路による比較回数の増加を1回だけにすることができ、調整期間の大幅な増加を回避することが可能になる。
また、第1の実施形態に係る出力回路のインピーダンス調整方法によれば、LV対応用MOSトランジスタの追加に伴う比較回数の増加を、1回(図14のステップS11)だけにすることができる。これにより、低い電源電圧での使用時に、インピーダンス調整の下限側のマージン低下を回避するためにLV対応用MOSトランジスタを追加した場合に、調整期間の大幅な増加がないようにすることができる。即ち、第1の実施形態に係る出力回路のインピーダンス調整方法によれば、低い電源電圧での使用時において、インピーダンス調整の精度低下や調整期間の大幅な増加なしに、インピーダンス調整の下限側のマージン低下を抑制することに貢献しうる出力回路のインピーダンス調整方法を提供することが可能になる。
[第2の実施形態]
次に、図16を参照しながら、第2の実施形態に係る半導体装置101について説明する。図16は、第2の実施形態に係る半導体装置101の構成を示すブロック図である。
図16の第2の実施形態では、第1の実施形態(図3)の出力バッファ210、前段回路230、出力制御回路240に代えて、出力バッファ219、前段回路231〜233、出力制御回路249を用いている。出力バッファ219は、複数の単位バッファ211〜217を含み、各々の単位バッファは、第1の実施形態の出力バッファ210(図12)と実質的に同一の構成を有する。
前段回路231、232、233は、夫々、単位バッファ211〜214、単位バッファ215、216、及び単位バッファ217を制御する。前段回路231、232、233は、第1の実施形態の選択信号240P、240Nに代えて、夫々、選択信号241P、241N、選択信号242P、242N、選択信号243P、243Nを受け取る。前段回路231〜233は、夫々第1の実施形態の前段回路230と実質的に同一の構成を有する。
尚、図16では、低電圧プルアップイネーブル信号PULOEと低電圧プルダウンイネーブル信号PDLOEを併せてPLOEと表記している。また、プルアップイネーブル信号PUOEとプルダウンイネーブル信号PDOEを併せてPOEとしている(PLOE2、POE2、PLOE3、POE3も同様)。
出力制御回路249は、制御回路部(図2の20)に含まれるモードレジスタから出力されるドライバストレングス信号DSに応じて、使用する単位バッファの個数を選択する。具体的には、ドライバストレングス信号DSに応じて、(241P、241N)、(242P、242N)、(243P、243N)の夫々の組を活性化させるか否かを選択し、データ信号Dataに応じて選択された組の論理レベルを設定する。
特許文献3は、使用する単位バッファを組み合わせることで、データピンDQを様々なモードで駆動させる動作を開示している(特許文献3の図1を参照)。例えば、各々が240Ωに調整された6つの単位バッファを活性化することにより、データピンDQを40Ωで駆動する動作モードを開示している。また、120ΩのODT(On Die Termination)動作モードや、240ΩのODT動作モードについても開示している。
同様に、図16に示す半導体装置101においても、様々な動作モードを行うように構成することができる。各単位バッファは、キャリブレーション回路100による一度のZQキャリブレーションにより、そのインピーダンス調整結果を設定することで240Ωにすることができる。ここで、(243P、243N)の組だけを活性化した場合には、1つの単位バッファ217が活性化し入出力端子DQを240Ωで駆動させることができる。また、(242P、242N)の組だけを活性化した場合には、2つの単位バッファ215、216が活性化し入出力端子DQを120Ωで駆動させることができる。また、(241P、241N)の組だけを活性化した場合には、4つの単位バッファ211〜214が活性化し入出力端子DQを60Ωで駆動させることができる。また、(241P、241N)及び(242P、242N)の組を活性化した場合には、6つの単位バッファ211〜216が活性化し入出力端子DQを40Ωで駆動させることができる。
以上説明したように、第2の実施形態によれば、第1の実施形態で得られた効果に加えて、キャリブレーション回路100による一度のキャリブレーション結果を複数の単位バッファに同時に設定することができる。これにより、複数の単位バッファを備え、それらの組み合わせにより複数のインピーダンスで駆動される出力バッファに対しても、キャリブレーション動作に必要な時間を抑制することが可能になる。
尚、各実施形態において、出力バッファ及びレプリカバッファの複数トランジスタの並列接続を構成する第1のトランジスタ、第2のトランジスタ(LV対応用MOSトランジスタ)、第3のトランジスタ(メイントランジスタ)の数が、それぞれ、5個、1個、1個の場合について例示したが、本発明はそれに限定されず、第1乃至第3のトランジスタの数を夫々、任意数とした場合に適用することができる。
なお、本発明の全開示(請求の範囲及び図面を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施形態の各要素、各図面の各要素等を含む)の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲及び図面を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。
1、10、101:半導体装置
20:制御回路部
30:メモリセルアレイ
100:キャリブレーション回路
110、120、130:レプリカバッファ(レプリカ回路)
111〜117、211P〜217P:PMOSトランジスタ
119、139、218、219:抵抗
131〜137、211N〜217N:NMOSトランジスタ
141、142:第1及び第3のインピーダンス調整回路
151、152:比較回路
160:基準電圧生成回路
161、162:インピーダンス調整回路
171、172、173:レプリカ前段回路
181:Pch_LVモード選択回路(第2のインピーダンス調整回路)
182:Nch_LVモード選択回路(第2のインピーダンス調整回路)
183:ZQ制御回路
184、284:第1のインピーダンス調整回路
185、285:判定回路
186、286:カウンタ回路
187、287:LV判定時コード発生回路
188、288:セレクタ
189、289:レベル固定回路(第3のインピーダンス調整回路)
191〜194、291〜293:NAND回路
195、196、295、296:D−FF(D型フリップフロップ回路)
199:PchLV判定モードEND(判定モード終了信号)
200:データ入出力部
210、219、310:出力バッファ(出力回路)
220:入力バッファ
230、231、232、233:前段回路
211〜217:単位バッファ
240、249:出力制御回路
294:AND回路
299:NchLV判定モードEND(判定モード終了信号)
301〜307、401〜407:OR回路
311〜317、411〜417:AND回路
321、421:インバータ回路
DQ、DQ0〜n:入出力端子(出力端子)
ZQ:キャリブレーション端子
WL:ワード線
BL:ビット線
R:外部抵抗
CK:外部クロック
ADD:アドレス信号
CMD:コマンド
Data:データ信号
DS:ドライバストレングス信号
iCLK:内部クロック
iCMD:内部コマンド
DRZQPB、DRZQN:インピーダンス制御信号(第1のインピーダンス調整信号)
VLdetPB、VLdetN:低電圧モード信号(第2のインピーダンス調整信号)
PUMAINB、PDMAIN:メイントランジスタ制御信号(第3のインピーダンス調整信号)
240P、240N、241P〜243P、241N〜243N:選択信号
230PB(231PB〜235PB)、230N(231N〜235N)、231P、232P、233P:動作信号(第1の出力制御信号)
PULOE、PDLOE:低電圧プルアップ出力イネーブル信号(第2の出力制御信号)
PUOE、PDOE:プルアップ出力イネーブル信号(第3の出力制御信号)
230PRB(231PRB〜235PRB)、PULREB、PUREB、230NR(231NR〜235NR)、PDLRE、PDRE:レプリカ制御信号
ZQCTLP、ZQCTLN:ZQコントロール信号
CALENDP:プルアップ判定信号
CALENDN:プルダウン判定信号
SENEN:センスイネーブル信号
NCALSTART:プルダウン調整開始信号
ACTP:プルアップ調整アクティブ信号
ACTN:プルダウン調整アクティブ信号
COMP1、COMP2:比較結果信号
RESET:リセット信号
CALENDP:プルアップ判定信号
CALENDN:プルダウン判定信号
CNTUPDOWNP、CNTUPDOWNN:カウントアップダウン信号
ZQCLKP1、ZQCLKP2、ZQCLKN1、ZQCLKN2:ZQクロック

Claims (10)

  1. 複数の第1のインピーダンス調整信号、第2のインピーダンス調整信号、及び第3のインピーダンス調整信号を発生するインピーダンス調整回路であって、自身のカウント値を前記複数の第1のインピーダンス調整信号として出力するカウンタ回路と、前記カウンタ回路の前記カウント値に関係なく前記第2のインピーダンス調整信号を活性化状態又は非活性化状態に設定するモード選択回路と、前記第3のインピーダンス調整信号を活性化状態に固定するレベル固定回路とを含むインピーダンス調整回路と、
    データ信号と前記複数の第1のインピンーダンス調整信号とに応答して複数の第1の出力制御信号を発生し、前記データ信号と前記第2のインピーダンス調整信号とに応答して第2の出力制御信号を発生し、かつ、前記データ信号と前記第3のインピーダンス調整信号に応答して第3の出力制御信号を発生する前段回路と、
    第1の電源線と、
    出力端子と、
    前記出力端子と前記第1の電源線との間に並列に接続された、複数の第1のトランジスタ、第2のトランジスタ、及び第3のトランジスタを含み、当該複数の第1のトランジスタは、自身の制御端子で前記複数の第1の出力制御信号をそれぞれ受け取るように構成され、当該第2のトランジスタは、自身の制御端子で前記第2の出力制御信号を受け取るように構成され、当該第3のトランジスタは、自身の制御端子で前記第3の出力制御信号を受け取るように構成される、出力回路と、
    を有することを特徴とする半導体装置。
  2. 前記出力回路の前記複数の第1のトランジスタ、前記第2のトランジスタ、及び前記第3のトランジスタにそれぞれ対応する複数の第4のトランジスタ、第5のトランジスタ、及び第6のトランジスタの並列接続を含むレプリカ回路をさらに備え、
    前記カウンタ回路、前記モード選択回路、及び前記レベル固定回路は、それぞれ前記複数の第1のインピーダンス調整信号、前記第2のインピーダンス調整信号、及び前記第3のインピーダンス調整信号に基づいて前記複数の第4のトランジスタ、前記第5のトランジスタ、及び前記第6のトランジスタを制御することにより、前記レプリカ回路のレプリカインピーダンスを調整することを特徴とする請求項1に記載の半導体装置。
  3. 前記インピーダンス調整回路は、所定の判定期間に、前記複数の第1のインピーダンス調整信号、及び前記第3のインピーダンス調整信号をそれぞれ活性化状態に、前記第2のインピーダンス調整信号を非活性化状態に制御した状態で、前記リプリカインピーダンスを所望の値と比較し、
    前記インピーダンス調整回路の前記モード選択回路は、前記所定の判定期間後に、前記比較結果に基づいて前記第2のインピーダンス調整信号を設定することを特徴とする請求項2に記載の半導体装置。
  4. 前記インピーダンス調整回路の前記モード選択回路は、
    前記所望の値よりも前記レプリカインピーダンスが大きいことを前記比較結果が示す場合に、前記所定の判定期間後に、前記第2のインピーダンス調整信号を活性化状態に設定し、
    前記所望の値よりも前記レプリカインピーダンスが小さいことを前記比較結果が示す場合に、前記所定の判定期間後に、前記第2のインピーダンス調整信号を非活性化状態に設定することを特徴とする請求項3に記載の半導体装置。
  5. 前記モード選択回路は、前記所定の判定期間が終了したことを示す判定モード終了信号を発生し、
    前記インピーダンス調整回路は、前記判定モード終了信号を受けて前記カウンタ回路が出力する前記第1のインピーダンス調整信号による前記レプリカインピーダンスの調整を開始することを特徴とする請求項3または4に記載の半導体装置。
  6. 前記所望の値に対応するインピーダンスを有する外部抵抗と、
    前記レプリカ回路の一端と前記外部抵抗の一端とが接続された第1の端子と、
    2つの入力ノードを含む比較回路であって、当該比較回路の前記入力ノードの一方は前記第1の端子に接続され、当該比較回路の他方の前記入力ノードには基準電圧が供給された比較回路と、
    を備え、
    前記比較回路が前記比較結果を出力する、ことを特徴とする請求項3乃至5のいずれか一に記載の半導体装置。
  7. 前記所望の値に対応するインピーダンスに調整された第2のレプリカ回路と、
    前記レプリカ回路の一端と前記第2のレプリカ回路の一端とが接続された第1のノードと、
    2つの入力ノードを含む比較回路であって、当該比較回路の前記入力ノードの一方は前記第1のノードに接続され、当該比較回路の他方の前記入力ノードには基準電圧が供給された比較回路と、
    を備え、
    前記比較回路が前記比較結果を出力する、ことを特徴とする請求項3乃至5のいずれか一に記載の半導体装置。
  8. 前記第2のトランジスタのオン抵抗は、各々の前記第1のトランジスタのオン抵抗よりも小さい、ことを特徴とする請求項1乃至7のいずれか一に記載の半導体装置。
  9. 前記第5のトランジスタのオン抵抗は、各々の前記第4のトランジスタのオン抵抗よりも小さい、ことを特徴とする請求項2乃至8のいずれか一に記載の半導体装置。
  10. 並列に接続された複数のトランジスタを含む出力回路のインピーダンスを調整する出力回路のインピーダンス調整方法であって、
    前記出力回路の前記複数のトランジスタの並列接続と同一の構成を有するレプリカ回路において、所定の判定期間に、当該レプリカ回路の複数のトランジスタのいずれか1つのトランジスタを初期調整トランジスタとしてオフに制御し、前記初期調整トランジスタ以外のトランジスタをオンに制御した状態で、前記レプリカ回路のレプリカインピーダンスを所望の値と比較するステップと、
    前記レプリカインピーダンスが前記所望の値よりも大きいことを前記比較結果が示す場合に、前記所定の判定期間後に前記初期調整トランジスタをオンに設定して、前記初期調整トランジスタ以外のトランジスタに対して前記レプリカインピーダンスを調整するステップと、
    前記レプリカインピーダンスが前記所望の値よりも小さいことを前記比較結果が示す場合に、前記所定の判定期間後に前記初期調整トランジスタをオフに設定して、前記初期調整トランジスタ以外のトランジスタに対して前記レプリカインピーダンスを調整するステップと、
    前記レプリカインピーダンスの調整結果に対応して前記出力回路の前記複数のトランジスタのオン/オフを設定するステップと、
    を含む出力回路のインピーダンス調整方法。
JP2013147633A 2013-07-16 2013-07-16 半導体装置、及び出力回路のインピーダンス調整方法 Pending JP2015023308A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013147633A JP2015023308A (ja) 2013-07-16 2013-07-16 半導体装置、及び出力回路のインピーダンス調整方法
US14/331,070 US9294072B2 (en) 2013-07-16 2014-07-14 Semiconductor device and method for adjusting impedance of output circuit
US15/045,124 US9614497B2 (en) 2013-07-16 2016-02-16 Semiconductor device and method for adjusting impedance of output circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013147633A JP2015023308A (ja) 2013-07-16 2013-07-16 半導体装置、及び出力回路のインピーダンス調整方法

Publications (1)

Publication Number Publication Date
JP2015023308A true JP2015023308A (ja) 2015-02-02

Family

ID=52343122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013147633A Pending JP2015023308A (ja) 2013-07-16 2013-07-16 半導体装置、及び出力回路のインピーダンス調整方法

Country Status (2)

Country Link
US (2) US9294072B2 (ja)
JP (1) JP2015023308A (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4159553B2 (ja) * 2005-01-19 2008-10-01 エルピーダメモリ株式会社 半導体装置の出力回路及びこれを備える半導体装置、並びに、出力回路の特性調整方法
JP2015050691A (ja) * 2013-09-03 2015-03-16 マイクロン テクノロジー, インク. 半導体装置
WO2017210024A1 (en) * 2016-06-01 2017-12-07 Micron Technology, Inc. Semiconductor device including buffer circuit
JP2017216611A (ja) 2016-06-01 2017-12-07 マイクロン テクノロジー, インク. 半導体装置
KR20180038104A (ko) 2016-10-05 2018-04-16 에스케이하이닉스 주식회사 캘리브레이션 회로를 사용하는 출력 회로 및 이를 포함하는 반도체 장치 및 시스템
US10348270B2 (en) 2016-12-09 2019-07-09 Micron Technology, Inc. Apparatuses and methods for calibrating adjustable impedances of a semiconductor device
US10193711B2 (en) 2017-06-22 2019-01-29 Micron Technology, Inc. Timing based arbitration methods and apparatuses for calibrating impedances of a semiconductor device
US10615798B2 (en) 2017-10-30 2020-04-07 Micron Technology, Inc. Apparatuses and methods for identifying memory devices of a semiconductor device sharing an external resistance
JP7006547B2 (ja) * 2018-09-10 2022-01-24 三菱電機株式会社 半導体装置
US10747245B1 (en) 2019-11-19 2020-08-18 Micron Technology, Inc. Apparatuses and methods for ZQ calibration
US11196418B1 (en) * 2020-04-07 2021-12-07 Xilinx, Inc. Calibration of transmitter output impedance and receiver termination impedance using a single reference pin

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894238A (en) * 1997-01-28 1999-04-13 Chien; Pien Output buffer with static and transient pull-up and pull-down drivers
US6091300A (en) * 1997-10-20 2000-07-18 Lucent Technologies, Inc. Method and apparatus for adjusting the input common mode voltage of a differential amplifier
JP2000049583A (ja) 1998-07-27 2000-02-18 Hitachi Ltd 出力回路
US7239198B1 (en) * 1998-12-14 2007-07-03 Ati International Srl Single gate oxide differential receiver and method
US6377117B2 (en) * 1999-07-27 2002-04-23 Conexant Systems, Inc. Method and system for efficiently transmitting energy from an RF device
JP4086757B2 (ja) * 2003-10-23 2008-05-14 Necエレクトロニクス株式会社 半導体集積回路の入出力インターフェース回路
JP4159553B2 (ja) * 2005-01-19 2008-10-01 エルピーダメモリ株式会社 半導体装置の出力回路及びこれを備える半導体装置、並びに、出力回路の特性調整方法
JP2010166299A (ja) 2009-01-15 2010-07-29 Elpida Memory Inc キャリブレーション回路及びキャリブレーション方法

Also Published As

Publication number Publication date
US20150022282A1 (en) 2015-01-22
US9614497B2 (en) 2017-04-04
US20160164494A1 (en) 2016-06-09
US9294072B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP2015023308A (ja) 半導体装置、及び出力回路のインピーダンス調整方法
JP4916699B2 (ja) Zqキャリブレーション回路及びこれを備えた半導体装置
US9998121B2 (en) Output buffer circuit and memory device including the same
US8553471B2 (en) Data output buffer and memory device
US8878565B2 (en) Semiconductor device having impedance calibration function to data output buffer and semiconductor module having the same
US6839286B2 (en) Semiconductor device with programmable impedance control circuit
US7936181B2 (en) Method and circuit for off chip driver control, and memory device using same
US8471602B2 (en) Output driver and semiconductor apparatus having the same
US8441870B2 (en) Data strobe signal output driver for a semiconductor memory apparatus
US8581620B2 (en) Semiconductor device including data output circuit supporting pre-emphasis operation
US20100177588A1 (en) Calibration circuit and calibration method
US8018246B2 (en) Semiconductor device
US20150226825A1 (en) Semiconductor device
JP5642935B2 (ja) インピーダンス調整回路及びこれを備える半導体装置
US9543930B2 (en) Apparatuses and methods for duty cycle adjustment
US6333875B1 (en) Semiconductor circuit with adjustment of double data rate data latch timings
KR20160002503A (ko) 반도체 메모리 장치 및 그 동작방법
US9030888B2 (en) Semiconductor device having output buffer circuit in which impedance thereof can be controlled
US8780662B2 (en) Semiconductor memory device including initialization signal generation circuit
US8754688B2 (en) Signal output circuit and semiconductor device including the same
TWI590247B (zh) 驅動電路
US9130556B2 (en) Semiconductor device having output buffer circuit in which impedance thereof can be controlled
JP2012244577A (ja) 半導体装置
JP2013150046A (ja) 半導体装置
CN113628646A (zh) 控制时钟发生的电子器件