JP2014508980A - 電子通信のトリアージ - Google Patents

電子通信のトリアージ Download PDF

Info

Publication number
JP2014508980A
JP2014508980A JP2013543185A JP2013543185A JP2014508980A JP 2014508980 A JP2014508980 A JP 2014508980A JP 2013543185 A JP2013543185 A JP 2013543185A JP 2013543185 A JP2013543185 A JP 2013543185A JP 2014508980 A JP2014508980 A JP 2014508980A
Authority
JP
Japan
Prior art keywords
item
recipient
model
user
importance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013543185A
Other languages
English (en)
Other versions
JP6246591B2 (ja
JP2014508980A5 (ja
Inventor
サンデリン トア
クリーウェイン ジェイムズ
エデレン ジェイムズ
ペレイラ ジョージ
ウェットモア アレクサンダー
ウィン ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Corp
Original Assignee
Microsoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Corp filed Critical Microsoft Corp
Publication of JP2014508980A publication Critical patent/JP2014508980A/ja
Publication of JP2014508980A5 publication Critical patent/JP2014508980A5/ja
Application granted granted Critical
Publication of JP6246591B2 publication Critical patent/JP6246591B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/107Computer-aided management of electronic mailing [e-mailing]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/21Monitoring or handling of messages
    • H04L51/212Monitoring or handling of messages using filtering or selective blocking

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Computer Hardware Design (AREA)
  • Computer Security & Cryptography (AREA)
  • Mathematical Physics (AREA)
  • Economics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Marketing (AREA)
  • Artificial Intelligence (AREA)
  • General Business, Economics & Management (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Databases & Information Systems (AREA)
  • Information Transfer Between Computers (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

コンピュータシステム環境において電子通信のトリアージを行うことで、大量の着信する電子通信に関する問題を軽減することができる。これには、ユーザ固有の電子通信データおよび関連する挙動を分析して、どの通信をユーザが重要または非重要とみなす傾向があるかを予測することを含むことができる。クライアント側のアプリケーション特性が通信の重要度の評価に基づき露出され、ユーザが任意で大量の着信する通信を処理することが可能となる。

Description

本発明は、電子通信のトリアージに関する。
公私にわたる通信の管理における電子装置の使用の増加は、典型的には着信メッセージの増加につながる。
多くの事例において、膨大な量の着信メッセージのため、それを全て効率的に処理するエンドユーザの能力が妨げられることが多い。そのようなメッセージの過負荷から生じる問題および非効率性の例には、重要なメッセージを見落とす可能性が高くなること、および受信メッセージをふるいにかけるのに要する時間の投資が増えることが含まれる。
一態様において、コンピュータシステム環境において電子通信のトリアージを行うための方法は、コンピュータ装置にてデフォルトモデルをトレーニングして受信者固有のモデルを受信者個人用に作成するステップであって、デフォルトモデルが、受信者と共通の特徴を有するユーザのサンプルに対して調整された複数の重み付けされた因子から形成され、受信者固有のモデルが、受信者の履歴挙動情報およびフィードバック情報を使用して修正されたデフォルトモデルから形成されるステップと、受信者に宛てられたアイテムをコンピュータ装置にて傍受するステップと、アイテムに関連する複数のアイテム特性をコンピュータ装置にて抽出するステップと、受信者固有のモデルを回収するステップであって、受信者固有のモデルが複数の抽出されたアイテム特性に関連する複数の重み付けされた因子を備えるステップと、複数の重み付けされた因子の組み合わせを形成するステップを含め重要度分類モデルを複数の抽出されたアイテム特性に適用するステップと、複数の重み付けされた因子の組み合わせに基づき、予測されるアイテムの重要度を生成するステップと、予測されるアイテムの重要度に基づき、受信者用のアイテムに関連する少なくとも1つのアプリケーション特性を有効にするステップとを含む。
別の態様において、コンピュータ装置は、処理装置と、処理装置に接続されるシステムメモリとを備え、システムメモリは、処理装置により実行されると、処理装置に、コンピュータシステム環境において電子通信のトリアージを行うためにユーザモデルを階層的にトレーニングするべく構成されたトレーニングモジュールを実装させる命令を含み、トレーニングモジュールは、プロトタイプのユーザモデルに基づくユーザのデフォルト推論のセットであって、デフォルト推論がアイテム属性、属性値、属性重み、および属性信頼性を含むデフォルト推論のセットを生成することと、ユーザ固有の情報を取得して、アイテムの受領に応答して、ユーザ固有の履歴挙動情報およびフィードバック情報の回収と、ユーザ固有の挙動情報およびフィードバック情報の回収とを含め、ユーザに対するデフォルト推論のセットを個人用に作成することと、ユーザ固有の情報を用いてデフォルト推論のセットを更新し、アイテムのトリアージモデルに適用するために個人用に作成された推論のセット形成することと、予測されるアイテムの重要度を露出させるためのユーザに関連する少なくとも1つのアプリケーション特性を有効にすることを行うべく構成される。
さらに別の態様において、コンピュータ可読記憶媒体は、コンピュータ装置により実行されると、コンピュータ装置に以下のステップを実行させるコンピュータ実行可能命令を有する。ステップには、コンピュータ装置にてデフォルトモデルをトレーニングして受信者固有のモデルを受信者個人用に作成するステップであって、デフォルトモデルが、受信者と共通の特徴を有するユーザのサンプルに対して調整された複数の重み付けされた因子から形成され、共通の特徴が、共通の職業および共通の趣味を含む群から選択され、受信者固有のモデルが、受信者の履歴挙動情報およびフィードバック情報を使用して修正されたデフォルトモデルから形成されるステップと、受信者に宛てられたアイテムをコンピュータ装置にて傍受するステップであって、アイテムが、電子メールメッセージ、スケジュールメッセージ、インスタントメッセージ、ウェブベースのメッセージ、およびソーシャルコラボレーションメッセージを含む群から選択されるステップと、アイテムに関連する複数のアイテム特性をコンピュータ装置にて抽出するステップであって、アイテム特性が、アイテム送信者の特徴、アイテム受信者の特徴、会話の特徴、および添付ファイルの特徴を含む群から選択されるアイテムの特徴を含むステップと、受信者固有のモデルを回収するステップであって、受信者固有のモデルが複数の抽出されたアイテム特性に関連する複数の重み付けされた因子を備えるステップと、複数の重み付けされた因子の組み合わせを形成するステップを含め重要度分類モデルを複数の抽出されたアイテム特性に適用するステップと、複数の重み付けされた因子の組み合わせに基づき、予測されるアイテムの重要度を生成するステップであって、予測されるアイテムの重要度がアイテムを重要または非重要の一方であると指定するステップと、予測されるアイテムの重要度に基づき、アイテムのキーコンテンツをハイライトする強調特性、アイテムのクイックビューを提供する表示特性、およびアイテムの一時的なビューを提供する通知特性を含む群から選択される、受信者用のアイテムに関連する少なくとも1つのアプリケーション特性を有効にするステップと、デフォルトモデルのトレーニングを継続して受信者固有のモデルを個人用に作成するために、アイテムに関連する受信者の挙動およびフィードバックを所定の期間周期的に取得するステップとを含む。
本「発明の概要」は、以下の「発明を実施するための形態」でさらに説明する概念を選択して簡略化した形式で紹介するために提供するものである。本「発明の概要」は、特許請求の主題の重要な特性または主要な特性を特定することを意図しておらず、特許請求の主題の範囲をいかなる形でも制限するものとして使用されることも意図していない。
本開示の態様は、種々の実施形態についての以下の詳細な説明を添付の図面と関連付けて検討することによりさらに十分に理解することができる。
電子通信のトリアージを行うためにユーザモデルデータをトレーニングする例示の方法のフローチャートである。 例示のネットワーク化されたコンピュータ環境を示す図である。 図2の環境の例示のサーバコンピュータ装置を示す図である。 図2の環境のクライアント装置の例示の論理モジュールを示す図である。 例示のトリアージアプリケーション環境を示す図である。 電子通信のトリアージを行うためにユーザモデルデータを階層的トレーニングする例示の方法のフローチャートである。 例示のトリアージメッセージ環境の第1のビューを示す図である。 図7のメッセージ環境の第2のビューを示す図である。 別の例示のトリアージメッセージ環境の第1のビューを示す図である。
本開示は、コンピュータシステム環境において電子通信のトリアージを行うためのシステムおよび方法を志向している。本明細書で説明するトリアージ技術は、ユーザ固有の電子通信データおよび関連する挙動の分析により、それぞれのユーザがどの通信を重要または非重要とみなす傾向があるのかを判定可能にすることによって、大量の着信する電子通信に関連する問題を軽減する。通信の重要度の評価を使用して、エンドユーザが任意で大量の着信する通信を効率的に処理することを可能にするアプリケーション特性を露出させる。以下に提供する例を議論することによって本開示の種々の態様の適用が、得られるであろうが、それに限定されることはない。
ここで図1を参照すると、電子通信のトリアージを行うためにユーザモデルデータをトレーニングする例示の方法100が示されている。概して、方法100を、サーバ側のプロセスまたはクライアント側のプロセスにより実装することができる。サーバ側のプロセスおよびクライアント側のプロセスの例を、図2から9に関連して以下に説明する。他の実施形態が可能である。例えば、方法100を、サーバ側のプロセスおよびクライアント側のプロセスの両方の機能性を組み込んだ混合様式で実装してもよい。
方法100は収集モジュール105で開始される。収集モジュール105は、通信データを管理するプロセスから、個人または集団などの受信者を対象とした電子通信データを回収するべく構成される。電子通信データは一般的にアイテムと呼ばれる。例示のアイテムには、電子メールメッセージ、音声メールメッセージ、スケジュール予約、SMSメッセージ、IMメッセージ、MMSメッセージ、ウェブ更新、フェイスブックメッセージ、ツイッターフィード、電子文書などが含まれる。他の実施形態も可能である。
動作フローは解析モジュール110に進む。解析モジュール110は、収集モジュール105により回収されたアイテムの複数のアイテム特性を抽出するべく構成される。アイテム特性は概して、アイテムのコンテンツについての理解に基づき直接抽出または推測可能な、アイテムの任意の考え得る特徴である。
例えば、アイテム特性には、アイテムの送信者および/または受信者に関する特徴を含むことができ、例えば、送信者/受信者の識別(例えば、SMTPアドレス)、送信者/受信者の関係(例えば、上司)、送信者/受信者のドメインまたは会社(例えば、マイクロソフト)、送信者/受信者のタイプ(例えば、オートメール)、送信者/受信者の場所(例えば、緊急治療室)、送信者/受信者の装置(例えば、スマートフォン)、アイテム送信の特徴(例えば、CC)などがある。他の例示のアイテム特性には、受信者および/または状況の特徴に関する特徴が含まれ、例えば、送信者/受信者の現在または未来の状態(例えば、会議中)、送信者/受信者の現在または未来の場所(例えば、ミネアポリス)などがある。
他の例示のアイテム特性には、アイテムのタイプ(例えば、電子メールメッセージ)、添付ファイルの有無(例えば、はい)、アクセス制御情報(例えば、DRM)、優先度情報(例えば、高)、時間情報(例えば、受信の日/時間)などに関する特徴が含まれる。他の例示のアイテム特性には、会話開始の特徴(例えば、私が開始したか?)、会話貢献の特徴(例えば、私からの貢献か?)、アイテムの階層的特徴(例えば、会話の中で最新か?)などに関する特徴が含まれる。他の例示のアイテム特性には、件名の接頭語(例えば、RE)、件名のキーワード(例えば、お読み下さい)などに関する特徴が含まれる。他の例示のアイテム特性には、アイテムの本体またはアイテムの添付ファイルに関する特徴、例えば、テキストのキーワード(例えば、重要)、ハイパーリンクのコンテンツ(例えば、はい−ハイパーリンクを含みます)などが含まれる。
さらに他のアイテム特性が可能である。
動作フローは次に、取得モジュール115に進む。取得モジュール115は、収集モジュール105により回収されたアイテムの各対象の受信者に固有のモデルデータを回収するべく構成される。以下の例示の検討において、対象の受信者には単一の個人が含まれ、また、受信者固有のモデルデータは、取得モジュール115によりデータ記憶装置から回収される。例示のデータ記憶装置については、図2に関連して以下に説明する。
例示の諸実施形態において、受信者固有のモデルデータには、複数のアイテム特性(例えば、解析モジュール110により抽出されたアイテム特性に対応する)が含まれ、そのそれぞれに、受信者がそれぞれのアイテム特性に重要度を関連付ける傾向があるか、非重要度を関連付ける傾向があるかを示す指標を具現化する重みが割り当てられる。例えば、受信者が、上司から送信される電子メールメッセージを読む傾向があり、かつ、自動サービスから送信される電子メールメッセージを無視する傾向がある場合、上司に関連する受信者用のモデルデータ内のアイテム特性には、自動サービスに関連するアイテム特性よりも大きな重み付け因子が含まれるかもしれない。概して、重みまたは重み付け因子には、数値、閾値などのような任意の形式の定量的尺度を含むことができる。例えば、上記で検討したような上司に関連するアイテム特性には重み「7」が含まれるかもしれず、一方、自動サービスに関連するアイテム特性には重み「3」が含まれるかもしれない。
動作フローは次に、実装モジュール120に進む。実装モジュール120は、分類モデルのモデル基準を取得モジュール115により回収された受信者固有のモデルデータに適用するべく構成される。図6について以下でさらに詳細に説明するように、多数の関連するユーザからのトレーニングデータを分析することから計算されるプロトタイプのモデルデータを使用する階層的トレーニングプロセスを介して、受信者固有のモデルデータを形成し、より正確にかつより効率的に単一ユーザ(すなわち、受信者)用のモデルをトレーニングすることが可能である。他の実施形態が可能である。
実装モジュール120はさらに、分類モデルのタイプに基づく1つまたは複数の予測を生成するべく構成される。例示のモデル基準には、分類モデルに関係する受信者固有のモデルデータのアイテム特性の指定、および、さらに、関係があると評価されるアイテム特性に関連する重みの使用を指定するアルゴリズムが含まれる。
例示の諸実施形態において、分類モデルが「重要度」モデルに対応し、それにおいて、実装モジュール120は、受信者固有のモデルデータからの関係するアイテム特性を関連する重みに相関させ、また、それらの重みの組み合わせを使用して、予測されるアイテムの重要度を生成する。予測されるアイテムの重要度には概して、収集モジュール105により回収されたアイテムが対象の受信者にとって重要であるか非重要であるかについての予測が含まれる。他の実施形態が可能である。例えば、いくつかの実施形態において、分類モデルは「緊急度」モデルに対応し、それにおいて、実装モジュール120は、受信者固有のモデルデータからの関係するアイテム特性を関連する重みに相関させ、また、それらの重みの組み合わせを使用して、対象の受信者ができるだけ早く考慮または注目すべきアイテムを示す、予想されるアイテムの緊急度を生成する。さらに他の実施形態が可能である。
重要度モデルの例示のアプリケーションには、新しい電子メールメッセージの重要度の重み全体を計算すること、そして、電子メールメッセージが受信者にとって重要であるかどうかを計算された重要度の重みに基づき判定することが含まれる。例えば、「1から10」のスケールでは、計算された重要度の重み「4」は、電子メールメッセージが中程度に重要であると指定することができ、計算された重要度の重み「7.8」は、電子メールメッセージが非常に重要であると指定することができ、計算された重要度の重み「−6」は、電子メールメッセージが非重要であると指定することができる。他の実施形態が可能である。例えば、いくつかの実施形態において、新しい電子メールメッセージの重要度の重み全体は、電子メールメッセージの相対的な重要度を指定する「0」から「1」の範囲の確率として計算される。例えば、「0」から「0.2」の範囲の閾値は、電子メールメッセージの相対的な重要度が「非重要」すなわち「低い」と指定することができ、「0.2」から「0.8」の範囲の閾値は、電子メールメッセージの相対的な重要度が「普通」であると指定することができ、「0.8」から「1」の範囲の閾値は、電子メールメッセージの相対的な重要度が「重要」すなわち「高い」と指定することができる。さらに他の実施形態が可能である。
動作フローは次に、記憶モジュール125に進む。記憶モジュール125は概して、取得モジュール115により回収された受信者固有のモデルデータ、および、実装モジュール120により生成された1つまたは複数の予測を記憶するべく構成される。
動作フローは次に、第1のトレーニング分岐130と第2のトレーニング分岐135との間で分岐する。例示の第1のトレーニング分岐130には、第1の監視モジュール140および第1の抽出モジュール145が含まれる。第2のトレーニング分岐135には、第2の監視モジュール150および第2の抽出モジュール155が含まれる。概して、第1のトレーニング分岐130内の動作フローは、第2のトレーニング分岐135に対して独立している。
ここで第1のトレーニング分岐130を参照すると、第1の監視モジュール140は、収集モジュール105により回収されたアイテムに対する受信者の挙動を監視かつ取得するべく構成される。例示の受信者の挙動には、アイテムに関する任意の形式の直接観察可能な動作が含まれる。そのような観察可能な動作は、1つの動作または複合した動作であってよい。電子メールメッセージの例において、受信者の挙動は、電子メールメッセージを開く、電子メールメッセージを削除する、および電子メールメッセージを転送するなどの単一の動作に関連してよい。複合した動作には、簡単に電子メールメッセージに目を通してからそれをすぐに削除する、送信規則を介してフォルダに自動的にファイルされる電子メールメッセージにアクセスしないで放置するなどの動作を含んでよい。
第1の監視モジュール140は、所定の期間dTの間、収集モジュール105により回収されたアイテムに対する受信者の挙動を監視かつ取得するべく構成される。例示の期間には、1時間の内のごく一部、1時間、1日、1週間などが含まれる。所定の期間dTが過ぎた後、第1の監視モジュール140は、取得した受信者の挙動を第1の抽出モジュール145に転送する。他の諸実施形態において、第1の監視モジュール140は加えて、相対的な重要度を指定する受信者の動作または所定の期間の経過後のいずれか先に発生する方に基づき、収集モジュール105により回収されたアイテムに対する受信者の挙動を監視かつ取得するべく構成される。相対的な重要度を指定する受信者の動作の例には、重要度を指定する「返信した」、非重要度を指定する「簡単に目を通してすぐに削除した」などが含まれる。以下でさらに詳細に説明するように、受信者の動作および所定の期間の経過の組み合わせに基づき受信者の挙動を取得することにより、分類モデルを素早くかつ効率的に更新することが可能となる。
第1の抽出モジュール145は、取得した受信者の挙動を利用して挙動検証データを生成するべく構成される。概して、挙動検証データには、実装モジュール120により生成された予測されるアイテムの重要度が、受信者が実際にアイテムを重要であると考えるか、非重要であると考えるかと一致するかどうかについての情報が含まれる。第1の抽出モジュール145は続いて、挙動検証データを更新モジュール160に転送する。更新モジュール160は、受信者固有のモデルデータの複数のアイテム特性に関連する重みを調整するべく構成される。例えば、電子メールメッセージの例において、挙動検証データに、受信者が上司から送信される電子メールメッセージを重要であると考えると強く示唆する情報が含まれる場合、上記で検討したような上司に関連するアイテム特性は、重み「7」から重み「9」に調整または再調整されるかもしれない。他の実施形態が可能である。
例示の諸実施形態において、動作フローは、所定の時間遅延dTの後、第1の抽出モジュール145から第1の監視モジュール140に戻る。第1のトレーニング分岐130内におけるループ処理のフローは、受信者の動作に基づき受信者固有のモデルデータを継続的に微調整することに役立つ。
ここで第2のトレーニング分岐135を参照すると、第2の監視モジュール150は、収集モジュール105により回収されたアイテムの重要度に関する受信者フィードバックを監視かつ取得するべく構成される。例示の受信者フィードバックには、アイテムの重要度に関する受信者からの任意の形式の明示的なフィードバックが含まれる。電子メールメッセージの例において、明示的なフィードバックには、実装モジュール120により生成された予測されるアイテムの重要度の受信者による修正が含まれ、例えば、実装モジュール120が誤って電子メールメッセージが重要であるとするフラグを立てた時に、電子メールメッセージを非重要であるとマーク付けすることができる。他の実施形態が可能である。
例えば、他の明示的なフィードバックには、重要度に関係する特定の処理規則または処理規則の校正の有効化または無効化が含まれ、例えば、アイテムの重要度の指標として送信者の会社を使用することを無効にすることができる。他の明示的なフィードバックには、重要度のレベルの閾値の設定が含まれ、例えば、相対的な重要度が閾値の重みより大きい時だけアイテムを重要であると定義することができる。他の明示的なフィードバックには、既存の処理規則のカスタマイズまたは新しい処理規則の定義付けが含まれ、例えば、配偶者から送信される文字列「911」を含む電子メールメッセージには緊急性があり重要であるというフラグを立てることができる。さらに他の実施形態が可能である。
第2の監視モジュール150は、所定の期間dT(例えば、1時間、1日、1秒など)、収集モジュール105により回収されたアイテムに対する受信者フィードバックを監視かつ取得するべく構成される。所定の期間dTが過ぎた後、第2の監視モジュール150は、取得した受信者フィードバックを第2の抽出モジュール155に転送する。他の実施形態が可能である。
第2の抽出モジュール155は、取得した受信者フィードバックを利用してフィードバック検証データを生成するべく構成される。いくつかの実施形態において、フィードバック検証データには、実装モジュール120により生成された予測されるアイテムの重要度が、受信者が実際にアイテムを重要であると考えるか、非重要であると考えるかと一致するかどうかについての明示的な指定が含まれる。第2の抽出モジュール155は続いて、フィードバック検証データを更新モジュール160に転送する。本例示の事例において、更新モジュール160は、受信者フィードバックに基づき受信者固有のモデルデータの複数のアイテム特性に関連する重みを調整するべく構成される。例えば、電子メールメッセージの例において、フィードバック検証データに、受信者が自動サービスから送信される電子メールメッセージを非重要であると強く考えるという指定が含まれる場合、上記で検討したような自動サービスに関連するアイテム特性は重み「5」から重み「1」に調整されるかもしれない。他の実施形態が可能である。
動作フローは、所定の時間遅延dTの後、第2の抽出モジュール155から第2の監視モジュール150に戻る。第2のトレーニング分岐135内におけるループ処理のフローは、受信者フィードバックに基づき受信者固有のモデルデータを継続的に微調整することに役立つ。
いくつかの実施形態において、受信者固有のモデルデータは、第1のトレーニング分岐130および第2のトレーニング分岐135を介して受け取った情報に基づき別々に更新される。例えば、第2のトレーニング分岐135により受け取った情報に関連する信頼性に、第1のトレーニング分岐130により受け取った情報よりも高い信頼性を割り当てることができる。このように、第2のトレーニング分岐135により受け取った情報(すなわち、明示的なフィードバック)は、第1のトレーニング分岐130により受け取った情報(すなわち、黙示的フィードバック)よりも強い影響を、受信者固有のモデルデータのトレーニングに与えるであろう。例えば、いくつかの実施形態において、第2のトレーニング分岐135により受け取った情報は、第1のトレーニング分岐130により受け取った情報より完全に優先される。他の実施形態が可能である。
加えて、第1のトレーニング分岐130により受け取った情報には、重要度に関する信頼性の観点から可変の強度を割り当てて、どの情報が受信者固有のモデルデータのトレーニングにより強い影響を与えるのかを判定することができる。例えば、「返信する」などの観察される受信者の動作には、「詳細に読む」よりも高い強度を割り当ててよく、「詳細に読む」には「放置する」よりも高い強度を割り当ててよく、「放置する」には「すぐに読む」よりも高い強度を割り当ててよいなどである。他の実施形態が可能である。
図2から9について以下でさらに詳細に説明するように、例示の方法100では、幅広いクライアント側のアプリケーション特性を有効にして、エンドユーザが任意で大量の着信する通信のトリアージを効率的に行うことを可能にする。例示のクライアント側のアプリケーション特性には、アイテム内のキーコンテンツをハイライトまたは強調するハイライト特性または強調特性が含まれる。そのようなハイライト特性は、特定のアイテムを明確にマーク付けすることまたはコンテンツを通信に挿入することであるため、与える影響は低く、ユーザが短時間で通信のトリアージを行うことには役立つが、クライアント側のアプリケーションの機能性を実質上変更はしない。
別の例示のクライアント側のアプリケーション特性には、ユーザが最も重要な通信のみを素早く閲覧することを可能にするクイックビュー特性が含まれる。別の例示のクライアント側のアプリケーション特性には、最も重要な通信に従ってソートされたビューを提供する自動優先順位付け特性が含まれる。別の例示のクライアント側のアプリケーション特性には、特定の期間後に対処されていない通信を自動的にファイルする、既読としてマークを付ける、または削除するエージアウト特性が含まれる。別の例示のクライアント側のアプリケーション特性には、重要とみなされる通信に基づき新しい通信および/またはコンテンツ通知を選択的に提供するべく構成される通知特性が含まれる。いくつかの実施形態において、通知特性は、ユーザの状況に高感度である。別の例示のクライアント側のアプリケーション特性には、通信のコンテンツの概要を提供して通信について進める動作をユーザが素早く決定するのに役立つ概要特性が含まれる。別の例示のクライアント側のアプリケーション特性には、電子メールデータソース、文書データソース、ウェブベースのデータソース、およびソーシャルネットワーキングのデータソースなどの異なるデータソースにわたって重要な通信の統合ビューを提供するダッシュボード特性が含まれる。
さらに他のクライアント側のアプリケーション特性も同様に可能である。
ここで図2を参照すると、本開示の態様を実装することができる例示のネットワーク化されたコンピュータ環境200が示されている。ネットワーク化されたコンピュータ環境200には、クライアント装置205、サーバ装置210、記憶装置215、およびネットワーク220が含まれる。他の実施形態が可能である。例えば、ネットワーク化されたコンピュータ環境200には概して、必要に応じてより多くのまたは少ない装置、ネットワーク、および他の構成要素を含んでよい。
クライアント装置205およびサーバ装置210は、図3に関連して以下で説明するような汎用コンピュータ装置である。例示の諸実施形態において、サーバ装置210はビジネスプロセスを実装するビジネスサーバである。例示のビジネスプロセスには、メッセージングプロセス、コラボレーションプロセス、データ管理プロセスなどが含まれる。マイクロソフト社のExchange Serverは、電子メール、スケジューリング、および連絡先と職務の特性の支援、携帯電話およびウェブベースでの情報へのアクセスの支援、ならびにデータ記憶の支援において、メッセージングおよびコラボレーションのビジネスプロセスを実装するビジネスサーバの一例である。SHAREPOINT(登録商標)コラボレーションサーバもマイクロソフト社によるものであり、コラボレーション、ファイル共有、およびウェブ公開の支援においてビジネスプロセスを実装するビジネスサーバの一例である。ビジネスプロセスを実装する他のビジネスサーバが可能である。
いくつかの実施形態において、サーバ装置210には、「ファーム」構成において共に動作する複数の相互接続されるサーバ装置が含まれ、それらによりビジネスプロセスを実装する。さらに他の実施形態が可能である。
記憶装置215は、リレーショナルデータベースまたは任意の他のタイプの永続的データ記憶装置などのデータ記憶装置である。記憶装置215では、データを所定のフォーマットで記憶し、それによりサーバ装置210は、記憶装置に記憶されたデータのクエリ、修正、および管理が可能である。そのようなデータ記憶装置の例には、メールボックスストアおよびアドレスサービス、例えば、マイクロソフト社のACTIVE DIRECTORY(登録商標)ディレクトリサービスなどが含まれる。記憶装置215の他の実施形態が可能である。
ネットワーク220は、1つまたは複数の装置間のデータ転送のための双方向データ通信経路である。図示の例において、ネットワーク220は、クライアント装置205とサーバ装置210との間のデータ転送のための通信経路を確立する。概して、ネットワーク220は、多数の無線または配線接続のWAN、LAN、インターネット、または他のパケットベースの通信ネットワークのうちのいずれかとすることができ、それによりネットワーク化されたコンピュータ環境200の要素間でのデータを転送することができる。ネットワーク220の他の実施形態が可能である。
ここで図3を参照すると、図2のサーバ装置210がさらに詳細に示されている。上記で述べたように、サーバ装置210は汎用コンピュータ装置である。例示の汎用コンピュータ装置には、デスクトップコンピュータ、ラップトップコンピュータ、携帯情報端末、スマートフォン、サーバ、ネットブック、ノートブック、携帯電話、タブレット、テレビ、ビデオゲーム機などが含まれる。
サーバ装置210には、少なくとも1つの処理装置305、およびシステムメモリ310が含まれる。システムメモリ310は、サーバ装置210または別のコンピュータ装置の動作を制御するためのオペレーションシステム315を記憶することができる。オペレーションシステム315の一例には、マイクロソフト社のWINDOWS(登録商標)オペレーションシステム、または、例えばExchange Server、SHAREPOINT(登録商標)コラボレーションサーバなどのサーバがある。
システムメモリ310はまた、1つまたは複数のソフトウェアアプリケーション320を含んでよく、プログラムデータを含んでもよい。ソフトウェアアプリケーション320には、多くの異なるタイプの単機能および複数機能のプログラムを含んでよく、例えば、電子メールプログラム、スケジューリングプログラム、インターネットブラウジングプログラム、スプレッドシートプログラム、情報追跡報告のプログラム、ワープロプログラム、他多数などがある。複数機能プログラムの一例には、マイクロソフト社のOfficeアプリケーション一式がある。
システムメモリ310には、物理的コンピュータ可読記憶媒体を含むことができ、例えば、磁気ディスク、光ディスク、またはテープなどがある。そのような追加的な記憶装置が図3において着脱可能記憶装置325および着脱不可能記憶装置330により例示されている。コンピュータ可読記憶媒体には、コンピュータ可読命令、データ構造、プログラムモジュール、またはその他のデータなどの情報を記憶するための任意の方法または技術で実装された物理的揮発性および不揮発性、着脱可能および着脱不可能の媒体を含むことができる。コンピュータ可読記憶媒体には含まれるものにはまた、RAM、ROM、EEPROM、フラッシュメモリもしくは他のメモリ技術、CD−ROM、DVD(digital versatile disk)もしくは他の光記憶装置、磁気カセット、磁気テープ、磁気ディスク記憶装置もしくは他の磁気記憶装置、または、所望の情報を記憶するために使用可能かつサーバ装置210によりアクセス可能な任意の他の媒体があるが、これらに限定されない。任意のそのようなコンピュータ記憶媒体は、サーバ装置210の一部またはサーバ装置210の外付けであってよい。
通信媒体はコンピュータ可読記憶媒体とは区別される。通信媒体は、典型的にはコンピュータ可読命令、データ構造、プログラムモジュール、または、搬送波もしくは他の伝送機構などの変調データ信号内の他のデータにより具現化することができ、任意の情報配信媒体を含む。用語「変調データ信号」は、信号の1つまたは複数の特徴が信号内の情報を符号化するような様式で設定または変更される信号を意味する。例として、通信媒体には、有線ネットワークまたは直接有線接続などの有線媒体、ならびに、音響、RF、赤外線、および他の無線媒体などの無線媒体が含まれる。
サーバ装置210はまた、任意の数および任意のタイプの入力装置335および出力装置340を有することができる。例示の入力装置335には、キーボード、マウス、ペン、音声入力装置、タッチ入力装置などが含まれる。例示の出力装置340には、ディスプレイ、スピーカ、プリンタなどが含まれる。サーバ装置210にはまた、分散コンピュータシステム環境においてネットワーク(例えば、図2のネットワーク220)上で他のコンピュータ装置との通信を可能にするべく構成される通信接続345を含むことができる。
例示の諸実施形態において、図2のクライアント装置205は上述のサーバ装置210と同様に構成される。加えてここで図4を参照すると、図2のクライアント装置205はまた、サーバ装置210に対する1つまたは複数の異なるタイプのクライアントインターフェースを含むべく構成される。図示した例において、クライアント装置205には、ローカルクライアント405、ウェブアクセスクライアント410、モバイルアクセスクライアント415、および音声アクセスクライアント420が含まれる。サーバ装置210に対する他のタイプのクライアントインターフェースも同様に可能である。
ローカルクライアント405は、サーバ装置210へのインターフェースとしての役割を担い、クライアント装置205上で実行されるアプリケーション一式の一部である専用のメッセージング・コラボレーションクライアントとして構成される。一実施形態において、ローカルクライアント405にはOUTLOOK(登録商標)メッセージクライアントが含まれ、これは、Microsoft Officeアプリケーション一式の一部である電子メールアプリケーションである。ユーザは、OUTLOOK(登録商標)メッセージングクライアントを用いて電子メールの作成、電子メールとの情報のやりとり、電子メールの送信および受信を行うことができる。ローカルクライアント405の他の実施形態が可能である。
ウェブアクセスクライアント410は、インターネットなどのネットワーク接続を使用してリモートでサーバ装置210にアクセスするべく構成される。一実施形態において、ウェブアクセスクライアント410は、Exchange ServerのOutlook Web Accessウェブメールサービスである。本例示の実施形態において、クライアント装置205は、ウェブブラウザを使用してOutlook Web Accessを介してExchange Serverに接続する。これにより、ユーザインターフェースがOUTLOOK(登録商標)メッセージングクライアントのインターフェースと同様の状態になり、そこではユーザは電子メールの作成、電子メールとの情報のやりとり、電子メールの送信および受信を行うことができる。ウェブアクセスクライアント410の他の実施形態が可能である。例えば、ウェブアクセスクライアント410を、対応するコラボレーションサービス、ファイル共有サービス、およびウェブ公開サービスにアクセスするためのSHAREPOINT(登録商標)コラボレーションサーバに接続するべく構成してよい。ウェブアクセスクライアント410のさらに他の実施形態が可能である。
モバイルアクセスクライアント415は、サーバ装置210に対する別のタイプのクライアントインターフェースである。一実施形態において、モバイルアクセスクライアント415には、ACTIVESYNC(登録商標)同期ソフトウェアによるモバイルアクセス、または、VistaまたはWindows7用のWindows Mobileデバイスセンタ(全てマイクロソフト社)が含まれる。ユーザは、ACTIVESYNC(登録商標)同期ソフトウェアによるモバイルアクセスのようなモバイルアクセスクライアントを使用して、モバイル装置とExchange Serverとの間でメッセージを同期させることができる。例示のモバイル装置には、携帯電話、スマートフォン、携帯情報端末などが含まれる。モバイルアクセスクライアント415の他の実施形態が可能である。
音声アクセスクライアント420はサーバ装置210に対するさらに別のタイプのクライアントインターフェースである。いくつかの実施形態において、音声アクセスクライアント420には、Exchange ServerでサポートされるExchange Unified Messagingが含まれる。Exchange Unified Messagingでは、ユーザは電子メールおよび音声メールの受信トレイを1つ有する。音声メールは、OUTLOOK(登録商標)メッセージクライアントの受信トレイに直接配信される。音声メールを含むメッセージには添付ファイルも含まれる。音声アクセスクライアント420の他の実施形態が可能である。
ここで図5を参照すると、コンピュータシステム環境において電子通信のトリアージを行うためのシステムおよび方法を実装するべく構成される例示の動作環境500が示されている。動作環境500を、サーバコンピュータ装置上で実行されるサーバ側のプロセス、または図1から4に関連して上述したようなクライアントコンピュータ装置上で実行されるクライアント側のプロセスにより実装することができる。他の実施形態が可能である。例えば、動作環境500を、サーバ側のプロセスおよびクライアント側のプロセスの両方の機能性を組み込んだ混合様式で実装してもよい。電子通信のトリアージを行うための例示のシステムおよび方法の実装におけるそのような柔軟性は、多くの態様において有益であり、例えば、最適なリソースの配分、負荷のバランスなどを可能にすることができる。
例示の動作環境500には、データコレクタ505、データアナライザ510、データストア515、およびクエリアナライザ520が含まれる。
データコレクタ505は、様々な電子通信および関連するソースからの未加工のアイテムデータ、例えば、電子メールデータ、音声メールデータ、スケジュールデータ、SMSデータ、IMデータ、MMSデータ、ウェブページ更新データ、ソーシャルネットワークデータ、電子文書データなどを収集して統合するべく構成される。電子通信および関連するソースが典型的にはデータを異なる形式でパッケージ化して送信するため、データコレクタ505には、これらの相違点をサポートする複数の論理データコレクタモジュール、例えば、通信サーバデータコレクタ525、ウェブサーバデータコレクタ530、およびアプリケーションサーバデータコレクタ535を含んでよい。他のタイプの論理データコレクタモジュールが可能である。
データアナライザ510には、アイテム解析モジュール540、モデル適用モジュール545、およびデータトレーニングモジュール550が含まれる。アイテム解析モジュール540は、データコレクタ505により回収されたそれぞれのアイテムデータの複数のアイテム特性を抽出するべく構成される。例示の方法100の文脈において上記で検討したように、アイテム特性は概して、それぞれの通信データのコンテンツの理解に基づき直接抽出または推測可能な通信データの任意の特徴である。
モデル適用モジュール545は、データコレクタ505により回収されたそれぞれのアイテムデータに対応する対象の受信者の受信者固有のモデルデータを回収するべく構成される。モデル適用モジュール545は加えて、分類モデルのモデル基準を受信者固有のモデルデータに適用するべく、かつ、分類モデルのタイプに基づく1つまたは複数のアイテム固有の予測を生成するべく構成される。一実施形態において、分類モデルは重要性に基づくモデルである。他の実施形態が可能である。
データトレーニングモジュール550は、データコレクタ505により回収されたそれぞれのアイテムデータに対応する対象の受信者に関連する、受信者の挙動および明示的な受信者フィードバックを監視かつ取得するべく構成される。データトレーニングモジュール550は加えて、受信者の挙動および明示的な受信者フィードバックに基づき、モデル適用モジュール545により回収された受信者固有のモデルデータを調整するべく構成される。
上記で述べたように、動作環境500にはクエリアナライザ520も含まれる。概して、クエリアナライザ520は、クライアント側のアプリケーション特性要求を処理して、エンドユーザが任意で大量の着信する通信のトリアージを効率的に行うことを可能にするべく構成される。本例示の実施形態において、クエリアナライザ520には、第1の特性ポータル555、第2の特性ポータル560、および第3の特性ポータル565が含まれる。
第1の特性ポータル555は、クライアント側のアプリケーション内のキーコンテンツを露出させるためのハイライト特性または強調特性に対応する特性要求をサポートするべく構成され、図7および図8に関連して以下でさらに詳細に説明する。第2の特性ポータル560は、クライアント側のアプリケーションにおいて最も重要と思われるアイテムの素早い閲覧を提供するためのクイックビュー特性に対応する特性要求をサポートするべく構成され、これについても図7および図8に関連して以下で説明する。第3の特性ポータル565は、重要と思われるアイテムに基づきクライアント側のアプリケーションにおいて選択的な通知を提供するための通知特性に対応する特性要求をサポートするべく構成され、図9に関連して以下でさらに詳細に説明する。クエリアナライザ520の他の実施形態が可能である。
例示の諸実施形態において、データコレクタ505により収集されたデータおよび/またはデータアナライザ510により処理されたデータを、データストア515に記憶することができる。加えて、データストア515は、クエリアナライザ520により処理された検索および結果をサポートかつ記憶する。
ここで図6を参照すると、電子通信のトリアージを行うためにユーザモデルデータを階層的にトレーニングする例示の方法600が示されている。概して、方法600を、サーバ側のプロセスまたはクライアント側のプロセスにより実装することができる。サーバ側のプロセスおよびクライアント側のプロセスの例については、図1から5に関連して上記で説明した。他の実施形態が可能である。例えば、方法600を、サーバ側のプロセスおよびクライアント側のプロセスの両方の機能性を組み込んだ混合様式で実装してもよい。
方法600は、ユーザモデルデータと呼ばれるユーザ固有の挙動および選好性について最適な理解を提供するべく構成される。ユーザモデルデータは、ユーザ固有の推論のセットに基づく。本開示に従う例示の推論は、観察されたユーザの挙動および明示的なユーザフィードバックに基づく特定のアイテム属性の相対的な重要度および非重要度に対応する。一実施形態において、推論には、アイテム属性、属性値、属性重み、および属性信頼性が含まれる。ユーザ固有の通信データ、挙動およびフィードバックに基づき取得することができるユーザ固有の推論の例示のセットには以下のものが含まれる。
Figure 2014508980
推論のアイテム属性は、特定の1つの通信の特徴である。例示のアイテム属性には、送信者関係、追跡を含む、およびアイテムトピックが含まれる。他の実施形態が可能である。例えば、他の属性には、アイテム送信者、アイテムトピック、アイテム送信時刻、アイテム型などが含まれる。特定の属性値(例えば、「送信者関係」=「管理者」)の重要度が、ユーザ挙動を観察することにより、それが特定の属性値に関係するものであるとして評価される。例示のユーザ挙動には、ユーザが管理者から送信されるアイテムに対して重要度を表す挙動(例えば、開いたアイテムにかなり長い時間を費やしている)を示す傾向があるかどうかを観察することを含んでよい。図示した例において、属性重みは尺度のある数値で表される。他の実施形態が可能である。
推論の信頼性格付けは、所与のアイテム属性値についての特定の重要度の格付けに関連する信頼性に対応する。図示した例において、推論「送信者関係」=「管理者」の信頼性格付けは、比較的高い(すなわち、78%)。推論「アイテムトピック」=「釣り」の信頼性格付けは比較的低い(すなわち、23%)。いくつかの実施形態において、属性値のいくつかの事例が、一致する挙動に関連して観察される場合に、推論の信頼性格付けを高くしてよい。属性値の事例がほとんど観察されない、属性値の事例が最近ではない、および/または、ユーザ挙動が一致しなかった場合には、推論の信頼性格付けを低くしてもよい。他の実施形態が可能である。
いくつかの実施形態において、ある推論は、複数の関連するアイテム属性と共依存してよく、または複数の関連するアイテム属性で構成してもよい。共依存する推論の例には、ユーザが多数の電子メールメッセージを同僚の「アレックス」から受信するというシナリオが含まれる。例示の電子メールメッセージのいくつかは、ユーザが含まれている大型の配信リスト(「DL」)に送信され、他は直接ユーザに送信される。一シナリオにおいて、「アレックス」が電子メールメッセージをユーザに配信リストを介して送信する場合、ユーザはそれらのアイテムを非重要なものとして扱う傾向がある。しかし、「アレックス」が電子メールメッセージをユーザに直接送信する場合、ユーザはそれらのアイテムを非重要なものとして扱う傾向がある。例示のシナリオを表す2つの関連する共依存の推論が存在する。第1の推論では、属性「送信者」=「アレックス」および「受信者」=「DL」が含まれ、比較的低い属性重み(例えば、「4」)および高い信頼性格付け(例えば、80%)を提示することができる。第2の推論では、「送信者」=「アレックス」および「受信者」=「受信者」が含まれ、比較的高い属性重み(例えば、「8」)と高い信頼性格付け(例えば、80%)を提示することができる。概して、任意の共依存推論のいずれも、任意の数の任意の合成属性で構成してよい。
例示の諸実施形態において、特定のユーザについての重みのセットのコンパイルおよび計算をトレーニングと呼ぶ。例示の方法600は、ユーザモデルデータを複数の段階でトレーニングするべく構成される。具体的に、動作605は、プロトタイプのユーザモデルに基づき新しいユーザについての一般化デフォルト重みのセットを生成する第1の段階「ブートストラップ」動作に対応する。デフォルト重みのセットは、デフォルトのユーザモデルデータを表す。例示のプロトタイプのユーザモデルには、共通の職業、共通の趣味などの共通の特徴を持つ大規模なサンプルユーザ集団に対して、開発、プロトタイプの製造、およびテストを行った重要度モデルが含まれる。
動作605における第1の段階「ブートストラップ」に続き、ユーザ固有の情報を取得して、デフォルト重みのセットを更新および調整し、特定のユーザについてのデフォルトのユーザモデルを個人用に作成する。例えば、動作フローは、利用可能な履歴ログ挙動データ、フィードバックデータ、および通信データを評価する第2の段階「クロール」動作に対応する動作610に進む。例示の履歴ログ挙動データには、メッセージの送信、再送信、または転送などの電子メールメッセージ「作成」挙動が含まれる。他の履歴ログ挙動データおよび通信アイテムが可能であり、システム実装に固有であってよい。
動作605における第2の段階「クロール」に続き、動作フローは、デフォルトのユーザモデルデータの一般化デフォルト重みのセットを更新して個人用の重みのセットを形成することに対応する動作615に進む。個人用の重みのセットはユーザ固有のモデルデータに対応する。
動作615におけるユーザ固有のモデルデータの形成に続き、動作フローは、図1に関連して上述した例示の第1のトレーニング分岐130の機能性と同様に、アイテムに対するユーザ固有の挙動およびフィードバックのリアルタイムでの監視および取得に対応する第3の段階「オンライン」動作620に進む。動作620を、動作615にて形成された個人用の重みのセットを更新および調整するべく実装する。
例示の諸実施形態において、動作フローは、所定の時間遅延dTの後、動作615に戻る。動作615と動作620との間のループ処理のフローを、ユーザ固有のモデルデータの個人用の重みのセットを継続的に微調整するために実装する。そのようなループ処理のフローは多くの態様において有利である。例えば、ある重みを、ユーザが仕事を変えるまたは上司が変わる場合などの時の経過と共に変更または廃止してよい。例示の諸実施形態において、動作620にて取得した情報および動作615に対応する更新により、時の経過と共にそれぞれの変更を獲得し、個人用の重みのセットに適合させる。
例示の諸実施形態において、処理フローは動作615と動作620との間の反復に続き評価動作625に進む。評価動作625は、ユーザ固有のモデルデータの個人用の重みのセットが、新しいアイテムを重要であるとラベル付けすることに関するトリアージ特性などの、関連する分類に基づく機能性を露出させるのに十分であるかどうかの判定に対応する。
ユーザ固有のモデルデータの個人用の重みのセットが関連する分類に基づく機能性を露出させるのに不十分であると、評価動作625が判定する場合、動作フローは分岐して個人用の重みのセットをさらに微調整及び調整するために動作620に戻る。
ユーザ固有のモデルデータの個人用の重みのセットが関連する分類に基づく機能性を露出させるのに十分であると、評価動作625が判定する場合、動作フローは分岐して個人用の重みのセットの初期トレーニングの完了に対応する動作630に進む。例示の諸実施形態において、関連する分類に関するトリアージ特性は、動作630にて有効となり、クライアント側のアプリケーション特性要求を介してアクセス可能となるため、エンドユーザが任意で大量の着信する通信のトリアージを効率的に行うことが可能となる(すなわち、第1の特性ポータル555、第2の特性ポータル560、第3の特性ポータル565)。概して、動作630における個人用の重みのセットの初期トレーニングの完了は、ユーザから何ら能動的または直接的入力がなくても得られる。
ここで図7を参照すると、本開示に従う第1の例示のメッセージ環境700が示されている。概して、メッセージ環境700は、OUTLOOK(登録商標)メッセージングクライアントなどの通信アプリケーションに関連する電子メールメッセージアプリケーションである。他の実施形態が可能である。
例示の諸実施形態において、メッセージ環境700には、フォルダペイン705、リストペイン710、および表示ペイン715が含まれる。例示のフォルダペイン705には、電子メールメッセージなどのデータを記憶するために使用されるフォルダ720aから720dのリストが含まれる。図示した例において、フォルダ720cが選択され、電子メールメッセージ725aから725eのリストとしてリストペイン710に表示されている。
図示した例において、電子メールメッセージ725aが第1の重要度マーク730によりハイライトされ、電子メールメッセージ725bが第2の重要度マーク735によりハイライトされている。概して、第1の重要度マーク730は、電子メールメッセージ725aを「Sheila Wu」から送信されたという理由で重要であると指定する。加えて、電子メールメッセージ725aを、重要であるという理由で表示ペイン715内に第1のクイックビュー740として表示してもよい。本例示の実施形態において、第1のクイックビュー740は、電子メールメッセージ725aのコンテンツ745および「Sheila Wu」の画像750を表示するべく構成される。第1の重要度マーク730の形状及び色調は設定可能であり、件名の語「再検討(review)」など、電子メールメッセージ725a内のキーコンテンツの存在を指定してもよい。他の実施形態が可能である。
第2の重要度マーク735は、電子メールメッセージ725bを「Jose Santana」から送信されたという理由で重要であると指定することができる。電子メールメッセージ725bを、重要であるという理由で表示ペイン715内に第2のクイックビュー755として表示してもよい。本例示の実施形態において、第2のクイックビュー755は電子メールメッセージ725bのコンテンツ760を表示するべく構成される。第2の重要度マーク735の形状及び色調は設定可能であり、本文テキストの「迅速に処理して下さい(Expedite)」など、電子メールメッセージ725aのキーコンテンツの存在を指定してもよい。
概して、第1の重要度マーク730および第2の重要度マーク735により、ユーザがそれぞれの電子メールメッセージ725aおよび電子メールメッセージ725bを重要であると素早く認識することが可能となる。第1の重要度マーク730および第2の重要度マーク735の形状および色調は、所望の通り選択することができ、その形状及び色調により、それぞれの電子メールメッセージ725aおよび電子メールメッセージ725bの特定の特徴を指定することができ、さらに、表示ペイン715内における第1のクイックビュー740および第2のクイックビュー755の配置および突出に所望の通りに影響を与えることができる。他の実施形態が可能である。
ここで図8を参照すると、図7のメッセージ環境700が、ユーザモジュール800を含んで示されている。本例示の実施形態において、カーソル805を使用して、第1の重要度マーク730を選択しユーザモジュール800を露出させる。
概して、ユーザモジュール800は、高レベルの透過性をユーザに提供し、フィードバックおよびカスタマイズを可能にするべく構成される。例えば、ユーザモジュール800は、文脈依存的かつ直感的な様式でユーザ推論805aから805cのセットを露出させることが可能である。例示のユーザ推論は、あるアイテム(すなわち、電子メールメッセージ725a)の分類が重要であるまたは非重要であるとどのように判定するのかについての理解を伝達する。ユーザモジュール800は加えて、ユーザがアイテムの重要度を重要から非重要に必要に応じで変更することを可能にする手動調整ボタン810を露出させるべく構成される。例示の諸実施形態において、そのアイテムのアイテム分類ならびに関連するユーザモデルデータを更新するためのそのような能動的フィードバックを、新しいアイテムを分類する時および既存のアイテムを再分類する時に、さらに考慮に入れることができる。
ユーザモジュール800は加えて、推論が正しくないこと、すなわち、一般には正しい推論が特定の電子メールメッセージに誤って適用されたことを指定するフィードバックをユーザが提供することを可能にする推論フィードバックボタン815を露出させるべく構成される。そのような能動的フィードバックは、そのアイテムのアイテム分類ならびに関連するユーザモデルデータの更新に役立つ。加えて、そのような能動的フィードバックを、新しいアイテムを分類する時または既存のアイテムを再分類する時に受け取ることができる。推論フィードバックボタン815はさらに、ユーザが新しい推論を定義する、または特別の「メタ推論」もしくは複数の属性および値に基づく計算済みの共依存推論を定義することを可能にするべく構成される。他の実施形態が可能である。
ユーザモジュール800は加えて、ユーザカスタマイズのためのカスタマイズボタン820を露出させるべく構成される。例示のユーザカスタマイズには、メッセージ環境700内においてあるアイテムに重要であるとマークを付けしなければならない最低限の重要度および/または信頼性格付けを定義するためなどの閾値カスタマイズが含まれる。他の例示のユーザカスタマイズには、メッセージ環境700において幾つのレベルの重要度を定義し露出させるのかについての定義などの階層化(例えば、低、中、高)が含まれる。他の例示のユーザカスタマイズには、メッセージ環境700において相対的な重要度どのように示すのかなどの視覚的表示の定義(例えば、アイコン、プレビューを介して)が含まれる。他の例示のユーザカスタマイズには、特性/アプリケーションに関して露出させるボタンまたはコマンドをユーザが定義することを可能にするなどのツールバー定義が含まれる。そのようなカスタマイズは、装置またはアプリケーションに固有であってよい。他の例示のユーザカスタマイズにはフィードバック定義の粒度が含まれ、それによりどのレベルの能動的フィードバック制御をメッセージ環境700を介して露出させるのかを、ユーザが決定することが可能となる。さらに他の実施形態が可能である。
ここで図9を参照すると、本開示に従う第2の例示のメッセージ環境900が示されている。概して、メッセージ環境900は、マイクロソフト社製造の「スマートトースト」ポップアップメッセージングアプリケーションなどの通知アプリケーションである。他の実施形態が可能である。
例示の諸実施形態において、重要であると評価された新しい電子メールメッセージの受信時に、メッセージ環境900をユーザに対して露出させる。例えば、図7および図8に関連して上述したそれぞれの電子メールメッセージ725aと同様、「Sheila Wu」からの電子メールメッセージの受信時、メッセージ環境900を、第1の重要度マーク730および「Sheila Wu」の画像750を含んで所定の期間表示することができる。メッセージ環境900には、「Sheila Wuからの新着メール」などの識別メタデータ905、および「午後2時まで不在です」などの文脈メタデータ910がさらに含まれる。例示の諸実施形態において、メッセージ環境900は、ユーザに「重要」と評価されたそれらのメッセージ(すなわち、電子メールメッセージ725a)のみを通知し、それらのメッセージがなぜ重要と評価されたのかを素早く示す。メッセージ環境900の他の実施形態もまた可能である。
本明細書で説明した例示の諸実施形態は、ネットワーク化されたコンピュータシステム環境におけるコンピュータ装置での論理演算として実装可能である。論理演算は、(i)コンピュータ装置上で稼働するコンピュータ実装の命令、ステップ、またはプログラムモジュールのシーケンス、および(ii)コンピュータ装置内で稼働する相互接続される論理モジュールまたはハードウェアモジュールとして実装可能である。
例えば、論理演算は、本開示の範囲から逸脱することなく、ソフトウェア、ファームウェア、アナログ/デジタル回路、および/またはその任意の組み合わせにおけるアルゴリズムとして実装可能である。ソフトウェア、ファームウェア、またはコンピュータ命令の同様のシーケンスは、コンピュータ可読記憶媒体上に符号化し記憶させることが可能であり、また、コンピュータ装置間の送信のための搬送波信号内に符号化することも可能である。
本主題を構造的特性および/または方法論的な動作に特有の言語で説明したが、添付の請求項に定義される主題が必ずしも上述の特有の特性または動作に限定されないことは理解されるべきである。むしろ、上述の特有の特性および動作は、請求項を実装する例示の形態として開示されるものである。

Claims (10)

  1. コンピュータシステム環境において電子通信のトリアージを行うための方法であって、
    コンピュータ装置にてデフォルトモデルをトレーニングして受信者固有のモデルを受信者個人用に作成するステップであって、前記デフォルトモデルが、前記受信者と共通の特徴を有するユーザのサンプルに対して調整された複数の重み付けされた因子から形成され、前記受信者固有のモデルが、前記受信者の履歴挙動情報およびフィードバック情報を使用して修正された前記デフォルトモデルから形成されるステップと、
    前記受信者に宛てられたアイテムを前記コンピュータ装置にて傍受するステップと、
    前記アイテムに関連する複数のアイテム特性を前記コンピュータ装置にて抽出するステップと、
    前記受信者固有のモデルを回収するステップであって、前記受信者固有のモデルが前記複数の抽出されたアイテム特性に関連する前記複数の重み付けされた因子を備えるステップと、
    前記複数の重み付けされた因子の組み合わせを形成するステップを含め重要度分類モデルを前記複数の抽出されたアイテム特性に適用するステップと、
    前記複数の重み付けされた因子の組み合わせに基づき、予測されるアイテムの重要度を生成するステップと、
    前記予測されるアイテムの重要度に基づき、前記受信者用の前記アイテムに関連する少なくとも1つのアプリケーション特性を有効にするステップと
    を含むことを特徴とする方法。
  2. 前記受信者の履歴挙動情報およびフィードバック情報に基づき前記複数の重み付けされた因子を調整するステップをさらに含むことを特徴とする請求項1に記載の方法。
  3. 推論訂正、処理規則の定義、閾値定義、および重要度粒度を含む群から選択される受信者カスタマイズを取得することにより、前記デフォルトモデルのトレーニングを継続して前記受信者固有のモデルを個人用に作成するステップをさらに含むことを特徴とする請求項1に記載の方法。
  4. 前記アイテムに関連する受信者の挙動を周期的に取得することにより、前記デフォルトモデルのトレーニングを継続して前記受信者固有のモデルを個人用に作成するステップをさらに含むことを特徴とする請求項1に記載の方法。
  5. 前記アイテムに関連する受信者の挙動を所定の期間周期的に取得して、前記予測されるアイテムの重要度の正確性を評価するステップをさらに含むことを特徴とする請求項4に記載の方法。
  6. 前記取得した受信者の挙動に基づき、前記複数の重み付けされた因子および前記予測されるアイテムの重要度の少なくとも1つを調整するステップをさらに含むことを特徴とする請求項5に記載の方法。
  7. 前記アイテムが、電子メールメッセージ、音声メールメッセージ、スケジュールメッセージ、インスタントメッセージ、ウェブベースメッセージ、およびソーシャルコラボレーションメッセージを含む群から選択される通信を含むことを特徴とする請求項1に記載の方法。
  8. 前記抽出されたアイテム特性が、直接観察されるアイテムの特徴および推論されるアイテム特徴の内の少なくとも1つを含むことを特徴とする請求項1に記載の方法。
  9. 処理装置と、
    前記処理装置に接続されるシステムメモリと
    を備えるコンピュータ装置であって、
    前記システムメモリは、前記処理装置により実行されると、前記処理装置に、コンピュータシステム環境において電子通信のトリアージを行うためにユーザモデルを階層的にトレーニングするべく構成されたトレーニングモジュールを実装させる命令を含み、
    前記トレーニングモジュールは、
    プロトタイプのユーザモデルに基づくユーザのデフォルト推論のセットであって、前記デフォルト推論がアイテム属性、属性値、属性重み、および属性信頼性を含むデフォルト推論のセットを生成することと、
    ユーザ固有の情報を取得して、アイテムの受領に応答して、ユーザ固有の履歴挙動情報およびフィードバック情報の回収と、ユーザ固有の挙動情報およびフィードバック情報の回収とを含め、前記ユーザに対する前記デフォルト推論のセットを個人用に作成することと、
    前記ユーザ固有の情報を用いて前記デフォルト推論のセットを更新し、アイテムのトリアージモデルに適用するために個人用に作成された推論のセット形成することと、
    予測されるアイテムの重要度を露出させるためのユーザに関連する少なくとも1つのアプリケーション特性を有効にすることと
    を行うべく構成される
    ことを特徴とするコンピュータ装置。
  10. コンピュータ実行可能命令を有するコンピュータ可読記憶媒体であって、前記コンピュータ実行可能命令はコンピュータ装置により実行されると、
    前記コンピュータ装置にてデフォルトモデルをトレーニングして受信者固有のモデルを受信者個人用に作成するステップであって、前記デフォルトモデルが、前記受信者と共通の特徴を有するユーザのサンプルに対して調整された複数の重み付けされた因子から形成され、前記共通の特徴が、共通の職業と共通の趣味を含む群から選択され、前記受信者固有のモデルが、前記受信者の履歴挙動情報およびフィードバック情報を使用して修正された前記デフォルトモデルから形成されるステップと、
    前記受信者に宛てられたアイテムを前記コンピュータ装置にて傍受するステップであって、前記アイテムが、電子メールメッセージ、スケジュールメッセージ、インスタントメッセージ、ウェブベースのメッセージ、およびソーシャルコラボレーションメッセージを含む群から選択されるステップと、
    前記アイテムに関連する複数のアイテム特性を前記コンピュータ装置にて抽出するステップであって、前記アイテム特性が、アイテム送信者の特徴、アイテム受信者の特徴、会話の特徴、および添付ファイルの特徴を含む群から選択される前記アイテムの特徴を含むステップと、
    前記受信者固有のモデルを回収するステップであって、前記受信者固有のモデルが前記複数の抽出されたアイテム特性に関連する前記複数の重み付けされた因子を備えるステップと、
    前記複数の重み付けされた因子の組み合わせを形成するステップを含め重要度分類モデルを前記複数の抽出されたアイテム特性に適用するステップと、
    前記複数の重み付けされた因子の組み合わせに基づき、予測されるアイテムの重要度を生成するステップであって、前記予測されるアイテムの重要度がアイテムを重要または非重要の一方であると指定するステップと、
    前記予測されるアイテムの重要度に基づき、前記アイテムのキーコンテンツをハイライトする強調特性、前記アイテムのクイックビューを提供する表示特性、および前記アイテムの一時的なビューを提供する通知特性を含む群から選択される、前記受信者用の前記アイテムに関連する少なくとも1つのアプリケーション特性を有効にするステップと、
    前記デフォルトモデルのトレーニングを継続して前記受信者固有のモデルを個人用に作成するために、前記アイテムに関連する受信者の挙動とフィードバックを所定の期間周期的に取得するステップと
    を含むステップを前記コンピュータ装置に実行させることを特徴とするコンピュータ可読記憶媒体。
JP2013543185A 2010-12-06 2011-11-20 電子通信のトリアージ Active JP6246591B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/961,180 US8744979B2 (en) 2010-12-06 2010-12-06 Electronic communications triage using recipient's historical behavioral and feedback
US12/961,180 2010-12-06
PCT/US2011/061571 WO2012078342A2 (en) 2010-12-06 2011-11-20 Electronic communications triage

Publications (3)

Publication Number Publication Date
JP2014508980A true JP2014508980A (ja) 2014-04-10
JP2014508980A5 JP2014508980A5 (ja) 2015-01-08
JP6246591B2 JP6246591B2 (ja) 2017-12-13

Family

ID=46163181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013543185A Active JP6246591B2 (ja) 2010-12-06 2011-11-20 電子通信のトリアージ

Country Status (10)

Country Link
US (1) US8744979B2 (ja)
EP (1) EP2649535B1 (ja)
JP (1) JP6246591B2 (ja)
KR (1) KR101843604B1 (ja)
CN (1) CN102567091B (ja)
AU (1) AU2011338871B2 (ja)
BR (1) BR112013012553B1 (ja)
CA (1) CA2817230C (ja)
RU (1) RU2600102C2 (ja)
WO (1) WO2012078342A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192214A1 (ja) * 2020-03-27 2021-09-30 日本電気株式会社 ストレス管理装置、ストレス管理方法、及びコンピュータ読み取り可能な記録媒体

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9529864B2 (en) 2009-08-28 2016-12-27 Microsoft Technology Licensing, Llc Data mining electronic communications
US20110055264A1 (en) * 2009-08-28 2011-03-03 Microsoft Corporation Data mining organization communications
US8744979B2 (en) 2010-12-06 2014-06-03 Microsoft Corporation Electronic communications triage using recipient's historical behavioral and feedback
US10366341B2 (en) * 2011-05-11 2019-07-30 Oath Inc. Mining email inboxes for suggesting actions
US10453030B2 (en) 2012-06-20 2019-10-22 Wendy H. Park Ranking notifications based on rules
US20140052465A1 (en) * 2012-08-16 2014-02-20 Ginger.io, Inc. Method for modeling behavior and health changes
US9146895B2 (en) * 2012-09-26 2015-09-29 International Business Machines Corporation Estimating the time until a reply email will be received using a recipient behavior model
CN104065628B (zh) * 2013-03-22 2017-08-11 腾讯科技(深圳)有限公司 会话处理方法和装置
WO2015047323A1 (en) * 2013-09-27 2015-04-02 Hewlett-Packard Development Company, L. P. Notifying a user of critical emails via text messages
US20150142717A1 (en) * 2013-11-19 2015-05-21 Microsoft Corporation Providing reasons for classification predictions and suggestions
US10997183B2 (en) * 2013-12-05 2021-05-04 Lenovo (Singapore) Pte. Ltd. Determining trends for a user using contextual data
GB2521637A (en) * 2013-12-24 2015-07-01 Ibm Messaging digest
US20180053114A1 (en) 2014-10-23 2018-02-22 Brighterion, Inc. Artificial intelligence for context classifier
US10896421B2 (en) 2014-04-02 2021-01-19 Brighterion, Inc. Smart retail analytics and commercial messaging
US9577867B2 (en) * 2014-05-01 2017-02-21 International Business Machines Corporation Determining a time before a post is viewed by a recipient
RU2608880C2 (ru) * 2014-05-22 2017-01-25 Общество С Ограниченной Ответственностью "Яндекс" Электронное устройство и способ обработки электронного сообщения
US20150066771A1 (en) 2014-08-08 2015-03-05 Brighterion, Inc. Fast access vectors in real-time behavioral profiling
US20160055427A1 (en) 2014-10-15 2016-02-25 Brighterion, Inc. Method for providing data science, artificial intelligence and machine learning as-a-service
US9280661B2 (en) 2014-08-08 2016-03-08 Brighterion, Inc. System administrator behavior analysis
US20150339673A1 (en) 2014-10-28 2015-11-26 Brighterion, Inc. Method for detecting merchant data breaches with a computer network server
US20150032589A1 (en) 2014-08-08 2015-01-29 Brighterion, Inc. Artificial intelligence fraud management solution
US20160078367A1 (en) 2014-10-15 2016-03-17 Brighterion, Inc. Data clean-up method for improving predictive model training
US20160063502A1 (en) 2014-10-15 2016-03-03 Brighterion, Inc. Method for improving operating profits with better automated decision making with artificial intelligence
US10546099B2 (en) 2014-10-15 2020-01-28 Brighterion, Inc. Method of personalizing, individualizing, and automating the management of healthcare fraud-waste-abuse to unique individual healthcare providers
US20160071017A1 (en) 2014-10-15 2016-03-10 Brighterion, Inc. Method of operating artificial intelligence machines to improve predictive model training and performance
US11080709B2 (en) 2014-10-15 2021-08-03 Brighterion, Inc. Method of reducing financial losses in multiple payment channels upon a recognition of fraud first appearing in any one payment channel
US10290001B2 (en) 2014-10-28 2019-05-14 Brighterion, Inc. Data breach detection
US10504029B2 (en) * 2015-06-30 2019-12-10 Microsoft Technology Licensing, Llc Personalized predictive models
KR101704651B1 (ko) * 2015-07-06 2017-02-08 주식회사 이팝콘 수신 분석 기반 메시지 서비스 규칙 제공 방법 및 메시지 서비스 규칙을 이용한 메시지 송신 방법
KR101688829B1 (ko) * 2015-07-24 2016-12-22 삼성에스디에스 주식회사 사용자 패턴을 반영한 문서 제공 방법 및 그 장치
US10671915B2 (en) 2015-07-31 2020-06-02 Brighterion, Inc. Method for calling for preemptive maintenance and for equipment failure prevention
AU2015224398A1 (en) 2015-09-08 2017-03-23 Canon Kabushiki Kaisha A method for presenting notifications when annotations are received from a remote device
WO2017048730A1 (en) * 2015-09-14 2017-03-23 Cogito Corporation Systems and methods for identifying human emotions and/or mental health states based on analyses of audio inputs and/or behavioral data collected from computing devices
US9923853B2 (en) * 2015-10-05 2018-03-20 Quest Software Inc. Folders that employ dynamic user training rules to organize content
US10574600B1 (en) * 2016-03-25 2020-02-25 Amazon Technologies, Inc. Electronic mailbox for online and offline activities
US10749833B2 (en) * 2016-07-07 2020-08-18 Ringcentral, Inc. Messaging system having send-recommendation functionality
US10942946B2 (en) 2016-09-26 2021-03-09 Splunk, Inc. Automatic triage model execution in machine data driven monitoring automation apparatus
JP2019079224A (ja) * 2017-10-24 2019-05-23 富士ゼロックス株式会社 情報処理装置及び情報処理プログラム
US10579632B2 (en) * 2017-12-18 2020-03-03 Microsoft Technology Licensing, Llc Personalized content authoring driven by recommendations
US20190342297A1 (en) 2018-05-01 2019-11-07 Brighterion, Inc. Securing internet-of-things with smart-agent technology
US11176472B2 (en) * 2018-05-22 2021-11-16 International Business Machines Corporation Chat delta prediction and cognitive opportunity system
US11159476B1 (en) * 2019-01-31 2021-10-26 Slack Technologies, Llc Methods and apparatuses for managing data integration between an external email resource and a group-based communication system
KR20210091584A (ko) * 2020-01-14 2021-07-22 삼성전자주식회사 전자 장치 및 그 동작 방법
CN112565803B (zh) * 2020-11-30 2022-04-22 北京达佳互联信息技术有限公司 一种评论区的消息处理方法、装置及计算机存储介质
GB2618497A (en) * 2021-01-26 2023-11-08 Airemail Holdings Ltd Handling electronic communications
CN113421054A (zh) * 2021-06-11 2021-09-21 荣耀终端有限公司 信息管理方法、电子设备及存储介质
US20230319065A1 (en) * 2022-03-30 2023-10-05 Sophos Limited Assessing Behavior Patterns and Reputation Scores Related to Email Messages

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954765A (ja) * 1994-11-24 1997-02-25 Matsushita Electric Ind Co Ltd 最適化調整方法と最適化調整装置
US6004015A (en) * 1994-11-24 1999-12-21 Matsushita Electric Industrial Co., Ltd. Optimization adjusting method and optimization adjusting apparatus
KR20020031012A (ko) * 2000-10-21 2002-04-26 정승채 다이어리 형식을 이용한 전자메일의 표시 및 제어방법
JP2003248647A (ja) * 2001-12-12 2003-09-05 Microsoft Corp 適応型通信優先度決定およびルーティングシステムの選好の獲得と挙動の点検と学習および決定ポリシーのガイドを行うための制御および表示
US20060010217A1 (en) * 2004-06-04 2006-01-12 Business Instruments Corp. System and method for dynamic adaptive user-based prioritization and display of electronic messages
US20090124241A1 (en) * 2007-11-14 2009-05-14 Qualcomm Incorporated Method and system for user profile match indication in a mobile environment
WO2009065045A1 (en) * 2007-11-14 2009-05-22 Qualcomm Incorporated Methods and systems for determining a geographic user profile to determine suitability of targeted content messages based on the profile

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6460036B1 (en) 1994-11-29 2002-10-01 Pinpoint Incorporated System and method for providing customized electronic newspapers and target advertisements
US6891567B2 (en) 1998-06-26 2005-05-10 Fotonation Holdings, Llc Camera messaging and advertisement system
US5917489A (en) 1997-01-31 1999-06-29 Microsoft Corporation System and method for creating, editing, and distributing rules for processing electronic messages
US7117358B2 (en) 1997-07-24 2006-10-03 Tumbleweed Communications Corp. Method and system for filtering communication
US6393465B2 (en) 1997-11-25 2002-05-21 Nixmail Corporation Junk electronic mail detector and eliminator
US6424997B1 (en) 1999-01-27 2002-07-23 International Business Machines Corporation Machine learning based electronic messaging system
US7120865B1 (en) 1999-07-30 2006-10-10 Microsoft Corporation Methods for display, notification, and interaction with prioritized messages
US7000194B1 (en) 1999-09-22 2006-02-14 International Business Machines Corporation Method and system for profiling users based on their relationships with content topics
US6865582B2 (en) * 2000-01-03 2005-03-08 Bechtel Bwxt Idaho, Llc Systems and methods for knowledge discovery in spatial data
US6691106B1 (en) 2000-05-23 2004-02-10 Intel Corporation Profile driven instant web portal
US6832244B1 (en) 2000-09-21 2004-12-14 International Business Machines Corporation Graphical e-mail content analyser and prioritizer including hierarchical email classification system in an email
US7222156B2 (en) 2001-01-25 2007-05-22 Microsoft Corporation Integrating collaborative messaging into an electronic mail program
US6901398B1 (en) 2001-02-12 2005-05-31 Microsoft Corporation System and method for constructing and personalizing a universal information classifier
US7165105B2 (en) 2001-07-16 2007-01-16 Netgenesis Corporation System and method for logical view analysis and visualization of user behavior in a distributed computer network
US20030120593A1 (en) 2001-08-15 2003-06-26 Visa U.S.A. Method and system for delivering multiple services electronically to customers via a centralized portal architecture
US7519589B2 (en) 2003-02-04 2009-04-14 Cataphora, Inc. Method and apparatus for sociological data analysis
CN1332333C (zh) 2002-02-19 2007-08-15 波斯蒂尼公司 电子邮件管理服务
US7162494B2 (en) 2002-05-29 2007-01-09 Sbc Technology Resources, Inc. Method and system for distributed user profiling
US20050204001A1 (en) 2002-09-30 2005-09-15 Tzvi Stein Method and devices for prioritizing electronic messages
US7469280B2 (en) 2002-11-04 2008-12-23 Sun Microsystems, Inc. Computer implemented system and method for predictive management of electronic messages
US7249162B2 (en) * 2003-02-25 2007-07-24 Microsoft Corporation Adaptive junk message filtering system
US7653879B1 (en) 2003-09-16 2010-01-26 Microsoft Corporation User interface for context sensitive creation of electronic mail message handling rules
US7996470B2 (en) 2003-10-14 2011-08-09 At&T Intellectual Property I, L.P. Processing rules for digital messages
US8566263B2 (en) 2003-11-28 2013-10-22 World Assets Consulting Ag, Llc Adaptive computer-based personalities
US7454716B2 (en) 2003-12-22 2008-11-18 Microsoft Corporation Clustering messages
US20050204009A1 (en) 2004-03-09 2005-09-15 Devapratim Hazarika System, method and computer program product for prioritizing messages
US7818377B2 (en) 2004-05-24 2010-10-19 Microsoft Corporation Extended message rule architecture
EP1767010B1 (en) 2004-06-15 2015-11-11 Tekelec Global, Inc. Method, system, and computer program products for content-based screening of MMS messages
US20060031347A1 (en) 2004-06-17 2006-02-09 Pekka Sahi Corporate email system
JP2006004307A (ja) * 2004-06-21 2006-01-05 Hitachi Ltd 事業評価支援方法
GB0422441D0 (en) 2004-10-08 2004-11-10 I Cd Publishing Uk Ltd Processing electronic communications
US20060080393A1 (en) 2004-10-12 2006-04-13 Cardone Richard J Method for using e-mail documents to create and update address lists
US7487214B2 (en) 2004-11-10 2009-02-03 Microsoft Corporation Integrated electronic mail and instant messaging application
US8065369B2 (en) 2005-02-01 2011-11-22 Microsoft Corporation People-centric view of email
US20060195467A1 (en) 2005-02-25 2006-08-31 Microsoft Corporation Creation and composition of sets of items
US8161122B2 (en) 2005-06-03 2012-04-17 Messagemind, Inc. System and method of dynamically prioritized electronic mail graphical user interface, and measuring email productivity and collaboration trends
US20060294191A1 (en) 2005-06-24 2006-12-28 Justin Marston Providing context in an electronic messaging system
US7853485B2 (en) 2005-11-22 2010-12-14 Nec Laboratories America, Inc. Methods and systems for utilizing content, dynamic patterns, and/or relational information for data analysis
US7894677B2 (en) * 2006-02-09 2011-02-22 Microsoft Corporation Reducing human overhead in text categorization
US8019632B2 (en) 2006-10-16 2011-09-13 Accenture Global Services Limited System and method of integrating enterprise applications
US20090012760A1 (en) 2007-04-30 2009-01-08 Schunemann Alan J Method and system for activity monitoring and forecasting
US8068588B2 (en) 2007-06-26 2011-11-29 Microsoft Corporation Unified rules for voice and messaging
US8230024B2 (en) 2007-06-28 2012-07-24 Microsoft Corporation Delegating instant messaging sessions
US8600343B2 (en) 2007-07-25 2013-12-03 Yahoo! Inc. Method and system for collecting and presenting historical communication data for a mobile device
US20090043621A1 (en) 2007-08-09 2009-02-12 David Kershaw System and Method of Team Performance Management Software
US20090150507A1 (en) 2007-12-07 2009-06-11 Yahoo! Inc. System and method for prioritizing delivery of communications via different communication channels
US20090222298A1 (en) 2008-02-29 2009-09-03 International Business Machines Corporation Data Mining Method for Automatic Creation of Organizational Charts
US8195588B2 (en) * 2008-04-03 2012-06-05 At&T Intellectual Property I, L.P. System and method for training a critical e-mail classifier using a plurality of base classifiers and N-grams
US8682819B2 (en) * 2008-06-19 2014-03-25 Microsoft Corporation Machine-based learning for automatically categorizing data on per-user basis
US8458153B2 (en) 2008-08-26 2013-06-04 Michael Pierce Web-based services for querying and matching likes and dislikes of individuals
US20100153318A1 (en) * 2008-11-19 2010-06-17 Massachusetts Institute Of Technology Methods and systems for automatically summarizing semantic properties from documents with freeform textual annotations
CN101533366A (zh) * 2009-03-09 2009-09-16 浪潮电子信息产业股份有限公司 一种服务器性能数据采集与分析的方法
US9529864B2 (en) 2009-08-28 2016-12-27 Microsoft Technology Licensing, Llc Data mining electronic communications
US20110055264A1 (en) 2009-08-28 2011-03-03 Microsoft Corporation Data mining organization communications
US8655647B2 (en) * 2010-03-11 2014-02-18 Microsoft Corporation N-gram selection for practical-sized language models
US8744979B2 (en) 2010-12-06 2014-06-03 Microsoft Corporation Electronic communications triage using recipient's historical behavioral and feedback

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954765A (ja) * 1994-11-24 1997-02-25 Matsushita Electric Ind Co Ltd 最適化調整方法と最適化調整装置
US6004015A (en) * 1994-11-24 1999-12-21 Matsushita Electric Industrial Co., Ltd. Optimization adjusting method and optimization adjusting apparatus
KR20020031012A (ko) * 2000-10-21 2002-04-26 정승채 다이어리 형식을 이용한 전자메일의 표시 및 제어방법
JP2002149571A (ja) * 2000-10-21 2002-05-24 Buntekku Co Ltd ダイアリー形式を用いた電子メールの表示及び制御方法
JP2003248647A (ja) * 2001-12-12 2003-09-05 Microsoft Corp 適応型通信優先度決定およびルーティングシステムの選好の獲得と挙動の点検と学習および決定ポリシーのガイドを行うための制御および表示
US20060010217A1 (en) * 2004-06-04 2006-01-12 Business Instruments Corp. System and method for dynamic adaptive user-based prioritization and display of electronic messages
US20090124241A1 (en) * 2007-11-14 2009-05-14 Qualcomm Incorporated Method and system for user profile match indication in a mobile environment
WO2009065045A1 (en) * 2007-11-14 2009-05-22 Qualcomm Incorporated Methods and systems for determining a geographic user profile to determine suitability of targeted content messages based on the profile
KR20100076069A (ko) * 2007-11-14 2010-07-05 콸콤 인코포레이티드 프로파일에 기반하여 타깃 콘텐츠 메시지들의 적절성을 결정하기 위해 지리적 사용자 프로파일을 결정하기 위한 방법들 및 시스템들
CN101911617A (zh) * 2007-11-14 2010-12-08 高通股份有限公司 移动环境中的用户简档匹配指示方法和系统
JP2011507055A (ja) * 2007-11-14 2011-03-03 クゥアルコム・インコーポレイテッド 移動環境方法および移動環境システムにおけるユーザ・プロファイル・マッチ表示

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
藤川英士,他3名: "キーワードを用いた情報フィルタリングシステムの構築に関する考察", 情報処理学会研究報告, vol. 第97巻,第20号, JPN6015038296, 28 February 1997 (1997-02-28), JP, pages 37 - 42, ISSN: 0003159985 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192214A1 (ja) * 2020-03-27 2021-09-30 日本電気株式会社 ストレス管理装置、ストレス管理方法、及びコンピュータ読み取り可能な記録媒体
JPWO2021192214A1 (ja) * 2020-03-27 2021-09-30
JP7459931B2 (ja) 2020-03-27 2024-04-02 日本電気株式会社 ストレス管理装置、ストレス管理方法、及びプログラム

Also Published As

Publication number Publication date
AU2011338871A1 (en) 2013-05-30
EP2649535A4 (en) 2014-08-06
RU2013125971A (ru) 2014-12-10
RU2600102C2 (ru) 2016-10-20
EP2649535B1 (en) 2020-04-29
US20120143798A1 (en) 2012-06-07
CA2817230A1 (en) 2012-06-14
JP6246591B2 (ja) 2017-12-13
BR112013012553B1 (pt) 2021-06-08
CA2817230C (en) 2019-02-12
WO2012078342A2 (en) 2012-06-14
KR101843604B1 (ko) 2018-03-29
CN102567091B (zh) 2014-09-17
EP2649535A2 (en) 2013-10-16
BR112013012553A2 (pt) 2016-08-30
US8744979B2 (en) 2014-06-03
AU2011338871B2 (en) 2016-06-16
CN102567091A (zh) 2012-07-11
WO2012078342A3 (en) 2012-08-02
KR20140012621A (ko) 2014-02-03

Similar Documents

Publication Publication Date Title
JP6246591B2 (ja) 電子通信のトリアージ
US20120143806A1 (en) Electronic Communications Triage
US10594641B2 (en) Dynamic filter generation for message management systems
US10511560B2 (en) Systems and methods for electronic message prioritization
RU2608880C2 (ru) Электронное устройство и способ обработки электронного сообщения
US20180253659A1 (en) Data Processing System with Machine Learning Engine to Provide Automated Message Management Functions
RU2580434C2 (ru) Сервер и способ обработки электронных сообщений (варианты)
US20160337300A1 (en) Communication item insights
US10356031B2 (en) Prioritized communication inbox
US10432776B1 (en) Managing unanswered digital communications
US11184317B1 (en) Simplified user interface for viewing the current status of message threads
US11956198B2 (en) Method and system for identifying and presenting important messages

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150918

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171115

R150 Certificate of patent or registration of utility model

Ref document number: 6246591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250