JP2014510751A - 新規なオキサゾリジノン誘導体およびそれを含む医薬組成物 - Google Patents

新規なオキサゾリジノン誘導体およびそれを含む医薬組成物 Download PDF

Info

Publication number
JP2014510751A
JP2014510751A JP2014502469A JP2014502469A JP2014510751A JP 2014510751 A JP2014510751 A JP 2014510751A JP 2014502469 A JP2014502469 A JP 2014502469A JP 2014502469 A JP2014502469 A JP 2014502469A JP 2014510751 A JP2014510751 A JP 2014510751A
Authority
JP
Japan
Prior art keywords
compound
mmol
preparation
nmr
mhz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014502469A
Other languages
English (en)
Other versions
JP6072764B2 (ja
Inventor
ラグ チョ,ヨン
ユン ペク,ソン
ウン チャ,サン
ヨン キム,サン
ボム イ,ホン
ス イ,ヒャン
オ,ギュマン
ジン ホ,ヘ
ギョ パク,テ
ホ ウ,スン
ジュ キム,ヨン
Original Assignee
レゴケム バイオサイエンシズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レゴケム バイオサイエンシズ インコーポレイテッド filed Critical レゴケム バイオサイエンシズ インコーポレイテッド
Publication of JP2014510751A publication Critical patent/JP2014510751A/ja
Application granted granted Critical
Publication of JP6072764B2 publication Critical patent/JP6072764B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/53Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/5395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines having two or more nitrogen atoms in the same ring, e.g. oxadiazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

開示されているのは、上記式(1)により表される新規なオキサゾリジノン誘導体、特に、環状アミドキシム基または環状アミドラゾン基を有する新規なオキサゾリジノン化合物である。
式(1)中、RおよびQは、詳細な説明に定義されたものと同一である。
それに加えて、開示されているのは、式(1)で示される新規なオキサゾリジノン誘導体、そのプロドラッグ、その水和物、その溶媒和物、その異性体、またはその薬学的に許容可能な塩を活性成分として含む、抗生物質の医薬組成物である。
新規なオキサゾリジノン誘導体、そのプロドラッグ、その水和物、その溶媒和物、その異性体、およびその薬学的に許容可能な塩は、耐性細菌に対する広い抗細菌スペクトル、低い毒性、並びにグラム陽性およびグラム陰性の細菌に対する強い抗細菌効果を有するので、抗生物質として効果的に使用しうる。
【選択図】なし

Description

本発明は、新規なオキサゾリジノン誘導体に関する。より具体的には、本発明は、環状アミドキシム基または環状アミドラゾン基を有する新規なオキサゾリジノン誘導体に関する。それに加えて、本発明は、オキサゾリジノン誘導体、そのプロドラッグ、その水和物、その溶媒和物、その異性体、またはその薬学的に(pharceutically)許容可能な塩を活性成分として含む抗生物質の医薬組成物に関する。
オキサゾリジノン系抗生物質であるリネゾリドが1984年に最初に報告されて以来(特許文献1を参照されたい)、さまざまなオキサゾリジノン誘導体が種々の製薬企業により報告されてきた。しかしながら、開発が進められている医薬は、毒性および有効性に関してリネゾリド(製品名:Zyvox)よりも優れた性質を有していない。そのような問題があるため、リネゾリドは、メチシリン耐性黄色ブドウ球菌(MRSA)に対する治療でバンコマイシンの最良の代替品として依然として注目を集めている。しかしながら、最近報告されたリネゾリド耐性細菌が蔓延し続けるならば、非常に深刻な問題、即ち、リネゾリド耐性細菌に対する治療法がないという問題が起こる。
このため、効果または毒性に関してリネゾリドよりも優れた性質を有するかつリネゾリド耐性細菌に対して有効性を有する医薬を非常に早急に開発する必要性が存在する。2008年9月24日に本発明者らにより出願された特許文献2には、環状アミドラゾン基または環状アミドキシム基を有するオキサゾリジノン系抗生物質が、有効性および毒性に関してリネゾリドよりも優れた性質を有し、かつこのオキサゾリジノン系抗生物質が、環状アミドラゾン基の導入により種々の利点を有すると開示されている。
特に、環状アミドラゾン基は、弱塩基性であるので塩を形成する。環状アミドラゾン基が塩酸塩を形成した場合、この塩酸塩は、酢酸に類似した酸性度、即ち、約5のpKaを有する。そのような弱い酸性度であるため、抗細菌効果は、低減されるが、この塩酸塩の水への溶解性は、有意に増大されうる。
しかしながら、以上に記載の特許出願に開示されたオキサゾリジノン系抗生物質はまた、リネゾリド耐性細菌に対して有意な効果を有していないので、細菌が蔓延し続ける状況下では、リネゾリド耐性細菌の感染症を効果的に治療するために使用することができない。
欧州特許出願公開第127,902号明細書 韓国特許出願第10−2008−0093712号明細書
Design of Prodrugs,edited by H.Bundgaard,(Elsevier,1985) Methods in Enzymology,Vol.42,p.309−396,edited by K.Widder,et al.(Academic press,1985) A Textbook of Drug Design and Development,edited by Krogsgaard−Larsen and H.Bundgaard,Chapter 5"Design and Application of Prodrugs",by H.Bundgaard p.113−191(1991) H.Bundgaard,Advanced Drug Delivery Reviews,8,1−38(1992) H.Bundgaard,et al.,Journal of Pharmaceutical Sciences,77,285(1988) N.Kakeya,et al.,Chem Pharm Bull,32,692(1984) "Remington’s Pharmaceutical Sciences,"Mack Publishing Co.,Easton,PA,18th edition,1990 Clinical and Laboratory Standards Institute Document.(2000)Methods for Dilution Antimicrobial Susceptibility Test for Bacteria that Grow Aerobically−Fifth Edition:M7−A5.CLSI,Villanova,PA
以上に記載の問題を解決するためのさまざまな広範かつ徹底的な研究および実験の結果として、本発明者らは、以下に記載されるように、以下の式1により表される新規なオキサゾリジノン誘導体、特に、環状アミドキシム基または環状アミドラゾン基を有する新規なオキサゾリジノン化合物が、リネゾリド耐性細菌に対して優れた効果を有し、従来の抗生物質よりも高い抗細菌能力を有し、かつ経口薬剤および注射用薬剤としてのオキサゾリジノン誘導体の容易な開発を可能にする高い溶解性を有することを発見することにより、この発見に基づいて本発明を完成させた。
特に、本発明は、以下の式1により表される化合物を提供する。
本発明はまた、この化合物のプロドラッグ、この化合物の溶媒和物、この化合物の異性体、またはこの化合物の薬学的に許容可能な塩を提供する。
本発明はまた、この化合物を含む医薬組成物および有効量のこの化合物を使用する抗生物質治療法を提供する。
本発明の一態様によれば、以下の式1により表される新規なオキサゾリジノン誘導体、特に、環状アミドキシム基または環状アミドラゾン基を有する新規なオキサゾリジノン化合物が提供される。それに加えて、本発明はまた、以下の式1により表される新規なオキサゾリジノン誘導体、そのプロドラッグ、その水和物、その溶媒和物、その異性体、およびその薬学的に許容可能な塩を提供する。
Figure 2014510751
(式中、Rは、以下の基:
Figure 2014510751
から選択されるヘテロ環式基であり、
は、水素、C〜Cアルキル、またはC〜Cシクロアルキルであり、
は、水素、C〜Cアルキル、または(CHC(=O)R21(ここで、R21は、水素、(CHNHR211(ここで、R211は、水素またはC〜Cアルキルである)、CHOH、またはCH(OH)CHOHである)であり、かつmおよびnは、それぞれ独立して、0〜3の整数であり、かつ
Qは、OR、NHR、または
Figure 2014510751
(ここで、Rは、水素、C〜Cアルキル、−C(=O)R31(ここで、R31は、水素、C〜Cアルキル、C〜Cシクロアルキル、またはO−(C〜C)アルキルである)、または以下の基
Figure 2014510751
から選択されるヘテロ芳香環基である)である)
この化合物は、新規な化合物であり、その化学構造は、ほとんど研究されていない。かくして、環状アミドキシム基または環状アミドラゾン基をオキサゾリジノン系抗生物質に導入することにより、吸収性を有意に向上させることが可能であり、かつ環状アミドキシム基または環状アミドラゾン基が適切な塩基性度を有して塩を形成するので、この化合物の水への溶解性を有意に増大させることが可能である。水への溶解性が増大するので、この化合物は、プロドラッグの形態をとることなく注射剤の形態で調製可能であり、かつこの化合物は、毒性をほとんど有していない。
本オキサゾリジノン誘導体は、既存の抗生物質に耐性である、スタフィロコッカス・アウレウス(Staphylococcus aureus)、エンテロコッカス・フェカリス(Enterococcus faecalis)などのグラム陽性細菌、およびヘモフィルス・インフルエンザ(Haemophilus influenza)、モラクセラ・カタラーリス(Moraxella catarrhalis)などのグラム陰性細菌に対して、市販のリネゾリドよりもかなり低い濃度で抗細菌能力を呈する。特に、本オキサゾリジノン誘導体は、リネゾリド耐性エンテロコッカス・フェシウム(Enterococcus faecium)に対して優れた抗細菌能力を呈する。
本明細書で用いられる「アルキル」という用語は、線状および分岐状の構造を含む。たとえば、C〜Cアルキルは、すべての可能な位置の幾何異性体、たとえば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、tert−ブチル、ペンチル、ヘキシルなどを含む。
「C〜Cシクロアルキル(cycloalyl)」という用語は、すべての環タイプ位置の幾何異性体、たとえば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロプロピルメチルなどを含む。
好ましくは、式1で示されるオキサゾリジノン誘導体は、式2〜4:
Figure 2014510751
(式中、RおよびQは、式1に関して以上に定義されたものと同一である)
から選択される1つにより表される化合物でありうる。
より好ましくは、式1で示されるオキサゾリジノン誘導体は、以上の式2、3、または4(式中、Qは、NHC(=O)CH、NHC(=O)OCH
Figure 2014510751
または
Figure 2014510751
であり、かつRは、メチル、C(=O)CHOH、C(=O)CHNH、またはC(=O)CH(OH)CHOHである)で示される化合物でありうる。
本発明に係るオキサゾリジノン誘導体は、以下の化合物の1つでありうるが、これらに限定されるものではない。
Figure 2014510751
Figure 2014510751
Figure 2014510751
本発明に係るオキサゾリジノン誘導体は、生物学的利用能または溶解性を向上させるために、プロドラッグ、水和物、溶媒和物、異性体、または薬学的に許容可能な塩の形に調製可能である。従って、本オキサゾリジノン誘導体のプロドラッグ、水和物、溶媒和物、異性体、および薬学的に許容可能な塩もまた、本発明の範囲内である。
これ以降で、本明細書で用いられる用語を簡潔に説明する。
「薬学的に許容可能な塩」という用語は、化合物が投与された生物に激しい刺激をもたらさないかつ化合物の生物学的活性および物理的性質を劣化させない化合物の製剤を意味する。「溶媒和物」、「異性体」「水和物」、および「プロドラッグ」という用語もまた、以上に定義されたものと同一の意味である。薬学的に許容可能な塩としては、酸、たとえば、無機酸、たとえば、塩酸、硫酸、硝酸、リン酸、臭化水素酸、ヨウ化水素酸など、有機カルボン酸、たとえば、酒石酸、ギ酸、クエン酸、酢酸、トリクロロ酢酸、トリフルオロ酢酸、グルコン酸、安息香酸、乳酸、フマル酸、マレイン酸、サリチル酸など、スルホン酸、たとえば、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸などにより形成された薬学的に許容可能なアニオン含有非毒性酸付加塩が挙げられる。薬学的に許容可能なカルボン酸塩の例としては、リチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどの金属塩またはアルカリ土類金属塩、リシン、アルギニン、グアニジンなどのアミノ酸塩、およびジシクロヘキシルアミン、N−メチル−D−グルカミン、トリス(ヒドロキシメチル)メチルアミン、ジエタノールアミン、コリン、トリエチルアミンなどの有機塩が挙げられる。式1で示される化合物は、従来の方法を用いて塩の形に変換されうる。
「水和物」という用語は、非共有結合分子間力により結合された化学量論量または非化学量論量の水を含有する本発明に係る化合物またはその塩を意味する。
「溶媒和物」という用語は、非共有結合分子間力により結合された化学量論量または非化学量論量の水を含有する本発明に係る化合物またはその塩を意味する。これに関連して、好ましい溶媒は、揮発性溶媒、非毒性溶媒、および/またはヒトへの投与に好適な溶媒でありうる。
「異性体」という用語は、同一の化学式または分子式を有するが異なる構造式を有する本発明に係る化合物またはその塩を意味する。そのような異性体としては、互変異性体などの構造異性体、不斉炭素中心を有するRまたはS異性体、および幾何異性体(トランス、シス)などの立体異性体が挙げられる。異性体およびそれらの混合物はすべて、本発明の範囲内である。
「プロドラッグ」という用語は、in vivoで親薬剤の形に変換される物質を意味する。いくつかの場合には、親薬剤よりも投与が容易であることから、プロドラッグが使用されることが多い。たとえば、プロドラッグは、経口投与された場合、生物学的利用能を有するが、親薬剤は、有していなくてもよい。それに加えて、プロドラッグは、親薬剤と比較した場合、医薬組成物で向上した溶解性を有しうる。たとえば、プロドラッグは、本発明に係る化合物のin vivo加水分解性エステルまたはその薬学的に許容可能な塩でありうる。それに加えて、プロドラッグは、ペプチドが活性部位を露出するように代謝される結合された酸基を有する短いペプチド(ポリアミノ酸)でありうる。
本明細書で用いられる他の用語は、本発明が関連する技術分野で一般に理解されるように解釈されうる。
種々のタイプのプロドラッグが当技術分野で公知であり、引用文献の例としては、a)非特許文献1および非特許文献2、b)非特許文献3、c)非特許文献4、d)非特許文献5、並びにe)非特許文献6が挙げられるが、これらに限定されるものではない。
たとえば、本発明に係るプロドラッグは、以下の化合物の1つでありうる。
Figure 2014510751
以上の例に示されるとおり、投与(admistration)後にプロドラッグが活性代謝物の形に変換されるように、ホスホネート基またはアセチル基をヒドロキシル基に結合しうる。他の実施形態では、アミノ酸を結合しうるか、または、炭酸イオンの形に調製する方法を使用しうる。そのようなプロドラッグは、主に、溶解性が比較的低い場合または吸収性が低い場合に使用される。プロドラッグの使用は、溶解性および吸収性の増大に加えて、吸収、分布、代謝、および排泄(ADME)並びにPKのプロフィールの改善をもたらしうる。
本発明に係る化合物は、オキサゾリジノン環のC−5位にキラル中心を有する。本発明に係るオキサゾリジノン誘導体の好ましいジアステレオ異性体は、以上の式1により表され、以下の式1bにより表されるエピマーと比較して、本ジアステレオ異性体は、優れた有効性を呈する。
Figure 2014510751
オキサゾリジノンキラル中心形のエピマーの混合物を使用する場合、使用される混合物の量は、鏡像異性体が単独で使用されるときと同一の薬学的効果を達成すべくジアステレオ異性体の割合を考慮して調整されうる。
式1で示される化合物またはその塩は、互変異性化されうるので、本明細書で用いられる化学式または反応スキームがただ1つの可能な互変異性体を表していても、本発明は、化学式または反応スキームにより表される1つの互変異性体に限定されず、抗細菌活性を有する任意の互変異性形が本発明の範囲内である。
それに加えて、本発明に係る化合物は、多形を呈しうるので、抗細菌活性を有するすべての多形化合物もまた、本発明の範囲内である。
本発明に係る新規なオキサゾリジノン誘導体は、その置換基に依存して種々の公知の方法を用いて調製されうる。たとえば、本オキサゾリジノン誘導体は、以下の反応スキームに例示される方法の1つを用いて調製されうる。以下の反応スキームに提示される調製方法は、単に例示を目的として提供されたものにすぎず、当業者であれば特定の置換基により調製方法を容易に変更しうることは、明らかである。従って、本発明に係るオキサゾリジノン化合物の調製方法は、以下の反応スキームに例示される調製方法に制限されない。それに加えて、とくに明記されていないかぎり、以下の反応スキームの置換基の定義は、以上の式1で定義したものと同一である。
式1で示されるオキサゾリジノン誘導体の反応は、以下の反応スキーム1により表される。
<反応スキーム1>
Figure 2014510751
以上の反応スキーム1に例示されるとおり、式1で示される化合物は、環状アミドキシム基または環状アミドラゾン基を有するブロモピリジン部即ちA部と、オキサゾリジノン基を有するB部と、のカップリング反応を介して合成される。カップリング反応後、種々の誘導体をR’部位に付加してR’基をR基に変換し、かつY部位と種々の誘導体との反応を介してY基をQ基に変換することにより、式1で示される化合物の合成を終了する。それに加えて、以上の式1で定義したQと同一の基をY部位に導入しうる。また、Yは、Qを含む種々の反応中間基から選択されうる。同様に、R’もまた、以上の式1で定義したRを含む種々の反応中間基から選択されうる。
最初に、以下の反応スキーム2に従って、反応スキーム1のA部の環状アミドラゾン基をそれぞれ有するブロモピリジン化合物を合成しうる。
<反応スキーム2>
Figure 2014510751
反応スキーム2に記載したとおり、2−アミノ−5−ブロモピリジンと(Boc)Oとを反応させることにより化合物Iを合成し、そして化合物Iとアリルブロミドとを反応させることにより化合物IIを合成する。OsOおよびNaIOを用いて化合物IIをアルデヒド化合物IIIにし、次いで、BocNHNHとの反応に付して化合物IVを合成する。合成された化合物IVを酸で処理して化合物Vを取得し、次いで、オルトエステルとの反応に付して化合物A−Iを得る。
しかしながら、反応スキーム2による方法は、比較的高価であるかつ強い毒性を有するOsOの使用を含むので、OsOを使用しない他の方法を考案して、以下の反応スキーム3に従って実施しうる。
<反応スキーム3>
Figure 2014510751
反応スキーム3に記載したとおり、エタノールアミンをCbz−Clとの反応に付し、次いで、SO−Pyで酸化してアルデヒドを形成し、そしてアルデヒドをBocNHNHとの反応に付して化合物VIIを合成する。続いて、化合物VIIをpmb−Clとの反応に付して化合物VIIIを合成し、水素の存在下でPd/Cを用いてCbz基をそれから除去し、そしてジブロモピリジンとの反応に付して化合物IXを得る。その後、化合物IXを塩酸で処理して化合物Xを取得し、そしてオルトエステルとの反応に付して化合物A−IIを合成する。
以下の反応スキーム4に従って、アミン位置が環状アミドラゾンのものと異なる化合物を合成する。
<反応スキーム4>
Figure 2014510751
ジブロモピリジンとエチレンジアミンとを反応させることにより得られた化合物IXにBoc基を結合させて化合物XIIを形成する。化合物XIIをNaNOおよびZnによるアミノ化に付し、酸で処理し、次いで、オルトエステルとの反応に付して化合物A−IIIを合成する。他の方法と同様に、化合物XIIをアルキル化に付して、導入されたアルキル基を有する化合物XVを取得し、次いで、アミノ化およびオルトエステルによる環化に付して、導入されたアルキル基を有する化合物A−IVが合成されるように、導入されたアルキル基を有する誘導体の合成を行う。
環状アミドキシム基をそれぞれ有するブロモピリジン化合物の合成方法は、以下の反応スキーム5により表される。
<反応スキーム5>
Figure 2014510751
最初に、ジブロモピリジンとエタノールアミンとを反応させることにより化合物XVIIを合成し、次いで、ヒドロキシフタルイミドとの光延反応を行って化合物XVIIIを取得し、ヒドラジンを用いてフタルイミド基をそれから除去し、次いで、得られた化合物をオルトエステルによる環化に付して化合物A−Vを合成する。
異なるタイプの環状アミドキシム基を有するブロモピリジン化合物の合成方法は、反応スキーム6により表される。
<反応スキーム6>
Figure 2014510751
N−アルキルエタノールアミンとBocOとを反応させてからヒドロキシフタルイミドとの光延反応を行うことにより化合物XXを形成し、得られた化合物を塩酸で処理してBoc基を除去し、そしてヒドラジンを用いてフタルイミドをそれから除去してアルキル基R1が導入された化合物XXIを合成する。それに加えて、アルキル基R1を後から導入する方法として、最初に、光延反応を介してエタノールアミンから化合物XXIIを形成し、次いで、塩酸で処理して化合物XXIIIを取得してもよく、化合物XXIIIをアルデヒドとの反応に付して、アルキル基R1が導入された化合物XXIVを形成してもよく、次いで、ヒドラジンを用いてフタル基を化合物XXIVから除去して化合物XXIを合成してもよい。
それに加えて、R1位が以上に記載の化合物のものと異なる他の化合物の合成方法として、最初に、ヒドラジンを用いてフタル基を化合物XXIIから除去し、次いで、アルキルアルデヒドとの反応に付して、アルキル基が導入された化合物XXVIを形成し、そして得られた化合物を塩酸で処理して、Boc基が除去された化合物XXVIIを合成する。得られた化合物XXIおよびXXVIIをシアノブロモピリジンXXVIIIとの反応に付して、化合物A−VI、A−VII、およびA−VIIIを合成する。一方、R1が水素である式1で示される化合物は、それぞれ得られた化合物を得るためにアルキルアルデヒドとの反応に付さないでよい。
以上の反応スキーム1では、オキサゾリジノン基を有するB部の化合物の合成方法は、以下の反応スキーム7により表される。
<反応スキーム7>
Figure 2014510751
3−フルオロ−4−ブロモアニリンとCbz−Clとを反応させることにより化合物XXIXを取得し、次いで、(R)−グリシジルブチレートとの反応によりキラル化合物B−Iを合成する。化合物B−Iのアルコールをさまざまな種類の誘導体化合物Yに変換して、化合物B−II、B−III、B−IV、B−V、およびB−VIを合成し、続いて、A部とカップリングさせることにより、または化合物B−Iの臭素をピナコールボランに変換して化合物B−VIIを取得し、次いで、カップリングに付すことにより、式1で示される化合物の合成を終了する。
本発明はまた、(a)治療上有効量の式1で示される新規なオキサゾリジノン誘導体、そのプロドラッグ、その水和物、その溶媒和物、その異性体、またはその薬学的に許容可能な塩と、(b)薬学的に許容可能な担体、希釈剤、賦形剤、またはそれらの組み合わせと、を含む抗生物質の医薬組成物を提供する。
本明細書で用いられる「医薬組成物」という用語は、本発明に係る化合物と希釈剤や担体などの他の化学成分との混合物を意味する。医薬組成物は、生物への化合物の投与を促進する。化合物の投与は、種々の方法を用いて行われうる。種々の投与方法の例としては、経口投与、注射、エアロゾル投与、非経口投与、および局所投与が挙げられるが、これらに限定されるものではない。医薬組成物は、塩酸、臭素酸、硫酸、硝酸、リン酸、メタンスルホン酸、p−トルエンスルホン酸、サリチル酸などの酸との反応を介して得られうる。
本明細書で用いられる場合、「治療上有効量」という用語は、組成物により治療される障害の1つ以上の症状を緩和若しくは低減するまたは予防が必要とされる疾患の臨床マーカー若しくは症状の惹起を遅延する医薬組成物の活性成分の有効量を意味する。従って、治療上有効量とは、(1)疾患の進行速度を逆転する効果、(2)疾患の更なる進行をある程度阻害する効果、および/または(3)疾患に関連する1つ以上の症状をある程度緩和(好ましくは排除)する効果を有する量を意味する。治療上有効量は、治療が必要とされる疾患の既知のin vivoおよびin vitroモデル系での化合物の実験により経験的に決定されうる。
「担体」という用語は、細胞内または組織内への化合物の送達を促進する化合物として定義される。たとえば、ジメチルスルホキシド(DMSO)は、生物の細胞内または組織内への多くの有機化合物の導入を促進する一般に使用される担体である。
「希釈剤」という用語は、目標化合物の生物学的活性形を安定化させるかつ化合物の溶解に使用される水中に希釈される化合物として定義される。緩衝溶液中に溶解される塩は、当技術分野では希釈剤として使用される。一般に使用される緩衝溶液は、人体と類似の塩分を有することからリン酸緩衝生理食塩水である。緩衝塩は、低濃度で溶液のpHを制御可能であるので、緩衝希釈剤は、化合物の生物学的活性をほとんど改変しない。
使用される化合物は、単独で患者に投与されうるか、或いは併用療法の場合のように化合物と他の活性成分または適切な担体若しくは賦形剤とを混合することにより調製された医薬組成物として患者に投与されうる。本出願に係る化合物の製剤化および投与の技術は、非特許文献7に見いだしうる。
本発明に係る医薬組成物は、従来の混合、溶解、顆粒化、糖衣化、研和、乳化、カプセル化、トラッピング、または凍結乾燥などの方法により慣例に従って調製されうる。
従って、本発明に係る使用に供される医薬組成物は、活性化合物を医薬用途の製剤に加工するのを容易にする賦形剤または助剤を含む1種以上の薬学的に許容可能な担体を用いて従来方式で調製されうる。適正な製剤は、選択される投与経路に依存する。当技術分野で、たとえば、以上に記載の非特許文献7で理解されるように、任意の好適な周知の技術、担体、および賦形剤が使用されうる。本発明に係る式1で示される化合物は、意図される用途に従って、注射、経口投与などに供すべく製剤化されうる。
注射に供する場合、本発明に係る組成物は、水性溶液、好ましくは、ハンクス液、リンゲル液、または生理食塩水緩衝液などの生理学的に許容可能な緩衝液として製剤化されうる。経粘膜投与に供する場合、組成物が通過する障壁に好適な非侵襲性物質が製剤で使用される。そのような非侵襲性物質は、当技術分野で広く知られている。
経口投与に供する場合、化合物は、活性化合物と当技術分野で公知の薬学的に許容可能な担体とを組み合わせることにより製剤化されうる。そのような担体は、錠剤、丸剤、粉末剤、顆粒剤、糖衣錠、カプセル剤、液体剤、ゲル剤、シロップ剤、スラリー剤、サスペンジョン剤などとして、本発明に係る化合物を製剤化することを可能にする。カプセル剤、錠剤、丸剤、粉末剤、および顆粒剤が好ましく、特に、カプセル剤および錠剤が使用されうる。錠剤および丸剤は、腸溶コーティングを用いて調製されうる。経口使用に供される医薬製剤は、1種以上の固体賦形剤と1種以上の本発明に係る化合物とを混合し、オプションとして、得られた混合物を粉砕し、そして、所望により好適な助剤を添加した後、顆粒の混合物を処理して錠剤または糖衣錠コアを得ることにより、取得されうる。好適な賦形剤としては、特に、充填剤、たとえば、ラクトース、スクロース、マンニトール、またはソルビトール、セルロース系材料、たとえば、メイズデンプン、コムギデンプン、コメデンプン、ジャガイモデンプン、ゼラチン、トラガカントガム、メチルセルロース、ヒドロキシプロピルメチルセルロース、ナトリウムカルボキシメチルセルロース、および/またはポリビニルピロリドン(PVP)が挙げられる。所望により、崩壊剤、たとえば、架橋ポリビニルピロリドン、寒天、またはアルギン酸若しくはその塩たとえばナトリウムアルギネート、滑剤たとえばマグネシウムステアレート、および担体たとえば結合剤を添加しうる。
経口投与可能な医薬製剤としては、ゼラチンで作製されたプッシュフィットカプセル剤、更にはゼラチンおよびグリセロールやソルビトールなどの可塑剤で作製されたソフトシールカプセル剤が挙げられる。プッシュフィットカプセル剤は、ラクトースなどの充填剤、デンプンなどの結合剤、および/またはタルクやマグネシウムステアレートなどの滑剤との混合状態で活性成分を含有しうる。ソフトカプセル剤では、活性化合物は、脂肪油、流動パラフィン、または液体ポリエチレングリコールなどの好適な液体中に溶解または懸濁されうる。それに加えて、安定化剤を添加しうる。経口投与に供される製剤はすべて、そのような投与に好適な投与量でなければならない。
化合物は、注射によるたとえばボーラス注射による非経口投与または持続注入に供すべく製剤化されうる。注射用製剤は、ユニット製剤の形態で、たとえば、保存剤が添加されたアンプル中または複数回用量容器中に入れて、提供されうる。組成物は、油性若しくは水性の媒体中のサスペンジョン剤、溶液剤、またはエマルジョン剤などの形態をとりうる。また、懸濁化剤、安定化剤、および/または分散剤などの製剤化剤を含有しうる。
それに加えて、化合物は、発熱原を含まない無菌水中に溶解させた後で使用される乾燥粉末形態でありうる。
化合物は、カカオ脂や他のグリセリドなどの従来の坐剤材料を含む坐剤として、または停留浣腸などの直腸投与に供される組成物として、製剤化されうる。
本発明で使用するのに好適な医薬組成物は、活性成分がその意図された目的を達成するのに有効な量で含有される組成物を含む。より具体的には、治療上有効量とは、治療対象の被験者の生存を延長するのにまたは疾患の症状を予防、緩和、若しくは寛解するのに有効な化合物量を意味する。治療上有効量の決定は、とくに本明細書に提供される詳細な説明に関して、当業者の能力の範囲内でありうる。
ユニット製剤の形態で製剤化する場合、医薬組成物は、活性成分として式1で示される化合物を約0.1〜1,500mgの単位投与量で含みうる。式1で示される化合物の好適な用量は、患者の体重および年齢並びに疾患の特定の性質および重症度などの因子に依存して、医者の処方箋に従って与えられる。しかしながら、製剤化された化合物は、投与の頻度および強度に従って成人の治療のために1日1回〜3回投与されうる。また、その用量は、一般的には約1〜約1,500mgの範囲内である。成人に筋肉投与または静脈内投与する場合、医薬組成物は、1日1回〜3回投与されうる。また、その用量は、一般的には約1〜約1,500mgでありうる。しかしながら、一部の患者では、より高用量を使用しうる。
本発明に係る医薬組成物は、臨床上有用な抗細菌剤(たとえば、β−ラクタム、マクロライド、キノロン、およびアミノグリコシド)および抗炎症剤(たとえば、抗菌類性トリアゾールまたはアンホテリシン)から選択される少なくとも1種の既知の薬剤と一緒に製剤化されうるか、または1種以上の既知の薬剤と共投与されうる。本発明に係る化合物は、グラム陰性細菌および抗生物質耐性細菌に対する活性を増大させるために、殺細菌性/透過性増強タンパク質(BPI)または排出ポンプ阻害剤と一緒に製剤化されうるか、またはそれらと共投与されうる。
本発明に係る化合物は、ビタミン、たとえば、ビタミンB2、ビタミンB6、またはビタミンB12、および葉酸と一緒に製剤化されうるか、またはそれらと共投与されうる。本発明に係る化合物は、シクロオキシゲナーゼ(COX)阻害剤、特にCOX−2阻害剤と一緒に製剤化されうるか、またはそれらと共投与されうる。
本発明はまた、以上の式1により表される有効量の新規なオキサゾリジノン誘導体、そのプロドラッグ、その水和物、その溶媒和物、その異性体、またはその薬学的に許容可能な塩を用いて行われる抗生物質治療法を提供する。
次に、以下の実施例を参照しながら本発明をより詳細に説明する。これらの実施例は、単に本発明の例示のために提供されたものにすぎず、本発明の範囲および趣旨を限定するものとみなしてはならない。
式1で示される化合物を合成するために、最初に、以下の調製例に従って、A部およびB部の合成を行った。
<調製例1>化合物Iの調製
Figure 2014510751
10g(57.80mmol)の2−アミノ−5−ブロモピリジン、17.4mL(124.47mmol)のトリエチルアミン、16.3g(74.75mmol)のジtertブチルジカーボネート、および0.5g(4.05mmol)のジメチルアミノピリジンを、0℃で270mLのジクロロメタンに添加し、得られた溶液を3時間撹拌した。
反応混合物を300mLのジクロロメタン中に溶解させ、次いで、200mLの水性飽和重炭酸ナトリウム溶液で洗浄し、得られた溶液を無水硫酸ナトリウムで脱水し、続いて、減圧下での濃縮およびカラムクロマトグラフィーにより、黄色固体として9.8g(36.21mmol)の化合物Iを得た(収率:63%)。
H NMR(600MHz、CDCl)δ8.32(d,J=2.4Hz,1H)、7.97(s,1H)、7.90(d,J=9.0Hz,1H)、7.75(dd,J1=9.0Hz,J2=2.4Hz,1H)、1.55(s,9H)
<調製例2>化合物IIの調製
Figure 2014510751
9.89g(36.21mmol)の化合物I、20g(43.45mmol)の炭酸セシウム、および3.76mL(43.45mmol)のアリルブロミドを、室温で200mLのジメチルホルムアミドに添加し、得られた溶液を70℃で2.5時間撹拌した。
反応混合物を0℃に冷却し、200mLの蒸溜水をそれに徐々に添加し、得られた溶液を600mLのエチルアセテートで希釈し、次いで、500mLの蒸溜水、250mLの0.5N HCl、および200mLの水性飽和塩化ナトリウム溶液で逐次洗浄した。その後、得られた溶液を無水硫酸ナトリウムにより脱水し、そして減圧下で濃縮して黄色油として11g(35.12mmol)の化合物IIを得た(収率:97%)。
H NMR(600MHz、CDCl)δ8.38(d,J=1.8Hz,1H)、7.70(dd,J=8.4Hz,J=2.4Hz,1H)、7.66(d,J=8.4Hz,1H)、5.93(m,1H)、5.12(m,2H)、4.53(m,2H) 1.50(s,9H)
<調製例3>化合物IVの調製
Figure 2014510751
11g(35.12mmol)の化合物II、11mL(0.88mmol)のOsO、および30g(140.48mmol)のNaIOを0℃で逐次添加し、得られた溶液を0℃で5時間撹拌し、7g(32.73mmol)のNaIOを更にそれに添加し、得られた溶液を1時間撹拌した。反応混合物を濾過して300mLのエチルアセテートで洗浄した。有機層を300mLの蒸溜水で洗浄し、無水硫酸ナトリウムで水和し、次いで、減圧下で濃縮して褐色油として14.19gの化合物IIIを得た。
14.19gの得られた化合物III、12.87g(97.50mmol)のBocNHNH、3.34g(53.16mmol)のシアノ水素化ホウ素ナトリウム、および2.1mL(35.44mmol)の酢酸を0℃で逐次添加し、得られた溶液を室温で3時間撹拌した。逐次的に、150mLの蒸溜水を反応混合物に添加し、得られた溶液を室温で20分間撹拌し、次いで、500mLのエチルアセテートおよび300mLの水性重炭酸ナトリウム溶液で抽出した。その後、水層を300mLのエチルアセテートで洗浄し、無水硫酸ナトリウムで脱水し、次いで、減圧下で濃縮した。濃縮物をカラムクロマトグラフィーに付して油として10.92g(25.32mmol)の化合物IVを得た(収率:72%)。
H NMR(600MHz、CDCl)δ8.39(d,J=2.4Hz,1H)、7.71(dd,J=9.0Hz,J=2.4Hz,1H)、7.60(d,J=9.0Hz,1H)、6.52(s,1H)、4.01(m,1H)、4.03(t,J=6.0Hz,2H)、3.07(t,J=6.0Hz,2H) 1.52(s,9H)、1.46(s,9H)
<調製例4>化合物A−Iの調製
Figure 2014510751
10.92g(25.32mmol)の化合物VIを70mLのメタノールに添加し、120mLの4M HClをそれに添加し、得られた溶液を室温で12時間撹拌し、それて撹拌された溶液を減圧下で濃縮した。7.5gの得られた化合物V、40mLのトリメチルオルトホルメート、および3.91g(47.68mmol)の酢酸ナトリウムを40mLの酢酸に添加し、得られた溶液を4時間撹拌することにより還流した。化合物を室温に冷却し、次いで、減圧下で濃縮し、300mLのジクロロメタンをそれに添加し、得られた溶液を300mLの水性飽和重炭酸ナトリウム溶液で2回洗浄し、無水硫酸ナトリウムで脱水し、次いで、減圧下で濃縮して黄色固体として5.9g(22.03mmol)の化合物A−Iを得た(収率:87%)。
H NMR(600MHz、CDCl)δ8.59(s,1H)、8.37(d,J=2.4Hz,1H)、7.82(s,1H)、7.78(dd,J=9.0Hz,J=2.4Hz,1H)、6.80(d,J=9.0Hz,1H)、4.00(t,J=5.4Hz 2H)、3.85(t,J=5.4Hz,2H)
<調製例5>化合物VIの調製
Figure 2014510751
32g(527.5mmol)の2−アミノエタノールを250mLのジクロロメタン中に溶解させ、300mLの水性1N NaOH溶液をそれに添加し、得られた溶液を撹拌しながら60g(351.7mmol)のCbz−Cl(ベンジルクロロホルメート)を徐々に滴下した。得られた溶液を室温で2時間撹拌し、有機層をそれから分離して水で2回洗浄し、洗浄された有機層を無水硫酸ナトリウムにより脱水し、そして減圧下で濃縮して白色固体として62g(317.6mmol)の化合物VIを得た(収率:90%)。
H NMR(600MHz、CDCl)δ7.36(m,5H)、5.15(s,1H)、5.11(s,2H)、3.73(m,2H)、3.37(m,2H)、2.08(s,1H)
<調製例6>化合物VIIの調製
Figure 2014510751
30g(153.7mmol)の化合物VI、49g(307.4mmol)のスルホントリオキシド、86mL(614.4mmol)のトリエチルアミン、および120mLのDMSOを、0℃で250mLのジクロロメタンに添加し、得られた溶液を室温で2時間撹拌した。その後、1000mLのジエチルエーテルを反応混合物に添加し、得られた溶液を500mLの蒸溜水、800mLの0.5N HCl、および500mLの蒸溜水で逐次洗浄し、無水硫酸ナトリウムで脱水し、次いで、減圧下で濃縮した。
得られたアルデヒド化合物を300mLのメタノール中に溶解させ、22g(169.0mmol)のtertブチルカバジト(tertbutylchabazite)、11.6g(184.4mmol)のシアノ水素化ホウ素ナトリウム、および11mL(184.4mmol)の酢酸を0℃で逐次添加し、次いで、得られた溶液を室温で12時間撹拌した。その後、11mL(184.4mmol)の酢酸を反応混合物に添加し、得られた溶液を減圧下で濃縮し、800mLのエチルアセテートおよび500mLの水性飽和重炭酸ナトリウム溶液により抽出し、次いで、カラムクロマトグラフィーに付して褐色油として25g(80.8mmol)の化合物VIIを得た(収率:53%)。
H NMR(600MHz、CDCl)δ7.32(m,5H)、6.17(s,1H)、5.47(s,1H)、5.14(s,1H)、5.10(s,2H)、3.29(m,2H)、2.90(m,2H)、1.45(s,9H)
<調製例7>化合物VIIIの調製
Figure 2014510751
25g(80.8mmol)の化合物VII、32g(200mmol)のパラメトキシベンジルクロリド、および43mL(243mmol)のジイソプロピルエチルアミンを、50mLのジメチルホルムアミドに添加し、得られた溶液を80℃で5時間撹拌した。続いて、500mLのエチルアセテートを反応混合物に添加し、得られた溶液を500mLの蒸溜水および500mLの水性飽和重炭酸ナトリウム溶液で逐次洗浄し、洗浄された溶液を無水硫酸ナトリウムにより脱水し、減圧下で濃縮し、次いで、カラムクロマトグラフィーに付して褐色油として19g(44.0mmol)の化合物VIIIを得た。
H NMR(600MHz、CDCl)δ7.35(m,5H)、7.25(d,J=8.4Hz,2H)、6.87(d,J=8.4Hz,2H)、5.99(s,1H)、5.38(s,1H)、3.92(s,2H)、3.81(s,3H)、3.29(m,2H)、2.79(m,2H)、1.40(s,9H)
<調製例8>化合物IXの調製
Figure 2014510751
12g(27.9mmol)の化合物VIIIおよび1.2gのPd/Cを200mLのエタノールに添加し、得られた溶液を水素ガスバルーン中で1時間撹拌し、撹拌された溶液をセライトに通して濾過し、次いで、減圧下で濃縮し、13.3g(55.87mmol)の2,5−ジブロモピリジンをそれに添加し、得られた溶液を140℃で1時間撹拌した。反応混合物を200mLのジクロロメタン中に溶解させ、次いで、50mLの飽和重炭酸ナトリウムで洗浄した。その後、洗浄された溶液を無水硫酸ナトリウムにより脱水し、次いで、減圧下で濃縮し、そして濃縮物をカラムクロマトグラフィーに付して褐色油として4.2g(9.3mmol)の化合物IXを得た(収率:33%)。
H NMR(600MHz、CDCl)δ8.07(s,1H)、7.43(d,J=7.8Hz,1H)、7.23(d,J=8.4Hz,2H)、6.85(d,J=8.4Hz,2H)、6.42(d,J=7.8Hz,1H)、5.72(s,1H)、5.39(s,1H)、3.92(s,2H)、3.82(s,3H)、3.40(m,2H)、2.88(m,2H)、1.40(s,9H)
<調製例9>化合物A−IIの調製
Figure 2014510751
3g(6.6mmol)の化合物IXおよび15mLの4M HClを15mLのジクロロメタンに添加し、得られた溶液を室温で2時間撹拌し、撹拌された溶液を減圧下で濃縮してBoc基が除去された化合物XをHCl塩として得た。
続いて、10mLのトリメトキシオルトホルメートおよび20mLの酢酸を得られた化合物Xに添加し、得られた溶液を2時間撹拌することにより還流した。反応混合物を減圧下で濃縮し、次いで、150mLのエチルアセテートおよび50mLの水性飽和重炭酸ナトリウム溶液により抽出した。その後、抽出物を無水硫酸ナトリウムにより脱水し、次いで、カラムクロマトグラフィーに付して象牙色固体として1g(2.8mmol)の化合物A−IIを得た(収率:42%)。
H NMR(600MHz、CDCl)δ8.29(d,J=3.0Hz,1H)、7.87(s,1H)、7.67(dd,J=9.0Hz,J=2.4Hz,1H)、7.32(d,J=8.4Hz,2H)、6.89(d,J=8.4Hz,2H)、6.65(d,J=9.0Hz,1H)、4.09(s,2H)、3.81(s,3H)、3.79(t,J=5.4Hz,2H)、2.92(t,J=5.4Hz,2H)
<調製例10>化合物XIの調製
Figure 2014510751
1g(4.22mmol)の2,5−ジブロモピリジンを10mLのエチレンジアミンに添加し、得られた溶液を100℃で15時間撹拌した。反応混合物を室温に冷却し、そして減圧下で濃縮してエチレンジアミンを除去した。その後、50mLのジクロロメタンを添加して濃縮物を希釈し、希釈された溶液を30mLの蒸溜水で洗浄し、次いで、捕集した蒸溜水に50mLのジクロロメタンを添加して有機層をそれから抽出し、これらのプロセスを更に2回繰り返した。合わせた有機層を無水硫酸ナトリウムにより脱水し、続いて、減圧下で濃縮して薄黄色液体として0.89g(4.12mmol)の化合物XIを得た(収率:98%)。
H NMR(400MHz、CDCl)δ8.10(d,J=1.6Hz,1H)、7.45(dd,J=8.8Hz,J=2.4Hz,1H)、6.33(d,J=8.8Hz)、4.95(brs,1H)、3.34(q,J=6Hz,2H)、2.94(t,J=6Hz,2H)
<調製例11>化合物XIIの調製
Figure 2014510751
0.89g(4.12mmol)の化合物XIを10mLの1,4−ジオキサン中に溶解させ、得られた溶液を0℃に冷却し、20mLの蒸溜水中に溶解された0.44g(4.12mL)の炭酸ナトリウムをそれに添加し、そして5mLの1,4−ジオキサン中に溶解された0.99mL(4.32mmol)のジtertブチルジカーボネートを得られた溶液に徐々に滴下した。続いて、反応混合物の温度を室温に上昇させ、反応混合物を15時間撹拌し、次いで、減圧下で濃縮して1,4−ジオキサンを除去し、2N塩酸を0℃でそれに徐々に添加してそのpHを4に低下させ、得られた溶液を250mLのエチルアセテートにより抽出して有機層を得た。有機層を無水硫酸ナトリウムにより脱水し、次いで、減圧下で濃縮して固体生成物を得た。固体生成物を30mLのn−ヘキサンで洗浄して薄黄色固体として1,28g(4.05mmol)の化合物XIIを得た(収率:98%)。
H NMR(400MHz、CDCl)δ8.09(d,J=1.6Hz,1H)、7.44(dd,J=8.8 Hz,J=2.4Hz,1H)、6.33(d,J=8.8Hz,1H)、4.94(brs,1H)、3.44(m,2H)、3.35(m,2H)、1.44(s,9H)
<調製例12>化合物XIIIの調製
Figure 2014510751
0.5g(1.58mmol)の化合物XIIを6mLの酢酸中に溶解させ、得られた溶液を0℃に冷却し、そして2mLの蒸溜水中に溶解された0.11g(1.66mmol)の亜硝酸ナトリウムをそれに徐々に滴下した。反応温度を0℃から室温に上昇させ、得られた溶液を30分間撹拌し、その温度を再度0℃に低下させ、0.21g(3.16mmol)の亜鉛を得られた溶液に添加し、次いで、更に1時間撹拌した。撹拌された溶液を50mLの蒸溜水および飽和重炭酸ナトリウムにより0℃で中和し、1,4−ジオキサン中に溶解された0.4mLの4M塩酸をそれに添加し、得られた溶液を50mLのエチルアセテートで抽出し、抽出物を無水硫酸ナトリウムにより脱水し、次いで、減圧下で濃縮して赤褐色固体として0.41g(1,23mmol)の化合物XIIIを得た(収率:79%)。
H NMR(600MHz、CDCl)δ8.18(m,1H)、7.65(m,2H)、7.15(m,1H)、5.80(brs,1H)、4.04(m,2H)、3.57(m,2H)、1.32(s,9H)
<調製例13>化合物XIVの調製
Figure 2014510751
0.4g(1.20mmol)の化合物XIIIを3mLのジクロロメタン中に溶解させ、得られた溶液を0℃に冷却し、そして1,4−ジオキサン中に溶解された0.4mLの4M塩酸を窒素雰囲気下でそれに滴下した。続いて、得られた溶液を15時間撹拌し、次いで、減圧下で濃縮して固体生成物を得た。固体生成物を20mLのジエチルエーテルで洗浄して薄黄色固体として0.28g(0.97mmol)の化合物XIVを得た(収率:80%)。
H NMR(600MHz、CDOD)δ8.20(d,J=2.4Hz,1H)、8.12(dd,J=9.6Hz,J=2.4Hz,1H)、7.30(d,J=9.6Hz,1H)、4.06(t,J=6.6Hz,2H)、3.40(t,J=6.6Hz,2H)
<調製例14>化合物A−IIIの調製
Figure 2014510751
710mg(2.45mmol)の化合物XIVおよび2mLのトリメチルオルトホルメートを8mLの酢酸に添加し、得られた溶液を5時間撹拌することにより還流した。続いて、反応混合物を室温に冷却し、次いで、減圧下で濃縮して溶媒を除去し、10mLの蒸溜水をそれに添加し、得られた濃縮物を20mLのジクロロメタンにより抽出した。その後、20mLのジクロロメタンを抽出された蒸溜水に添加し、再抽出して有機層を得た。有機層を無水硫酸ナトリウムにより脱水し、減圧下で濃縮し、次いで、カラムクロマトグラフィーに付して薄黄色固体として290mg(1.07mmol)の化合物A−IIIを得た(収率:44%)。
H NMR(400MHz、CDCl)δ8.49(s,1H)、8.20(s,1H)、7.65(dd,J=9.2Hz,J=2.4Hz,1H)、7.33(d,J=9.0Hz,1H)、7.24(s,1H)、4.07(t,J=5.2Hz,2H)、3.90(t,J=5.2Hz,2H)
<調製例15>化合物XVの調製
Figure 2014510751
1g(3.16mmol)の化合物XIIを10mLのN,N−ジメチルホルムアミド中に溶解させ、得られた溶液に0.21g(74mmol)の55%水素化ナトリウムを0℃で添加し、得られた溶液を5分間攪拌し、そして撹拌された溶液に0.3mL(3.79mmol)のヨードエタンを徐々に滴下した。続いて、得られた溶液の温度を室温に徐々に上昇させ、得られた溶液を3時間撹拌した。反応混合物の温度を再度0℃に低下させ、10mLの蒸溜水をそれに徐々に添加し、得られた溶液を5分間撹拌し、30mLのエチルアセテートおよび20mLの飽和塩化アンモニウムをそれに添加して有機層を抽出した。有機層を30mLの水性チオ硫酸ナトリウム溶液で洗浄し、そして無水硫酸ナトリウムにより脱水した。脱水された有機層を減圧下で濃縮し、次いで、カラムクロマトグラフィーに付して薄黄色液体として0.48g(1.39mmol)の化合物XVを得た(収率:44%)。
H NMR(600MHz、CDCl)δ8.09(s,1H)、7.43(m,1H)、6.31(d,J=8.4Hz,1H)、5.26(brs,1H)、, 3.43(m,4H)、3.22(m,2H)、1.45(s,9H)、1.10(t,J=6.6Hz,1H)
<調製例16>化合物XVIの調製
Figure 2014510751
0.48g(1.39mmol)の化合物XVを6mLの酢酸中に溶解させ、得られた溶液を0℃に冷却し、そして2mLの蒸溜水中に溶解された0.11g(1.66mmol)の亜硝酸ナトリウムをそれに徐々に滴下した。反応温度を0℃から室温に上昇させ、得られた溶液を30分間撹拌し、その温度を再度0℃に低下させ、得られた溶液に0.27g(4.18mmol)の亜鉛を添加し、次いで、更に1時間撹拌した。撹拌された溶液を50mLの蒸溜水および飽和重炭酸ナトリウムにより0℃で中和し、1,4−ジオキサン中に溶解された0.4mLの4M塩酸をそれに添加し、得られた溶液を50mLのエチルアセテートで抽出し、抽出物を無水硫酸ナトリウムにより脱水し、次いで、減圧下で濃縮して薄黄色固体として0.51g(1.29mmol)の化合物XVIを得た(収率:93%)。
H NMR(600MHz、DMSOd−)δ8.24(s,1H)、7.96(s,1H)、7.09(d,J=9Hz,1H)、3.85(m,2H)、3.40(m,2H)、3.09(m,2H)、1,39〜1.30(m,9H)、1.01(t,J=6.6Hz,1H)
<調製例17>化合物A−IVの調製
Figure 2014510751
0.51g(1.29mmol)の化合物XVIを20mLのジクロロメタン中に溶解させ、得られた溶液を0℃に冷却し、そして1,4−ジオキサン中に溶解された20mLの4M塩酸をそれに滴下した。続いて、得られた溶液を1時間撹拌し、次いで、減圧下で濃縮して固体生成物を得た。固体生成物を20mLのジエチルエーテルで洗浄して、Boc基が除去された0.42g(1.26mmol)の薄黄色固体化合物を得た(収率:98%)。
H NMR(400MHz、DMSOd−)δ9.20(brs,1H)、8.29(d,J=2Hz,1H)、7.98(dd,J=9.2Hz,J=2.4Hz,1H)、7.32(d,J=9.2Hz,1H)、4.04(t,J=6.4Hz,1H)、3.27(t,J=6.4Hz,1H)、2.97(q,J=7.2Hz,1H)、1.21(t,J=7.2Hz,1H)
続いて、0.4g(1.20mmol)の得られた化合物および3mLのトリメチルオルトホルメートを6mLの酢酸に添加し、得られた溶液を3時間撹拌することにより還流した。反応混合物を室温に冷却し、次いで、減圧下で濃縮し、10mLの蒸溜水をそれに添加し、得られた溶液を20mLのジクロロメタンにより抽出して有機層を得た。有機層を無水硫酸ナトリウムで脱水し、減圧下で濃縮し、次いで、カラムクロマトグラフィーに付して明褐色固体として171mg(0.63mmol)の化合物A−IVを得た(収率:53%)。
H NMR(600MHz、CDCl)δ8.11(d,J=1.8Hz,1H)、7.55(dd,J=9Hz,J=2.4Hz,1H)、7.19(d,J=9Hz,1H)、6.72(s,1H)、3.98(t,J=4.8Hz,2H)、3.39(t,J=4.8Hz,2H)、3.17(q,J=7.2Hz,2H)、1.18(t,J=7.2Hz,2H)
<調製例18>化合物XVIIの調製
Figure 2014510751
10g(42.20mmol)の2,5−ジブロモピリジンを13mLの2−アミノエタノールに添加し、得られた溶液を3時間撹拌することにより還流した。反応混合物を室温に冷却してエチルアセテート中に溶解させ、得られた溶液を水性飽和重炭酸ナトリウム溶液で洗浄し、次いで、無水硫酸ナトリウムで脱水し、続いて、減圧下で濃縮して白色固体として9.05g(41.46mmol)の化合物XVIIを得た(収率:98%)。
H NMR(400MHz、CDCl)δ8.08(d,J=1.6Hz,1H)、7.46(dd,J=8.8Hz,J=1.6Hz,1H)、6.37(d,J=8.8Hz)、4.87(s,1H)、3.81(t,J=4.4Hz,2H)、3.65(s,1H)、3.45(m,2H)
<調製例19>化合物XVIIIの調製
Figure 2014510751
9g(41.46mmol)の化合物XVII、7.44g(45.61mmol)のN−ヒドロキシフタルイミド、および14.14g(53.90mmol)のトリフェニルホスフィンを、150mLのテトラヒドロフランに添加し、得られた溶液をアルゴンガス雰囲気下で撹拌した。続いて、撹拌された溶液に10.61mL(53.90mmol)のジイソプロピルアゾジカルボキシレートを−5℃で徐々に滴下した。その後、1時間後に生じた固体を濾過し、濾液を減圧下で濃縮し、次いで、カラムクロマトグラフィーに付して白色固体として8.1gの化合物XVIIIを得た(収率:54%)。
H NMR(600MHz、CDCl)δ8.10(d,J=2.4Hz,1H)、7.85(m,2H)、7.78(m,2H)、7.46(dd,J=9.0Hz,J=2.4Hz,1H)、6.47(dd,J=8.4Hz,J=0.6Hz,1H)、5.62(m,1H)、4.37(t,J=4.8Hz,2H)、3.70(m,2H)
<調製例20>化合物XIXの調製
Figure 2014510751
8.1g(22.36mmol)の化合物XVIIIを100mLのエタノールに添加し、2.24mL(44.73mmol)のヒドラジン一水和物をそれに滴下し、得られた溶液を70℃に加熱し、次いで、2時間撹拌した。生じた固体をジクロロメタンおよびジエチルエーテルで洗浄し、そして濾液を減圧下で濃縮して褐色固体として4.51g(19.4mmol)の化合物XIXを得た(収率:87%)。
H NMR(400MHz、CDCl)δ8.10(dd,J=2.8Hz,J=0.8Hz,1H)、7.46(dd,J=8.8Hz,J=2.4Hz,1H)、6.33(dd,J=8.8Hz,J=0.4Hz,1H)、3.86(t,J=4.8Hz,2H)、3.52(m,2H)
<調製例21>化合物A−Vの調製
Figure 2014510751
2.5g(10.77mmol)の化合物XIXを40mLの酢酸および20mLのトリメチルオルトホルメートに添加し、得られた溶液を1.5時間撹拌することにより還流した。得られた化合物を室温に冷却して減圧下で濃縮し、100mLのエチルアセテートをそれに添加し、得られた溶液を80mLの水性飽和重炭酸ナトリウム溶液で2回洗浄し、次いで、無水硫酸ナトリウムにより脱水し、続いて、減圧下での濃縮およびカラムクロマトグラフィーにより白色固体として2.03g(8.42mmol)の化合物A−Vを得た(収率:78%)。
H NMR(600MHz、CDCl)δ8.39(s,1H)、8.35(dd,J=2.4Hz,J=0.6Hz,1H)、7.78(dd,J=13.8Hz,J=2.4Hz,1H)、6.73(dd,J=9.0Hz,J=0.6Hz,1H)、4.21(t,J=4.8Hz,2H)、3.83(t,J=4.8Hz,2H)
<調製例22>化合物XXの調製
Figure 2014510751
90.1g(1.2mol)の2−(メチルアミノ)エタノールを1.2Lのメチレンクロリド中に溶解させ、得られた溶液を0℃で撹拌しながら218g(1mol)のBocOを徐々にそれに添加し、得られた溶液を室温で3時間撹拌した。反応混合物を700mLの水性飽和塩化アンモニウム溶液および300mLの水で逐次洗浄し、無水硫酸ナトリウムにより脱水し、次いで、減圧下で濃縮してBoc基により保護された175g(1mol)の無色油化合物を得た(収率:100%)。
H NMR(600MHz、CDCl)δ7.84(brs,2H)、7.76(brs,2H)、4.34(d,J=15.0Hz,2H)、3.63(brs,2H)、3.04(d,J=15.0Hz,3H)、1.46(d,J=16.2Hz,9H)
90g(0.514mol)の得られた化合物を1.5Lのテトラヒドロフラン中に溶解させ、88.0g(539mol)のN−ヒドロキシフタルイミドおよび141g(0.539mol)のトリフェニルホスフィンをそれに添加し、得られた溶液を0℃で撹拌しながら106mL(0.539mol)のジイソプロピルアゾジカルボキシレートを徐々にそれに添加し、そしてその温度を室温に上昇させながら、得られた溶液を3時間撹拌した。反応混合物を減圧下で濃縮した後、600mLのイソプロピルエーテルをそれに添加し、得られた溶液を0℃で1時間撹拌し、そして白色固体タイプのトリフェニルホスフィンオキシドを濾過した。0℃に冷却された200mLのイソプロピルエーテルで固体を洗浄して最初の濾液で捕集し、得られた濾液を減圧下で濃縮して10〜15%の混合比の化合物XXとジイソプロピルヒドラゾジカルボキシレートとの198gの混合物を得た(収率:120%)。
H NMR(600MHz,CDCl)δ7.84(brs,2H)、7.76(brs,2H)、4.34(d,J=15.0Hz,2H)、3.63(brs,2H)、3.04(d,J=15.0Hz,3H)、1.46(d,J=16.2Hz,9H)
<調製例23>化合物XXIの調製
Figure 2014510751
198g(514mmol)の化合物XXを260mLの1,4−ジオキサン中に溶解させ、得られた溶液を0℃で撹拌しながら、1,4−ジオキサン中に溶解された385mL(1.54mol)の4M塩酸を徐々にそれに添加し、得られた溶液を室温で4時間撹拌し、更に0℃で1時間撹拌した。それらの間の反応後に生じた白色固体を濾過し、次いで、0℃に冷却された200mLの1,4−ジオキサンで洗浄して、boc基が除去された116g(514mmol)の白色固体化合物を得た。
H NMR(600MHz、DMSO−d)δ9.31(brs,1H)、7.88−7.92(m,4H)、4.46(t,J=5.4Hz,2H)、3.30(t,J=5.4Hz,2H)、2.66(s,3H)
53g(210mmol)の得られた化合物を1.5Lのエタノール中に溶解させ、得られた溶液を機械撹拌機により室温で撹拌しながら、25.1mL(0.518mol)のヒドラジン一水和物をそれに添加し、そして得られた溶液を4時間撹拌することにより還流した。反応混合物を0℃に冷却して1時間攪拌した。生じた固体(即ちフタルヒドラジド)を濾過し、0℃に冷却された100mLのエタノールで洗浄し、そして濾液を減圧下で濃縮した。250mLのジクロロメタンおよび500mLのトルエンをそれに添加した後、濃縮物を減圧下で更に濃縮し、250mLのトルエンをそれに添加し、そして減圧下での濃縮を2回繰り返して過剰のヒドラジンを除去することにより、白色固体として25.1g(202mmol)の化合物XXIを得た(収率:96%)。
H NMR(600MHz、DMSO−d)δ3.74(t,J=4.8Hz,2H)、3.08(t,J=4.8Hz,2H)、2.54(s,3H)、
<調製例24>化合物XXVIIIの調製
Figure 2014510751
30g(126.63mmol)の2,5−ジブロモピリジン、9.87g(108.90mmol)のシアン化銅、および5.3g(108.90mmol)のシアン化ナトリウムを、300mLのN,N−ジメチルホルムアミドに添加し、得られた溶液を150℃に加熱して5時間撹拌した。化合物を室温に冷却し、400mLのエチルアセテートをそれに添加し、得られた化合物を300mLの水で3回洗浄した。得られた有機層を200mLの飽和塩化ナトリウムで洗浄して無水硫酸ナトリウムにより脱水し、続いて、減圧下での濃縮およびカラムクロマトグラフィーにより白色固体として12.17gの化合物XXVIIIを得た(収率:53%)。
H NMR(600MHz、CDCl)δ8.80(dd,J=2.4Hz,J=0.6Hz,1H)、8.00(dd,J=8.4Hz,J=1.8Hz,1H)、7.60(dd,J=8.4Hz,J=1.2Hz,1H)
<調製例25>化合物A−VIの調製
Figure 2014510751
2g(10.93mmol)の化合物XXVIIIを1.91mLのエタノールに添加し、ジオキサン中に溶解された13.7mLの4M塩酸をそれに添加し、得られた溶液をアルゴンガス雰囲気下、室温で18時間撹拌し、次いで、減圧下で濃縮し、そして濃縮物を30mLのメタノール中に溶解させた。続いて、調製例22および23で使用したのと同一の方法によりエタノールアミンから合成された2.46g(21.86mmol)のジアミン化合物を100mLのメタノールに添加し、得られた溶液を撹拌しながら3.02g(21.86mmol)の炭酸カリウムをそれに添加し、得られた溶液を室温で30分間撹拌し、次いで、濾過し、濾液を減圧下で濃縮し、あらかじめ形成したメタノール溶液をそれに添加し、そして得られた濾液を室温で12時間撹拌した。化合物を減圧下で濃縮し、30mLの酢酸をそれに添加し、得られた化合物を4時間撹拌することにより還流した。得られた化合物を室温に冷却し、次いで、減圧下で濃縮し、100mLのジクロロメタンをそれに添加し、得られた溶液を100mLの飽和重炭酸ナトリウムで洗浄して無水硫酸ナトリウムにより脱水し、続いて、減圧下での濃縮およびカラムクロマトグラフィーにより1.14g(4.71mmol)の化合物A−VIを得た(収率:43%)。
H NMR(600MHz、CDCl)δ8.57(d,J=2.4Hz)、7.94(dd,J=8.4Hz,J=0.6Hz,1H)、7.85(dd,J=8.4Hz,J=2.4Hz,1H)、6.43(m,1H)、4.06(t,J=4.8Hz,2H)、3.83(m,2H)
<調製例26>化合物A−VIIの調製
Figure 2014510751
実施例25と同様に調製例23に従って調製されたジアミン化合物XXIとの反応により、2g(10.93mmol)の化合物XXVIIIから白色固体として1.15g(4.49mmol)の化合物A−VIIを得た(収率:41%)。
H NMR(600MHz、CDCl)δ8.70(d,J=2.4Hz)、7.89(dd,J=8.4Hz,J=2.4Hz,1H)、7.56(d,J=8.4Hz,1H)、4.14(t,J=4.8Hz,2H)、3.48(t,J=4.8Hz,2H)、2.88(s,3H)
<調製例27>化合物XXIXの調製
Figure 2014510751
100g(528mmol)の3−フルオロ−4−ブロモアニリンを500mLのジクロロメタン中に溶解させ、800mLの水性1N NaOH溶液をそれに添加し、得られた溶液を撹拌しながら82mL(580mmol)のCbz−Cl(ベンジルクロロホルメート)を徐々にそれに滴下した。得られた溶液を室温で1時間撹拌して有機層をそれから分離した。有機層を水で2回洗浄し、無水硫酸ナトリウムにより脱水し、次いで、減圧下で濃縮して白色固体として173g(528mmol)の化合物XXIXを得た。
H NMR(600MHz、CDCl)δ7.40(m,7H)、6.93(dd,J=9.0Hz,J=2.4Hz,1H)、6.71(s,1H)、5.20(s,2H)
<調製例28>化合物B−Iの調製
Figure 2014510751
119g(367mmol)の化合物XXIXを300mLのテトラヒドロフラン/150mLのジメチルホルムアミド中に溶解させ、38.19g(477mmol)のリチウムtブトキシドを0℃で徐々にそれに滴下し、得られた溶液を10分間撹拌し、63mL(440mmol)の(R)−グリシジルブチレートおよび21mL(550mmol)のメタノールをそれに添加し、そして得られた溶液を室温で3時間撹拌した。続いて、反応混合物のpHを水性塩化アンモニウム溶液により約6に調整し、次いで、反応混合物を減圧下で濃縮した。濃縮物を1000mLの80%エチルアセテート/ヘキサン中に溶解させ、水および水性飽和塩化ナトリウム溶液(ブライン)で逐次洗浄し、次いで、無水硫酸ナトリウムにより脱水し、続いて、減圧下での濃縮およびカラムクロマトグラフィーにより白色固体として93g(320mmol)の化合物B−Iを得た(収率:87%)。
H NMR(600MHz、CDCl)δ7.53(m,2H)、7.15(dd,J=9.0Hz,J=2.4Hz,1H)、4.77(m,1H)、4.00(m,3H)、3.77(m,1H)、2.10(t,J=6.0Hz,1H)
<調製例29>化合物B−IIの調製
Figure 2014510751
58g(1.45mol)の水酸化ナトリウムを580mLの水に添加し、得られた溶液を撹拌しながら35g(0.5mol)のヒドロキシルアミン塩酸塩をそれに添加し、600mLのメタノール中に38mL(0.43mol)のメチルプロピオレートを希釈することにより調製された溶液をそれに添加した。得られた溶液を室温で6日間撹拌し、そのpHを強塩酸により2に調整し、溶液を塩化ナトリウムで飽和し、次いで、500mLのジクロロメタンで8回抽出した。抽出液を無水硫酸ナトリウムにより脱水し、次いで、減圧下で濃縮して固体を得た。得られた固体を200mLの熱ヘキサンで3回洗浄して、象牙色固体として11.53g(140mmol)のヒドロキシイソオキサゾール化合物を得た(収率:32%)。
H NMR(400MHz、CDCl)δ11.25(bs,1H)、8.52(d,J=2.0Hz,1H)、6.07(d,J=2.0Hz,1H)
5g(17.24mmol)の得られたヒドロキシイソオキサゾール化合物、1.8g(20.68mmol)の化合物B−I、および5.9g(22.41mmol)のトリフェニルホスフィンを、90mLのテトラヒドロフランに添加し、4.4mL(22.41mmol)のジイソプロピルアゾジカルボキシレートを0℃で徐々にそれに滴下した。得られた溶液を室温で1.5時間撹拌し、続いて、減圧下での濃縮およびカラムクロマトグラフィーにより、白色固体として4.58g(12.8mmol)の化合物B−IIを得た(収率:74%)。
H NMR(400MHz、CDCl)δ8.16(d,J=2.0Hz,1H)、7.55(m,2H)、7.18(m,1H)、6.01(d,J=2.0Hz,1H)、5.03(m,1H)、4.59(dd,J=11.6Hz,J=4.0Hz,1H)、4.51(dd,J=11.6Hz,J=4.4Hz,1H)、4.16(t,J=8.8Hz,1H)、3.97(dd,J=8.8Hz,J=6.0Hz,1H)
<調製例30>化合物XXXの調製
Figure 2014510751
30g(103mmol)の化合物B−Iおよび23mL(134mmol)のジイソプロピルエチルアミンを350mLのジクロロメタン中に溶解させ、9.6mL(124mmol)のメタンスルホニルクロリド(MsCl)を0℃で徐々にそれに滴下し、得られた溶液を20分間撹拌し、更に室温で1時間撹拌した。反応混合物を300mLのジクロロメタン中に溶解させ、次いで、200mLの水性0.5N塩酸溶液、100mLの水性飽和重炭酸ナトリウム溶液、および100mLの水性飽和塩化ナトリウム溶液で逐次洗浄し、続いて、無水硫酸ナトリウムによる脱水および減圧下での濃縮により褐色固体として38g(103mol)の化合物XXXを得た(収率:99%)。
H NMR(400MHz、CDCl)δ7.53(m,2H)、7.14(dd,J=8.8Hz,J=2.4Hz,1H)、4.95(m,1H)、4.46(m,2H)、4.13(dd,J=9.2Hz,J=9.2Hz,1H)、3.94(dd,J=9.2Hz,J=6.4Hz,1H)、3.10(s,3H)
<調製例31>化合物B−IIIの調製
Figure 2014510751
2.5g(6.87mmol)の化合物XXXおよび1.26g(6.87mmol)のBoc−アミノイソオキサゾールを7mLのジメチルホルムアミド中に溶解させた、0.33g(7.56mmol)のNaHを0℃でそれに添加し、得られた溶液を75℃で2.5時間撹拌した。反応混合物をエチルアセテートおよび蒸溜水により抽出して有機層を得た。有機層を無水硫酸ナトリウムにより脱水し、続いて、減圧下での濃縮およびカラムクロマトグラフィーにより白色固体として2.61g(5.72mmol)の化合物B−IIIを得た(収率:83%)。
H NMR(600MHz、CDCl)δ8.26(d,J=1.8Hz,1H)、7.53(m,2H)、7.14(dd,J=9.0Hz,J=3.0Hz,1H)、6.01(br, 1H)、5.92(m,1H)、4.37(dd,J=7.8Hz,1H)、4.12(m,2H)、3.81(dd,J=8.4Hz,J=4Hz,1H)、1.56(s,9H)
<調製例32>化合物XXXIの調製
Figure 2014510751
38g(103mmol)の化合物XXXおよび16.8g(258mmol)のアジ化ナトリウムを90mLのジメチルホルムアミドに添加し、得られた溶液を90℃で3時間撹拌した。反応混合物を500mLのエチルアセテート中に溶解させ、次いで、蒸溜水で洗浄し、続いて、無水硫酸ナトリウムによる脱水および減圧下での濃縮により薄褐色固体として33g(103mol)の化合物XXXIを得た(収率:99%)。
H NMR(600MHz、CDCl)δ7.53(m,2H)、7.15(dd,J=9.0Hz,J=2.4Hz,1H)、4.80(m,1H)、4.06(dd,J=9.0Hz,J=9.0Hz,1H)、3.84(dd,J=9.0Hz,J=6.0Hz,1H)、3.73(dd,J=13.2Hz,J=4.8Hz,1H)、3.61(dd,J=13.2Hz,J=4.8Hz,1H)
<調製例33>化合物B−IVの調製
Figure 2014510751
4.2g(13.3mmol)の化合物XXXI、2.2g(40.0mmol)の鉄粉末、7.1g(133.3mmol)の塩化アンモニウム、および10mLの蒸溜水を40mLのエタノールに添加し、得られた溶液を12時間撹拌することにより還流した。反応混合物を室温に冷却し、セライトに通して濾過し、減圧下で濃縮し、ジクロロメタンおよび水性重炭酸ナトリウム溶液で抽出し、無水硫酸ナトリウムにより脱水し、次いで、濾過し、1.4mL(14.0mmol)の無水酢酸をそれに添加し、得られた溶液を室温で1時間撹拌した。反応混合物をジクロロメタンおよび水性重炭酸ナトリウム溶液で抽出し、無水硫酸ナトリウムにより脱水し、次いで、濾過し、続いて、減圧下での濃縮およびカラムクロマトグラフィーにより薄褐色固体として3.5g(10.6mol)の化合物B−IVを得た(収率:79%)。
H NMR(600MHz、DMSO)δ8.26(t,J=6.0Hz,1H)、7.72(t,J=8.4Hz,1H)、7.65(dd,J=12.0Hz,J=2.4Hz,1H)、7.32(dd,J=8.4Hz,J=3.6Hz,1H)、4.74(m,1H)、4.12(dd,J=9.0Hz,J=9.0Hz,1H)、3.73(dd,J=9.0Hz,J=6.6Hz,1H)、3.42(t,J=5.4Hz,2H)、1.83(s,3H)
<調製例34>化合物B−Vの調製
Figure 2014510751
調製例33と同様にメチルクロロホルメートを用いて白色固体として19.7g(56.7mmol)の化合物B−Vを得た。
H NMR(600MHz、CDCl)δ7.53(m,2H)、7.11(dd,J=9.0Hz,J=2.4Hz,1H)、5.11(s,1H)、4.78(m,1H)、4.04(dd,J=9.0Hz,J=9.0Hz,1H)、3.80(m,1H)、3.68(s,3H)、3.61(m,2H)
<調製例35>化合物B−VIの調製
Figure 2014510751
2.92g(9.27mmol)の化合物XXXIおよび9.4mL(92.7mmol)の2.5−ノルボルナジエン(ビシクロ[2,2,1]ヘプタ−2,5−ジエン)を50mLの1,4−ジオキサンに添加し、得られた溶液を2.5時間撹拌することにより還流した。反応混合物を減圧下で濃縮し、次いで、150mLのジクロロメタンおよび100mLの蒸溜水により抽出した。抽出された有機層を無水硫酸ナトリウムにより脱水し、続いて、減圧下での濃縮およびカラムクロマトグラフィーにより2g(5.8mmol)の化合物B−VIを得た(収率:63%)。
H NMR(600MHz、CDCl)δ7.78(d,J=1.2Hz,1H)、7.75(d,J=1.2Hz,1H)、7.49(dd,J=8.4Hz,J=7.8Hz,1H)、7.42(dd,J=10.8Hz,J=2.4Hz,1H)、7.00(dd,J=9.0Hz,J=2.4Hz,1H)、5.08(m,1H)、4.80(dd,J=4.2Hz,J=1.2Hz,2H)、4.15(dd,J=9.6Hz,J=9,6Hz,1H)、3.94(dd,J=9.6Hz,J=6.6Hz,1H)
<調製例36>化合物B−VIIの調製
Figure 2014510751
20mLのN,N−ジメチルホルムアミドに、2g(5.60mmol)の化合物B−II、2.1g(8.40mmol)のビスピナコラトジボラン、274mg(0.34mmol)のPdCl(dppf)、および1.65g(16.80mmol)の酢酸カリウムを逐次添加し、得られた溶液を窒素雰囲気下90℃で15時間撹拌した。反応混合物を室温に冷却し、次いで、80mLの蒸溜水および100mLのエチルアセテートで抽出した。抽出された有機層を無水硫酸ナトリウムにより脱水し、続いて、減圧下での濃縮およびカラムクロマトグラフィーにより1.11g(2.75mmol)の化合物B−VIIを得た(収率:49%)。
H NMR(600MHz、CDCl)δ8.16(d,J=1.8Hz,1H)、7.44(dd,J=8.4Hz,J=1.2Hz,1H)、)、7.41(dd,J=11.4Hz,J=1.8Hz,1H)、)、7.28(dd,J=7.8Hz,J=1.8Hz,1H)、6.00(d,J=1.8Hz,1H)、5.04(m,1H)、4.59(m,1H)、4.05(m,1H)、4.18(t,J=9.0Hz,1H)、3.99(dd,J=9.0Hz,J=6.6Hz,1H)、1.36(s,12H)
<調製例37>化合物B−VIIIの調製
Figure 2014510751
5mLのN,N−ジメチルホルムアミドに、0.3g(0.90mmol)の化合物B−IV、0.3g(1.18mmol)のビスピナコラトジボラン、22mg(0.03mmol)のPdCl2(dppf)、および0.27g(2.71mmol)の酢酸カリウムを逐次添加し、得られた溶液を窒素雰囲気下90℃で15時間撹拌した。反応混合物を室温に冷却し、次いで、40mLの蒸溜水および50mLのエチルアセテートで抽出した。抽出された有機層を無水硫酸ナトリウムにより脱水し、続いて、減圧下での濃縮により混合物の形態で350mgの化合物B−VIIIを得た。得られた化合物を精製することなく後続のプロセスで使用した。
<調製例38>化合物B−IXの調製
Figure 2014510751
調製例36と同様に1.2g(3.52mmol)の化合物B−VIから0.75g(1.95mmol)の化合物B−IXを得た(収率:55%)。
H NMR(600MHz、CDCl)δ7.78(d,J=1.2Hz,1H)、7.45(d,J=1.2Hz,1H)、7.70(dd,J=8.4Hz,J=7.2Hz,1H)、7.31(dd,J=11.4Hz,J=1.8Hz,1H)、7.12(dd,J=8.4Hz,J=1.8Hz,1H)、5.07(m,1H)、4.79(m,2H)、4.18(dd,J=9.0Hz,J=9.0Hz,1H)、3.93(dd,J=9.0Hz,J=5.4Hz,1H)、1.32(s,12H)
<調製例39>化合物B−Xの調製
Figure 2014510751
調製例36と同様に0.74g(1.62mmol)の化合物B−IIIから0.8g(1.59mmol)の化合物B−Xを得た(収率:98%)。
H NMR(600MHz、CDCl)δ8.26(d,J=0.6Hz,1H)、7.23(dd,J=7.8Hz,J=7.8Hz,1H)、7.39(dd,J=11.4Hz,J=1.2Hz,1H)、7.25(dd,J=8.4Hz,J=1.2Hz,1H)、6.92(br,1H)、5.09(m,1H)、4.38(dd,J=8.4Hz,J=8.4Hz,1H)、4.12(dd,J=8.4Hz,2H)、3.82(dd,J=8.4Hz,J=5.4Hz,1H)、1.36(s,9H)、1.26(s,12H)
<調製例40>化合物B−XIの調製
Figure 2014510751
調製例36と同様に1g(2.88mmol)の化合物B−Vから0.88g(2.24mmol)の化合物B−XIを得た(収率:78%)。
H NMR(600 MHz、CDCl)δ7.24(dd,J=8.4Hz,J=8.4Hz,1H),)、7.39(dd,J=11.4Hz,J=1.2Hz,1H)、7.23(dd,J=8.4Hz,J=1.8Hz,1H)、5.14(m,1H)、4.78(m,1H)、4.07(dd,J=9.0Hz,J=9.0Hz,1H)、3.81(m,1H)、3.68(s,3H)、3.62(m,1H)、3.54(m,1H)、1.36(s,12H)
<調製例41>化合物B−XIIの調製
Figure 2014510751
調製例36と同様に1g(3.45mmol)の化合物B−Iから1.03g(3.06mmol)の化合物B−XIIを得た(収率:88%)。
H NMR(600MHz、CDCl)δ7.45(dd,J=8.4Hz,J=8.4Hz,1H)、7.43(dd,J=10.8Hz,J=1.8Hz,1H)、7.29(dd,J=7.8Hz,J=1.8Hz,1H)、4.77(m,1H)、4.01(m,3H)、3.78(m,1H)、2.10(t,J=5.4Hz,1H)、1.37(s,12H)
<実施例1>化合物1の調製
Figure 2014510751
以上の調製例で合成された0.8g(2.99mmol)の化合物A−I、1.3g(3.30mmol)の化合物B−VIII、PdCl(dppf)、および2M水性炭酸ナトリウム溶液を20mLのジメチルホルムアミドに添加し、得られた溶液を90℃で2時間撹拌した反応混合物を室温に冷却し、次いで、150mLのジクロロメタンおよび300mLの蒸溜水で抽出し、続いて、無水硫酸ナトリウムによる脱水および減圧下での濃縮を行った。
濃縮物をカラムクロマトグラフィーにより精製して灰色固体として1.04g(2.28mmol)の化合物1を得た(収率:76%)。
H NMR(600MHz、DMSOd−)δ8.52(s,1H)、8.50(s,1H)、8.28(t,J=6.0Hz,1H)、8.06(s,1H)、8.10(d,J=9.0Hz)、7.63(m,2H)、7.43(dd,J=8.4Hz,J=2.4Hz)、7.36(d,J=8.4Hz,1H)、4.76(m,1H)、4.17(t,J=9.0Hz,1H)、4.18(t,J=7.8Hz,2H)、3.92(m,4H)、3.78(dd,J=9.0Hz,J=6.6Hz,1H)、3.44(t,J=6.0Hz,2H)、1.84(s,3H)
LCMS:C2121FNに対して441(M+H
<実施例2>化合物2の調製
Figure 2014510751
実施例1に従って合成された0.6g(1.36mmol)の化合物1を4.5mLのメタノールおよび4.5mLのジクロロメタン中に溶解させ、1mLの4M HClを0℃でそれに添加し、得られた溶液を30分間撹拌した。反応混合物を減圧下で濃縮して黄色泡状物として0.8g(1.36mmol)の化合物2を得た。
H NMR(600MHz、DMSOd−)δ9.00(s,1H)、8.62(s,1H)、8.30(t,J=6.0Hz,1H)、8.14(d,J=9.0Hz,1H)、7.68(dd,J=9.0Hz,J=9.0Hz,1H)、7.65(dd,J=7.8Hz,J=2.4Hz,1H)、7.57(d,J=8.4Hz,1H)、7.46(dd,J=9.0Hz,J=2.4Hz,1H)、4.78(m,1H)、4.19(t,J=9.0Hz,1H)、4.03(t,J=4.8Hz,2H)、3.79(dd,J=9.0Hz,J=6.6Hz,1H)、3.44(m,4H)、1.84(s,3H)
LCMS:C2021FNに対して413(M+H
<実施例3>化合物3の調製
Figure 2014510751
実施例2に従って合成された0.23g(0.50mmol)の化合物2、0.06mL(0.75mmol)のホルムアルデヒド、0.09mL(0.50mmol)のジイソプロピルエチルアミン、47mg(0.75mmol)のシアノ水素化ホウ素ナトリウム、および0.03mL(0.5mmol)の酢酸を0℃で2mLのメタノールに逐次添加し、得られた溶液を室温で3時間撹拌した。反応混合物を濾過し、3mLのメタノールで洗浄して78mg(0.17mmol)の化合物3を得た(収率:34%)。
H NMR(600MHz、DMSOd−)δ8.44(s,1H)、8.25(t,J=6.0Hz,1H)、7.95(s,1H)、7.92(d,J=9.6Hz,1H)、7.61(m,2H)、7.41(dd,J=9.0Hz,J=2.4Hz,1H)、7.16(d,J=8.4Hz,1H)、4.76(m,1H)、4.17(dd,J=9.0Hz,J=9.0Hz,1H)、3.84(t,J=5.4Hz,2H)、3.79(dd,J=9.0Hz,J=6.0Hz,1H)、3.43(t,J=5.4Hz,2H)、2.95(t,J=5.4Hz,2H)、2.68(s,3H)、1.84(s,3H)
LCMS:C2123FNに対して427(M+H
<実施例4>化合物4の調製
Figure 2014510751
実施例3と同様にアセトアルデヒドを用いて230mg(0.52mmol)の化合物4を得た(収率:63%)。
H NMR(400MHz、CDCl)δ8.45(s,1H)、8.00(s,1H)、7.81(d,J=8.8Hz,1H)、7.56(dd,J=13.2Hz,J=2.4Hz,1H)、7.43(dd,J=8.8Hz,J=8.8Hz,1H)、7.32(dd,J=9.2Hz,J=2.4Hz,1H)、6.87(d,J=8.8Hz,1H)、6.09(t,J=5.6Hz,1H)、4.84(m,1H)、4.11(dd,J=8.8Hz,J=8.8Hz,1H)、3.97(t,J=5.2Hz,2H)、3.84(dd,J=9.2Hz,J=5.6Hz,1H)、3.69(m,2H)、3.08(t,J=5.6Hz,2H)、3.04(m,2H)、2.06(s,3H)、1.28(t,J=7.2Hz,3H)
LCMS:C2225FNに対して441(M+H
<実施例5>化合物5の調製
Figure 2014510751
実施例2に従って合成された0.20g(0.38mmol)の化合物2および0.13mL(0.76mmol)のジイソプロピルエチルアミンを5mLのジメチルホルムアミドに逐次添加し、0.05mL(0.46mmol)のエチルブロモアセテートを徐々にそれに添加し、得られた溶液を80℃で撹拌した。反応混合物を室温に冷却し、次いで、50mLのエチルアセテートおよび60mLの蒸溜水で2回洗浄し、続いて、無水硫酸ナトリウムによる脱水および減圧下での濃縮を行った。濃縮物をカラムクロマトグラフィーにより分離して褐色固体として110mg(0.22mmol)の化合物5を得た。
H NMR(600MHz、CDCl)δ8.45(s,1H)、7.98(s,1H)、7.81(d,J=9.0Hz,1H)、7.56(dd,J=12.6Hz,J=2.4Hz,1H)、7.42(t,J=8.4Hz,1H)、7.29(m,1H)、6.87(d,J=9.0Hz,1H)、6.08(t,J=6.6Hz,1H)、4.83(m,1H)、4.25(q,J=7.2Hz,2H)、4.10(m,1H)、3.99(t,J=5.4Hz,2H)、3.84(s,2H)、3.75(m,1H)、3.72(m,1H)、3.66(m,1H)、3.03(t,J=5.4Hz,2H)、2.05(s,3H)、1.32(t,J=7.2Hz,3H)
LCMS:C2427FNに対して499(M+H
<実施例6>化合物6の調製
Figure 2014510751
実施例5に従って合成された0.11g(0.22mmol)の化合物5を10mLのテトラヒドロフラン中に溶解させ、テトラヒドロフラン中に溶解された0.2mLの2M水素化ホウ素リチウムを徐々にそれに滴下した。得られた溶液を室温で1時間撹拌し、テトラヒドロフラン中に溶解された0.2mLの2M水素化ホウ素リチウムを再度それに滴下した。その後、得られた溶液に0.5mLの水性飽和塩化アンモニウム溶液を添加し、得られた溶液を30mLのジクロロメタンで希釈し、続いて、無水硫酸ナトリウムによる脱水および減圧下での濃縮を行った。濃縮物をカラムクロマトグラフィーにより分離して黄色固体として24mg(0.05mmol)の化合物6を得た(収率:24%)。
H NMR(600MHz、CDCl)δ8.44(s,1H)、8.02(s,1H)、7.82(d,J=8.4Hz,1H)、7.56(dd,J=12.6Hz,J=1.8Hz,1H)、7.41(t,J=8.4Hz,1H)、7.29(m,1H)、6.87(d,J=9.0Hz,1H)、6.17(t,J=6.6Hz)、4.83(m,1H)、3.99(m,2H)、3.97(t,J=5.4Hz,1H)、3.84(m,1H)、3.73(m,1H)、3.69(m,1H)、3.50(m,2H)、3.12(m,2H)、3.06(m,2H)、2.05(s,3H)
LCMS:C2225FNに対して457(M+H
<実施例7>化合物7の調製
Figure 2014510751
0.10g(0.19mmol)の実施例2の化合物2および0.06mL(0.38mmol)のジイソプロピルエチルアミンを3mLのジメチルホルムアミドに逐次添加し、0.02mL(0.23mmol)のアリルブロミドを徐々にそれに添加し、得られた溶液を室温で20時間撹拌した。反応混合物を50mLのジクロロメタンおよび50mLの蒸溜水で2回洗浄し、続いて、無水硫酸ナトリウムによる脱水および減圧下での濃縮を行った。濃縮物をカラムクロマトグラフィーにより分離して褐色固体として25mg(0.06mmol)の化合物7を得た(収率:29%)。
H NMR(600MHz、CDCl)δ8.43(s,1H)、7.99(s,1H)、7.79(d,J=8.4Hz,1H)、7.54(dd,J=13.2Hz,J=2.4Hz,1H)、7.38(t,J=9.0Hz,1H)、7.31(m,1H)、6.85(d,J=9.0Hz,1H)、6.30(t,J=6.0Hz,1H)、6.02(m,1H)、5.31(d,J=16.8Hz,1H)、5.25(d,J=9.6Hz,1H)、4.83(m,1H)、4.10(m,1H)、3.94(t,J=4.8Hz,2H)、3.84(m,1H)、3.73(m,1H)、3.72(m,1H)、3.65(m,2H)、3.12(q,J=7.2Hz,2H)、3.04(t,J=5.4Hz,2H)、2.04(s,3H)
LCMS:C2325FNに対して453(M+H
<実施例8>化合物8の調製
Figure 2014510751
0.10g(0.19mmol)の実施例2の化合物2および0.06mL(0.38mmol)のジイソプロピルエチルアミンを3mLのジメチルホルムアミドに逐次添加し、0.06mL(0.38mmol)のプロパルギルブロミド(トルエン中の80%)を徐々にそれに添加し、得られた溶液を室温で20時間撹拌した。反応混合物を50mLのジクロロメタンおよび50mLの蒸溜水で2回洗浄し、無水硫酸ナトリウムにより脱水し、次いで、減圧下で濃縮した。濃縮物をカラムクロマトグラフィーにより分離して褐色固体として40mg(0.09mmol)の化合物8を得た(収率:47%)。
H NMR(600MHz、CDCl)δ8.45(s,1H)、8.04(s,1H)、7.89(d,J=9.6Hz,1H)、7.55(d,J=12.6Hz,1H)、7.42(t,J=8.9Hz,1H)、7.29(d,J=8.4Hz,1H)、6.88(d,J=9.0Hz,1H)、5.97(m,1H)、4.82(m,1H)、4.09(t,J=8.7Hz,1H)、3.98(m,2H)、3.88(s,2H)、3.81(t,J=7.8Hz,1H)、3.67(m,1H)、3.48(m,2H)、3.18(m,2H)、2.04(s,3H)
LCMS:C2323FNに対して451(M+H
<実施例9>化合物9の調製
Figure 2014510751
0.10g(0.19mmol)の実施例2の化合物2および0.06mL(0.38mmol)のジイソプロピルエチルアミンを2mLのジメチルホルムアミドに逐次添加し、0.06mL(0.38mmol)のtert−ブチルブロモアセテートを徐々にそれに添加し、得られた溶液を室温で20時間撹拌した。反応混合物を50mLのエチルアセテートおよび50mLの蒸溜水で3回洗浄し、無水硫酸ナトリウムにより脱水し、次いで、減圧下で濃縮した。濃縮物をカラムクロマトグラフィーにより分離して褐色固体(収率:37%)として47mg(0.07mmol)の化合物9を得た。
H NMR(600MHz、CDCl)δ8.43(s,1H)、7.95(s,1H)、7.80(d,J=8.4Hz,1H)、7.55(dd,J1=12.6Hz,J2=1.8Hz,1H)、7.41(t,J=8.7Hz,1H)、7.28(dd,J1=9.0Hz,J2=2.4Hz,1H)、6.86(d,J=9.0Hz,1H)、6.08(t,J=6.3Hz,1H)、4.82(m,1H)、4.09(t,J=9.0Hz,1H)、3.98(t,J=4.8Hz,2H)、3.82(dd,J1=9.6Hz,J2=7.2Hz,1H)、3.76(s,2H)、3.72(m,2H)、3.65(m,2H)、3.30(t,J=4.8Hz,2H)、2.04(s,9H)、1.50(s,9H)
LCMS:C2631FNに対して527(M+H
<実施例10>化合物10の調製
Figure 2014510751
実施例9に従って合成された47mg(0.09mmol)の化合物9を2mLのジクロロメタンに添加し、ジオキサン中に溶解された5mLの4M塩酸をそれに添加し、得られた溶液を室温で2時間撹拌し、続いて、減圧下で濃縮して黄色固体として26mg(0.06mmol)の化合物10を得た(収率:62%)。
H NMR(600MHz、DMSOd−)δ8.52(s,1H)、8.37(bs,1H)、8.30(t,J=5.4Hz,1H)、8.02(d,J=7.8Hz,1H)、7.65(m,2H)、7.44(d,J=8.4Hz,1H)、7.34(d,J=8.4Hz,1H)、4.78(m,1H)、4.18(t,J=8.4Hz,1H)、3.96(m,2H)、3.81(s,2H)、3.79(m,2H)、3.44(m,2H)、3.34(m,1H)、1.84(s,3H)
LCMS:C2223FNに対して471(M+H
<実施例11>化合物11の調製
Figure 2014510751
0.5g(1.11mmol)の実施例2の化合物2、0.1g(1.13mmol)のグリコール酸(glycolic dcid)、0.39mL(2.22mmol)のジイソプロピルエチルアミン、および0.7g(1.33mmol)のPyBoPは、0℃で3mLのジメチルホルムアミドであり、得られた溶液を室温で2時間撹拌した。反応混合物を30mLのジクロロメタン中に希釈し、30mLの蒸溜水で洗浄し、次いで、無水硫酸ナトリウムにより脱水し、続いて、減圧下で濃縮した。濃縮物をカラムクロマトグラフィーにより分離して白色固体として70mg(0.15mmol)の化合物11を得た(収率:14%)。
H NMR(600MHz、DMSOd−)δ8.51(s,1H)、8.27(t,J=6.0Hz,1H)、8.02(s,1H)、8.00(d,J=9.0Hz,1H)、7.64(dd,J=9.0Hz,J=9.0Hz,1H)、7.62(dd,J= 12.0Hz,J2=1.8Hz,1H)、7.43(dd,J=9.0Hz,J=1.8Hz,1H)、7.35(d,J=8.4Hz,1H)、4.78(m,1H)、4.63(t,J=6.0Hz,1H)、4.37(d,J=6.0Hz,1H)、4.17(t,J=9.0Hz,1H)、3.93(s,4H)、3.78(dd,J=9.0Hz,J=6.6Hz,1H)、3.44(t,J=6.6Hz,1H)、1.84(s,3H)
LCMS:C2223FNに対して471(M+H
<実施例12>化合物12の調製
Figure 2014510751
100mg(0.19mmol)の実施例2の化合物2および0.06mL(0.38mmol)のジイソプロピルエチルアミンを2mLのジクロロメタンに逐次添加し、0.02mL(0.19mmol)のアセトキシアセチルクロリドを徐々にそれに添加し、得られた溶液を室温で1時間撹拌し、続いて、減圧下で濃縮した。濃縮物をカラムクロマトグラフィーにより分離して黄色固体として38mg(0.08mmol)の化合物12を得た(収率:39%)。
H NMR(600MHz、CDCl)δ8.49(d,J=0.6Hz,1H)、7.91(s,1H)、7.88(dd,J=8.4Hz,J=1.2Hz,1H)、7.58(d,J=12.6Hz,1H)、7.42(t,J=9.0Hz,1H)、7.31(d,J=8.4Hz,1H)、6.95(d,J=9.0Hz,1H)、6.10(t,J=6.3Hz,1H)、5.13(s,2H)、4.83(m,1H)、4.10(t,J=8.4Hz,1H)、4.06(t,J=4.8Hz,2H)、3.93(t,J=5.1Hz,2H)、3.84(m,1H)、3.72(m,1H)、3.67(m,1H)、2.22(s,3H)、2.04(s,3H)
LCMS:C2425FNに対して513(M+H
<実施例13>化合物13の調製
Figure 2014510751
実施例11に従って合成された30mg(0.06mmol)の化合物11、70mg(0.07mmol)の無水コハク酸、および7.8mg(0.01mmol)のジメチルアミノピリジンを2mLのテトラヒドロフランに逐次添加し、得られた溶液を室温で5時間撹拌し、次いで、減圧下で濃縮した。濃縮物をカラムクロマトグラフィーにより分離して象牙色固体として30mg(0.05mmol)の化合物13を得た(収率:83%)。
H NMR(600MHz、DMSOd−)δ8.52(s,1H)、8.28(t,J=6.0Hz,1H)、8.08(d,J=5.4Hz,1H)、8.01(d,J=9.0Hz,1H)、7.64(m,2H)、7.43(d,J=8.4Hz,1H)、7.40(d,J=9.0Hz,1H)、5.04(s,1H)、4.81(s,1H)、4.77(m,1H)、4.18(t,J=9.0Hz,1H)、3.94(m,4H)、3.79(t,J=8.4Hz,1H)、3.44(t,J=5.4Hz,2H)、3.38(m,2H)、2.62(m,2H)、1.84(s,3H)
LCMS:C2627FNに対して571(M+H
<実施例14>化合物14の調製
Figure 2014510751
35mg(0.07mmol)の実施例11の化合物11、29mg(0.11mmol)のトリフェニルホスフィン、23μl(0.11mmol)のDIAD、および31mg(0.11mmol)のジベンジルホスフェートを、室温で1mLのトリヒドロフランに添加し、得られた溶液を室温で2時間撹拌した。反応混合物を減圧下で濃縮し、次いで、カラムクロマトグラフィーにより分離して白色固体として40mg(0.05mmol)の化合物14を得た(収率:71%)。
H NMR(600MHz、CDCl)δ8.49(s,1H)、7.88(d,J=8.4Hz,1H)、7.86(s,1H)、7.58(dd,J=12.6Hz,J=2.4Hz,1H)、7.43(dd,J=8.4Hz,J=8.4Hz,1H)、7.35(m,11H)、6.94(d,J=7.8Hz,1H)、6.00(t,J=6.0Hz,1H)、5.18(m,4H)、5.11(d,J=11.4Hz,1H)、4.82(m,1H)、4.11(dd,J=9.0Hz,J=9.0Hz,1H)、4.06(t,J=5.4Hz,2H)、3.90(s,2H)、3.82(dd,J=9.0Hz,J=7.2Hz,1H)、3.74(m,1H)、3.66(m,1H)、2.04(s,3H)
LCMS:C3636FNPに対して741(M+H
<実施例15>化合物15の調製
Figure 2014510751
実施例14に従って合成された40mg(0.05mmol)の化合物14、20mgのPd/C、および8mg(0.1mmol)の重炭酸ナトリウムを、テトラヒドロフラン(1mL)/蒸溜水(2mL)に添加し、得られた溶液を水素バルーン中で3時間撹拌した。反応混合物をセライトにより濾過し、減圧下で濃縮し、次いで、1mLの蒸溜水中に溶解させた。その後、得られた溶液に3mLのエタノールを添加し、得られた溶液を凝固させて濾過することにより薄灰色固体として15mg(0.25mmol)の化合物15を得た(収率:50%)。
H NMR(600MHz、DO)δ8.18(s,1H)、7.78(d,J=8.4Hz,1H)、7.61(s,1H)、7.29(dd,J=8.4Hz,J=8.4Hz,1H)、7.23(d,J=12.4Hz,1H)、7.09(d,J=8.4Hz,1H)、6.97(d,J=9.0Hz,1H)、4.58(m,3H)、4.00(dd,J=9.0Hz,J=9.0Hz,1H)、3.75(s,2H)、3.64(m,3H)、3.43(m,1H)、3.34(dd,J=15.0Hz,J=5.4Hz,1H)、1.79(s,3H)
LCMS:C2224FNPに対して551(M+H
<実施例16>化合物16の調製
Figure 2014510751
0.25g(0.55mmol)の実施例2の化合物2、0.18g(1.10mmol)のカルボニルジイミダゾール、および0.19mL(1.09mmol)のジイソプロピルエチルアミンを20mLのジクロロメタンに添加し、得られた溶液を1時間攪拌した。反応混合物を減圧下で約5mLに濃縮し、0.5mLの33%メチルアミンをそれに添加し、得られた混合物を50℃で1時間撹拌した。反応混合物を室温に冷却し、次いで、得られた沈殿物を濾過して白色固体として0.17g(0.36mmol)の化合物16を得た(収率:65%)。
H NMR(600MHz、DMSOd−)δ8.49(s,1H)、8.23(t,J=6.0Hz,1H)、7.97(m,2H)、7.61(m,2H)、7.42(dd,J=8.4Hz,J=2.4Hz,1H)、7.29(d,J=8.4Hz,1H)、6.97(q,J=4.8Hz,1H)、4.76(m,1H)、4.17(dd,J1=9.6Hz,J2=9.6Hz,1H)、3.90(t,J= 5.4Hz,2H)、3.79(m,3H)、3.44(t,J=5.4Hz,1H)、2.67(d,J=4.2Hz,3H)、1.84(s,3H)
LCMS:C2224FNに対して470(M+H
<実施例17>化合物17の調製
Figure 2014510751
メチルアミンの代わりに水性アンモニアを使用したこと以外は実施例16と同様に0.14g(0.31mmol)の化合物17を白色固体として得た(収率:56%)。
H NMR(600MHz、DMSOd−)δ8.50(s,1H)、8.27(t,J=6.0Hz,1H)、7.98(d,J=6.0Hz,1H)、7.96(s,1H)、7.62(m,2H)、7.43(dd,J=8.4Hz,J=2.4Hz,1H)、7.30(d,J=9.0Hz,1H)、6.44(s,2H)、4.77(m,1H)、4.17(dd,J=9.0Hz,J=9.0Hz,1H)、3.90(t,J=5.4Hz,2H)、3.80(m,3H)、3.44(t,J=5.4Hz,1H)、1.84(s,3H)
LCMS:C2122FNに対して456(M+H
<実施例18>化合物18の調製
Figure 2014510751
実施例11と同様にboc−グリシンを用いて50mg(0.09mmol)の化合物18を得た(収率:41%)。
H NMR(600MHz、DMSOd−)δ8.52(s,1H)、8.28(t,J=6.0Hz,1H)、8.05(s,1H)、8.00(dd,J=7.2Hz,J=2.4Hz,1H)、7.65(dd,J=8.4Hz,J=8.4Hz,1H)、7.62(dd,J=13.8Hz,J=2.4Hz,1H)、7.43(dd,J=8.4Hz,J=2.4Hz,1H)、7.35(d,J=8.4Hz,1H)、6.48(t,6.0Hz,1H)、4.77(m,1H)、4.17(dd,J=9.0Hz,J=9.0Hz,1H)、4.05(d,J=6.0Hz,2H)、3.93(s,4H)、3.79(dd,J=9.0Hz,J=6.0Hz,1H)、3.44(t,J=6.0Hz,2H)、1.84(s,3H)、1.38(s,9H)
LCMS:C2732FNに対して570(M+H
<実施例19>化合物19の調製
Figure 2014510751
実施例18に従って合成された50mg(0.09mmol)の化合物18を10mLのジクロロメタン中に溶解させ、1mLの4M HClをそれに添加し、得られた溶液を1時間攪拌した。反応混合物を減圧下で濃縮して黄色固体として46mg(0.09mmol)の化合物19を得た(収率:99%)。
H NMR(600MHz、DMSOd−)δ8.53(s,1H)、8.29(t,J=6.0Hz,1H)、8.18(m,4H)、8.02(dd,J=8.4Hz,J=2.4Hz,1H)、7.63(m,2H)、7.44(dd,J=13.2Hz,J=2.4Hz,1H)、7.40(d,J=7.2Hz,1H)、6.48(t,6.0Hz,1H)、4.77(m,1H)、4.17(dd,J=7.8Hz,J=7.8Hz,1H)、4.00(m,4H)、3.80(m,1H)、3.45(m,4H)、1.84(s,3H)
LCMS:C2224FNに対して470(M+H
<実施例20>化合物20の調製
Figure 2014510751
実施例11と同様にグリセリン酸アセトアセトを用いて白色固体として0.12g(0.22mmol)の化合物20を得た(収率:50%)。
H NMR(600MHz、DMSOd−)δ8.47(s,1H)、8.23(t,J=6.0Hz,1H)、7.98(s,1H)、7.96(d,J=8.4Hz,1H)、7.60(m,2H)、7.39(dd,J=9.0Hz,J=1.8Hz,1H)、7.32(d,J=8.8Hz,1H)、5.18(t,6.6Hz,1H)、4.73(m,1H)、4.26(dd,J=7.8Hz,J=7.8Hz,1H)、4.13(t,J=9.0Hz,1H)、4.92(m,3H)、3.85(m,2H)、3.74(dd,J=9.0Hz,J=6.6Hz,1H)、3.40(t,J=5.4Hz,2H)、1.80(s,3H)、1.36(s,3H)、1.30(s,3H)
LCMS:C2629FNに対して541(M+H
<実施例21>化合物21の調製
Figure 2014510751
実施例20に従って調製された0.12g(0.22mmol)の化合物20を2mLのテトラヒドロフラン中に溶解させ、2mLのTFAをそれに添加し、得られた溶液を室温で1時間撹拌した。続いて、15mLのジエチルエーテルを反応混合物に添加し、得られた混合物を濾過して白色固体として65mg(0.13mmol)の化合物21を得た(収率:59%)。
H NMR(600MHz、DMSOd−)δ8.47(s,1H)、8.25(t,J=5.4Hz,1H)、8.00(s,1H)、7.96(d,J=9.0Hz,1H)、7.59(m,2H)、7.39(dd,J1=9.0Hz,J2=2.4Hz,1H)、7.32(d,J1=9.0Hz,1H)、4.81(m,1H)、4.72(m,1H)、4.65(m,2H)、4.13(dd,J1=9.0Hz,J2=9.0Hz,1H)、4.02(m,1H)、3.95(m,1H)、3.80(m,3H)、3.60(m,2H)、3.40(t,J=5.4Hz,2H)、1.80(s,3H)
LCMS:C2225FNに対して501(M+H
<実施例22>化合物22の調製
Figure 2014510751
実施例1と同様に化合物A−Iと化合物B−XIとを反応させることにより、灰色固体として1.04g(2.28mmol)の化合物22を得た(収率:76%)。
H NMR(600MHz、DMSOd−)δ8.51(m,2H)、8.06(s,1H)、8.00(d,J=8.4Hz,1H)、7.63(m,2H)、7.56(t,J=5.4Hz,1H)、7.43(dd,J=8.4Hz,J=1.8Hz,1H)、7.35(d,J=9.0Hz,1H)、4.76(m,1H)、4.18(t,J=8.4Hz,1H)、3.93(t,J=4.8Hz,2H)、3.88(t,J=4.8Hz,2H)、3.82(dd,J=9.0Hz,J=6.0Hz,1H)、3.54(s,3H)、3.38(m,2H)
LCMS:C2121FNに対して457(M+H
<実施例23>化合物23の調製
Figure 2014510751
実施例2と同様に化合物22を塩酸で処理することにより、1g(2.19mmol)の褐色固体タイプの化合物23を定量的に得た。
H NMR(600MHz、DMSOd−)δ8.51(m,2H)、8.06(s,1H)、8.00(d,J=8.4Hz,1H)、7.63(m,2H)、7.56(t,J=5.4Hz,1H)、7.43(dd,J=8.4Hz,J=1.8Hz,1H)、7.35(d,J=9.0Hz,1H)、4.76(m,1H)、4.18(t,J=8.4Hz,1H)、3.93(t,J=4.8Hz,2H)、3.88(t,J=4.8Hz,2H)、3.82(dd,J=9.0Hz,J=6.0Hz,1H)、3.54(s,3H)、3.38(m,2H)
LCMS:C2121FNに対して457(M+H
<実施例24>化合物24の調製
Figure 2014510751
実施例3と同様に化合物23から153mg(0.35mmol)の黄色固体タイプの化合物24を得た(収率:81%)。
H NMR(600MHz、CDCl)δ8.45(s,1H)、7.98(s,1H)、7.81(m,1H)、7.54(dd,J=13.2Hz,J=2.4Hz,1H)、7.41(t,J=8.4Hz,1H)、7.31(dd,J=8.4Hz,J=2.4Hz,1H)、6.86(d,J=8.4Hz,1H)、5.14(m,1H)、4.81(m,1H)、4.09(t,J=8.4Hz,1H)、3.94(t,J=4.8Hz,2H)、3.85(t,J=8.4Hz,1H)、3.69(s,3H)、3.64(m,1H)、3.58(m,1H)、3.03(t,J=4.8Hz,2H)、2.84(s,3H)
LCMS:C2123FNに対して443(M+H
<実施例25>化合物25の調製
Figure 2014510751
実施例11と同様に化合物23から白色固体として55mg(0.11mmol)の化合物25を得た(収率:18%)。
H NMR(600MHz、CDCl)δ8.05(s,1H)、7.93(s,1H)、7.89(d,J=8.4Hz,1H)、7.71(dd,J=12.6Hz,J=2.4Hz,1H)、7.43(t,J=8.4Hz,1H)、7.34(dd,J=8.4Hz,J=2.4Hz,1H)、6.96(d,J=7.8Hz,1H)、5.12(m,1H)、4.82(m,1H)、4.55(d,J=4.8Hz,2H)、4.11(t,J=5.4Hz,2H)、4.06(m,1H)、3.95(t,J=5.4Hz,2H)、3.87(t,J=7.8Hz,1H)、3.70(s,3H)、3.65(m,1H)、3.57(m,1H)
LCMS:C2223FNに対して487(M+H
<実施例26>化合物26の調製
Figure 2014510751
実施例17と同様に化合物23から白色固体として35mg(0.07mmol)の化合物26を得た(収率:32%)。
H NMR(600MHz、DMSOd−)δ8.50(s,1H)、7.98(d,J=9.0Hz,1H)、7.95(s,1H)、7.63(m,2H)、7.56(m,1H)、7.43(d,J=9.0Hz,1H)、7.30(d,J=9.0Hz,1H)、6.44(s,2H)、4.76(m,1H)、4.18(t,J=9.6Hz,1H)、3.90(t,J=4.8Hz,2H)、3.81(m,2H)、3.54(s,3H)、3.36(m,3H)
LCMS:C2122FNに対して472(M+H
<実施例27>化合物27の調製
Figure 2014510751
実施例16と同様に化合物23から白色固体として56mg(0.12mmol)の化合物27を得た(収率:46%)。
H NMR (600 MHz, CDCl) δ 8.48 (s, 1H), 7.90 (s, 1H), 7.86 (d, J = 9.0 Hz, 1H), 7.56 (d, J = 12.6 Hz, 1H), 7.42 (t, J = 9.0 Hz, 1H), 7.33 (d, J = 6.0 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.34 (d, J = 4.8 Hz, 1H), 5.14 (m, 1H), 4.81 (m, 1H), 4.10 (t, J = 8.4 Hz, 1H), 4.01 (t, J = 4.8 Hz, 2H), 3.90 (t, J = 4.8 Hz, 2H), 3.86 (t, J = 7.8 Hz, 1H), 3.69 (s, 3H), 3.64 (m, 1H), 3.58 (m, 1H), 2.91 (d, J = 4.8 Hz, 3H)
LCMS:C2224FNに対して486(M+H
<実施例28>化合物28の調製
Figure 2014510751
実施例1と同様に化合物A−Iと化合物B−XIIとを反応させることにより、白色固体として200mg(0.50mmol)の化合物28を得た(収率:36%)。
H NMR(400MHz、DMSOd−)δ8.50(s,1H)、8.49(s,1H)、8.05(s,1H)、7.99(d,J=8.4Hz,1H)、7.63(m,2H)、7.45(dd,J=8.4Hz,J=1.8Hz,1H)、7.33(d,J=9.6Hz,1H)、5.24(t,J=5.4Hz,1H)、4.73(m,1H)、4.18(dd,J=8.4Hz,J=8.4Hz,1H)、3.89(m,5H)、3.67(m,1H)、3.58(m,1H)
LCMS:C1918FNに対して400(M+H
<実施例29>化合物29の調製
Figure 2014510751
実施例2および4と同様に化合物28から白色固体として55mg(0.12mmol)の化合物29を得た(収率:28%)。
H NMR(600MHz、DMSOd−)δ8.43(s,1H)、7.94(s,1H)、7.90(d,J=9.0Hz,1H)、7.62(m,2H)、7.42(dd,J=9.0Hz,J=2.4Hz,1H)、7.17(d,J=8.4Hz,1H)、4.75(m,1H)、4.14(dd,J=9.0Hz,J=9.0Hz,1H)、3.87(dd,J=9.0Hz,J=6.0Hz,1H)、3.73(m,1H)、3.58(m,1H)、3.43(t,J=5.4Hz,2H)、2.97(m,4H)、1.31(t,J=5.4Hz,3H)
LCMS:C2022FNに対して400(M+H
<実施例30>化合物30の調製
Figure 2014510751
実施例1および2と同様に化合物A−Iと化合物B−IXとを反応させることにより、褐色固体として900mg(1.96mmol)の化合物30を得た(収率:68%)。
H NMR(600MHz、DMSOd−)δ9.00(s,1H)、8.61(s,1H)、8.20(s,1H)、8.14(d,J=8.4Hz,1H)、7.78(s,1H)、7.66(t,J=9.0Hz,1H)、7.62(m,1H)、7.56(s,1H)、7.40(dd,J=9.0Hz,J=2.4Hz,1H)、5.19(m,1H)、4.87(d,J=4.8Hz,2H)、4.30(t,J=9.0Hz,1H)、4.03(t,J=4.8Hz,2H)、3.96(m,2H)、3.66(m,1H)、3.46(m,2H)
LCMS:C2019FNに対して423(M+H
<実施例31>化合物31の調製
Figure 2014510751
実施例3と同様に化合物30から褐色固体として68mg(0.15mmol)の化合物31を得た(収率:63%)。
H NMR(600MHz、DMSOd−)δ8.44(s,1H)、8.19(s,1H)、7.95(s,1H)、7.91(d,J=9.0Hz,1H)、7.77(s,1H)、7.60(t,J=8.4Hz,1H)、7.54(dd,J=13.8Hz,J=1.8Hz,1H)、7.36(dd,J=8.4Hz,J=2.4Hz,1H)、7.16(d,J=9.0Hz,1H)、5.18(m,1H)、4.86(m,1H)、4.29(t,J=9.0Hz,1H)、3.95(m,1H)、3.84(t,J=4.8Hz,2H)、2.95(t,J=4.8Hz,2H)、2.68(s,3H)
LCMS:C2121FNに対して437(M+H
<実施例32>化合物32の調製
Figure 2014510751
実施例11と同様に化合物30から黄色固体として84mg(0.17mmol)の化合物32を得た(収率:35%)。
H NMR(600MHz、DMSOd−)δ8.51(s,1H)、8.19(s,1H)、8.02(s,1H)、7.99(d,J=8.4Hz,1H)、7.78(s,1H)、7.62(t,J=8.4Hz,1H)、7.55(d,J=13.2Hz,1H)、7.38(d,J=8.4Hz,1H)、7.35(d,J=9.0Hz,1H)、5.19(m,1H)、4.86(d,J=4.2Hz,2H)、4.37(s,2H)、4.29(t,J=9.0Hz,1H)、3.95(m,1H)、3.93(m,4H)
LCMS:C2122FNに対して481(M+H
<実施例33>化合物33の調製
Figure 2014510751
実施例17と同様に化合物30から褐色固体として225mg(0.48mmol)の化合物33を得た(収率:71%)。
H NMR(600MHz、DMSOd−)δ8.49(s,1H)、8.19(s,1H)、7.97(d,J=9.0Hz,1H)、7.95(s,1H)、7.78(s,1H)、7.62(t,J=9.0Hz,1H)、7.55(d,J=13.2Hz,1H)、7.38(d,J=8.4Hz,1H)、7.30(d,J=9.0Hz,1H)、6.44(s,2H)、5.18(m,1H)、4.86(d,J=4.8Hz,2H)、4.29(t,J=9.0Hz,1H)、3.96(m,1H),3.90(t,J=4.8Hz,2H)、3.82(t,J=4.8Hz,2H)
LCMS:C2120FNに対して466(M+H
<実施例34>化合物34の調製
Figure 2014510751
実施例16と同様に化合物30から白色固体として188mg(0.39mmol)の化合物34を得た(収率:57%)。
H NMR(600MHz、DMSOd−)δ8.49(s,1H)、8.19(s,1H)、7.96(m,2H)、7.78(s,1H)、7.62(t,J=9.0Hz,1H)、7.55(m,1H)、7.38(m,1H)、7.29(d,J=9.0Hz,1H)、6.97(m,1H)、5.19(m,1H)、4.86(d,J=4.8Hz,2H)、4.29(t,J=9.0Hz,1H)、3.95(m,1H)、3.90(t,J=4.8Hz,2H)、3.81(t,J=4.8Hz,2H)、2.67(d,J=4.2Hz,3H)
LCMS:C2222FNに対して480(M+H
<実施例35>化合物35の調製
Figure 2014510751
実施例14と同様に化合物32から白色固体として90mg(0.12mmol)の化合物35を得た(収率:68%)。
H NMR(400MHz、CDCl)δ8.48(s,1H)、7.87(m,2H)、7.81(d,J=0.8Hz,1H)、7.77(dd,J=0.8Hz,1H)、7.45(dd,J=8.8Hz,J=2.4Hz,1H)、7.35(m,11H)、7.20(dd,J=8.8Hz,J=2.4Hz,1H)、6.94(d,J=8.8Hz,1H),5.12(m,4H)、5.14(m,3H) 4.83(d,J=4.0Hz,2H)、4.15(dd,J=9.6Hz,J=9.6Hz,1H)、4.03(m,3H)、3.91(t,J=5.2Hz,2H)
LCMS:C3634FNPに対して741(M+H
<実施例36>化合物36の調製
Figure 2014510751
実施例15と同様に化合物35から白色固体として50mg(0.08mmol)の化合物36を得た(収率:74%)。
H NMR(600MHz、DO)δ8.17(s,1H)、7.90(s,1H)、7.77(d,J=7.8Hz,1H)、7.62(s,1H)、7.58(s,1H)、7.26(dd,J=8.4Hz,J=8.4Hz,1H)、7.05(d,J=12.6Hz,1H)、6.97(d,J=7.8Hz,1H)、6.93(d,J=8.4Hz,1H)、5.04(m,1H)、4.73(m,2H)、4.60(m,2H)、4.13(dd,J=8.4Hz,J=8.4Hz,1H)、3.75(m,3H)、3.37(m,2H)
LCMS:C2222FNPに対して561(M+H
<実施例37>化合物37の調製
Figure 2014510751
実施例20および21と同様に化合物30から黄色固体として17mg(0.03mmol)の化合物37を得た(収率:30%)。
H NMR(600MHz、DMSO)δ8.51(s,1H)、8.18(s,1H)、8.04(s,1H)、7.99(d,J=9.0Hz,1H)、7.77(s,1H)、7.62(dd,J=8.4Hz,J=8.4Hz,1H)、7.55(d,J=13.8Hz,1H)、7.36(m,2H)、5.17(m,1H)、4.86(d,J=4.2Hz,2H)、4.29(dd,J=9.0Hz,J=9,0Hz,1H)、4.04(m,1H)、3.95(m,3H)、3.83(m,2H)、3.64(m,1H)、3.55(m,1H)
LCMS:C2323FNに対して511(M+H
<実施例38>化合物38の調製
Figure 2014510751
実施例18および19と同様に化合物30から薄黄色固体として25mg(0.05mmol)の化合物38を得た(収率70%)。
H NMR(400MHz、DMSO)δ8.53(s,1H)、8.20(d,J=1.2Hz,1H)、8.13(s,1H)、8.00(d,J=7.2Hz,1H)、7.77(d,J=1.2Hz,1H)、7.63(dd,J1=8.8Hz,J=8.8Hz,1H)、7.55(dd,J=13.2Hz,J=2.0Hz,1H)、7.40(m,2H)、5.19(m,1H)、4.87(d,J=5.4Hz,2H)、4.29(dd,J=9.2Hz,J=9.2Hz,1H)、4.04(m,3H)、3.96(m,4H)、
LCMS:C2222FNに対して480(M+H
<実施例39>化合物39の調製
Figure 2014510751
実施例1および2と同様に化合物A−Iと化合物B−Xとを反応させることにより、黄色固体として1.1g(2.53mmol)の化合物39を得た(収率:45%)。
H NMR(600MHz、DMSO−)δ8.98(s,1H)、8.62(s,1H)、8.40(d,J=1.8Hz,1H)、8.14(d,J=9.0Hz,1H)、7.67(m,2H)、7.58(d,J=9Hz,1H)、7.46(dd,J=9.0Hz,J=2.4Hz,1H)、6.02(d,J=1.8Hz,1H)、4.93(m,1H)、4.22(dd,J1=9.0Hz,J2=9.0Hz 1H)、4.12(t,J=5.4Hz,2H)、3.88(dd,J=6.6Hz,1H)、3.46(m,4H)
LCMS:C2121FNに対して439(M+H
<実施例40>化合物40の調製
Figure 2014510751
実施例3と同様に化合物39から白色固体として45mg(0.10mmol)の化合物40を得た(収率:23%)。
H NMR(600MHz、DMSO)δ8.94(s,1H)、8.60(s,1H)、8.39(d,J=1.8Hz,1H)、8.13(d,J=9.0Hz,1H)、7.66(m,2H)、7.57(d,J=9.0Hz,1H)、7.46(dd,J=8.4Hz,J=2.4Hz,1H)、6.01(d,J=1.8Hz,1H)、4.92(m,1H)、4.21(dd,J=9.0Hz,J=9.0Hz,1H)、4.12(t,J=5.4Hz,2H)、3.88(dd,J=9.0Hz,J=6.6Hz,1H)、3.45(m,4H)、2.92(s,3H)
LCMS:C2222FNに対して452(M+H
<実施例41>化合物41の調製
Figure 2014510751
実施例11と同様に化合物39から白色固体として28mg(0.06mmol)の化合物41を得た(収率:15%)。
H NMR(600MHz、DMSO)δ8.05(s,1H)、8.40(s,1H)、8.00(m,2H)、7.63(m,2H)、7.44(d,J=7.8Hz,1H)、7.34(d,J=8.4Hz,1H)、6.60(s,1H)、6.01(s,1H)、4.92(m,1H)、4.66(s,1H)、4.36(m,2H)、4.20(dd,J=8.4Hz,J=8.4Hz,1H)、3.93(s,4H)、3.86(m,1H)、3.46(s,2H)
LCMS:C2322FNに対して496(M+H
<実施例42>化合物42の調製
Figure 2014510751
実施例18および19と同様に化合物39から白色固体として20mg(0.04mmol)の化合物42を得た(収率:40%)。
H NMR(600MHz、DMSO)δ8.55(s,1H)、8.41(d,J=0.6Hz,1H)、8.24(s,2H)、8.14(s,1H)、8.03(d,J=8.4Hz,1H)、7.65(m,2H)、7.45(dd,J=9.0Hz,J=2.4Hz,1H)、7.40(d,J=8.4Hz,1H)、6.01(d,J=1.2Hz,1H)、4.93(m,1H)、4.21(dd,J=9.0Hz,J=9.0Hz,1H)、4.00(m,4H)、3.87(dd,J=9.0Hz,J=6.6Hz,1H)、3.46(m,2H)、1.29(m,2H)
LCMS:C2323FNに対して495(M+H
<実施例43>化合物43の調製
Figure 2014510751
実施例20および21と同様に化合物39から62mg(0.12mmol)の白色固体タイプの化合物43を得た(収率:41%)。
H NMR(600MHz、DMSO)δ8.52(s,1H)、8.41(d,J=1.2Hz,1H)、8.05(s,1H)、8.00(d,J=9.0Hz,1H)、7.64(m,2H)、7.44(d,J=7.2Hz,1H)、7.36(d,J=8.4Hz,1H)、6.61(s,1H)、6.01(d,J=1.2Hz,1H)、4.92(m,1H)、4.86(m,1H)、4.21(dd,J=8.4Hz,J=8.4Hz,1H)、4.03(m,2H)、3.84(m,5H)、3.47(m,2H)
LCMS:C2424FNに対して526(M+H
<実施例44>化合物44の調製
Figure 2014510751
実施例1および2と同様に化合物A−Iと化合物B−VIIとを反応させることにより、黄色固体として887mg(1.84mmol)の化合物44を得た(収率:35%)。
H NMR(600MHz、DMSOd−)δ8.95(m,1H)、8.72(d,J=1.8Hz,1H)、8.61(s,1H)、8.14(d,J=7.8Hz,1H)、7.69(m,2H)、7.55(d,J=8.4Hz,1H)、7.50(dd,J=9.0Hz,J=2.4Hz,1H)、6.41(d,J=1.8Hz,1H)、5.14(m,1H)、4.51(m,2H)、4.27(t,J=9.0Hz,1H)、3.99(m,3H)、3.39(m,2H)
LCMS:C2120FNに対して440(M+H
<実施例45>化合物45の調製
Figure 2014510751
実施例3と同様に化合物44から白色固体として54mg(0.12mmol)の化合物45を得た(収率:57%)。
H NMR(600MHz、CDCl)δ8.46(s,1H)、8.17(d,J=1.8Hz,1H)、7.99(s,1H)、7.82(m,1H)、7.57(dd,J=13.2Hz,J=2.4Hz,1H)、7.43(t,J=9.0Hz,1H)、7.36(dd,J=8.4Hz,J=2.4Hz,1H)、6.87(d,J=8.4Hz,1H)、6.02(d,J=1.8Hz,1H)、5.06(m,1H)、4.61(dd,J=11.4Hz,J=3.6Hz,1H)、4.53(dd,J=12.0Hz,J=4.8Hz,1H)、4.21(t,J=9.0Hz,1H)、4.02(dd,J=9.0Hz,J=6.6Hz,1H)、3.94(t,J=5.4Hz,2H)、3.03(t,J=4.8Hz,2H)、2.85(s,3H)
LCMS:C2222FNに対して454(M+H
<実施例46>化合物46の調製
Figure 2014510751
実施例11と同様に化合物44から褐色固体として88mg(0.18mmol)の化合物46を得た(収率:42%)。
H NMR(400MHz、DMSOd−)δ8.72(d,J=1.6Hz,1H)、8.52(s,1H)、8.01(m,1H)、7.64(m,2H)、7.47(dd,J=8.4Hz,J=2.0Hz,1H)、7.35(d,J=8.8Hz,1H)、6.41(d,J=1.6Hz,1H)、5.13(m,1H)、4.64(t,J=6.0Hz,1H)、4.51(m,2H)、4.37(d,J=6.4Hz,2H)、4.26(t,J=9.2Hz,1H)、3.99(dd,J=9.2Hz,J=6.0Hz,1H)、3.93(m,4H)
LCMS:C2322FNに対して498(M+H
<実施例47>化合物47の調製
Figure 2014510751
実施例18と同様に化合物44から黄色固体として100mg(0.17mmol)の化合物47を得た(収率:80%)。
H NMR(400MHz、DMSOd−)δ8.72(d,J=1.6Hz,1H)、8.52(s,1H)、8.01(m,1H)、7.64(m,2H)、7.47(dd,J=8.4Hz,J=2.0Hz,1H)、7.35(d,J=8.8Hz,1H)、6.41(d,J=1.6Hz,1H)、5.13(m,1H)、4.64(t,J=6.0Hz,1H)、4.51(m,2H)、4.37(d,J=6.4Hz,2H)、4.26(t,J=9.2Hz,1H)、3.99(dd,J=9.2Hz,J=6.0Hz,1H)、3.93(m,4H)
LCMS:C2322FNに対して498(M+H
<実施例48>化合物48の調製
Figure 2014510751
実施例19と同様に化合物47から黄色固体として70mg(0.14mmol)の化合物48を得た(収率:88%)。
H NMR(600MHz、DMSOd−)δ8.72(d,J=1.8Hz,1H)、8.54(s,1H)、8.18(t,J=5.4Hz,2H)、8.14(s,1H)、8.04(d,J=9.0Hz,1H)、7.65(m,2H)、7.48(dd,J=9.0Hz,J=2.4Hz,1H)、7.41(d,J=9.0Hz,1H)、6.41(d,J=1.8Hz,1H)、5.13(m,1H)、4.53(dd,J=11.4Hz,J=3.0Hz,1H)、4.49(dd,J=11.4Hz,J=6.0Hz,1H)、4.26(t,J=9.0Hz,1H)、4.03(m,2H)、3.98(m,5H)
LCMS:C2323FNに対して497(M+H
<実施例49>化合物49の調製
Figure 2014510751
実施例20と同様に化合物44から白色固体として234mg(0.41mmol)の化合物49を得た(収率:79%)。
H NMR(600MHz、CDCl)δ8.50(s,1H)、8.18(d,J=1.8Hz,1H)、7.90(s,2H)、7.89( m,1H)、7.60(dd,J=13.2Hz,J=2.4Hz,1H)、7.44(t,J=8.4Hz,1H)、7.34(dd,J=8.4Hz,J=2.4Hz,1H)、6.97(d,J=9.0Hz,1H)、6.02(d,J=1.8Hz,1H)、5.33(t,J=6.6Hz,1H)、5.07(m,1H)、4.61(dd,J=11.4Hz,J=3.6Hz,1H)、4.53(dd,J=12.4Hz,J=4.8Hz,1H)、4.22(t,J=9.0Hz,1H)、4.12(m,1H)、4.01(m,3H)、3.94(m,1H)、3.89(m,1H)、1.56(s,3H)、1.48(s,3H)
LCMS:C2728FNに対して568(M+H
<実施例50>化合物50の調製
Figure 2014510751
実施例21と同様に化合物49から白色固体として88mg(0.17mmol)の化合物50を得た(収率:47%)。
H NMR(600MHz、DMSOd−)δ8.72(d,J=1.8Hz,1H)、8.53(s,1H)、8.05(s,1H)、8.01(m,1H)、7.66(m,2H)、7.48(m,1H)、7.37(d,J=9.6Hz,1H)、6.41(d,J=1.8Hz,1H)、5.12(m,1H)、4.86(m,1H)、4.67(m,2H)、4.51(m,2H)、4.26(t,J=9.0Hz,1H)、4.06(m,1H)、4.00(m,2H)、3.84(m,2H)、3.65(m,1H)、3.56(m,1H)
LCMS:C2424FNに対して528(M+H
<実施例51>化合物51の調製
Figure 2014510751
実施例9および10と同様に化合物44から白色固体として40mg(0.08mmol)の化合物51を得た(収率:34%)。
H NMR(600MHz、DMSOd−)δ12.43(s,1H)、8.72(d,J=1.8Hz,1H)、8.46(s,1H)、7.94(m,2H)、7.65(m,2H)、7.46(m,1H)、7.19(d,J=9.0Hz,1H)、6.42(d,1.8Hz,1H)、5.13(m,1H)、4.51(dd,J=11.4Hz,J=8.4Hz,1H)、4.48(t,J=6.0Hz,1H)、4.26(t,J=8.4Hz,1H)、3.99(m,1H)、3.87(t,J=4.8Hz,2H)、3.70(s,3H)、3.23(t,J=4.8Hz,2H)
LCMS:C2322FNに対して498(M+H
<実施例52>化合物52の調製
Figure 2014510751
調製例14に従って合成された0.3g(0.90mmol)の化合物A−IIIを5mLのN,N−ジメチルホルムアミド中に溶解させ、調製例37に従って合成された350mgの化合物B−VIII、22mg(0.03mmol)のPdCl2(dppf)、および0.9mLの水性2M炭酸ナトリウム溶液をそれに添加し、得られた溶液を窒素雰囲気下90℃で5時間撹拌した。反応混合物を室温に冷却し、そしてセライトに通して濾過して残渣を除去した。得られた混合物を50mLのエチルアセテートおよび40mLの飽和塩化アンモニウムで抽出して有機層を得た。有機層を減圧下で濃縮した。生じた固体を20mLのエチルアセテートおよび20mLのジクロロメタンで洗浄し、次いで、乾燥させて灰色固体として75mg(0.17mmol)の化合物52を得た(収率:19%)。
H NMR(600MHz、CDOD)δ8.57(s,1H)、8.32(s,1H)、7.85〜7.81(m,2H)、7.61(m,1H)、7.50(m,2H)、7.35(m,1H)、4.18(m,2H)、4.11(m,2H)、3.91(m,2H)、3.87(m,1H)、3.57(m,2H)、1.97(s,3H)
LCMS:C2121FNに対して441(M+H
<実施例53>化合物53の調製
Figure 2014510751
実施例52に従って合成された44mg(0.1mmol)の化合物52を7mLのメタノール中に溶解させ、10mgの10% Pd/Cおよび1,4−ジオキサン中に溶解された1mLの4M塩酸を0℃でそれに逐次添加し、得られた溶液を水素雰囲気下で30分間撹拌した。30mLのメタノールを用いて反応混合物をセライトに通して濾過し、次いで、濾液を減圧下で濃縮して44mg(0.10mnol)の化合物53を得た(収率:98%)。
H NMR(600MHz、DMSOd−)δ8.24(s,1H)、7.71(d,J=9.0Hz,1H)、7.55(m,1H)、7.42(m,1H)、7.37(d,J=9.0Hz,1H)、7.26(d,J=9.0Hz,1H)、6.89(s,1H)、6.81(s,1H)、4.76(m,1H)、4.16(m,2H)、3.77(m,2H)、3.44〜3.37(m,4H)、1.84(s,3H)
LCMS:C2021FNに対して413(M+H
<実施例54>化合物54の調製
Figure 2014510751
実施例53に従って合成された58.1mg(0.14mmol)の化合物53、80.2mg(0.21mmol)のHATU、および32.2mg(0.42mmol)のグリコール酸を1.5mLのN,N−ジメチルホルムアミド中に溶解させ、59μl(0.42mmol)のトリエチルアミンを0℃で徐々にそれに添加し、得られた溶液を室温で12時間撹拌した。反応混合物を30mLのエチルアセテートおよび30mLの飽和塩化アンモニウムで抽出して有機層を得た。有機層を無水硫酸ナトリウムにより脱水し、次いで、減圧下で濃縮して固体生成物を得た。固体生成物を5mLのエチルアセテートと5mLのn−ヘキサンとの混合溶液で洗浄して赤褐色固体として20mg(0.04mmol)の化合物54を得た(収率:30%)。
H NMR(600MHz、DMSOd−)δ8.35(s,1H)、8.26(t,J=6.0Hz,1H)、7.85(d,J=8.4Hz,1H)、7.61〜7.57(m,2H)、7.44〜7.39(m,2H)、5.32(brs,1H)、4.76(m,1H)、4.41(brs,1H)、4.18(m,1H)、4.06(t,J=5.4Hz,1H)、3.84〜3.76(m,2H)、3.42(t,J=5.4Hz,1H)、3.35(m,2H)、1.84(s,3H)
LCMS:C2223FNに対して471(M+H
<実施例55>化合物55の調製
Figure 2014510751
実施例53に従って合成された110mg(0.24mmol)の化合物53を2mLのN,N−ジメチルホルムアミド中に溶解させ、0.21mL(1.22mmol)のジイソプロピルエチルアミンをそれに添加し、54μl(0.36mmol)のプロパルギルブロミド(トルエン中80%)をそれに滴下し、得られた溶液を80℃で5時間撹拌した。反応混合物を室温に冷却し、20mLの蒸溜水および30mLのエチルアセテートで抽出して有機層を得た。有機層を無水硫酸ナトリウムにより脱水し、減圧下で濃縮し、次いで、カラムクロマトグラフィーにより分離して灰色固体として14mg(0.03mmol)の化合物55を得た(収率:13%)。
H NMR(600MHz、CDCl)δ8.43(m,2H)、7.71(d,J=9.0Hz,1H)、7.54(dd,J=12.6Hz,J=2.4Hz,1H)、7.39(t,J=8.4Hz,1H)、7.28(dd,J1=9Hz,J2=2.4Hz,1H)、6.70(d,J=9.0Hz,1H)、6.00(t,J=6.0Hz,1H)、4.82(m,1H)、4.66(dd,J=17.4Hz,J=2.4Hz,1H)、4.55(m,1H)、4.13(dd,J=17.4Hz,J=2.4Hz,1H)、4.09(t,J=9.0Hz,1H)、3.81(m,1H)、3.77〜3.71(m,2H)、3.63(m,1H)、2.98(m,1H)、2.90(m,1H)、2.26(t,J=2.4Hz,1H)、2.04(s,3H)
LCMS:C2323FNに対して451(M+H
<実施例56>化合物56の調製
Figure 2014510751
調製例17に従って合成された171mg(0.63mmol)の化合物A−IVを4mLのN,N−ジメチルホルムアミド中に溶解させ、調製例37に従って合成された180mgの化合物B−VIII、16mg(0.02mmol)のPdCl2(dppf)、および0.95mL(1.91mmol)の2M水性炭酸ナトリウム溶液をそれに添加し、得られた溶液を窒素雰囲気下85℃で15時間撹拌した。反応混合物を室温に冷却し、そしてセライトにより濾過して残渣を除去した。得られた混合物を50mLのエチルアセテートおよび40mLの飽和塩化アンモニウムで抽出して有機層を得た。有機層を無水硫酸ナトリウムにより脱水し、減圧下で濃縮し、次いで、カラムクロマトグラフィーにより分離して黄色固体として19mg(0.04mmol)の化合物56を得た(収率:7.2%)。
H NMR(600MHz、CDCl)δ8.30(s,1H)、7.71(d,J=9.0Hz,1H)、7.50(d,J=12.6Hz,1H)、7.40(t,J=8.4Hz,1H)、7.35(d,J=8.4Hz,1H)、7.25(m,1H)、6.73(s,1H)、4.80(m,1H)、4.11〜4.06(m,3H)、3.80(m,1H)、3.73(m,1H)、3.62(m,1H)、3.44(t,J=4.8Hz,2H)、3.20(q,J=7.2Hz,2H)、1.21(t,J=7.2Hz,2H)
LCMS:C2225FNに対して441(M+H
<実施例57>化合物57の調製
Figure 2014510751
実施例1と同様に化合物A−Vと化合物B−VIIIとを反応させることにより、白色固体として113mg(0.27mmol)の化合物57を得た(収率:41%)。
H NMR(600MHz、DMSOd−)δ8.53(s,1H)、8.50(s,1H)、8.28(t,J=5.4Hz,1H)、8.00(d,J=7.8Hz,1H)、7.63(m,2H)、7.43(d,J=9.0Hz,1H)、7.29(d,J=9.0Hz,1H)、4.76(m,1H)、4.18(t,J=9.0Hz,1H)、4.13(t,J=4.8Hz,2H)、3.88(t,J=4.8Hz,2H)、3.79(m,1H)、3.44(t,J=4.8Hz,2H)、1.84(s,3H)
LCMS:C2020FNに対して414(M+H
<実施例58>化合物58の調製
Figure 2014510751
実施例1と同様に化合物A−Vと化合物B−XIIとを反応させることにより、白色固体として130mg(0.35mmol)の化合物58を得た(収率:20%)。
H NMR(600MHz、DMSOd−)δ8.52(s,1H)、7.99(t,J=9.6Hz,1H)、7.64(m,2H)、7.47(m,2H)、7.29(d,J=9.0Hz,1H)、5.28(t,J=6.0Hz,1H)、4.75(m,1H)、4.22(m,1H)、4.14(m,3H)、3.89(m,2H)、3.70(m,1H)、3.57(m,1H)
LCMS:C1817FNに対して373(M+H
<実施例59>化合物59の調製
Figure 2014510751
実施例1と同様に化合物A−Vと化合物B−XIとを反応させることにより、白色固体として115mg(0.27mmol)の化合物59を得た(収率:19%)。
H NMR(600MHz、DMSOd−)δ8.52(s,1H)、8.50(s,1H)、8.00(dd,J1=9.0Hz,J2=1.8Hz,1H)、7.64(t,J=9.0Hz,1H)、7.62(dd,J=13.2Hz,J=2.4Hz,1H)、7.55(t,J=5.4Hz,1H)、7.43(dd,J=8.4Hz,J=1.8Hz,1H)、7.29(d,J=8.4Hz,1H)、4.77(m,1H)、4.18(t,J=9.0Hz,1H)、4.11(t,J=4.2Hz,2H)、3.88(m,2H)、3.81(m,1H)、3.54(s,3H)、3.33(m,2H)
LCMS:C2020FNに対して430(M+H
<実施例60>化合物60の調製
Figure 2014510751
実施例1と同様に化合物A−Vと化合物B−IXとを反応させることにより、白色固体として36mg(0.08mmol)の化合物60を得た(収率:35%)。
H NMR(600MHz、DMSOd−)δ8.52(s,1H)、8.49(s,1H)、8.19(s,1H)、7.99(d,J=8.4Hz,1H)、7.78(s,1H)、7.62(t,J=8.4Hz,1H)、7.55(dd,J=13.2Hz,J=2.4Hz,1H)、7.38(dd,J=8.4Hz,J=2.4Hz,1H)、7.29(d,J=8.4Hz,1H)、5.18(m,1H)、4.86(m,1H)、4.29(t,J=9.0Hz,1H)、4.11(t,J=4.8Hz,2H)、3.95(m,1H)、3.88(t,J=4.8Hz,2H)
LCMS:C2018FNに対して424(M+H
<実施例61>化合物61の調製
Figure 2014510751
実施例1および2と同様に化合物A−Vと化合物B−Xとを反応させることにより、白色固体として81mg(0.18mmol)の化合物61を得た(収率:75%)。
H NMR(600MHz、DMSO)δ8.55(s,1H)、8.50(s,1H)、8.39(d,J=1.8Hz,1H)、8.00(d,J=10.2Hz,1H)、7.63(m,2H)、7.44(dd,J=9.0Hz,J=2.4Hz,1H)、7.29(d,J=8.4Hz,1H)、6.01(d,J=1.8Hz,1H)、4.92(m,1H)、4.21(dd,J=8.4Hz,J=8.4Hz,1H)、4.12(t,J=7.2Hz,2H)、3.88(m,3H)、3.47(m,2H)
LCMS:C2119FNに対して439(M+H
<実施例62>化合物62の調製
Figure 2014510751
実施例1と同様に化合物A−VIIIと化合物B−VIIIとを反応させることにより、白色固体として30mg(0.07mmol)の化合物62を得た(収率:68%)。
H NMR(600MHz、CDCl)δ8.72(m,1H)、7.88(dd,J=8.4Hz,J=3.6Hz,1H)、7.59(dd,J=12.6Hz,J=2.4Hz,1H)、7.44(dd,J=8.4Hz,J=8.4Hz,1H)、7.33(dd,J=8.4Hz,J=2.4Hz,1H)、7.08(d,J=8.4Hz,1H)、6.12(t,J=6Hz,1H)、4.83(m,1H)、4.21(t,J=4.8Hz,2H)、4.10(dd,J=9.0Hz,1H)、3.93(t,J=3.6Hz,2H)、3.85(dd,J=6.6Hz,1H)、3.75〜3.65(m,J=6.6Hz,2H)
LCMS:C2122FNに対して428(M+H
<実施例63>化合物63の調製
Figure 2014510751
実施例1と同様に化合物A−VIIIと化合物B−XIとを反応させることにより、白色固体として326mg(0.73mmol)の化合物63を得た(収率:51%)。
H NMR(600MHz、DMSOd−)δ8.55(s,1H)、7.86(m,1H)、7.56(dd,J=12.6Hz,J=1.8Hz,1H)、7.43(t,J=8.4Hz,1H)、7.33(dd,J=8.4Hz,J=1.8Hz,1H)、7.05(d,J=8.4Hz,1H)、5.13(m,1H)、4.79(m,1H)、4.18(t,J=4.8Hz,2H)、4.08(t,J=9.0Hz,1H)、3.90(t,J=4.8Hz,2H)、3.85(t,J=7.8Hz,1H)、3.67(s,3H)、3.63(m,1H)、3.55(m,1H)、2.10(s,3H)
LCMS:C2122FNに対して444(M+H
<実施例64>化合物64の調製
Figure 2014510751
実施例1と同様に化合物A−VIと化合物B−VIIIとを反応させることにより、白色固体として168mg(0.41mmol)の化合物64を得た(収率:56%)。
H NMR(600MHz、DMSOd−)δ8.77(s,1H)、8.27(t,J=6.0Hz,1H)、8.04(dd,J1=7.2Hz,J2=1.8Hz,1H)、7.96(d,J=9.0Hz,1H)、7.71(t,J=8.4Hz,1H)、7.66(dd,J=13.2Hz,J=2.4Hz,1H)、7.47(dd,J=8.4Hz,J=2.4Hz,1H)、7.40(t,J=3.6Hz,1H)、4.78(m,1H)、4.19(t,J=8.4Hz,1H)、3.88(t,J=4.8Hz,2H)、3.80(dd,J=9.0Hz,J=6.0Hz,1H)、3.47(dd,J=8.4Hz,J=3.6Hz,2H)、3.44(t,J=4.8Hz,2H)、1.84(s,3H)
LCMS:C2020FNに対して414(M+H
<実施例65>化合物65の調製
Figure 2014510751
実施例1と同様に化合物A−VIと化合物B−XIとを反応させることにより、白色固体として391mg(0.91mmol)の化合物65を得た(収率:78%)。
H NMR(400MHz、DMSOd−)δ8.77(s,1H)、8.05(d,J=8.4Hz,1H)、7.96(d,J=8.0Hz,1H)、7.72(t,J=8.8Hz,1H)、7.66(dd,J=13.6Hz,J=2.0Hz,1H)、7.56(t,J=5.6Hz,1H)、7.47(dd,J=8.4Hz,J=2.0Hz,1H)、7.40(m,1H)、4.78(m,1H)、4.19(t,J=9.0Hz,1H)、3.88(t,J=4.6Hz,2H)、3.84(dd,J=8.8Hz,J=6.0Hz,1H)、3.55(s,3H)、3.48(m,4H)
LCMS:C2020FNに対して430(M+H
<実施例66>化合物66の調製
Figure 2014510751
実施例1と同様に化合物A−VIと化合物B−IXとを反応させることにより、淡桃色固体として78mg(0.18mmol)の化合物66を得た(収率:75%)。
H NMR(600MHz、DMSOd−)δ8.77(s,1H)、8.19(s,1H)、8.04(d,J=8.4Hz,1H)、7.95(d,J=8.4Hz,1H)、7.78(s,1H)、7.70(t,J=9.0Hz,1H)、7.60(dd,J=13.8Hz,J=2.4Hz,1H)、7.42(dd,J=8.4Hz,J=2.4Hz,1H)、7.40(t,J=2.4Hz,1H)、5.19(m,1H)、4.87(m,1H)、4.31(t,J=9.0Hz,1H)、3.97(m,1H)、3.88(t,J=4.8Hz,2H)、3.47(m,2H)
LCMS:C2018FNに対して424(M+H
<実施例67>化合物67の調製
Figure 2014510751
実施例1および2と同様に化合物A−VIと化合物B−Xとを反応させることにより、淡黄色固体として88mg(0.20mmol)の化合物67を得た(収率:68%)。
H NMR(600MHz、DMSO)δ9.08(s,1H)、8.89(s,1H)、8.40(d,J=1.8Hz,1H)、8.20(dd,J=8.4Hz,J=1.2Hz,1H)、8.13(d,J=8.4Hz,1H)、7.75(dd,J=8.4Hz,J=8.4Hz,1H)、7.69(dd,J=13.8Hz,J=2.4Hz,1H)、7.50(dd,J=8.4Hz,J=1.8Hz,1H)、6.01(d,J=1.8Hz,1H)、4.94(m,1H)、4.23(dd,J=9.0Hz,J=9.0Hz,1H)、4.13(t,J=4.2Hz,2H)、3.90(dd,J=9.0Hz,J=6.6Hz,1H)、3.60(t,J=4.2Hz,2H)、3.47(m,2H)
LCMS:C2119FNに対して439(M+H
<実施例68>化合物68の調製
Figure 2014510751
実施例1と同様に化合物A−VIと化合物B−VIIとを反応させることにより、白色固体として111mg(0.25mmol)の化合物68を得た(収率:62%)。
H NMR(600MHz、DMSOd−)δ8.78(s,1H)、8.72(d,J=1.8Hz,1H)、8.05(d,J=8.4Hz,1H)、7.74(d,J=8.4Hz,1H)、7.70(dd,J=15.6Hz,J=2.4Hz,1H)、7.52(dd,J=9.0Hz,J=2.4Hz,1H)、7.43(m,1H)、6.42(d,J=1.8Hz,1H)、5.14(m,1H)、4.50(m,2H)、4.27(t,J=9.0Hz,1H)、4.00(dd,J=9.6Hz,J=6.0Hz,1H)、3.88(t,J=4.8Hz,2H)、3.47(m,2H)
LCMS:C2119FNに対して441(M+H
<実施例69>化合物69の調製
Figure 2014510751
実施例1と同様に化合物A−VIIと化合物B−VIIIとを反応させることにより、白色固体として120mg(0.28mmol)の化合物69を得た(収率:53%)。
H NMR(600MHz、CDCl)δ8.80(s,1H)、7.93(d,J=8.4Hz,1H)、7.72(d,J=7.8Hz,1H)、7.61(dd,J=12.6Hz,J=2.4Hz,1H)、7.47(t,J=9.0Hz,1H)、7.33(dd,J=9.0Hz,J=2.4Hz,1H)、6.03(m,1H)、4.83(m,1H)、4.18(t,J=9.0Hz,1H)、4.10(t,J=9.0Hz,1H)、3.84(dd,J=8.4Hz,J=6.6Hz,1H)、3.74(m,1H)、3.68(m,3H)、3.52(t,J=4.8Hz,2H)、2.94(s,3H)、2.04(s,3H)
LCMS:C2122FNに対して428(M+H
<実施例70>化合物70の調製
Figure 2014510751
実施例1と同様に化合物A−VIIと化合物B−XIとを反応させることにより、白色固体として437mg(0.98mmol)の化合物70を得た(収率:84%)。
H NMR(600MHz、CDCl)δ8.81(s,1H)、7.93(d,J=7.8Hz,1H)、7.72(d,J=7.8Hz,1H)、7.60(dd,J=13.2Hz,J=1.8Hz,1H)、7.47(t,J=8.4Hz,1H)、7.35(dd,J=9.0Hz,J=2.4Hz,1H)、5.13(m,1H)、4.82(m,1H)、4.17(t,J=4.8Hz,2H)、4.11(t,J=9.0Hz,1H)、3.87(t,J=7.8Hz,1H)、3.70(s,3H)、3.65(m,1H)、3.60(m,1H)、3.51(t,J=7.8Hz,2H)、2.94(s,3H)
LCMS:C2122FNに対して444(M+H
<実施例71>化合物71の調製
Figure 2014510751
実施例1と同様に化合物A−VIIと化合物B−XIIとを反応させることにより、白色固体として71mg(0.16mmol)の化合物71を得た(収率:20%)。
H NMR(400MHz、DMSOd−)δ8.82(s,1H)、8.06(d,J=8.4Hz,1H)、7.69(m,1H)、7.63(d,J=8.4Hz,1H)、7.51(m,2H)、5.27(t,J=6.0Hz,1H)、4.76(m 1H)、4.15(t,J=9.2Hz,1H)、4.00(t,J=4.8Hz,2H)、3.90(dd,J=8.8Hz,J=6.1Hz,1H)、3.70(m,1H)、3.59(m,1H)、3.42(t,J=4.4Hz,2H)、2.80(s,1H)
LCMS:C1919FNに対して444(M+H
<実験例1>in vitro抗細菌活性の測定
実施例1〜71に従って合成されたオキサゾリジノン誘導体の抗細菌活性を評価するために、以下の方法を用いてin vitro活性試験を行った。
未処理の対照での細菌増殖と比較して、細菌の増殖を90%まで阻害する抗生物質の最小濃度である90%最小発育阻止濃度(MIC90、μg/mL)を測定することにより、実施例1〜71のオキサゾリジノン誘導体のin vitro抗細菌活性を評価した。これは、分光法により測定された。CLSI規格(非特許文献8)に準拠して微量液体希釈法によりMIC90を測定した。
1)試験株
スタフィロコッカス・アウレウス(Staphylococcus aureus)、メチシリン耐性スタフィロコッカス・アウレウス(Staphylococcus aureus)、スタフィロコッカス・エピデルミディス(Staphylococcus epidermidis)、メチシリン耐性スタフィロコッカス・エピデルミディス(Staphylococcus epidermidis)、エンテロコッカス・フェカリス(Enterococcus faecalis)、バンコマイシン耐性エンテロコッカス・フェカリス(Enterococcus faecalis)、リネゾリド耐性およびバンコマイシン耐性エンテロコッカス・フェカリス(Enterococcus faecalis)、エンテロコッカス・フェシウム(Enterococcus faecium)、バンコマイシン耐性エンテロコッカス・フェシウム(Enterococcus faecium)、リネゾリド耐性およびバンコマイシン耐性エンテロコッカス・フェシウム(Enterococcus faecium)、およびモラクセラ・カタラーリス(Moraxella catarrhalis)を含む12種の株の活性を測定した。また、結果を以下の表1に示す。
2)試験材料の調製方法
10240μg/mLの試験材料(即ち、実施例1〜71のオキサゾリジノン誘導体)をそれぞれDMSO中に溶解させ、それぞれの得られた溶液を二倍段階希釈に付し、次いで、無菌三重蒸留水で20倍に希釈した。抗細菌試験での試験材料の最終濃度は、0.063μg/mL(最小)〜128μg/mL(最大)あり、賦形剤として使用したDMSOの最終濃度は、2.5%(V/V)であった。以下の式Bにより表されるリネゾリド(Pfizer製造)を対照として使用し、その細菌活性を試験材料のものと比較した。結果を以下の表1に示す。
Figure 2014510751
Figure 2014510751
Figure 2014510751
Figure 2014510751
Figure 2014510751
Figure 2014510751
Figure 2014510751
Figure 2014510751
表1に示されるように、本発明に係るオキサゾリジノン誘導体は、対照のリネゾリドと比較した場合、既存の抗生物質に耐性のグラム陽性細菌(たとえば、MRSA、VREなど)に対してかなり低濃度でより有効であったことが確認でき、特に、オキサゾリジノン誘導体は、リネゾリド耐性細菌に対して非常に有効であったことが確認できる。特に、化合物3、11、および54が、リネゾリドに耐性のエンテロコッカス・フェカリス(Enterococcus faecalis)およびエンテロコッカス・フェシウム(Enterococcus faecium)に対して非常に高い抗細菌活性を有することから、これらの化合物は、最近出現したかつ将来大きな問題を引き起こす可能性があるリネゾリド耐性細菌に対して効果的に使用しうることが示唆される。
従って、本発明に係るオキサゾリジノン誘導体は、グラム陽性細菌に対して広域スペクトルを有する抗生物質として、およびMRSAやVREなどの耐性株とくにリネゾリド耐性細菌の感染を治療する治療剤として、効果的に使用しうる。
例示を目的として本発明の好ましい実施形態を開示してきたが、当業者であれば、添付の特許請求の範囲に開示される本発明の範囲および趣旨から逸脱することなく、種々の変更、追加、および置換が可能であることはわかるであろう。
以上で説明したように、本発明に係る新規なオキサゾリジノン誘導体は、MRSAやVREを含む耐性細菌に対して広い抗細菌スペクトルを有する。特に、オキサゾリジノン誘導体は、リネゾリド耐性細菌に対して高い活性を有するので、第二世代オキサゾリジノン系抗生物質として効果的に使用しうる。それに加えて、本発明に係る化合物は、環状アミドキシム基または環状アミドラゾン基を有するので、塩を形成することが可能である。従って、これらの化合物は、既存の化合物よりも高い水への溶解性を有するので、これらの化合物は、経口製剤または注射剤として容易に開発しうる。

Claims (7)

  1. 下記式(1):
    Figure 2014510751
    (式中、
    Rは、下記の基:
    Figure 2014510751
    (式中、
    は、水素、C〜CアルキルまたはC〜Cシクロアルキルであり、
    は、水素、C〜Cアルキルまたは(CHC(=O)R21である(R21は、水素、(CHNHR211(R211は、水素またはC〜Cアルキルである)、CHOHまたはCH(OH)CHOHである)(mおよびnは、それぞれ独立して、0〜3の整数である))
    よりなる群から選択されるヘテロ環式基であり、
    Qは、OR、NHRまたは下記の基:
    Figure 2014510751
    (Rは、水素、C〜Cアルキル、−C(=O)R31(R31は、水素、C〜Cアルキル、C〜CシクロアルキルまたはO−(C〜C)アルキルである)または下記の基:
    Figure 2014510751
    よりなる群から選択されるヘテロ芳香環基である)である)
    により表される新規なオキサゾリジノン誘導体、そのプロドラッグ、その水和物、その溶媒和物、その異性体またはその薬学的に許容可能な塩。
  2. 前記新規なオキサゾリジノン誘導体が、下記式(2)〜(4):
    Figure 2014510751
    (式中、RおよびQは、請求項1に定義されたものと同一である)
    よりなる群から選択される1つにより表されることを特徴とする請求項1に記載の新規なオキサゾリジノン誘導体、そのプロドラッグ、その水和物、その溶媒和物、その異性体またはその薬学的に許容可能な塩。
  3. Qが、NHC(=O)CH、NHC(=O)OCH、下記の基:
    Figure 2014510751
    または下記の基:
    Figure 2014510751
    であり、
    が、メチル、C(=O)CHOH、C(=O)CHNHまたはC(=O)CH(OH)CHOHであることを特徴とする請求項2に記載の新規なオキサゾリジノン誘導体、そのプロドラッグ、その水和物、その溶媒和物、その異性体、またはその薬学的に許容可能な塩。
  4. 前記新規なオキサゾリジノン誘導体が下記式(5)〜(7):
    Figure 2014510751
    (式中、Qは、請求項1に定義されたものと同一であり、Mは、Na、Kなどのアルカリ金属イオンまたはアンモニウムイオンである)
    よりなる群から選択される1つにより表されることを特徴とする請求項2に記載の新規なオキサゾリジノン誘導体、そのプロドラッグ、その水和物、その溶媒和物、その異性体、またはその薬学的に許容可能な塩。
  5. 前記新規なオキサゾリジノン誘導体が、以下の化合物:
    Figure 2014510751
    Figure 2014510751
    Figure 2014510751
    よりなる群から選択される1つであることを特徴とする請求項1に記載の新規なオキサゾリジノン誘導体、そのプロドラッグ、その水和物、その溶媒和物、その異性体、またはその薬学的に許容可能な塩。
  6. 抗生物質の医薬組成物であって、
    (a)治療上有効量の、請求項1〜5のいずれかに記載の新規なオキサゾリジノン誘導体、そのプロドラッグ、その水和物、その溶媒和物、その異性体またはその薬学的に許容可能な塩、および
    (b)薬学的に許容可能な担体、希釈剤、賦形剤またはそれらの組み合わせ
    を含む医薬組成物。
  7. 有効量の、請求項1に記載の式(1)により表される新規なオキサゾリジノン誘導体、そのプロドラッグ、その水和物、その溶媒和物、その異性体またはその薬学的に許容可能な塩を使用する抗生物質治療法。
JP2014502469A 2011-03-30 2012-03-29 新規なオキサゾリジノン誘導体およびそれを含む医薬組成物 Expired - Fee Related JP6072764B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020110028559A KR101653570B1 (ko) 2011-03-30 2011-03-30 신규한 옥사졸리디논 유도체 및 이를 함유하는 의약 조성물
KR10-2011-0028559 2011-03-30
PCT/KR2012/002314 WO2012134188A2 (ko) 2011-03-30 2012-03-29 신규한 옥사졸리디논 유도체 및 이를 함유하는 의약 조성물

Publications (2)

Publication Number Publication Date
JP2014510751A true JP2014510751A (ja) 2014-05-01
JP6072764B2 JP6072764B2 (ja) 2017-02-01

Family

ID=46932138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014502469A Expired - Fee Related JP6072764B2 (ja) 2011-03-30 2012-03-29 新規なオキサゾリジノン誘導体およびそれを含む医薬組成物

Country Status (12)

Country Link
US (1) US8846669B2 (ja)
EP (2) EP2692727A4 (ja)
JP (1) JP6072764B2 (ja)
KR (1) KR101653570B1 (ja)
CN (1) CN103476772B (ja)
AU (1) AU2012237067B2 (ja)
BR (1) BR112013024497A2 (ja)
CA (1) CA2831799A1 (ja)
MX (1) MX337409B (ja)
RU (1) RU2617408C2 (ja)
WO (1) WO2012134188A2 (ja)
ZA (1) ZA201307216B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104774198A (zh) * 2014-01-15 2015-07-15 上海美迪西生物医药有限公司 一种新噁唑烷酮类化合物及其制备方法
CN106928214A (zh) * 2014-09-17 2017-07-07 博瑞生物医药(苏州)股份有限公司 一种噁唑烷酮类化合物及其中间体的制备方法
WO2016201168A1 (en) * 2015-06-10 2016-12-15 Forum Pharmceuticals Inc. Oxadiazine compounds and methods of use thereof
CN106045934A (zh) * 2015-10-27 2016-10-26 博瑞生物医药(苏州)股份有限公司 一种合成泰地唑胺的中间体的晶型
CN107722056A (zh) * 2017-10-31 2018-02-23 重庆华邦胜凯制药有限公司 磷酸特地唑胺的制备方法
CN115650908A (zh) * 2022-09-26 2023-01-31 南京康立瑞生物科技有限公司 一种5-溴-2氰基吡啶的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094342A1 (en) * 2000-06-05 2001-12-13 Dong A Pharm. Co., Ltd. Novel oxazolidinone derivatives and a process for the preparation thereof
WO2004056816A1 (en) * 2002-12-19 2004-07-08 Astrazeneca Ab Antibacterial oxazolidinones
WO2004056819A1 (en) * 2002-12-19 2004-07-08 Astrazeneca Ab Oxazolidinone derivatives as antibacterial agents
WO2005116024A1 (en) * 2004-05-25 2005-12-08 Astrazeneca Ab 3- (4- (2-dihydroisoxazol-3-ylpyridin-5-yl) phenyl) -5-triazol-1-ylmethyloxazolidin-2-one derivaives as mao inhibitors for the treatment of bacterial infections
WO2010036000A2 (en) * 2008-09-24 2010-04-01 Legochem Bioscience Ltd. Novel oxazolidinone derivatives with cyclic amidoxime or cyclic amidrazone and pharmaceutical compositions thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES533097A0 (es) 1983-06-07 1985-08-01 Du Pont Un procedimiento para la preparacion de nuevos derivados del amino-metil-oxooxazolidinil-benzeno.
KR100731469B1 (ko) * 2000-06-05 2007-06-21 동아제약주식회사 피리딘 고리를 포함하는 옥사졸리디논 유도체 및 그의제조방법
TW200500360A (en) * 2003-03-01 2005-01-01 Astrazeneca Ab Hydroxymethyl compounds
KR100854211B1 (ko) * 2003-12-18 2008-08-26 동아제약주식회사 신규한 옥사졸리디논 유도체, 그의 제조방법 및 이를유효성분으로 하는 항생제용 약학 조성물
EP1799677A1 (en) * 2004-10-08 2007-06-27 Ranbaxy Laboratories Limited Oxazolidinone derivatives as antimicrobials
WO2007023507A2 (en) * 2005-06-20 2007-03-01 Wockhardt Limited Oxazolidinones bearing antimicrobial activity composition and methods of preparation
KR100872059B1 (ko) * 2007-02-21 2008-12-05 주식회사 레고켐 바이오사이언스 아미독심 또는 하이드록사마이드 기를 가지는 신규한옥사졸리디논 유도체 및 이를 함유하는 의약 조성물
KR100870432B1 (ko) 2007-04-18 2008-11-25 주식회사 하이닉스반도체 트리밍 테스트모드 및 노말 테스트모드를 갖는반도체메모리소자
KR101037051B1 (ko) * 2009-07-08 2011-05-26 주식회사 레고켐 바이오사이언스 (s)-5-클로로-n-((3-(4-(5,6-다이하이드로-4h-1,2,4-옥사다이아진-3-일)페닐)-2-옥소옥사졸리딘-5-일)메틸)싸이오펜-2-카르복사미드 유도체의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094342A1 (en) * 2000-06-05 2001-12-13 Dong A Pharm. Co., Ltd. Novel oxazolidinone derivatives and a process for the preparation thereof
WO2004056816A1 (en) * 2002-12-19 2004-07-08 Astrazeneca Ab Antibacterial oxazolidinones
WO2004056819A1 (en) * 2002-12-19 2004-07-08 Astrazeneca Ab Oxazolidinone derivatives as antibacterial agents
WO2005116024A1 (en) * 2004-05-25 2005-12-08 Astrazeneca Ab 3- (4- (2-dihydroisoxazol-3-ylpyridin-5-yl) phenyl) -5-triazol-1-ylmethyloxazolidin-2-one derivaives as mao inhibitors for the treatment of bacterial infections
WO2010036000A2 (en) * 2008-09-24 2010-04-01 Legochem Bioscience Ltd. Novel oxazolidinone derivatives with cyclic amidoxime or cyclic amidrazone and pharmaceutical compositions thereof

Also Published As

Publication number Publication date
CA2831799A1 (en) 2012-10-04
KR20120110600A (ko) 2012-10-10
EP2692727A4 (en) 2014-10-15
CN103476772A (zh) 2013-12-25
RU2617408C2 (ru) 2017-04-25
US20140179691A1 (en) 2014-06-26
AU2012237067A1 (en) 2013-10-03
US8846669B2 (en) 2014-09-30
CN103476772B (zh) 2016-03-30
MX2013011272A (es) 2014-03-21
KR101653570B1 (ko) 2016-09-02
JP6072764B2 (ja) 2017-02-01
WO2012134188A3 (ko) 2013-01-10
ZA201307216B (en) 2014-12-23
MX337409B (es) 2016-03-02
AU2012237067B2 (en) 2016-07-28
WO2012134188A2 (ko) 2012-10-04
EP3372598A1 (en) 2018-09-12
EP2692727A2 (en) 2014-02-05
RU2013143800A (ru) 2015-05-10
BR112013024497A2 (pt) 2018-06-26

Similar Documents

Publication Publication Date Title
JP6072764B2 (ja) 新規なオキサゾリジノン誘導体およびそれを含む医薬組成物
US6689779B2 (en) Oxazolidinone derivatives and a process for the preparation thereof
RU2414469C2 (ru) Новые производные оксазолидинона
JP2004518677A (ja) 抗菌性キノロン誘導体および細菌感染を治療するためのその使用
US10519125B2 (en) Flavagline derivatives
US20060293307A1 (en) Oxazolidinone derivatives as antimicrobials
KR100872059B1 (ko) 아미독심 또는 하이드록사마이드 기를 가지는 신규한옥사졸리디논 유도체 및 이를 함유하는 의약 조성물
JP5662940B2 (ja) 新規な抗微生物薬
EP1786805A1 (en) Oxazolidinone compounds and compositions and methods related thereto
JP2004196678A (ja) ピラゾール系誘導体
WO2014161412A1 (zh) 一类三环喹诺酮衍生物及其制备方法和用途
WO2022005976A2 (en) Antibacterial picolinamide compounds
KR100948345B1 (ko) 신규한 옥사졸리디논 유도체, 이의 제조방법 및 이를함유하는 의약 조성물
KR20030027094A (ko) 신규 에스테르 또는 아미드 유도체
WO2005082900A2 (en) Oxazolidinone amidoximes as antibacterial agents
HUT65885A (en) Process for preparing heterocyclyl-phenoxyalkyl-piperidinylpyridazines and pharmaceutical compositions containing them
KR100856745B1 (ko) 헤테로 고리 및 헤테로아로마틱 고리가 치환 또는 융합된피리딘을 포함하는 옥사졸리디논 유도체 및 그의 제조방법
WO2009077485A2 (en) 1(2)h-tetrazol-5-yl-phenyl-oxazolidinones as antibacterial agents
SG185169A1 (en) Biphenyl oxazolidinone antibiotic
JP2006052139A (ja) プロリン誘導体
JP2006052140A (ja) プロリン誘導体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150306

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150702

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160229

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161228

R150 Certificate of patent or registration of utility model

Ref document number: 6072764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees