JP2014508337A - 容量性タッチ検知デバイスおよびそれの製造方法 - Google Patents

容量性タッチ検知デバイスおよびそれの製造方法 Download PDF

Info

Publication number
JP2014508337A
JP2014508337A JP2013546236A JP2013546236A JP2014508337A JP 2014508337 A JP2014508337 A JP 2014508337A JP 2013546236 A JP2013546236 A JP 2013546236A JP 2013546236 A JP2013546236 A JP 2013546236A JP 2014508337 A JP2014508337 A JP 2014508337A
Authority
JP
Japan
Prior art keywords
conductive
sensor array
volume
segment
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013546236A
Other languages
English (en)
Inventor
ミグナード、マーク・モーリス
エローウェイ、ドナルド・ジェイ.
マーティン・ラッセル・エー.
ゴビル、アロック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm MEMS Technologies Inc
Original Assignee
Qualcomm MEMS Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm MEMS Technologies Inc filed Critical Qualcomm MEMS Technologies Inc
Publication of JP2014508337A publication Critical patent/JP2014508337A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Abstract

本開示は、センサーアレイの近くに配設された導電性物体の(1つまたは複数の)位置を検知するためのシステム、方法、および装置を提供する。一態様では、センサーアレイは、(1つまたは複数の)不透明材料から形成された導電性行と導電性列とを含む。導電性行の少なくとも一部分は導電性列の少なくとも一部分と重なり、導電性行および列の各々は検知要素を含む。検知要素は、それを通る光の損失を制限するために、(1つまたは複数の)非導電性の光学的に透明な材料を含むボリュームを少なくとも部分的に画定する。

Description

本開示は、検知デバイスに関し、より詳細には、容量性タッチセンサーに関する。
関連技術の説明
電気機械システムは、電気的および機械的要素と、アクチュエータと、トランスデューサと、センサーと、光学的構成要素(たとえば、ミラー)と、電子回路とを有するデバイスを含む。電気機械システムは、限定はしないが、マイクロスケールおよびナノスケールを含む、様々なスケールで製造され得る。たとえば、マイクロ電気機械システム(MEMS:microelectromechanical system)デバイスは、約1ミクロンから数百ミクロン以上に及ぶサイズを有する構造を含むことができる。ナノ電気機械システム(NEMS:nanoelectromechanical system)デバイスは、たとえば、数百ナノメートルよりも小さいサイズを含む、1ミクロンよりも小さいサイズを有する構造を含むことができる。電気および電気機械デバイスを形成するために、堆積、エッチング、リソグラフィを使用して、ならびに/あるいは、基板および/または堆積された材料層の部分をエッチング除去するかまたは層を追加する、他の微細加工プロセスを使用して、電気機械要素が作成され得る。
1つのタイプの電気機械システムデバイスは干渉変調器(IMOD:interferometric modulator)と呼ばれる。本明細書で使用する干渉変調器または干渉光変調器という用語は、光学干渉の原理を使用して光を選択的に吸収および/または反射するデバイスを指す。いくつかの実装形態では、干渉変調器は伝導性プレートのペアを含み得、そのペアの一方または両方は、全体的にまたは部分的に、透明でおよび/または反射性であり、適切な電気信号の印加時の相対運動が可能であり得る。一実装形態では、一方のプレートは、基板上に堆積された固定層を含み得、他方のプレートは、エアギャップによって固定層から分離された反射膜を含み得る。別のプレートに対するあるプレートの位置は、干渉変調器に入射する光の光学干渉を変化させることがある。干渉変調器デバイスは、広範囲の適用例を有しており、特にディスプレイ能力がある製品の場合、既存の製品を改善し、新しい製品を作成する際に使用されることが予期される。
タッチスクリーンのための多くの既存の容量性タッチ検知デバイスは、検知デバイス上で導電性物体、たとえば、指の位置を検出するために使用される導電性材料、たとえば、酸化インジウムスズ(ITO)から形成された電気的に絶縁された導電性行および列(conductive row and column)を含む。これらの検知デバイスは、下にあるディスプレイが検知デバイスを通して見えるようにディスプレイ上に配設され得る。しかしながら、透明導体は、入射光を吸収および反射することがあり、下にある反射ディスプレイの輝度を望ましくないレベルに減少させることがある。
本開示のシステム、方法、およびデバイスは、それぞれいくつかの発明的態様を有し、それらのうちの単一の態様が、単独で、本明細書で開示する望ましい属性を担当するとは限らない。
本開示で説明する主題の1つの発明的態様は、センサーアレイにおいて実装され得る。センサーアレイは、不透明材料を含む導電性行を含むことができ、導電性行は、第1のボリュームを少なくとも部分的に画定する第1の検知要素を形成することができる。第1のボリュームは、非導電性の光学的に透明な材料を含むことができる。センサーアレイはまた、不透明材料を含む導電性列を含むことができ、導電性列は、第2のボリュームを少なくとも部分的に画定する第2の検知要素を形成することができる。第2のボリュームは、非導電性の光学的に透明な材料を含むことができる。一態様では、導電性行の少なくとも一部分は、導電性列の少なくとも一部分と重なることができる。一態様では、センサーアレイはまた、導電性行および/または導電性列の少なくとも一部分上に配設された反射率制御層(reflectivity control layer)を含むことができる。反射率制御層は、ブラッククロム、ポリマー、および/または干渉スタック(interferometric stack)を含むことができる。
本開示で説明する1つの発明的態様は、センサーアレイにおいて実装され得る。センサーアレイは、不透明材料を含むことができる、電流を伝導するための第1の手段を含むことができ、第1の導電手段(conductive means)は、非導電性の光学的に透明な材料を含むボリュームを少なくとも部分的に画定する第1の検知手段を形成することができる。センサーアレイはまた、不透明材料を含むことができる電流を伝導するための第2の手段を含むことができ、第2の導電手段は、非導電性の光学的に透明な材料を含むボリュームを少なくとも部分的に画定する第2の検知手段を形成することができる。一態様では、第1の導電手段の少なくとも一部分は、第2の導電手段の少なくとも一部分と重なることができる。センサーアレイはまた、第1の導電手段および/または第2の導電手段の少なくとも一部分上に配設された反射率制御手段を含むことができる。
本開示で説明する主題の1つの発明的態様は、不透明材料を含む導電性行を形成することを含むセンサーアレイを製造する方法において実装され得る。導電性行は、非導電性の光学的に透明な材料を含む第1のボリュームを少なくとも部分的に画定する第1の検知要素を含むことができる。本方法はまた、不透明材料を含む導電性列を形成することを含むことができる。導電性列は、非導電性の光学的に透明な材料を含む第2のボリュームを少なくとも部分的に画定する第2の検知要素を含むことができる。一態様では、導電性行の少なくとも一部分は、導電性列の少なくとも一部分と重なることができる。一態様では、本方法は、反射ディスプレイ上に導電性行と導電性列とを配設することを含むことができる。一態様では、本方法は、導電性行または導電性列の少なくとも一部分上に反射率制御層を配設することを含むことができる。
本開示で説明する別の発明的態様は、不透明材料と第1のセグメントとを含む導電性行を含むセンサーアレイにおいて実装され得る。センサーアレイはまた、不透明材料と第2のセグメントとを含む導電性列を含むことができる。第1のセグメントは、第2のセグメントに対して実質的に平行に延在することができ、第1のセグメントと第2のセグメントとは、非導電性の光学的に透明な材料を含むボリュームをそれらの間に少なくとも部分的に画定することができる。一態様では、センサーアレイは、導電性行の少なくとも一部分上に配設された第1の反射率制御層をも含むことができ、および/または導電性列の少なくとも一部分上に配設された第2の反射率制御層をも含むことができる。
本開示で説明する別の発明的態様は、センサーアレイにおいて実装され得る。センサーアレイは、電流を伝導するための第1の手段を含むことができる。第1の導電手段は、第1のセグメントを含む不透明材料を含むことができる。センサーアレイはまた、電流を伝導するための第2の手段を含むことができる。第2の導電手段は、第2のセグメントを含む不透明材料を含むことができる。第1のセグメントは、第2のセグメントに対して実質的に平行であり得、第1のセグメントと第2のセグメントとは、非導電性の光学的に透明な材料を含むボリュームをそれらの間に少なくとも部分的に画定することができる。一態様では、センサーアレイはまた、第1の導電手段の少なくとも一部分上に配設された第1の反射率制御手段を含むことができ、および/または第2の導電手段の少なくとも一部分上に配設された第2の反射率制御手段を含むことができる。
本開示で説明する主題の1つの発明的態様は、センサーアレイを製造する方法において実装され得る。本方法は、不透明材料を含む導電性行を形成することを含むことができる。導電性行は、第1のセグメントを含むことができる。本方法はまた、不透明材料を含む導電性列を形成することを含むことができる。導電性列は、第1のセグメントと第2のセグメントとが、非導電性の光学的に透明な材料を含むボリュームをそれらの間に少なくとも部分的に画定するような、第1のセグメントに対して概して平行に延在する第2のセグメントを含むことができる。一態様では、本方法は、反射ディスプレイ上に導電性行と導電性列とを配設することを含むことができる。
本開示で説明する主題の別の発明的態様は、センサーアレイにおいて実装され得る。センサーアレイは、第1のボリュームを少なくとも部分的に画定する第1の検知要素を含む導電性行を含むことができる。第1のボリュームは、非導電性の光学的に透明な材料を含むことができる。センサーアレイはまた、第2のボリュームを少なくとも部分的に画定する第2の検知要素を含む導電性列を含むことができる。第2のボリュームは、非導電性の光学的に透明な材料を含むことができる。一態様では、導電性行の少なくとも一部分は、導電性列の少なくとも一部分と重なることができる。一態様では、センサーアレイはまた、導電性行および/または導電性列の少なくとも一部分上に配設された反射率制御層を含むことができる。反射率制御層は、ブラッククロム、ポリマー、および/または干渉スタックを含むことができる。
本開示で説明する1つの発明的態様は、センサーアレイにおいて実装され得る。センサーアレイは、非導電性の光学的に透明な材料を含むボリュームを少なくとも部分的に画定する第1の検知手段を含むことができる、電流を伝導するための第1の手段を含むことができる。センサーアレイはまた、非導電性の光学的に透明な材料を含むボリュームを少なくとも部分的に画定する第2の検知手段を含むことができる、電流を伝導するための第2の手段を含むことができる。一態様では、第1の導電手段の少なくとも一部分は、第2の導電手段の少なくとも一部分と重なることができる。センサーアレイはまた、第1の導電手段および/または第2の導電手段の少なくとも一部分上に配設された反射率制御手段を含むことができる。
本開示で説明する主題の1つの発明的態様は、非導電性の光学的に透明な材料を含む第1のボリュームを少なくとも部分的に画定する第1の検知要素を含む導電性行を形成することを含む、センサーアレイを製造する方法において実装され得る。本方法はまた、非導電性の光学的に透明な材料を含む第2のボリュームを少なくとも部分的に画定する第2の検知要素を含む導電性列を形成することを含むことができる。一態様では、導電性行の少なくとも一部分は、導電性列の少なくとも一部分と重なることができる。一態様では、本方法は、反射ディスプレイ上に導電性行と導電性列とを配設することを含むことができる。一態様では、本方法は、導電性行または導電性列の少なくとも一部分上に反射率制御層を配設することを含むことができる。
本明細書で説明する主題の1つまたは複数の実装形態の詳細は、添付の図面および以下の説明に示されている。他の特徴、態様、および利点は、説明、図面、および特許請求の範囲から明らかになるであろう。以下の図の相対寸法は一定の縮尺で描かれていないことがあることに留意されたい。
干渉変調器(IMOD)ディスプレイデバイスの一連のピクセル中の2つの隣接ピクセルを示す等角図の一例を示す図。 3×3干渉変調器ディスプレイを組み込んだ電子デバイスを示すシステムブロック図の一例を示す図。 図1の干渉変調器についての可動反射層位置対印加電圧を示す図の一例を示す図。 様々なコモン電圧およびセグメント電圧が印加されたときの干渉変調器の様々な状態を示す表の一例を示す図。 図2の3×3干渉変調器ディスプレイにおけるディスプレイデータのフレームを示す図の一例を示す図。 図5Aに示すディスプレイデータのフレームを書き込むために使用され得るコモン信号およびセグメント信号についてのタイミング図の一例を示す図。 図1の干渉変調器ディスプレイの部分断面図の一例を示す図。 干渉変調器の異なる実装形態の断面図の一例を示す図。 干渉変調器の異なる実装形態の断面図の一例を示す図。 干渉変調器の異なる実装形態の断面図の一例を示す図。 干渉変調器の異なる実装形態の断面図の一例を示す図。 干渉変調器のための製造プロセスを示すフロー図の一例を示す図。 干渉変調器を製作する方法における様々な段階の断面概略図の一例を示す図。 干渉変調器を製作する方法における様々な段階の断面概略図の一例を示す図。 干渉変調器を製作する方法における様々な段階の断面概略図の一例を示す図。 干渉変調器を製作する方法における様々な段階の断面概略図の一例を示す図。 干渉変調器を製作する方法における様々な段階の断面概略図の一例を示す図。 センサーアレイ上で導電性物体の存在を検出するための複数の導電性行および列を有する例示的な検知デバイスの上面図。 検知デバイスを動作させる例示的な方法を示すフロー図。 検知デバイスの1つの例示的な実装形態の断面図。 検知デバイスの1つの例示的な実装形態の断面図。 検知デバイスにおいて使用する例示的な検知アレイの異なる実装形態の上面図。 検知デバイスにおいて使用する例示的な検知アレイの異なる実装形態の上面図。 検知デバイスにおいて使用する例示的な検知アレイの異なる実装形態の上面図。 検知デバイスにおいて使用する例示的な検知アレイの異なる実装形態の上面図。 検知デバイスにおいて使用する例示的な検知アレイの異なる実装形態の上面図。 検知デバイスにおいて使用する例示的な検知アレイの異なる実装形態の上面図。 検知デバイスにおいて使用する例示的な検知アレイの異なる実装形態の上面図。 検知デバイスにおいて使用する例示的な検知アレイの異なる実装形態の上面図。 検知デバイスにおいて使用する例示的な検知アレイの異なる実装形態の上面図。 図11Iの例示的な検知アレイの一部分のクローズアップ図。 導電性構造上に配設された反射率制御層をもつ導電性構造の例示的な実装形態の断面図。 センサーアレイを製造するためのプロセスの例を示す図。 センサーアレイを製造するためのプロセスの例を示す図。 センサーアレイを製造するためのプロセスの例を示す図。 複数の干渉変調器を含むディスプレイデバイスを示すシステムブロック図の例を示す図。 複数の干渉変調器を含むディスプレイデバイスを示すシステムブロック図の例を示す図。
詳細な説明
様々な図面中の同様の参照番号および名称は同様の要素を示す。
以下の詳細な説明は、発明的態様について説明する目的で、いくつかの実装形態を対象とする。しかしながら、本明細書の教示は、多数の異なる方法で適用され得る。説明する実装形態は、動いていようと(たとえば、ビデオ)、静止していようと(たとえば、静止画像)、およびテキストであろうと、グラフィックであろうと、絵であろうと、画像を表示するように構成された任意のデバイスにおいて実装され得る。より詳細には、実装形態は、限定はしないが、携帯電話、マルチメディアインターネット対応セルラー電話、モバイルテレビジョン受信機、ワイヤレスデバイス、スマートフォン、Bluetooth(登録商標)デバイス、携帯情報端末(PDA)、ワイヤレス電子メール受信機、ハンドヘルドまたはポータブルコンピュータ、ネットブック、ノートブック、スマートブック、プリンタ、コピー機、スキャナ、ファクシミリデバイス、GPS受信機/ナビゲータ、カメラ、MP3プレーヤ、カムコーダ、ゲーム機、腕時計、クロック、計算器、テレビジョンモニタ、フラットパネルディスプレイ、電子リーディングデバイス(たとえば、電子リーダー)、コンピュータモニタ、自動車ディスプレイ(たとえば、オドメータディスプレイなど)、コックピットコントロールおよび/またはディスプレイ、カメラビューディスプレイ(たとえば、車両における後部ビューカメラのディスプレイ)、電子写真、電子ビルボードまたは標示、プロジェクタ、アーキテクチャ構造物、電子レンジ、冷蔵庫、ステレオシステム、カセットレコーダーまたはプレーヤ、DVDプレーヤ、CDプレーヤ、VCR、ラジオ、ポータブルメモリチップ、洗濯機、乾燥機、洗濯機/乾燥機、パッケージング(たとえば、MEMSおよび非MEMS)、審美構造物(たとえば、1つの宝飾品上の画像のディスプレイ)、ならびに様々な電気機械システムデバイスなど、様々な電子デバイス中に実装されるかまたはそれらに関連付けられ得ると考えられる。また、本明細書の教示は、限定はしないが、電子スイッチングデバイス、無線周波フィルタ、センサー、加速度計、ジャイロスコープ、動き感知デバイス、磁力計、コンシューマーエレクトロニクスのための慣性構成要素、コンシューマーエレクトロニクス製品の部品、バラクタ、液晶デバイス、電気泳動デバイス、駆動方式、製造プロセス、電子テスト機器など、非ディスプレイ適用例において使用され得る。したがって、本教示は、単に図に示す実装形態に限定されるものではなく、代わりに、当業者に直ちに明らかになるであろう広い適用性を有する。
いくつかの実装形態では、干渉ディスプレイは、少なくともディスプレイの一部分上に配設された1つまたは複数の検知デバイスを含むことができる。これらの検知デバイスは、導電性物体、たとえば、人間の指またはスタイラスのタッチあるいは近位の配置を検出するように構成され得る。検知デバイスは、検知デバイスに対する導電性物体のタッチまたは近位の配置の位置を検出するようにさらに構成され得、この検出された位置は、外部回路に、たとえば、下にあるディスプレイを制御するコンピュータに与えられ得る。そのような実装形態では、反射性干渉ディスプレイに入射した周辺光は、最初に検知デバイスを通過して干渉デバイスのほうへ進み、次いで、検知デバイスを通ってディスプレイから反射して戻る。したがって、干渉ディスプレイから、たとえば、閲覧者のほうへ反射された周辺光は、検知デバイスを少なくとも2回通過することがある。
多くの既存の容量性タッチ検知デバイスは、検知デバイス上で導電性物体の位置を検出するために使用される透明導体、たとえば、酸化インジウムスズ(ITO)要素から形成された、電気的に絶縁された導電性行および列を含む。これらのデバイスの行および列が光学的に透明であるので、これらの検知デバイスは、下にあるディスプレイが検知デバイスを通して見えるようにディスプレイ上に配設され得る。しかしながら、透明導体は、それを通過する光の約4%と約20%との間を吸収することがある。その上、透明導体は、それに入射する光の約2%と約8%との間を反射することがある。さらに、所与の透明導体によって吸収および/または反射される光の総量は、光が透明導体を通過しなければならない回数とともに増加する。透明導体が反射ディスプレイ、たとえば、干渉ディスプレイ上に配設されたとき、透明導体による光の吸収および/または反射は、その光がディスプレイによって反射されず、その後、閲覧者によって観測されないので、「損失した光」と考えられ得る。損失した光は、反射ディスプレイの輝度を減少させ、補助照明、たとえば、前方照明の実装形態を必要とすることがある。
本願明細書で開示する様々な実装形態は、容量性タッチセンサーにおいて使用するセンサーアレイを組み込む検知デバイスを含む。センサーアレイは、導電性行および列によって形成され得る。各導電性行または導電性列は、透明材料、半透明材料、たとえば、ITO、あるいは不透明材料、たとえば、アルミニウムまたはモリブデンから形成され得る。本明細書で使用する「半透明」は、それを通過するためにそれに入射する可視光の80%よりも大きい光を可能にする材料を指し、たとえば、様々な透明導電性酸化物を含むことができる。いくつかの実装形態では、各導電性行および列は、光学的に透明な非導電材料を含むボリュームを少なくとも部分的に画定する検知要素を含む。いくつかの他の実装形態では、導電性行および列は、光学的に透明な非導電材料を含む、互いの間の少なくとも1つのボリュームを画定する。このようにして、導電性行および列は、光が光学的に透明な非導電性ボリュームを通過することを可能にしながら、近位に位置する導電性物体の位置を検知するために使用され得る。
本開示で説明する主題の特定の実装形態は、以下の潜在的な利点のうちの1つまたは複数を実現するように実装され得る。たとえば、本明細書で開示するセンサーアレイは、既存のセンサーアレイと比較して、センサーアレイによって吸収および/または反射される入射光の量を低減し得る。センサーアレイを通して損失する光の量を低減することは、反射ディスプレイのための電力消費を増加させ、その結果、製造コストの増加を生じる、補助照明要件を打ち消すことができる。また、導電性行および列の寸法は、ディスプレイ上で導電性行および列の可視性を制限するように選択され得る。導電性行および列からの反射は、導電性行および列の閲覧者側に様々な反射率制御層を含むことによってさらに低減され得る。
説明する実装形態が適用され得る好適なMEMSデバイスの一例は反射型ディスプレイデバイスである。反射型ディスプレイデバイスは、光学干渉の原理を使用してそれに入射する光を選択的に吸収および/または反射するために干渉変調器(IMOD)を組み込むことができる。IMODは、吸収体(absorber)、吸収体に対して可動である反射体(reflector)、ならびに吸収体と反射体との間に画定された光共振キャビティを含むことができる。反射体は、2つ以上の異なる位置に移動され得、これは、光共振キャビティのサイズを変化させ、それにより干渉変調器の反射率(reflectance)に影響を及ぼすことがある。IMODの反射スペクトルは、かなり広いスペクトルバンドをもたらすことができ、そのスペクトルバンドは、異なる色を生成するために可視波長にわたってシフトされ得る。スペクトルバンドの位置は、光共振キャビティの厚さを変更することによって、すなわち、反射体の位置を変更することによって調整され得る。
図1は、干渉変調器(IMOD)ディスプレイデバイスの一連のピクセル中の2つの隣接ピクセルを示す等角図の一例を示している。IMODディスプレイデバイスは、1つまたは複数の干渉MEMSディスプレイ要素を含む。これらのデバイスでは、MEMSディスプレイ要素のピクセルが、明状態または暗状態のいずれかにあることがある。明(「緩和」、「開」または「オン」)状態では、ディスプレイ要素は、たとえば、ユーザに、入射可視光の大部分を反射する。逆に、暗(「作動」、「閉」または「オフ」)状態では、ディスプレイ要素は入射可視光をほとんど反射しない。いくつかの実装形態では、オン状態の光反射特性とオフ状態の光反射特性は逆にされ得る。MEMSピクセルは、黒および白に加えて、主に、カラーディスプレイを可能にする特定の波長において、反射するように構成され得る。
IMODディスプレイデバイスは、IMODの行/列アレイを含むことができる。各IMODは、(光ギャップまたはキャビティとも呼ばれる)エアギャップを形成するように互いから可変で制御可能な距離をおいて配置された反射層のペア、すなわち、可動反射層と固定部分反射層とを含むことができる。可動反射層は少なくとも2つの位置の間で移動され得る。第1の位置、すなわち、緩和位置では、可動反射層は、固定部分反射層から比較的大きい距離をおいて配置され得る。第2の位置、すなわち、作動位置では、可動反射層は、部分反射層により近接して配置され得る。それら2つの層から反射する入射光は、可動反射層の位置に応じて、強め合うようにまたは弱め合うように干渉し、各ピクセルについて全反射状態または無反射状態のいずれかを引き起こすことがある。いくつかの実装形態では、IMODは、作動していないときに反射状態にあり、可視スペクトル内の光を反射し得、また、作動していないときに暗状態にあり、可視範囲外の光(たとえば、赤外光)を反射し得る。ただし、いくつかの他の実装形態では、IMODは、作動していないときに暗状態にあり、作動しているときに反射状態にあり得る。いくつかの実装形態では、印加電圧の導入が、状態を変更するようにピクセルを駆動することができる。いくつかの他の実装形態では、印加電荷が、状態を変更するようにピクセルを駆動することができる。
図1中のピクセルアレイの図示の部分は、2つの隣接する干渉変調器12を含む。(図示のような)左側のIMOD12では、可動反射層14が、部分反射層を含む光学スタック16からの所定の距離における緩和位置に示されている。左側のIMOD12の両端間に印加された電圧V0、可動反射層14の作動を引き起こすには不十分である。右側のIMOD12では、可動反射層14は、光学スタック16の近くの、またはそれに隣接する作動位置に示されている。右側のIMOD12の両端間に印加された電圧Vbiasは、可動反射層14を作動位置に維持するのに十分である。
図1では、ピクセル12の反射特性が、概して、ピクセル12に入射する光を示す矢印13と、左側のピクセル12から反射する光15とを用いて示されている。詳細に示していないが、ピクセル12に入射する光13の大部分は透明基板20を透過され、光学スタック16に向かうことになることを、当業者なら理解されよう。光学スタック16に入射する光の一部分は光学スタック16の部分反射層を透過されることになり、一部分は反射され、透明基板20を通って戻ることになる。光学スタック16を透過された光13の部分は、可動反射層14において反射され、透明基板20に向かって(およびそれを通って)戻ることになる。光学スタック16の部分反射層から反射された光と可動反射層14から反射された光との間の(強め合うまたは弱め合う)干渉が、ピクセル12から反射される光15の(1つまたは複数の)波長を決定することになる。
光学スタック16は、単一の層またはいくつかの層を含むことができる。その(1つまたは複数の)層は、電極層と、部分反射および部分透過層と、透明な誘電体層とのうちの1つまたは複数を含むことができる。いくつかの実装形態では、光学スタック16は、電気伝導性であり、部分的に透明で、部分的に反射性であり、たとえば、透明基板20上に上記の層のうちの1つまたは複数を堆積させることによって、作製され得る。電極層は、様々な金属、たとえば酸化インジウムスズ(ITO)など、様々な材料から形成され得る。部分反射層は、様々な金属、たとえば、クロム(Cr)、半導体、および誘電体など、部分的に反射性である様々な材料から形成され得る。部分反射層は、材料の1つまたは複数の層から形成され得、それらの層の各々は、単一の材料または材料の組合せから形成され得る。いくつかの実装形態では、光学スタック16は、光吸収体と導体の両方として働く、金属または半導体の単一の半透明の膜(thickness)を含むことができるが、(たとえば、光学スタック16の、またはIMODの他の構造の)異なる、より伝導性の高い層または部分が、IMODピクセル間で信号をバスで運ぶ(bus)ように働くことができる。光学スタック16は、1つまたは複数の導電性層または導電性/吸収層をカバーする、1つまたは複数の絶縁層または誘電体層をも含むことができる。
いくつかの実装形態では、光学スタック16の(1つまたは複数の)層は、以下でさらに説明するように、平行ストリップにパターニングされ得、ディスプレイデバイスにおける行電極を形成し得る。当業者によって理解されるように、「パターニング」という用語は、本明細書では、マスキングプロセスならびにエッチングプロセスを指すために使用される。いくつかの実装形態では、アルミニウム(Al)などの高伝導性および反射性材料が可動反射層14のために使用され得、これらのストリップはディスプレイデバイスにおける列電極を形成し得る。可動反射層14は、(光学スタック16の行電極に直交する)1つまたは複数の堆積された金属層の一連の平行ストリップとして形成されて、ポスト18の上に堆積された列とポスト18間に堆積された介在する犠牲材料とを形成し得る。犠牲材料がエッチング除去されると、画定されたギャップ19または光キャビティが可動反射層14と光学スタック16との間に形成され得る。いくつかの実装形態では、ポスト18間の間隔は1〜1000μm程度であり得、ギャップ19は<10,000オングストローム(Å)程度であり得る。
いくつかの実装形態では、IMODの各ピクセルは、作動状態にあろうと緩和状態にあろうと、本質的に、固定反射層および可動反射層によって形成されるキャパシタである。電圧が印加されないとき、可動反射層14aは、図1中の左側のピクセル12によって示されるように、機械的に緩和した状態にとどまり、可動反射層14と光学スタック16との間のギャップ19がある。しかしながら、電位差、たとえば、電圧が、選択された行および列のうちの少なくとも1つに印加されたとき、対応するピクセルにおける行電極と列電極との交差部に形成されたキャパシタは帯電し、静電力がそれらの電極を引き合わせる。印加された電圧がしきい値を超える場合、可動反射層14は、変形し、光学スタック16の近くにまたはそれに対して移動することができる。光学スタック16内の誘電体層(図示せず)が、図1中の右側の作動ピクセル12によって示されるように、短絡を防ぎ、層14と層16との間の分離距離を制御し得る。その挙動は、印加電位差の極性にかかわらず同じである。いくつかの事例ではアレイ中の一連のピクセルが「行」または「列」と呼ばれることがあるが、ある方向を「行」と呼び、別の方向を「列」と呼ぶことは恣意的であることを、当業者は容易に理解されよう。言い換えれば、いくつかの配向では、行は列と見なされ得、列は行であると見なされ得る。さらに、ディスプレイ要素は、直交する行および列に一様に配置されるか(「アレイ」)、または、たとえば、互いに対して一定の位置オフセットを有する、非線形構成で配置され得る(「モザイク」)。「アレイ」および「モザイク」という用語は、いずれかの構成を指し得る。したがって、ディスプレイは、「アレイ」または「モザイク」を含むものとして言及されるが、その要素自体は、いかなる事例においても、互いに直交して配置される必要がなく、または一様な分布で配設される必要がなく、非対称形状および不均等に分布された要素を有する配置を含み得る。
図2は、3×3干渉変調器ディスプレイを組み込んだ電子デバイスを示すシステムブロック図の一例を示している。電子デバイスは、1つまたは複数のソフトウェアモジュールを実行するように構成され得るプロセッサ21を含む。オペレーティングシステムを実行することに加えて、プロセッサ21は、ウェブブラウザ、電話アプリケーション、電子メールプログラム、または他のソフトウェアアプリケーションを含む、1つまたは複数のソフトウェアアプリケーションを実行するように構成され得る。
プロセッサ21は、アレイドライバ22と通信するように構成され得る。アレイドライバ22は、たとえば、ディスプレイアレイまたはパネル30に、信号を与える行ドライバ回路24と列ドライバ回路26とを含むことができる。図2には、図1に示したIMODディスプレイデバイスの断面が線1−1によって示されている。図2は明快のためにIMODの3×3アレイを示しているが、ディスプレイアレイ30は、極めて多数のIMODを含んでいることがあり、列におけるIMODの数とは異なる数のIMODを行において有し得、その逆も同様である。
図3は、図1の干渉変調器についての可動反射層位置対印加電圧を示す図の一例を示している。MEMS干渉変調器の場合、行/列(すなわち、コモン/セグメント)書込みプロシージャが、図3に示すこれらのデバイスのヒステリシス特性(hysteresis property)を利用し得る。干渉変調器は、可動反射層またはミラーに緩和状態から作動状態に変更させるために、たとえば、約10ボルトの電位差を必要とし得る。電圧がその値から低減されると、電圧が低下して、たとえば、10ボルトより下に戻ったとき、可動反射層はそれの状態を維持するが、電圧が2ボルトより下に低下するまで、可動反射層は完全には緩和しない。したがって、図3に示すように、印加電圧のウィンドウがある電圧の範囲、約3〜7ボルトが存在し、そのウィンドウ内でデバイスは緩和状態または作動状態のいずれかで安定している。これは、本明細書では「ヒステリシスウィンドウ」または「安定性ウィンドウ」と呼ばれる。図3のヒステリシス特性(hysteresis characteristics)を有するディスプレイアレイ30の場合、行/列書込みプロシージャは、一度に1つまたは複数の行をアドレス指定するように設計され得、その結果、所与の行のアドレス指定中に、作動されるべきアドレス指定された行におけるピクセルは、約10ボルトの電圧差にさらされ、緩和されるべきピクセルは、ほぼ0ボルトの電圧差にさらされる。アドレス指定後に、それらのピクセルは、それらが前のストローブ状態にとどまるような、約5ボルトの定常状態またはバイアス電圧差にさらされる。この例では、アドレス指定された後に、各ピクセルは、約3〜7ボルトの「安定性ウィンドウ」内の電位差を経験する。このヒステリシス特性の特徴は、たとえば、図1に示した、ピクセル設計が、同じ印加電圧条件下で作動または緩和のいずれかの既存の状態で安定したままであることを可能にする。各IMODピクセルは、作動状態にあろうと緩和状態にあろうと、本質的に、固定反射層および可動反射層によって形成されるキャパシタであるので、この安定状態は、電力を実質的に消費するかまたは失うことなしに、ヒステリシスウィンドウ内の定常電圧において保持され得る。その上、印加電圧電位が実質的に固定のままである場合、電流は本質的にほとんどまたはまったくIMODピクセルに流れ込まない。
いくつかの実装形態では、所与の行におけるピクセルの状態の所望の変化(もしあれば)に従って、列電極のセットに沿って「セグメント」電圧の形態のデータ信号を印加することによって、画像のフレームが作成され得る。次に、フレームが一度に1行書き込まれるように、アレイの各行がアドレス指定され得る。第1の行におけるピクセルに所望のデータを書き込むために、第1の行におけるピクセルの所望の状態に対応するセグメント電圧が列電極上に印加され得、特定の「コモン」電圧または信号の形態の第1の行パルスが第1の行電極に印加され得る。次いで、セグメント電圧のセットは、第2の行におけるピクセルの状態の所望の変化(もしあれば)に対応するように変更され得、第2のコモン電圧が第2の行電極に印加され得る。いくつかの実装形態では、第1の行におけるピクセルは、列電極に沿って印加されたセグメント電圧の変化による影響を受けず、第1のコモン電圧行パルス中にそれらのピクセルが設定された状態にとどまる。このプロセスは、画像フレームを生成するために、一連の行全体、または代替的に、一連の列全体について、連続方式で繰り返され得る。フレームは、何らかの所望の数のフレーム毎秒でこのプロセスを断続的に反復することによって、新しい画像データでリフレッシュおよび/または更新され得る。
各ピクセルの両端間に印加されるセグメント信号とコモン信号の組合せ(すなわち、各ピクセルの両端間の電位差)は、各ピクセルの得られる状態を決定する。図4は、様々なコモン電圧およびセグメント電圧が印加されたときの干渉変調器の様々な状態を示す表の一例を示している。当業者によって容易に理解されるように、「セグメント」電圧は、列電極または行電極のいずれかに印加され得、「コモン」電圧は、列電極または行電極のうちの他方に印加され得る。
図4に(ならびに図5Bに示すタイミング図に)示すように、開放電圧(release voltage)VCRELがコモンラインに沿って印加されたとき、コモンラインに沿ったすべての干渉変調器要素は、セグメントラインに沿って印加された電圧、すなわち、高いセグメント電圧VSおよび低いセグメント電圧VSにかかわらず、代替的に開放または非作動状態と呼ばれる、緩和状態に入れられることになる。特に、開放電圧VCRELがコモンラインに沿って印加されると、そのピクセルのための対応するセグメントラインに沿って高いセグメント電圧VSが印加されたときも、低いセグメント電圧VSが印加されたときも、変調器の両端間の潜在的な電圧(代替的にピクセル電圧と呼ばれる)は緩和ウィンドウ(図3参照。開放ウィンドウとも呼ばれる)内にある。
高い保持電圧VCHOLD または低い保持電圧VCHOLD などの保持電圧がコモンライン上に印加されたとき、干渉変調器の状態は一定のままであることになる。たとえば、緩和IMODは緩和位置にとどまることになり、作動IMODは作動位置にとどまることになる。保持電圧は、対応するセグメントラインに沿って高いセグメント電圧VSが印加されたときも、低いセグメント電圧VSが印加されたときも、ピクセル電圧が安定性ウィンドウ内にとどまることになるように、選択され得る。したがって、セグメント電圧スイング(voltage swing)、すなわち、高いVSと低いセグメント電圧VSとの間の差は、正または負のいずれかの安定性ウィンドウの幅よりも小さい。
高いアドレス指定電圧VCADD または低いアドレス指定電圧VCADD などのアドレス指定または作動電圧がコモンライン上に印加されたとき、それぞれのセグメントラインに沿ったセグメント電圧の印加によって、データがそのコモンラインに沿った変調器に選択的に書き込まれ得る。セグメント電圧は、作動が印加されたセグメント電圧に依存するように選択され得る。アドレス指定電圧がコモンラインに沿って印加されたとき、一方のセグメント電圧の印加は、安定性ウィンドウ内のピクセル電圧をもたらし、ピクセルが非作動のままであることを引き起こすことになる。対照的に、他方のセグメント電圧の印加は、安定性ウィンドウを超えるピクセル電圧をもたらし、ピクセルの作動をもたらすことになる。作動を引き起こす特定のセグメント電圧は、どのアドレス指定電圧が使用されるかに応じて変動することができる。いくつかの実装形態では、高いアドレス指定電圧VCADD がコモンラインに沿って印加されたとき、高いセグメント電圧VSの印加は、変調器がそれの現在位置にとどまることを引き起こすことがあり、低いセグメント電圧VSの印加は、変調器の作動を引き起こすことがある。当然の結果として、低いアドレス指定電圧VCADD が印加されたとき、セグメント電圧の影響は反対であり、高いセグメント電圧VSは変調器の作動を引き起こし、低いセグメント電圧VSは変調器の状態に影響しない(すなわち、安定したままである)ことがある。
いくつかの実装形態では、常に変調器の両端間で同じ極性電位差を引き起こす保持電圧、アドレス電圧、およびセグメント電圧が使用され得る。いくつかの他の実装形態では、変調器の電位差の極性を交番する信号が使用され得る。変調器の両端間の極性の交番(すなわち、書込みプロシージャの極性の交番)は、単一の極性の反復書込み動作後に起こることがある電荷蓄積を低減または抑止し得る。
図5Aは、図2の3×3干渉変調器ディスプレイにおけるディスプレイデータのフレームを示す図の一例を示している。図5Bは、図5Aに示すディスプレイデータのフレームを書き込むために使用され得るコモン信号およびセグメント信号についてのタイミング図の一例を示している。それらの信号は、たとえば、図2の3×3アレイに印加され得、これは、図5Aに示すライン時間60eディスプレイ配置を最終的にもたらすことになる。図5A中の作動変調器は暗状態にあり、すなわち、その状態では、反射光の実質的部分が、たとえば、閲覧者に、暗いアピアランスをもたらすように可視スペクトルの外にある。図5Aに示すフレームを書き込むより前に、ピクセルは任意の状態にあることがあるが、図5Bのタイミング図に示す書込みプロシージャは、各変調器が、第1のライン時間60aの前に、開放されており、非作動状態に属すると仮定する。
第1のライン時間60a中に、開放電圧70がコモンライン1上に印加され、コモンライン2上に印加される電圧が、高い保持電圧72において始まり、開放電圧70に移動し、低い保持電圧76がコモンライン3に沿って印加される。したがって、コモンライン1に沿った変調器(コモン1,セグメント1)、(1,2)および(1,3)は、第1のライン時間60aの持続時間の間、緩和または非作動状態にとどまり、コモンライン2に沿った変調器(2,1)、(2,2)および(2,3)は、緩和状態に移動することになり、コモンライン3に沿った変調器(3,1)、(3,2)および(3,3)は、それらの前の状態にとどまることになる。図4を参照すると、コモンライン1、2または3のいずれも、ライン時間60a中に作動を引き起こす電圧レベルにさらされていないので(すなわち、VCREL−緩和、およびVCHOLD −安定)、セグメントライン1、2および3に沿って印加されたセグメント電圧は、干渉変調器の状態に影響しないことになる。
第2のライン時間60b中に、コモンライン1上の電圧は高い保持電圧72に移動し、コモンライン1に沿ったすべての変調器は、アドレス指定または作動電圧がコモンライン1上に印加されなかったので、印加されたセグメント電圧にかかわらず、緩和状態にとどまる。コモンライン2に沿った変調器は、開放電圧70の印加により、緩和状態にとどまり、コモンライン3に沿った変調器(3,1)、(3,2)および(3,3)は、コモンライン3に沿った電圧が開放電圧70に移動するとき、緩和することになる。
第3のライン時間60c中に、コモンライン1は、コモンライン1上に高いアドレス電圧74を印加することによってアドレス指定される。このアドレス電圧の印加中に低いセグメント電圧64がセグメントライン1および2に沿って印加されるので、変調器(1,1)および(1,2)の両端間のピクセル電圧は変調器の正の安定性ウィンドウの上端よりも大きく(すなわち、電圧差は、あらかじめ定義されたしきい値を超えた)、変調器(1,1)および(1,2)は作動される。逆に、高いセグメント電圧62がセグメントライン3に沿って印加されるので、変調器(1,3)の両端間のピクセル電圧は、変調器(1,1)および(1,2)のピクセル電圧よりも小さく、変調器の正の安定性ウィンドウ内にとどまり、したがって変調器(1,3)は緩和したままである。また、ライン時間60c中に、コモンライン2に沿った電圧は低い保持電圧76に減少し、コモンライン3に沿った電圧は開放電圧70にとどまり、コモンライン2および3に沿った変調器を緩和位置のままにする。
第4のライン時間60d中に、コモンライン1上の電圧は、高い保持電圧72に戻り、コモンライン1に沿った変調器を、それらのそれぞれのアドレス指定された状態のままにする。コモンライン2上の電圧は低いアドレス電圧78に減少される。高いセグメント電圧62がセグメントライン2に沿って印加されるので、変調器(2,2)の両端間のピクセル電圧は、変調器の負の安定性ウィンドウの下側端部(lower end)を下回り、変調器(2,2)が作動することを引き起こす。逆に、低いセグメント電圧64がセグメントライン1および3に沿って印加されるので、変調器(2,1)および(2,3)は緩和位置にとどまる。コモンライン3上の電圧は、高い保持電圧72に増加し、コモンライン3に沿った変調器を緩和状態のままにする。
最後に、第5のライン時間60e中に、コモンライン1上の電圧は高い保持電圧72にとどまり、コモンライン2上の電圧は低い保持電圧76にとどまり、コモンライン1および2に沿った変調器を、それらのそれぞれのアドレス指定された状態のままにする。コモンライン3上の電圧は、コモンライン3に沿った変調器をアドレス指定するために、高いアドレス電圧74に増加する。低いセグメント電圧64がセグメントライン2および3上に印加されるので、変調器(3,2)および(3,3)は作動するが、セグメントライン1に沿って印加された高いセグメント電圧62は、変調器(3,1)が緩和位置にとどまることを引き起こす。したがって、第5のライン時間60eの終わりに、3×3ピクセルアレイは、図5Aに示す状態にあり、他のコモンライン(図示せず)に沿った変調器がアドレス指定されているときに起こり得るセグメント電圧の変動にかかわらず、保持電圧がコモンラインに沿って印加される限り、その状態にとどまることになる。
図5Bのタイミング図では、所与の書込みプロシージャ(すなわち、ライン時間60a〜60e)は、高い保持およびアドレス電圧、または低い保持およびアドレス電圧のいずれかの使用を含むことができる。書込みプロシージャが所与のコモンラインについて完了されると(また、コモン電圧が、作動電圧と同じ極性を有する保持電圧に設定されると)、ピクセル電圧は、所与の安定性ウィンドウ内にとどまり、開放電圧がそのコモンライン上に印加されるまで、緩和ウィンドウを通過しない。さらに、各変調器が、変調器をアドレス指定するより前に書込みプロシージャの一部として開放されるので、開放時間ではなく変調器の作動時間が、必要なライン時間を決定し得る。詳細には、変調器の開放時間が作動時間よりも大きい実装形態では、開放電圧は、図5Bに示すように、単一のライン時間よりも長く印加され得る。いくつかの他の実装形態では、コモンラインまたはセグメントラインに沿って印加される電圧が、異なる色の変調器など、異なる変調器の作動電圧および開放電圧の変動を相殺するように変動し得る。
上記に記載した原理に従って動作する干渉変調器の構造の詳細は大きく異なり得る。たとえば、図6A〜図6Eは、可動反射層14とそれの支持構造とを含む、干渉変調器の異なる実装形態の断面図の例を示している。図6Aは、金属材料のストリップ、すなわち、可動反射層14が、基板20から直角に延在する支持体18上に堆積される、図1の干渉変調器ディスプレイの部分断面図の一例を示している。図6Bでは、各IMODの可動反射層14は、概して形状が正方形または長方形であり、コーナーにおいてまたはその近くでテザー32に接して支持体に取り付けられる。図6Cでは、可動反射層14は、概して形状が正方形または長方形であり、フレキシブルな金属を含み得る変形可能層34から吊るされる。変形可能層34は、可動反射層14の外周の周りで基板20に直接または間接的に接続することがある。これらの接続は、本明細書では支持ポストと呼ばれる。図6Cに示す実装形態は、変形可能層34によって行われる可動反射層14の機械的機能からのそれの光学的機能の分離(decoupling)から派生する追加の利益を有する。この分離は、反射層14のために使用される構造設計および材料と、変形可能層34のために使用される構造設計および材料とが、互いとは無関係に最適化されることを可能にする。
図6Dは、可動反射層14が反射副層(reflective sub-layer)14aを含む、IMODの別の例を示している。可動反射層14は、支持ポスト18などの支持構造上に載る。支持ポスト18は、たとえば、可動反射層14が緩和位置にあるとき、可動反射層14と光学スタック16との間にギャップ19が形成されるように、下側静止電極(すなわち、図示のIMODにおける光学スタック16の一部)からの可動反射層14の分離を可能にする。可動反射層14は、電極として働くように構成され得る導電性層14cと、支持層14bとをも含むことができる。この例では、導電性層14cは、基板20から遠位にある支持層14bの一方の面に配設され、反射副層14aは、基板20の近位にある支持層14bの他方の面に配設される。いくつかの実装形態では、反射副層14aは、伝導性であることがあり、支持層14bと光学スタック16との間に配設され得る。支持層14bは、誘電材料、たとえば、酸窒化ケイ素(SiON)または二酸化ケイ素(SiO)の、1つまたは複数の層を含むことができる。いくつかの実装形態では、支持層14bは、たとえば、SiO/SiON/SiO3層スタックなど、複数の層のスタックであり得る。反射副層14aと導電性層14cのいずれかまたは両方は、たとえば、約0.5%のCuまたは別の反射金属材料を用いた、Al合金を含むことができる。誘電支持層14bの上および下で導電性層14a、14cを採用することは、応力のバランスをとり、伝導の向上を与えることができる。いくつかの実装形態では、反射副層14aおよび導電性層14cは、可動反射層14内の特定の応力プロファイルを達成することなど、様々な設計目的で、異なる材料から形成され得る。
図6Dに示すように、いくつかの実装形態はブラックマスク(black mask)構造23をも含むことができる。ブラックマスク構造23は、周辺光または迷光を吸収するために、光学不活性領域において(たとえば、ピクセル間にまたはポスト18の下に)形成され得る。ブラックマスク構造23はまた、光がディスプレイの不活性部分から反射されることまたはそれを透過されることを抑止し、それによりコントラスト比を増加させることによって、ディスプレイデバイスの光学的特性(optical property)を改善することができる。さらに、ブラックマスク構造23は、伝導性であり、電気的バス層として機能するように構成され得る。いくつかの実装形態では、行電極は、接続された行電極の抵抗を低減するために、ブラックマスク構造23に接続され得る。ブラックマスク構造23は、堆積およびパターニング技法を含む様々な方法を使用して形成され得る。ブラックマスク構造23は1つまたは複数の層を含むことができる。たとえば、いくつかの実装形態では、ブラックマスク構造23は、光吸収器として働くモリブデンクロム(MoCr)層と、SiO層と、反射体およびバス層として働く、アルミニウム合金とを含み、それぞれ、約30〜80Å、500〜1000Å、および500〜6000Åの範囲内の厚さである。1つまたは複数の層は、たとえば、MoCr層およびSiO層の場合は、CFおよび/またはO2、ならびにアルミニウム合金層の場合は、Clおよび/またはBClを含む、フォトリソグラフィおよびドライエッチングを含む、様々な技法を使用してパターニングされ得る。いくつかの実装形態では、ブラックマスク23はエタロン(etalon)または干渉スタック構造であり得る。そのような干渉スタックブラックマスク構造23では、伝導性吸収体は、各行または列の光学スタック16における下側静止電極間で信号を送信するかまたは信号をバスで運ぶために使用され得る。いくつかの実装形態では、スペーサ層35が、ブラックマスク23中の導電性層から吸収層16aを概して電気的に絶縁するのに、役立つことができる。
図6Eは、可動反射層14が自立している、IMODの別の例を示している。図6Dとは対照的に、図6Eの実装形態は支持ポスト18を含まない。代わりに、可動反射層14は、複数の位置において、下にある光学スタック16に接触し、可動反射層14の湾曲は、干渉変調器の両端間の電圧が作動を引き起こすには不十分であるとき、可動反射層14が図6Eの非作動位置に戻るという、十分な支持を与える。複数のいくつかの異なる層を含んでいることがある光学スタック16は、ここでは明快のために、光吸収体16aと誘電体16bとを含む状態で示されている。いくつかの実装形態では、光吸収体16aは、固定電極としても、部分反射層としても働き得る。
図6A〜図6Eに示す実装形態などの実装形態では、IMODは直視型デバイスとして機能し、直視型デバイスでは、画像が、透明基板20の正面、すなわち、変調器が配置された面の反対の面から、閲覧される。これらの実装形態では、デバイスの背面部分(すなわち、たとえば、図6Cに示す変形可能層34を含む、可動反射層14の背後のディスプレイデバイスの任意の部分)は、反射層14がデバイスのそれらの部分を光学的に遮蔽するので、ディスプレイデバイスの画質に影響を及ぼすことまたは悪影響を及ぼすことなしに、構成され、作用され得る。たとえば、いくつかの実装形態では、バス構造(図示せず)が可動反射層14の背後に含まれ得、これは、電圧アドレス指定およびそのようなアドレス指定に起因する移動など、変調器の電気機械的特性から変調器の光学的特性を分離する能力を与える。さらに、図6A〜図6Eの実装形態は、たとえば、パターニングなどの処理を簡略化することができる。
図7は、干渉変調器のための製造プロセス80を示すフロー図の一例を示しており、図8A〜図8Eは、そのような製造プロセス80の対応する段階の断面概略図の例を示している。いくつかの実装形態では、製造プロセス80は、図7に示されていない他のブロックに加えて、たとえば、図1および図6に示す一般的なタイプの干渉変調器を製造するために実装され得る。図1、図6および図7を参照すると、プロセス80はブロック82において開始し、基板20上への光学スタック16の形成を伴う。図8Aは、基板20上で形成されたそのような光学スタック16を示している。基板20は、ガラスまたはプラスチックなどの透明基板であり得、それは、フレキシブルであるかまたは比較的固く曲がらないことがあり、光学スタック16の効率的な形成を可能にするために、事前準備プロセス、たとえば、洗浄にかけられていることがある。上記で説明したように、光学スタック16は、電気伝導性であり、部分的に透明で、部分的に反射性であることがあり、たとえば、透明基板20上に、所望の特性を有する1つまたは複数の層を堆積させることによって、作製され得る。図8Aでは、光学スタック16は、副層16aおよび16bを有する多層構造を含むが、いくつかの他の実装形態では、より多いまたはより少ない副層が含まれ得る。いくつかの実装形態では、副層16a、16bのうちの1つは、組み合わせられた導体/吸収体副層16aなど、光吸収特性と伝導特性の両方で構成され得る。さらに、副層16a、16bのうちの1つまたは複数は、平行ストリップにパターニングされ得、ディスプレイデバイスにおける行電極を形成し得る。そのようなパターニングは、当技術分野で知られているマスキングおよびエッチングプロセスまたは別の好適なプロセスによって実行され得る。いくつかの実装形態では、副層16a、16bのうちの1つは、1つまたは複数の金属層(たとえば、1つまたは複数の反射層および/または導電性層)上に堆積された副層16bなど、絶縁層または誘電体層であり得る。さらに、光学スタック16は、ディスプレイの行を形成する個々の平行ストリップにパターニングされ得る。
プロセス80はブロック84において続き、光学スタック16上への犠牲層25の形成を伴う。犠牲層25は、キャビティ19を形成するために後で(たとえば、ブロック90において)除去され、したがって、犠牲層25は、図1に示した得られた干渉変調器12には示されていない。図8Bは、光学スタック16上で形成された犠牲層25を含む、部分的に作製されたデバイスを示している。光学スタック16上での犠牲層25の形成は、後続の除去後に、所望の設計サイズを有するギャップまたはキャビティ19(図1および図8Eも参照)を与えるように選択された厚さの、モリブデン(Mo)またはアモルファスシリコン(Si)など、フッ化キセノン(XeF)エッチング可能材料の堆積を含み得る。犠牲材料の堆積は、物理蒸着(PVD、たとえば、スパッタリング)、プラズマ強化化学蒸着(PECVD)、熱化学蒸着(熱CVD)、またはスピンコーティングなど、堆積技法を使用して行われ得る。
プロセス80はブロック86において続き、支持構造、たとえば、図1、図6および図8Cに示すポスト18の形成を伴う。ポスト18の形成は、支持構造開口を形成するために犠牲層25をパターニングすることと、次いで、PVD、PECVD、熱CVD、またはスピンコーティングなど、堆積方法を使用して、ポスト18を形成するために開口中に材料(たとえば、ポリマーまたは無機材料、たとえば、酸化ケイ素)を堆積させることとを含み得る。いくつかの実装形態では、犠牲層中に形成された支持構造開口は、ポスト18の下側端部が図6Aに示すように基板20に接触するように、犠牲層25と光学スタック16の両方を通って、下にある基板20まで延在することがある。代替的に、図8Cに示すように、犠牲層25中に形成された開口は、犠牲層25は通るが、光学スタック16は通らないで、延在することがある。たとえば、図8Eは、光学スタック16の上側表面(upper surface)と接触している支持ポスト18の下側端部を示している。ポスト18、または他の支持構造は、犠牲層25上に支持構造材料の層を堆積させることと、犠牲層25中の開口から離れて配置された支持構造材料の部分をパターニングすることとによって形成され得る。支持構造は、図8Cに示すように開口内に配置され得るが、少なくとも部分的に、犠牲層25の一部分の上で延在することもある。上述のように、犠牲層25および/または支持ポスト18のパターニングは、パターニングおよびエッチングプロセスによって実行され得るが、代替エッチング方法によっても実行され得る。
プロセス80はブロック88において続き、図1、図6および図8Dに示す可動反射層14などの可動反射層または膜の形成を伴う。可動反射層14は、1つまたは複数のパターニング、マスキング、および/またはエッチングステップとともに、1つまたは複数の堆積ステップ、たとえば、反射層(たとえば、アルミニウム、アルミニウム合金)堆積を採用することによって、形成され得る。可動反射層14は、電気伝導性であり、電気伝導性層(electrically conductive layer)と呼ばれることがある。いくつかの実装形態では、可動反射層14は、図8Dに示すように複数の副層14a、14b、14cを含み得る。いくつかの実装形態では、副層14a、14cなど、副層のうちの1つまたは複数は、それらの光学的特性のために選択された高反射性副層を含み得、別の副層14bは、それの機械的特性のために選択された機械的副層を含み得る。犠牲層25は、ブロック88において形成された部分的に作製された干渉変調器中に依然として存在するので、可動反射層14は、一般にこの段階では可動でない。犠牲層25を含んでいる部分的に作製されたIMODは、本明細書では「非開放(unreleased)」IMODと呼ばれることもある。図1に関して上記で説明したように、可動反射層14は、ディスプレイの列を形成する個々の平行ストリップにパターニングされ得る。
プロセス80はブロック90において続き、キャビティ、たとえば、図1、図6および図8Eに示すキャビティ19の形成を伴う。キャビティ19は、(ブロック84において堆積された)犠牲材料25をエッチャントにさらすことによって形成され得る。たとえば、MoまたはアモルファスSiなどのエッチング可能犠牲材料が、ドライ化学エッチングによって、たとえば、一般に、キャビティ19を囲む構造に対して選択的に除去される、所望の量の材料を除去するのに有効である時間期間の間、固体XeFから派生した蒸気などの気体または蒸気エッチャントに犠牲層25をさらすことによって、除去され得る。他のエッチング方法、たとえば、ウェットエッチングおよび/またはプラズマエッチングも使用され得る。犠牲層25がブロック90中に除去されるので、可動反射層14は、一般に、この段階後に可動となる。犠牲材料25の除去後に、得られた完全にまたは部分的に作製されたIMODは、本明細書では「開放」IMODと呼ばれることがある。
上記で説明したように、検知デバイスは、1つまたは複数のディスプレイ、たとえば、図1〜図8Eに関して説明した干渉変調器上に配設され得る。いくつかの実装形態では、容量性タッチ検知デバイスは、1つまたは複数のMEMSデバイス、干渉変調器デバイス、反射ディスプレイデバイス、および/または他のディスプレイデバイスの少なくとも一部分上に配設され得る。検知デバイスに入射した周辺光が反射されて、たとえば、閲覧者に戻される前に少なくとも2回、たとえば、これらの検知デバイスのセンサー領域を通過するので、反射ディスプレイの上にある検知デバイスによって吸収および/または反射される光の量を制限することが望ましい。本明細書で開示する検知アレイは、非導電性の光学的に透明なボリュームを少なくとも部分的に画定する、透明、半透明、または不透明導電性行および列を含むことができる。これらの光学的に透明なボリュームは、光が最小の吸収および/または反射でそれを通過することを可能にすることができ、導電性行および列は、センサー領域の近傍にある導電性物体、たとえば、指の位置を判断するための検知回路によって利用され得る。
図9Aに、センサーアレイ上で導電性物体の存在を検出するための複数の導電性行および列を有する例示的な検知デバイスの上面図を示す。本明細書で開示する導電性構造の一部が「行」または「列」と呼ばれることがあるが、ある方向を「行」と呼び、別の方向を「列」と呼ぶことは恣意的であることを、当業者は容易に理解されよう。言い換えれば、いくつかの配向では、行は列と見なされ得、列は行であると見なされ得る。さらに、導電性構造は、直交する行および列に一様に配置されるか(「アレイ」)、または、たとえば、互いに対して一定の位置オフセットを有する、非線形構成で配置され得る(「モザイク」)。したがって、行および列と呼ばれる導電性構造は、いかなる事例においても、互いに直交して配置される必要がなく、または一様な分布で配設される必要がなく、非対称形状および不均等に分布された要素を有する配置を含み得る。
検知デバイス900は、検知デバイス900に対する導電性物体、たとえば、ユーザの指またはスタイラスの位置を判断し、外部回路、たとえば、コンピュータまたは他の電子デバイスにこの位置を与えるように構成され得る。一実装形態では、検知デバイス900は、下にある反射ディスプレイ(図示せず)、たとえば、干渉ディスプレイ上に配設され得る。そのような実装形態では、閲覧者は、検知デバイス900のセンサー領域908を通して下にある反射ディスプレイの少なくとも一部分を観測することができる。
検知デバイス900は、実質的に透明なカバー基板902を含むことができ、カバー基板902は、カバー基板902の下に配設された導電性行906のセットと導電性列904のセットとを有する。導電性行906のセットと導電性列904のセットとの詳細は、明快のために図9Aに示していない。カバー基板902は、絶縁材料、たとえば、ガラスを含むことができる。導電性行906および導電性列904は、センサー領域908内にセンサーアレイ920を画定する。導電性行906および導電性列904は、導電性リード線912、914によって検知回路910に電気的に結合される。検知回路910は、個々の導電性行906と導電性列904とに周期的にパルス信号を印加し、別個の導電性行906と導電性列904との間、および/あるいは導電性行または列と任意の接地との間のキャパシタンスを検出する。導電性行と導電性列との間のキャパシタンスは「相互キャパシタンス」と呼ばれることがあり、導電性行または列と任意の接地との間のキャパシタンスは「自己キャパシタンス」と呼ばれることがある。導電性行906と導電性列904との間の重複の近くに導電性物体を配置することにより、局所的な静電界が変化し、それにより、導電性行906と導電性列904との間の相互キャパシタンスが減少する。検知回路910は、導電性行906と導電性列904との相互キャパシタンスおよび/または自己キャパシタンスを周期的に検出し、デフォルト条件からキャパシタンスの変化を比較することによって、センサー領域908のエリアの近位に位置する(たとえば、タッチしているか、または近くに配設された)導電性物体の存在を検出することができる。導電性行906と導電性列904とのジオメトリのパターニングに基づいて、検知デバイス900に対する導電性物体の位置が判断され得る。この検知された位置は、検知回路910によって外部回路に、たとえば、下にある反射ディスプレイを制御する回路に与えられ得る。
図11A〜図11Iに関して以下でさらに詳細に説明するように、いくつかの実装形態では、導電性行906および導電性列904は、非導電性の透明材料の1つまたは複数のボリュームを少なくとも部分的に画定するために、部分的にくり抜かれたワイヤーフレームジオメトリを含むことができる。これらの実装形態は、くり抜いてないワイヤーフレームと比較して低減された自己キャパシタンスを有し、また、周辺領域が増加したためにより高い相互キャパシタンスを有する。検知デバイスにおける導電性行または列の自己キャパシタンスを低減し、相互キャパシタンスを増加させることは、物体、たとえば、指、またはスタイラスの存在を検出するための検知デバイスの能力を改善することができる。
図9Bに、検知デバイスを動作させる例示的な方法を示すフロー図を示す。方法930は、様々な検知デバイス、たとえば、図9Aの検知デバイス900を動作させるために使用され得る。ブロック932に示すように、センサー領域内のセンサーアレイを形成するために互いから離間した導電性行および列を与える。上記で説明したように、センサー領域は、下にあるディスプレイ、たとえば、反射ディスプレイ上に配設され得る。ブロック934に示すように、外部検知回路が各導電性行および列に信号を与え、ブロック936に示すように、各行および列のキャパシタンス変動を経時的に測定する。ブロック938に示すように、検知回路は、隣接する行と隣接する列との間の周期的なキャパシタンス変動を比較する。ブロック940に示すように、センサー領域上で導電性物体の2次元入力位置(たとえば、水平垂直座標位置)を判断するために、比較されたキャパシタンス変動が使用されるように、各行は、センサー領域上の座標位置(たとえば、垂直位置)に関連することができ、各列は、センサー領域上の別の座標位置(たとえば、水平位置)に関連することができる。
図10Aおよび図10Bに、検知デバイスの2つの例示的な実装形態の断面図を示す。図10Aに、下にある干渉ディスプレイ1070a上に配設された検知デバイス1001aを含むディスプレイデバイス1000aの断面図を示す。上記で説明したように、本明細書で開示する検知デバイスは、他のタイプのディスプレイ、および/またはディスプレイでない物体上に配設され得る。検知デバイス1001aは、第1の側に配設されたカバー層1002aと、反対側に配設された絶縁層1082aとを含む。いくつかの実装形態では、カバー層1002aは、カバー層1002aの下に配設された構成要素を保護するように構成され得、約0.02mmと1.5mmとの間の厚さを有することができる。他の実装形態では、カバー層1002aは、20μmよりも小さく、約0.5μm程度の薄さの厚みを有することができる。いくつかの実装形態では、絶縁層1082aは、非導電材料を含むことができ、下にある干渉ディスプレイ1070aから検知デバイス1001aを電気的に絶縁するように構成され得る。検知デバイス1001aは、(図の左から右に示す)x軸に対して概して平行に延在する導電性行1006aと、導電性行1006aに対して概して直角に、(図の平面の内外に示す)y軸に対して概して平行に延在する導電性列1004aのセットとをさらに含む。本明細書で使用する「平行」という用語は、同じ平面にあるが、交差しない2つ以上の線を指すことができる。いくつかの例では、平行線は、互いに対してまっすぐに延在することができ、他の例では、平行線は、他の(1つまたは複数の)平行線上の曲線セグメントを追跡する1つまたは複数の曲線セグメントを含むことができる。導電性列1004aおよび導電性行1006aは、上記で説明した検知デバイスを形成するために1つまたは複数の検知回路(図示せず)と電気的に結合され得るセンサーアレイ1005aを形成することができる。絶縁層とクロスオーバまたはクロスアンダーセグメント(図示せず)とを通る電気ビアは、隣接するかまたは重なる導電性行1006aと導電性列1004aとの間の電気的短絡を回避しながら、導電性列1004aまたは導電性行1006aの部分がそれぞれ、導電性列1004aまたは導電性行1006aの他の部分に電気的に接続されることを可能にする。
さらに図10Aを参照すると、干渉ディスプレイ1070aは、ディスプレイデバイス1000aに入射する光が、センサーアレイ1005aを通過して干渉ディスプレイ1070aのほうへ進むようにセンサーアレイ1005aの下に配設される。干渉ディスプレイ1070aは、吸収層1016a(たとえば、部分反射性の部分透過層)と、1つまたは複数のポスト1018aによって吸収層1016aからオフセットされた可動反射体層1014aとを含む。光共振キャビティ1019aは、吸収層1016aと可動反射体層1014aとの間に配設される。上記で説明したように、図1〜図8Eのいくつかを参照しながら説明した可動反射層に関して、可動反射体層1014aは、ディスプレイデバイス1000aから反射された光の波長を変化させるために、少なくとも2つの状態間で駆動され得る。ディスプレイデバイス1000aの輝度は、ディスプレイデバイス1000aに入射した光の量と、センサーアレイ1005aを通過する際に損失した光の量とに相関することができる。導電性行1006aおよび導電性列1004aは、図11A〜図11Jに関して以下で説明するように、(1つまたは複数の)光学的に透明な非導電材料のボリュームを少なくとも部分的に画定することができる。したがって、検知デバイス1001aは、光学的に透明な非導電性ボリュームを通過する光の損失を制限するように構成され得る。
図10Bに、下にある干渉ディスプレイ1070b上に配設された検知デバイス1001bを組み込んだディスプレイデバイス1000bの別の実装形態を概略的に示す。この実装形態では、センサーアレイ1005bは、導電性行1006bのセットと導電性列1004bのセットとの間に配設された第2の絶縁層1084bを含むことができる。第1の絶縁層1082bおよび第2の絶縁層1084bは、導電性行1006bと導電性列1004bとを互いから隔離し、吸収層1016bから隔離するように構成された任意の絶縁材料または誘電材料を含むことができる。第1の絶縁層1082bおよび第2の絶縁層1084bは、光が著しく吸収されることなくそれを通過することを可能にするように光学的に透明であり得る。さらに、第1の絶縁層1082bと第2の絶縁層1084bとの屈折率は、それを通過する光の反射を抑止するように選択され得る。
次に、図11A〜図11Iを参照すると、検知デバイスにおいて使用する例示的な検知アレイの異なる実装形態の上面図が示されている。各実装形態では、検知アレイ1100は、センサー領域1108内に配設され、(実線によって示される)導電性行1106のセットと(破線によって示される)導電性列1104のセットとを含む。導電性行1106のセットの各々は、概して第1の方向に、たとえば、水平方向に(たとえば、x軸に対して平行に)延在する導電材料を含み、導電性列1104のセットの各々は、概して第2の方向に、たとえば、垂直方向に(たとえば、y軸に対して平行に)延在する導電材料を含む。一実装形態では、導電性行1106のセットの部分が導電性列1104のセットの部分と重なるように、導電性行1106のセットの各々は、導電性列1104のセットの各々に対して概して直角に延在する。導電性行1106および導電性列1104の各々は、図9Aに示すようにリード線(すなわち、導電性リード線912、914)によって、1つまたは複数の検知回路(図示せず)に電気的に結合され得る。1つまたは複数の検知回路は、センサー領域1108の近傍に配設された導電性物体の存在および位置の位置を特定するために、導電性行1106と導電性列1104とに信号を周期的に印加し、相互キャパシタンスおよび/または自己キャパシタンスの変動を経時的に測定することができる。
図11Aに、導電性行1106aのセットを含む検知アレイ1100aの第1の実装形態を概略的に示す。導電性行1106aのセットの各々は、検知アレイ1100aのx軸に対して概して平行に延在する。検知アレイ1100aはまた、導電性列1104aのセットを含み、導電性列1104aのセットの各々は、導電性列1104aのセットの部分が導電性行1106aのセットの部分と重なるように、センサーアレイのy軸に対して概して平行に(たとえば、導電性行1106aのセットに対して概して直角に)延在する。
導電性行1106aのセットおよび導電性列1104aのセットは、1つまたは複数の検知回路によって印加された電気信号を伝導することが可能な様々な導電材料、たとえば、アルミニウムまたはモリブデンを含むことができる。いくつかの実装形態では、導電性行1106aのセットの各々は、単数の導電性行1106aを形成するために互いに接続された複数の導電性セグメント1144aまたは部材を含む。導電性セグメント1144aのいくつかは、検知要素1140aを画定することができ、検知要素1140aは、導電性の接続セグメント1145aによって互いに接続され得る。検知要素1140aは、x−y平面に対して平行な平面において、たとえば、正方形、ひし形、多角形および曲線形状を含む様々な形状を形成するか、または少なくとも部分的に形成することができる。各導電性セグメント1144a、1145aは、その幅が、適切な距離から検知アレイ1100aを閲覧する人間の観測者によって観測することが困難であるような、約3μmと約20μmとの間の幅を有することができる。さらに、各導電性セグメント1144a、1145aは、約500Åと約3500Åとの間の高さ(たとえば、z軸に対して実質的に平行な次元)を有することができる。各導電性セグメント1144a、1145aの高さは、セグメントの(1つまたは複数の)材料の導電率に応じて変動することができる。たとえば、一実装形態では、導電性セグメント1144a、1145aはアルミニウムを含み、約1000Åの高さを有するが、別の実装形態では、導電性セグメント1144aおよび/または接続セグメント1145aはモリブデンを含み、約2200Åの高さを有することができる。したがって、導電性セグメント1144aは、各検知要素1140a内のボリューム1142aを少なくとも部分的に画定することができる。ボリューム1142aは、少なくとも部分的に、導電性セグメント1144a間のエリアと、導電性セグメントの高さの距離を延長することとによって画定される空間を含むことができる。光が明らかに吸収および/または反射されることなくボリューム1142aを通過し得るように、ならびにボリューム1142aが、導電性セグメント1144aと接続セグメント1145aとを互いに電気的に接続しないように、検知要素1140aは、ボリューム1142aを構成する透明な非導電材料、たとえば、ガラス、空気、および/または透明誘電材料を含むことができる。
同様に、導電性列1104aのセットの各々は、単数の導電性列1104aを形成するために互いに接続された複数の導電性セグメント1154aを含む。導電性セグメント1154aのいくつかは検知要素1150aを画定することができ、検知要素1150aは、接続セグメント1155aによって互いに電気的に接続され得る。検知要素1150aは、たとえば、正方形、ひし形、多角形、および曲線形状を含む様々な形状を含むことができる。各導電性セグメント1154aおよび接続1155aは、その幅が、人間の観測者によって観測することが困難であるような、約3μmと約20μmとの間の幅(たとえば、y軸に対して実質的に平行な次元)を有することができる。さらに、各導電電性セグメント1154aおよび接続セグメント1155aは、約500Åと約3500Åとの間の高さ(たとえば、z軸に対して実質的に平行な次元)を有することができる。各導電性セグメント1154aと接続セグメント1155aとの高さは、セグメントの(1つまたは複数の)材料の導電率に応じて変動することができる。たとえば、一実装形態では、導電性セグメント1154aおよび接続セグメント1155aはアルミニウムを含み、約1000Åの高さを有するが、別の実装形態では、導電性セグメント1154aおよび接続セグメント1155aはモリブデンを含み、約2200Åの高さを有する。したがって、導電性セグメント1154aは、各検知要素1150a内のボリューム1152aを少なくとも部分的に画定することができる。光が明らかに吸収および/または反射されることなくボリューム1152aを通過し得るように、ならびにボリューム1152aが、導電性セグメント1144aと接続セグメント1145aとを互いに電気的に接続せず、および/または導電性列1104aのセットを導電性行1106aのセットに電気的に接続しないように、検知要素1150aは、ボリューム1152aを構成する透明な非導電材料、たとえば、ガラス、空気、および/または誘電材料を含むことができる。したがって、導電性行1106aおよび導電性列1104aは、センサー回路から信号を受信するように構成された不透明導電性素子(たとえば、導電性行1106aおよび導電性列1104a)と、光が最小吸収および/または反射で(たとえば、光の損失が最小で)通過することを可能にするように構成された透明非導電性素子(たとえば、ボリューム1142a、1152a)とを含むセンサーアレイ1100aを形成するために使用され得る。隣接する導電性行1106a間のピッチまたは距離は、0.05mm未満から5.0mmよりも大きい長さにわたり得る。同様に、隣接する導電性列1104a間のピッチまたは距離は、0.05mm未満から5.0mmよりも大きい長さにわたり得る。
図11Aに概略的に示されている実装形態では、各導電性行1106aと各導電性列1104aとに信号が印加され得、検知アレイ1100aの位置の近くの導電性物体の存在を判断するために、隣接する導電性行1106aと導電性列1104aとの間の相互キャパシタンスが、自己キャパシタンスとともに測定され得る。導電性物体を検知するために相互キャパシタンスが測定されるとき、検知要素1140a、1150aは、互いに対して実質的に平行に延在する相補型セグメント1144a’、1154a’を含むことができる。相補型導電性セグメント1144a’、1154a’は、検知要素1140a、1150aの相補型形状から生じることができ、および/または以下でより詳細に説明するように、別様に成形された検知要素1140a、1150aとともに生じることができる。
次に、図11Bを参照すると、検知アレイ1100bの第2の実装形態が概略的に示されている。検知アレイ1100bは、導電性セグメント1144bおよび接続セグメント1145bから形成された導電性行1106bのセットと、導電性セグメント1154bおよび接続セグメント1155bから形成された導電性列1104bのセットとを含む。導電性行1106bのセットの各々は、導電性セグメント1144bから形成された複数の検知要素1140bを含む。同様に、導電性列1104bのセットの各々は、導電性セグメント1154bから形成された複数の検知要素1150bを含む。検知要素1140bの導電性セグメント1144b’が、別の検知要素1150bの導電性セグメント1154b’に対して対角的に、概して平行に延在するように、検知要素1150bは、検知要素1140bに対して相補型である。
図11Aに関して説明した検知要素1140a、1150aとは対照的に、検知要素1140b、1150bは、中心導電性セグメント1144b、1154bの両側に配設された2つのボリューム1142b、1152bを含む。検知要素1140b、1150bが追加の導電性セグメントを含むので、各検知要素1140b、1150bにおける導電性セグメント1144b、1154bの合計総断面面積は増大することがあり、それにより、図11Aに示した検知要素1140a、1150aの電気抵抗と比較して、各検知要素1140b、1150bの電気抵抗が低下する。検知要素1140b、1150bの抵抗、したがって、検知アレイ1100bの抵抗を減少させることは、接続された検知回路(図示せず)のためのRC時間遅延を低減し、キャパシタンスタッチ検知のサンプリングレートを増加させることができる。
図11Cに、導電性行1106cのセットと導電性列1104cのセットとを含む検知アレイ1100cの別の実装形態を概略的に示す。導電性行1106cのセットの各々は、導電性セグメント1144cから形成された複数の検知要素1140cを含む。同様に、導電性列1104cのセットの各々は、導電性セグメント1154cから形成された複数の検知要素1150cを含む。検知要素1140cの導電性セグメント1144c’が、別の検知要素1150cの導電性セグメント1154c’に対して対角的に、概して平行に延在するように、検知要素1150cは、検知要素1140cに対して相補型である。
各検知要素1140c、1150cは、それぞれ、導電性セグメント1144c、1154cによって少なくとも部分的に画定される3つのボリューム1142c、1152cを含む。検知要素1140c、1150cは、光が明らかに吸収および/または反射されることなくボリューム1142c、1152cを通過し得るように、ボリューム1142c、1152cを構成する透明な非導電材料、たとえば、ガラス、空気、および/または誘電材料を含むことができる。したがって、検知アレイ1100cは、検知アレイ1100cに入射する周辺光が、ボリューム1142c、1152cを通過するときに損失しないように、反射ディスプレイ上で少なくとも部分的に配設され得る。図11Bを参照しながら上記で説明したように、追加の導電性セグメント1144c、1154cの合計総断面面積が増加するにつれて、各検知要素1140c、1150cの抵抗は、各追加の導電性セグメント1144c、1154cとともに減少し得る。本明細書で開示する様々な検知要素の抵抗は、センサー要素中に追加の導電性セグメントを含むことによって調整され得ることを、当業者は容易に理解されよう。また、所与のセンサー要素の中心の上に配置された導電性物体が導電性セグメントにより近づくにつれて、追加の導電性セグメントは、自己キャパシタンス検知の感度を増大させることができる。
図11Dに、導電性行1106dのセットと、導電性行1106dのセットの各々に対して概して直角に延在する導電性列1104dのセットとを含む検知アレイ1100dの別の実装形態を概略的に示す。導電性行1106dおよび導電性列1104dは、それぞれ、互いに重なる検知要素1140d、1150dを含む。図示した実装形態では、検知要素1140d、1150dは、導電性セグメント1144d、1154dから形成された円形形状または曲線形状を含む。検知回路(図示せず)が、それぞれ、導電性行1106dおよび導電性列1104dの各々に電気的に結合され得るように、検知要素1140d、1150dは、導電性の接続セグメント1145d、1155dによって互いにリンクされ得る。各検知要素1140d、1150dは、検知要素1140d、1150dの導電性セグメント1144d、1154d内のボリューム1142d、1152dを少なくとも部分的に画定する。いくつかの実装形態では、導電性行1106dのセットの検知要素1140dは、導電性列1104dのセットの検知要素1150dによって画定されるボリューム1152dよりも大きいボリューム1142dを画定することができる。検知要素1140d、1150dは、光の有意な吸収および/または反射なしに光がボリューム1142d、1152dを通過することを可能にするために、ボリューム1142d、1152dを構成する(1つまたは複数の)光学的に透明な非導電性材料を含むことができる。
図11Eに、導電性行1106eのセットと、導電性行1106eのセットの各々に対して概して直角に延在する導電性列1104eのセットとを含む検知アレイ1100eの別の実装形態を概略的に示す。導電性行1106eのセットおよび導電性列1104eのセットは、それぞれ、容量性タッチ検知デバイスに組み込まれ得る検知領域1108e内に配設される。図示のように、導電性列1104eのセットの各々は、y軸(たとえば、垂直)に対して概して平行に延在し、導電性行1106eのセットの各々は、x軸(たとえば、水平)に対して概して平行に延在する。導電性行1106eのセットと導電性列1104eのセットの両方は、z軸に沿って測定される高さ寸法を有する。
導電性列1104eのセットの各々は垂直方向に概してまっすぐに延在し、導電性行1106eのセットの各々は、右から左に水平方向に概して延在する導電性行1106eを形成するために、水平方向に延在する複数の導電性セグメント1147eと垂直方向に延在する複数の導電性セグメント1148eとを含む。導電性列1104eのセットの各々は、導電性行1106eのセットの各々上の少なくとも2つの垂直方向に延在する導電性セグメント1148e間に配設され得る。垂直に延在する導電性セグメント1148eおよび垂直方向に延在する導電性列1104eは、それらの間にボリューム1162eを画定することができる。(1つまたは複数の)光学的に透明な非導電性材料、たとえば、透明誘電体は、光の有意な吸収および/または反射なしに光がボリューム1162eを通過することを可能にするようにボリューム1162eを構成することができる。
次に、図11Fを参照すると、検知アレイ1100fの別の実装形態が概略的に示されている。検知アレイは、導電性行1106fのセットと、導電性行1106fのセットの各々に対して概して直角に延在する導電性列1104fのセットとを含む。導電性行1106fのセットおよび導電性列1104fのセットは、それぞれ、容量性タッチ検知デバイスに組み込まれ得る検知領域1108f内に配設される。図示のように、導電性列1104fのセットの各々は、y軸(たとえば、垂直)に対して概して平行に延在し、導電性行1106fのセットの各々は、x軸(たとえば、水平)に対して概して平行に延在する。導電性行1106fのセットと導電性列1104fのセットの両方は、z軸に沿って測定される高さ寸法を有する。
導電性列1104fのセットの各々は、垂直方向に概してまっすぐに(たとえば、y軸に対して概して平行に)延在する垂直セグメント1159fを含む。導電性列1104fのセットはまた、それぞれ、各導電性列1104fから水平方向に延在する複数のセグメント1158fと、水平セグメント1158fの各々から垂直方向に延在する複数のセグメント1157fとを含む。したがって、セグメント1159f、1158fおよび1157fは、導電性列1104fのセットの各々の長さに沿って複数のu形状を形成する。導電性行1106fのセットの各々は、右から左に水平方向に概して延在する導電性行1106fを形成するために、水平方向に延在する複数の導電性セグメント1147fと垂直方向に延在する複数の導電性セグメント1148fとを含む。導電性列1104fのセットの各セグメント1159fは、少なくとも2つの垂直方向に延在する導電性セグメント1148f間に配設され得る。導電性行1106fのセットおよび導電性列1104fのセットは、それらの間に様々なボリューム1162f、1164fを少なくとも部分的に画定する。(1つまたは複数の)光学的に透明な非導電性材料、たとえば、透明誘電体は、光の有意な吸収および/または反射なしに光がボリューム1162f、1164fを通過することを可能にするようにボリューム1162f、1164fを構成することができる。
図11Gに、第1の方向に対して概して平行に(たとえば、概して水平に、またはx軸に対して平行に)延在する導電性行1106gのセットと、第1の方向に対して概して直角に(たとえば、概して垂直に、またはy軸に対して平行に)延在する導電性列1104gのセットとを含むセンサーアレイ1100gの別の実装形態を概略的に示す。導電性行1106gのセットの各々は、x軸とy軸とに対する角度で導電性行1106gから延在する複数のセグメント1149gを含む。同様に、導電性列1104gのセットの各々は、x軸とy軸とに対する角度で導電性列1104gから延在する複数のセグメント1159gを含む。いくつかの実装形態では、複数のセグメント1149g、1159gは、セグメント1149gがセグメント1159gに対して概して平行に延在するように、x軸とy軸とに対して同じ角度で延在することができる。したがって、セグメント1149g、1159gは、それらの間にボリューム1162gを部分的に画定することができる。ボリューム1162gは、セグメント1149g、1159gの長さ(たとえば、x−y平面に対して平行な平面において測定されるセグメントの長さ)と、セグメント1149g、1159gの高さ(たとえば、z軸に沿って測定されるセグメントの高さ)とによって少なくとも部分的に画定され得る。(1つまたは複数の)光学的に透明な非導電性材料、たとえば、透明誘電体は、光の有意な吸収および/または反射なしに光がボリューム1162gを通過することを可能にするようにボリューム1162gを構成することができる。
図11Hに、第1の方向に対して概して平行に(たとえば、概して水平に、またはx軸に対して平行に)延在する導電性行1106hのセットと、第1の方向に対して概して直角に(たとえば、概して垂直に、またはy軸に対して平行に)延在する導電性列1104hのセットとを含むセンサーアレイ1100hの別の実装形態を概略的に示す。導電性行1106hのセットの各々は、概して、交互方向で鋭い曲がり角をもつ角形状を形成するジグザグ経路において延在する。導電性行1106hのセットの各々は、対角的に、第1の方向に対して概して平行に延在する第1の複数のセグメント1141hと、セグメント1141hを相互接続し、対角的に、第2の方向に対して概して平行に延在する第2の複数のセグメント1143hとを含む。このようにして、第1の複数のセグメント1141hは、ジグザグ形状のジグ(zig)を形成し、第2の複数のセグメント1143hは、ジグザグ形状のザグ(zag)を形成する。
同様に、導電性列1104hのセットの各々は、概して、交互方向で鋭い曲がり角をもつ角形状を形成するジグザグ経路において延在する。導電性列1104hのセットの各々は、第1の方向に対して対角的に、概して平行に延在する第1の複数のセグメント1151hと、セグメント1151hを相互接続し、第2の方向に対して対角的に、概して平行に延在する第2の複数のセグメント1153hとを含む。このようにして、第1の複数のセグメント1151hは、ジグザグ形状のジグを形成し、第2の複数のセグメント1153hは、ジグザグ形状のザグを形成する。
図11Hにおいて概略的に示されるように、導電性行1106hのセットは、センサー領域1108hを形成するために導電性列1104hのセットと重なることができる。導電性行1106hのセットの第2の複数のセグメント1143hが、導電性列1104hのセットの第2の複数のセグメント1153hに対して概して平行に延在するように、導電性行1106hのセットの形状は、導電性列1104hのセットの形状に対して相補型であり得る。このようにして、セグメント1143hおよびセグメント1153hは、それらの間にボリューム1162hを部分的に画定することができる。ボリューム1162hは、セグメント1143h、1153hの長さ(たとえば、x−y平面に対して平行な平面において測定されるセグメントの長さ)と、セグメント1143h、1153hの高さ(たとえば、z軸に沿って測定されるセグメントの高さ)とによって少なくとも部分的に画定され得る。(1つまたは複数の)光学的に透明な非導電性材料、たとえば、透明誘電体は、光の有意な吸収および/または反射なしに光がボリューム1162hを通過することを可能にするようにボリューム1162hを構成することができる。
図11Iに、検知アレイ1100iの別の実装形態を概略的に示す。検知アレイ1100iは、導電性行1106iのセットと、導電性行1106iのセットの各々に対して概して直角に延在する導電性列1104iのセットとを含む。導電性行1106iのセットおよび導電性列1104iのセットは、それぞれ、容量性タッチ検知デバイスに組み込まれ得る検知領域1108i内に配設され得る。図示のように、導電性列1104iのセットの各々は、y軸(たとえば、垂直)に対して概して平行に延在し、導電性行1106iのセットの各々は、x軸(たとえば、水平)に対して概して平行に延在する。導電性行1106iのセットと導電性列1104iのセットの両方は、z軸に沿って測定される高さ寸法を有する。
図11Jに、図11Iの例示的な検知アレイの一部分のクローズアップ図を示す。いくつかの実装形態では、導電性行1106iの各々は複数の検知要素1140iを含み、導電性列1104iの各々は複数の検知要素1150iを含む。検知要素1140i、1150iは、x−y平面に対して平行な平面において、たとえば、正方形、ひし形、多角形、および曲線形状を含む様々な形状を形成するか、または少なくとも部分的に形成することができる。このようにして、ボリューム1142iは、検知要素1140i内に少なくとも部分的に画定され得、ボリューム1152iは、検知要素1150i内に少なくとも部分的に画定され得る。光が明らかに吸収および/または反射されることなくボリューム1142i、1152iを通過し得るように、ならびにボリューム1142i、1152iが導電性行1106iと導電性列1104iとを互いに電気的に接続しないように、各ボリューム1142i、1152iは、透明な非導電材料、たとえば、ガラス、空気、および/または透明誘電材料を含むことができる。
いくつかの実装形態では、検知要素1140iは、それぞれ、検知要素1140iから延在する少なくとも1つの導電性セグメント1147iを含む。同様に、各検知要素1150iは、場合によっては、検知要素1150iから延在する少なくとも1つの導電性素子1157iを含むことができる。検知要素1140iから延在する導電性セグメント1147iは、1つまたは複数の検知要素1150iの一部分と重なり得、検知要素1150iから延在する導電性セグメント1157iは、1つまたは複数の検知要素1140iの一部分と重なり得る。導電性セグメント1147i、1157iは、1つまたは複数の検知要素1150i、1140iと導電性セグメント1147i、1157iとの間に様々なボリューム1162iを少なくとも部分的に画定することができる。(1つまたは複数の)光学的に透明な非導電性材料、たとえば、透明誘電体は、光の有意な吸収および/または反射なしに光がボリューム1162iを通過することを可能にするようにこれらのボリューム1162iを構成することができる。
上記で説明したように、導電性行1106および導電性列1104が検知回路に電気的に結合され得る一方で、アレイ1108に入射した周辺光が、有意な吸収および/または反射なしに(たとえば、光の有意な損失なしに)ボリュームを通過することができるように、図11A〜図11Jを参照しながら説明したセンサーアレイ1108は、不透明および透明非導電性ボリューム1142、1152、1162、および1164である導電性行1106および導電性列1104を含む。下にあるディスプレイがセンサーアレイ1108を通して実質的に閲覧可能であるように、導電性行1106および導電性列1104は、人間の観測者によってそれらを検出することを困難にする寸法で構成され得る。しかしながら、不透明導電性行1106および導電性列1104が不透明導電材料を含むので、導電性行1106と導電性列1104とに入射した周辺光は、下にあるディスプレイのコントラストに影響を及ぼす閲覧者のほうへ反射され得る。したがって、いくつかの実装形態では、1つまたは複数の反射率制御層は、これらの不透明構造からの反射を制限するために、センサーアレイにおいて導電性行および/または列の1つまたは複数の部分上に配設され得る。
いくつかの実装形態では、反射率制御層は、下にある導電性行または列からの反射を制限するために、導電性行または列の1つまたは複数の部分上に被覆されたポリマーを含むことができる。たとえば、そこからの反射を制限し、下にある反射ディスプレイの全体的なコントラストを改善するために、ダークポリマー層が導電性行または列上に配設され得る。いくつかの他の実装形態では、そこからの反射を制限するために、ブラッククロム、たとえば、二酸化クロムが導電性行または列上に配設され得る。
図12に、導電性構造上に配設された反射率制御層をもつ導電性構造の例示的な実装形態の断面図を示す。図12に示すように、いくつかの実装形態では、反射率制御層は、導電性構造1295上に配設された干渉スタック1297を含むことができる。いくつかの実装形態では、導電性構造1295は、導電性行または列、たとえば、図11A〜図11Jを参照しながら上記で説明した行1106または列1104のうちの1つを含むことができる。干渉スタック1297では、干渉反射体(たとえば、図8Eの反射体14)の機能は、マスキングされている導電性構造1295によってサービスされ得る。干渉スタック1297は、吸収層1291、および吸収層1291と導電性構造1295との間に配設された光共振キャビティ層1293を含むことができる。干渉スタック1297に入射した光は、上記で説明した光学干渉の原理により、下にある導電性構造1295からほとんどまたはまったく見えない反射を生じる。干渉効果は、吸収層1291と光共振キャビティ層1293との厚さおよび(1つまたは複数の)材料によって支配され得る。したがって、マスキング効果は、一般的な染料またはペイントと比較して、経時的な退色を受けにくい。
吸収層1291と光共振キャビティ層1293との材料および寸法は、下にある反射性導電性構造1295からの可視光の反射を低減するように選択され得る。いくつかの実装形態では、反射率制御層は、下にある導電性構造1295も30%未満の反射率特性を有するように、30%未満の反射率特性を有することができる。本明細書で使用する反射率は、反射率制御層の上側表面に対して垂直な方向で反射率制御層の上面に入射する可視光の強度に対する、反射率制御層から反射された可視光の強度の比として定義される。しかしながら、本明細書の開示に鑑みて、反射率は、1〜3%程度の小ささまで低減され得、それにより、実質的に「黒く」見える反射率制御層によってカバーされた導電性構造を生じることを、当業者は容易に諒解されよう。
図13A〜図13Cに、センサーアレイを製造するためのプロセスの例を示す。図13Aに、センサーアレイを製造する第1の例示的なプロセス1300aを示す。ブロック1301aに示すように、例示的なプロセス1300aは、不透明材料を含む導電性行を形成することであって、導電性行が、第1のボリュームを少なくとも部分的に画定する第1の検知要素を含み、第1のボリュームが非導電性の光学的に透明な材料を含む、導電性行を形成することを含む。ブロック1303aに示すように、例示的なプロセス1300aはまた、不透明材料を含む導電性列を形成することであって、導電性列が、第2のボリュームを少なくとも部分的に画定する第2の検知要素を含み、第2のボリュームが非導電性の光学的に透明な材料を含む、導電性列を形成することを含む。いくつかの実装形態では、プロセス1300aはまた、反射ディスプレイ上に導電性行と導電性列とを配設することを含むことができる。
図13Bに、センサーアレイを製造する第2の例示的なプロセス1300bを示す。ブロック1301bに示すように、例示的なプロセス1300bは、不透明材料を含む導電性行を形成することであって、導電性行が第1のセグメントを含む、導電性行を形成することを含む。ブロック1303bに示すように、本方法はまた、不透明材料を含む導電性列を形成することであって、導電性列は、第1のセグメントと第2のセグメントとが、非導電性の光学的に透明な材料を含むボリュームをそれらの間に少なくとも部分的に画定するような、第1のセグメントに対して概して平行に延在する第2のセグメントを含む、導電性列を形成することを含むことができる。いくつかの実装形態では、プロセス1300bはまた、反射ディスプレイ上に導電性行と導電性列とを配設することを含むことができる。
図13Cに、センサーアレイを製造する第1の例示的なプロセス1300cを示す。ブロック1301cに示すように、例示的なプロセス1300cは、第1のボリュームを少なくとも部分的に画定する第1の検知要素を含む導電性行を形成することであって、第1のボリュームが非導電性の光学的に透明な材料を含む、導電性行を形成することを含む。ブロック1303cに示すように、例示的なプロセス1300cはまた、第2のボリュームを少なくとも部分的に画定する第2の検知要素を含む導電性列を形成することであって、第2のボリュームが非導電性の光学的に透明な材料を含む、導電性列を形成することを含む。導電性行および列は、たとえば、アルミニウムまたはモリブデンなどの不透明材料から形成されるか、あるいはITOなどの半透明材料または透明導電性酸化物から形成され得る。いくつかの実装形態では、プロセス1300cはまた、反射ディスプレイ上に導電性行と導電性列とを配設することを含むことができる。
図14Aおよび図14Bは、複数の干渉変調器を含むディスプレイデバイス40を示すシステムブロック図の例を示している。ディスプレイデバイス40は、たとえば、セルラー電話または携帯電話であり得る。ただし、ディスプレイデバイス40の同じ構成要素またはディスプレイデバイス40の軽微な変形が、テレビジョン、電子リーダーおよびポータブルメディアプレーヤなど、様々なタイプのディスプレイデバイスを示す。
ディスプレイデバイス40は、ハウジング41と、ディスプレイ30と、アンテナ43と、スピーカー45と、入力デバイス48と、マイクロフォン46とを含む。ハウジング41は、射出成形および真空成形を含む様々な製造プロセスのうちのいずれかから形成され得る。さらに、ハウジング41は、限定はしないが、プラスチック、金属、ガラス、ゴム、およびセラミック、またはそれらの組合せを含む、様々な材料のうちのいずれかから製作され得る。ハウジング41は、異なる色の、または異なるロゴ、ピクチャ、またはシンボルを含んでいる、他の取外し可能な部分と交換され得る、取外し可能な部分(図示せず)を含むことができる。
ディスプレイ30は、本明細書で説明する、双安定またはアナログディスプレイを含む様々なディスプレイのうちのいずれかであり得る。ディスプレイ30はまた、プラズマ、EL、OLED、STN LCD、またはTFT LCDなど、フラットパネルディスプレイ、あるいはCRTまたは他の管デバイスなど、非フラットパネルディスプレイを含むように構成され得る。さらに、ディスプレイ30は、本明細書で説明する干渉変調器ディスプレイを含むことができる。
ディスプレイデバイス40の構成要素は図14Bに概略的に示されている。ディスプレイデバイス40は、ハウジング41を含み、それの中に少なくとも部分的に密閉された追加の構成要素を含むことができる。たとえば、ディスプレイデバイス40は、トランシーバ47に結合されたアンテナ43を含むネットワークインターフェース27を含む。トランシーバ47はプロセッサ21に接続され、プロセッサ21は調整ハードウェア52に接続される。調整ハードウェア52は、信号を調整する(たとえば、信号をフィルタ処理する)ように構成され得る。調整ハードウェア52は、スピーカー45およびマイクロフォン46に接続される。プロセッサ21は、入力デバイス48およびドライバコントローラ29にも接続される。ドライバコントローラ29は、フレームバッファ28に、およびアレイドライバ22に結合され、アレイドライバ22は次にディスプレイアレイ30に結合される。電源50が、特定のディスプレイデバイス40設計によって必要とされるすべての構成要素に電力を与えることができる。
ネットワークインターフェース27は、ディスプレイデバイス40がネットワークを介して1つまたは複数のデバイスと通信することができるように、アンテナ43とトランシーバ47とを含む。ネットワークインターフェース27はまた、たとえば、プロセッサ21のデータ処理要件を軽減するための、何らかの処理能力を有し得る。アンテナ43は信号を送信および受信することができる。いくつかの実装形態では、アンテナ43は、IEEE16.11(a)、(b)、または(g)を含むIEEE16.11規格、あるいはIEEE802.11a、b、gまたはnを含むIEEE802.11規格に従って、RF信号を送信および受信する。いくつかの他の実装形態では、アンテナ43は、BLUETOOTH規格に従ってRF信号を送信および受信する。セルラー電話の場合、アンテナ43は、3Gまたは4G技術を利用するシステムなどのワイヤレスネットワーク内で通信するために使用される、符号分割多元接続(CDMA)、周波数分割多元接続(FDMA)、時分割多元接続(TDMA)、モバイル通信のためのグローバルシステム(GSM(登録商標):Global System for Mobile communications)、GSM/ジェネラル・パケット・ラジオ・サービス(GPRS:GSM/General Packet Radio Service)、強化されたデータGSM環境(EDGE:Enhanced Data GSM Environment)、テレスティアル・トランクド・ラジオ(TETRA:Terrestrial Trunked Radio)、広帯域CDMA(W−CDMA)、エボリューション・データ・オプティマイズド(EV−DO:Evolution Data Optimized)、1xEV−DO、EV−DO Rev A、EV−DO Rev B、高速パケットアクセス(HSPA)、高速ダウンリンクパケットアクセス(HSDPA)、高速アップリンクパケットアクセス(HSUPA)、発展型高速パケットアクセス(HSPA+)、ロング・ターム・エボリューション(LTE:Long Term Evolution)、AMPS、または他の知られている信号を受信するように設計される。トランシーバ47は、アンテナ43から受信された信号がプロセッサ21によって受信され、プロセッサ21によってさらに操作され得るように、その信号を前処理することができる。トランシーバ47はまた、プロセッサ21から受信された信号がアンテナ43を介してディスプレイデバイス40から送信され得るように、その信号を処理することができる。
いくつかの実装形態では、トランシーバ47は受信機によって置き換えられ得る。さらに、ネットワークインターフェース27は、プロセッサ21に送られるべき画像データを記憶または生成することができる画像ソースによって置き換えられ得る。プロセッサ21は、ディスプレイデバイス40の全体的な動作を制御することができる。プロセッサ21は、ネットワークインターフェース27または画像ソースから圧縮された画像データなどのデータを受信し、そのデータを生画像データに、または生画像データに容易に処理されるフォーマットに、処理する。プロセッサ21は、処理されたデータをドライバコントローラ29に、または記憶のためにフレームバッファ28に送ることができる。生データは、一般に、画像内の各位置における画像特性を識別する情報を指す。たとえば、そのような画像特性は、色、飽和、およびグレースケールレベルを含むことができる。
プロセッサ21は、ディスプレイデバイス40の動作を制御するためのマイクロコントローラ、CPU、または論理ユニットを含むことができる。調整ハードウェア52は、スピーカー45に信号を送信するための、およびマイクロフォン46から信号を受信するための、増幅器およびフィルタを含み得る。調整ハードウェア52は、ディスプレイデバイス40内の個別構成要素であり得、あるいはプロセッサ21または他の構成要素内に組み込まれ得る。
ドライバコントローラ29は、プロセッサ21によって生成された生画像データをプロセッサ21から直接、またはフレームバッファ28から取ることができ、アレイドライバ22への高速送信のために適宜に生画像データを再フォーマットすることができる。いくつかの実装形態では、ドライバコントローラ29は、生画像データを、ラスタ様フォーマットを有するデータフローに再フォーマットすることができ、その結果、そのデータフローは、ディスプレイアレイ30にわたって走査するのに好適な時間順序を有する。次いで、ドライバコントローラ29は、フォーマットされた情報をアレイドライバ22に送る。LCDコントローラなどのドライバコントローラ29は、しばしば、スタンドアロン集積回路(IC)としてシステムプロセッサ21に関連付けられるが、そのようなコントローラは多くの方法で実装され得る。たとえば、コントローラは、ハードウェアとしてプロセッサ21中に埋め込まれるか、ソフトウェアとしてプロセッサ21中に埋め込まれるか、またはハードウェアにおいてアレイドライバ22と完全に一体化され得る。
アレイドライバ22は、ドライバコントローラ29からフォーマットされた情報を受信することができ、ビデオデータを波形の並列セットに再フォーマットすることができ、波形の並列セットは、ディスプレイのピクセルのx−y行列から来る、数百の、および時には数千の(またはより多くの)リード線に毎秒何回も適用される。
いくつかの実装形態では、ドライバコントローラ29、アレイドライバ22、およびディスプレイアレイ30は、本明細書で説明するディスプレイのタイプのうちのいずれにも適している。たとえば、ドライバコントローラ29は、従来のディスプレイコントローラまたは双安定ディスプレイコントローラ(たとえば、IMODコントローラ)であり得る。さらに、アレイドライバ22は、従来のドライバまたは双安定ディスプレイドライバ(たとえば、IMODディスプレイドライバ)であり得る。その上、ディスプレイアレイ30は、従来のディスプレイアレイまたは双安定ディスプレイアレイ(たとえば、IMODのアレイを含むディスプレイ)であり得る。いくつかの実装形態では、ドライバコントローラ29はアレイドライバ22と一体化され得る。そのような実装形態は、セルラーフォン、ウォッチおよび他の小面積ディスプレイなどの高集積システムでは一般的である。
いくつかの実装形態では、入力デバイス48は、たとえば、ユーザがディスプレイデバイス40の動作を制御することを可能にするように、構成され得る。入力デバイス48は、QWERTYキーボードまたは電話キーパッドなどのキーパッド、ボタン、スイッチ、ロッカー、タッチセンシティブスクリーン、あるいは感圧膜または感熱膜を含むことができる。マイクロフォン46は、ディスプレイデバイス40のための入力デバイスとして構成され得る。いくつかの実装形態では、ディスプレイデバイス40の動作を制御するために、マイクロフォン46を介したボイスコマンドが使用され得る。
電源50は、当技術分野でよく知られている様々なエネルギー蓄積デバイスを含むことができる。たとえば、電源50は、ニッケルカドミウムバッテリーまたはリチウムイオンバッテリーなどの充電式バッテリーであり得る。電源50はまた、再生可能エネルギー源、キャパシタ、あるいはプラスチック太陽電池または太陽電池塗料を含む太陽電池であり得る。電源50はまた、壁コンセントから電力を受け取るように構成され得る。
いくつかの実装形態では、制御プログラマビリティがドライバコントローラ29中に存在し、これは電子ディスプレイシステム中のいくつかの場所に配置され得る。いくつかの他の実装形態では、制御プログラマビリティがアレイドライバ22中に存在する。上記で説明した最適化は、任意の数のハードウェアおよび/またはソフトウェア構成要素において、ならびに様々な構成において実装され得る。
本明細書で開示する実装形態に関して説明した様々な例示的な論理、論理ブロック、モジュール、回路、およびアルゴリズムステップは、電子ハードウェア、コンピュータソフトウェア、または両方の組合せとして実装され得る。ハードウェアとソフトウェアの互換性が、概して機能に関して説明され、上記で説明した様々な例示的な構成要素、ブロック、モジュール、回路およびステップにおいて示された。そのような機能がハードウェアで実装されるか、ソフトウェアで実装されるかは、特定の適用例および全体的なシステムに課された設計制約に依存する。
本明細書で開示する態様に関して説明した様々な例示的な論理、論理ブロック、モジュール、および回路を実装するために使用される、ハードウェアおよびデータ処理装置は、汎用シングルチップまたはマルチチッププロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)または他のプログラマブル論理デバイス、個別ゲートまたはトランジスタ論理、個別ハードウェア構成要素、あるいは本明細書で説明した機能を実行するように設計されたそれらの任意の組合せを用いて実装または実行され得る。汎用プロセッサは、マイクロプロセッサ、あるいは任意の従来のプロセッサ、コントローラ、マイクロコントローラ、または状態機械であり得る。プロセッサはまた、コンピューティングデバイスの組合せ、たとえば、DSPとマイクロプロセッサとの組合せ、複数のマイクロプロセッサ、DSPコアと連携する1つまたは複数のマイクロプロセッサ、あるいは任意の他のそのような構成として実装され得る。いくつかの実装形態では、特定のステップおよび方法が、所与の機能に固有である回路によって実行され得る。
1つまたは複数の態様では、説明した機能は、本明細書で開示する構造を含むハードウェア、デジタル電子回路、コンピュータソフトウェア、ファームウェア、およびそれらの上記構造の構造的等価物において、またはそれらの任意の組合せにおいて実装され得る。また、本明細書で説明した主題の実装形態は、1つまたは複数のコンピュータプログラムとして、すなわち、データ処理装置が実行するためにコンピュータ記憶媒体上に符号化された、またはデータ処理装置の動作を制御するための、コンピュータプログラム命令の1つまたは複数のモジュールとして、実装され得る。
本開示で説明した実装形態への様々な修正は当業者には容易に明らかであり得、本明細書で定義した一般原理は、本開示の趣旨または範囲から逸脱することなく他の実装形態に適用され得る。したがって、本開示は、本明細書で示した実装形態に限定されるものではなく、本明細書で開示する特許請求の範囲、原理および新規の特徴に一致する、最も広い範囲を与られるべきである。「例示的」という単語は、本明細書ではもっぱら「例、事例、または例示の働きをすること」を意味するために使用される。本明細書に「例示的」と記載されたいかなる実施形態も、必ずしも他の実装形態よりも好ましいまたは有利であると解釈されるべきではない。さらに、「上側」および「下側」という用語は、図の説明を簡単にするために時々使用され、適切に配向されたページ上の図の配向に対応する相対位置を示すが、実装されたIMODの適切な配向を反映しないことがあることを、当業者は容易に諒解されよう。
また、別個の実装形態に関して本明細書で説明されたいくつかの特徴は、単一の実装形態において組合せで実装され得る。また、逆に、単一の実装形態に関して説明した様々な特徴は、複数の実装形態において別個に、あるいは任意の好適な部分組合せで実装され得る。その上、特徴は、いくつかの組合せで働くものとして上記で説明され、初めにそのように請求されることさえあるが、請求される組合せからの1つまたは複数の特徴は、場合によってはその組合せから削除され得、請求される組合せは、部分組合せ、または部分組合せの変形形態を対象とし得る。
同様に、動作は特定の順序で図面に示されているが、これは、望ましい結果を達成するために、そのような動作が、示される特定の順序でまたは順番に実行されることを、あるいはすべての図示の動作が実行されることを必要とするものとして理解されるべきでない。さらに、図面は、フロー図の形態で1つまたは複数の例示的なプロセスを概略的に示し得る。ただし、図示されていない他の動作が、概略的に示される例示的なプロセスに組み込まれ得る。たとえば、1つまたは複数の追加の動作が、図示の動作のうちのいずれかの前に、後に、同時に、またはそれの間で、実行され得る。いくつかの状況では、マルチタスキングおよび並列処理が有利であり得る。その上、上記で説明した実装形態における様々なシステム構成要素の分離は、すべての実装形態においてそのような分離を必要とするものとして理解されるべきでなく、説明するプログラム構成要素およびシステムは、概して、単一のソフトウェア製品において互いに一体化されるか、または複数のソフトウェア製品にパッケージングされ得ることを理解されたい。さらに、他の実装形態が以下の特許請求の範囲内に入る。場合によっては、特許請求の範囲に記載の行為は、異なる順序で実行され、依然として望ましい結果を達成することができる。
同様に、動作は特定の順序で図面に示されているが、これは、望ましい結果を達成するために、そのような動作が、示される特定の順序でまたは順番に実行されることを、あるいはすべての図示の動作が実行されることを必要とするものとして理解されるべきでない。さらに、図面は、フロー図の形態で1つまたは複数の例示的なプロセスを概略的に示し得る。ただし、図示されていない他の動作が、概略的に示される例示的なプロセスに組み込まれ得る。たとえば、1つまたは複数の追加の動作が、図示の動作のうちのいずれかの前に、後に、同時に、またはそれの間で、実行され得る。いくつかの状況では、マルチタスキングおよび並列処理が有利であり得る。その上、上記で説明した実装形態における様々なシステム構成要素の分離は、すべての実装形態においてそのような分離を必要とするものとして理解されるべきでなく、説明するプログラム構成要素およびシステムは、概して、単一のソフトウェア製品において互いに一体化されるか、または複数のソフトウェア製品にパッケージングされ得ることを理解されたい。さらに、他の実装形態が以下の特許請求の範囲内に入る。場合によっては、特許請求の範囲に記載の行為は、異なる順序で実行され、依然として望ましい結果を達成することができる。
以下に本件出願当初の特許請求の範囲に記載された発明を付記する。
[1]不透明材料を含む導電性行であって、前記導電性行が第1の検知要素を形成し、前記第1の検知要素が、非導電性の光学的に透明な材料を含む第1のボリュームを少なくとも部分的に画定する、導電性行と、
不透明材料を含む導電性列であって、前記導電性列が第2の検知要素を形成し、前記第2の検知要素が、非導電性の光学的に透明な材料を含む第2のボリュームを少なくとも部分的に画定する、導電性列と
を備えるセンサーアレイ。
[2]前記導電性行と前記導電性列との間に配設された絶縁層をさらに備える、[1]に記載のセンサーアレイ。
[3]前記導電性行がアルミニウムまたはモリブデンを含む、[1]に記載のセンサーアレイ。
[4]前記導電性列がアルミニウムまたはモリブデンを含む、[1]に記載のセンサーアレイ。
[5]前記導電性行の少なくとも一部分上に配設された第1の反射率制御層をさらに備える、[1]に記載のセンサーアレイ。
[6]前記第1の反射率制御層が、ブラッククロムと、ポリマーと、干渉スタックとのうちの少なくとも1つを含む、[5]に記載のセンサーアレイ。
[7]前記干渉スタックが吸収層と光学的に透明な層とを含み、前記光学的に透明な層が前記吸収層と前記導電性行との間に少なくとも部分的に配設された、[6]に記載のセンサーアレイ。
[8]前記導電性列の少なくとも一部分上に配設された第2の反射率制御層をさらに備える、[5]に記載のセンサーアレイ。
[9]前記第1の反射率制御層を特徴づける反射率が30%未満である、[5]に記載のセンサーアレイ。
[10]前記第1のボリュームと前記第2のボリュームとのうちの少なくとも1つを通して光を受光するように構成された反射ディスプレイ要素をさらに備える、[1]に記載のセンサーアレイ。
[11]前記反射ディスプレイ要素が、前記第1のボリュームと前記第2のボリュームとのうちの少なくとも1つを通して光を反射するように構成された、[10]に記載のセンサーアレイ。
[12]前記反射ディスプレイ要素が干渉変調器を含む、[10]に記載のセンサーアレイ。
[13]前記第1の検知要素が、非導電性の光学的に透明な材料を含む第3のボリュームを少なくとも部分的に画定し、前記第2の検知要素が、非導電性の光学的に透明な材料を含む第4のボリュームを少なくとも部分的に画定する、[1]に記載のセンサーアレイ。
[14]前記第1の検知要素が、非導電性の光学的に透明な材料を含む第5のボリュームを少なくとも部分的に画定し、前記第2の検知要素が、非導電性の光学的に透明な材料を含む第6のボリュームを少なくとも部分的に画定する、[13]に記載のセンサーアレイ。
[15]前記導電性行の少なくとも一部分が、前記導電性列の少なくとも一部分と重なる、[1]に記載のセンサーアレイ。
[16]前記導電性行が第1のセグメントを備え、前記導電性列が第2のセグメントを備え、前記第1のセグメントが、前記第2のセグメントに対して実質的に平行に延在する、[1]に記載のセンサーアレイ。
[17]前記第1のセグメントと前記第2のセグメントとの間に少なくとも部分的に画定されたボリュームが、前記第1のボリュームと前記第2のボリュームとのうちの少なくとも一部分を含む、[16]に記載のセンサーアレイ。
[18]電流を伝導するための第1の手段であって、前記第1の導電手段が不透明材料を含み、前記第1の導電手段が第1の検知手段を形成し、前記第1の検知手段が、非導電性の光学的に透明な材料を含むボリュームを少なくとも部分的に画定する、電流を伝導するための第1の手段と、
電流を伝導するための第2の手段であって、前記第2の導電手段が不透明材料を含み、前記第2の導電手段が第2の検知手段を形成し、前記第2の検知手段が、非導電性の光学的に透明な材料を含む第2のボリュームを少なくとも部分的に画定する、電流を伝導するための第2の手段と
を備えるセンサーアレイ。
[19]前記第1の導電性手段の少なくとも一部分上に配設された第1の反射率制御手段をさらに備える、[18]に記載のセンサーアレイ。
[20]前記第2の導電性手段の少なくとも一部分上に配設された第2の反射率制御手段をさらに備える、[19]に記載のセンサーアレイ。
[21]前記第1の導電手段の少なくとも一部分が、前記第2の導電手段の少なくとも一部分と重なる、[18]に記載のセンサーアレイ。
[22]センサーアレイを製造する方法であって、前記方法は、
不透明材料を含む導電性行を形成することであって、前記導電性行が、第1のボリュームを少なくとも部分的に画定する第1の検知要素を含み、前記第1のボリュームが非導電性の光学的に透明な材料を含む、導電性行を形成することと、
不透明材料を含む導電性列を形成することであって、前記導電性列が、第2のボリュームを少なくとも部分的に画定する第2の検知要素を含み、前記第2のボリュームが非導電性の光学的に透明な材料を含む、導電性列を形成することと
を備える方法。
[23]反射ディスプレイ上に前記導電性行と前記導電性列とを配設することをさらに備える、[22]に記載の方法。
[24]前記導電性行の少なくとも一部分が、前記導電性列の少なくとも一部分と重なる、[22]に記載の方法。
[25]前記導電性行または導電性列の少なくとも一部分上に反射率制御層を配設することをさらに備える、[22]に記載の方法。
[26]不透明材料を含む導電性行であって、前記導電性行が第1のセグメントを含む、導電性行と、
不透明材料を含む導電性列であって、前記導電性列が第2のセグメントを含む、導電性列と
を備え、
前記第1のセグメントが前記第2のセグメントに対して実質的に平行に延在し、前記第1のセグメントと前記第2のセグメントとが、非導電性の光学的に透明な材料を含むボリュームをそれらの間に少なくとも部分的に画定する、センサーアレイ。
[27]前記導電性行がアルミニウムまたはモリブデンを含む、[26]に記載のセンサーアレイ。
[28]前記導電性列がアルミニウムまたはモリブデンを含む、[26]に記載のセンサーアレイ。
[29]前記導電性行の少なくとも一部分上に配設された第1の反射率制御層をさらに備える、[26]に記載のセンサーアレイ。
[30]前記導電性列の少なくとも一部分上に配設された第2の反射率制御層をさらに備える、[29]に記載のセンサーアレイ。
[31]前記ボリュームを通して光を受光するように構成された反射ディスプレイ要素をさらに備える、[26]に記載のセンサーアレイ。
[32]前記反射ディスプレイ要素が、前記ボリュームを通して光を反射するように構成された、[31]に記載のセンサーアレイ。
[33]前記反射ディスプレイ要素が干渉変調器を含む、[31]に記載のセンサーアレイ。
[34]電流を伝導するための第1の手段であって、前記第1の導電手段が不透明材料を含み、前記第1の導電手段が第1のセグメントを含む、電流を伝導するための第1の手段と、
電流を伝導するための第2の手段であって、前記第2の導電手段が不透明材料を含み、前記第2の導電手段が第2のセグメントを含む、電流を伝導するための第2の手段と
を備え、
前記第1のセグメントが前記第2のセグメントに対して実質的に平行に延在し、前記第1のセグメントと前記第2のセグメントとが、非導電性の光学的に透明な材料を含むボリュームをそれらの間に少なくとも部分的に画定する、センサーアレイ。
[35]前記第1の導電手段の少なくとも一部分上に配設された第1の反射率制御手段をさらに備える、[34]に記載のセンサーアレイ。
[36]前記第2の導電手段の少なくとも一部分上に配設された第2の反射率制御手段をさらに備える、[35]に記載のセンサーアレイ。
[37]センサーアレイを製造する方法であって、前記方法は、
不透明材料を含む導電性行を形成することであって、前記導電性行が第1のセグメントを含む、導電性行を形成することと、
不透明材料を含む導電性列を形成することであって、前記導電性列は、前記第1のセグメントと第2のセグメントとが、非導電性の光学的に透明な材料を含むボリュームをそれらの間に少なくとも部分的に画定するような、前記第1のセグメントに対して実質的に平行に延在する前記第2のセグメントを含む、導電性列を形成することと
を備える方法。
[38]反射ディスプレイ上に前記導電性行と前記導電性列とを配設することをさらに備える、[37]に記載の方法。
[39]第1の検知要素を含む導電性行であって、前記第1の検知要素が、非導電性の光学的に透明な材料を含む第1のボリュームを少なくとも部分的に画定する、導電性行と、
第2の検知要素を含む導電性列であって、前記第2の検知要素が、非導電性の光学的に透明な材料を含む第2のボリュームを少なくとも部分的に画定する、導電性列と
を備えるセンサーアレイ。
[40]前記導電性行と前記導電性列との間に配設された絶縁層をさらに備える、[39]に記載のセンサーアレイ。
[41]前記導電性行の少なくとも一部分上に配設された第1の反射率制御層をさらに備える、[39]に記載のセンサーアレイ。
[42]前記第1の反射率制御層が、ブラッククロムと、ポリマーと、干渉スタックとのうちの少なくとも1つを含む、[41]に記載のセンサーアレイ。
[43]前記干渉スタックが吸収層と光学的に透明な層とを含み、前記光学的に透明な層が前記吸収層と前記導電性行との間に少なくとも部分的に配設された、[42]に記載のセンサーアレイ。
[44]前記導電性列の少なくとも一部分上に配設された第2の反射率制御層をさらに備える、[41]に記載のセンサーアレイ。
[45]前記第1の反射率制御層を特徴づける反射率が30%未満である、[41]に記載のセンサーアレイ。
[46]前記第1のボリュームと前記第2のボリュームとのうちの少なくとも1つを通して光を受光するように構成された反射ディスプレイ要素をさらに備える、[39]に記載のセンサーアレイ。
[47]前記反射ディスプレイ要素が、前記第1のボリュームと前記第2のボリュームとのうちの少なくとも1つを通して光を反射するように構成された、[46]に記載のセンサーアレイ。
[48]前記反射ディスプレイ要素が干渉変調器を含む、[46]に記載のセンサーアレイ。
[49]前記第1の検知要素が、非導電性の光学的に透明な材料を含む第3のボリュームを少なくとも部分的に画定し、前記第2の検知要素が、非導電性の光学的に透明な材料を含む第4のボリュームを少なくとも部分的に画定する、[39]に記載のセンサーアレイ。
[50]前記第1の検知要素が、非導電性の光学的に透明な材料を含む第5のボリュームを少なくとも部分的に画定し、前記第2の検知要素が、非導電性の光学的に透明な材料を含む第6のボリュームを少なくとも部分的に画定する、[49]に記載のセンサーアレイ。
[51]前記導電性行の少なくとも一部分が、前記導電性列の少なくとも一部分と重なる、[39]に記載のセンサーアレイ。
[52]前記導電性行が第1のセグメントを備え、前記導電性列が第2のセグメントを備え、前記第1のセグメントが、前記第2のセグメントに対して実質的に平行に延在する、[39]に記載のセンサーアレイ。
[53]前記第1のセグメントと前記第2のセグメントとの間に少なくとも部分的に画定されたボリュームが、前記第1のボリュームと前記第2のボリュームとのうちの少なくとも一部分を含む、[52]に記載のセンサーアレイ。
[54]前記導電性行が半透明材料を含む、[39]に記載のセンサーアレイ。
[55]前記半透明材料が透明導電性酸化物を含む、[54]に記載のセンサーアレイ。
[56]前記透明導電性酸化物が酸化インジウムスズを含む、[55]に記載のセンサーアレイ。
[57]電流を伝導するための第1の手段であって、前記第1の導電手段が第1の検知手段を含み、前記第1の検知手段が、非導電性の光学的に透明な材料を含むボリュームを少なくとも部分的に画定する、電流を伝導するための第1の手段と、
電流を伝導するための第2の手段であって、前記第2の導電手段が第2の検知手段を含み、前記第2の検知手段が、非導電性の光学的に透明な材料を含む第2のボリュームを少なくとも部分的に画定する、電流を伝導するための第2の手段と
を備えるセンサーアレイ。
[58]前記第1の導電手段の少なくとも一部分上に配設された第1の反射率制御手段をさらに備える、[57]に記載のセンサーアレイ。
[59]前記第2の導電手段の少なくとも一部分上に配設された第2の反射率制御手段をさらに備える、[58]に記載のセンサーアレイ。
[60]前記第1の導電手段の少なくとも一部分が、前記第2の導電手段の少なくとも一部分と重なる、[57]に記載のセンサーアレイ。
[61]センサーアレイを製造する方法であって、前記方法は、
第1のボリュームを少なくとも部分的に画定する第1の検知要素を含む導電性行を形成することであって、前記第1のボリュームが非導電性の光学的に透明な材料を含む、導電性行を形成することと、
第2のボリュームを少なくとも部分的に画定する第2の検知要素を含む導電性列を形成することであって、前記第2のボリュームが非導電性の光学的に透明な材料を含む、導電性列を形成することと
を備える方法。
[62]反射ディスプレイ上に前記導電性行と前記導電性列とを配設することをさらに備える、[61]に記載の方法。
[63]前記導電性行の少なくとも一部分が、前記導電性列の少なくとも一部分と重なる、[61]に記載の方法。
[64]前記導電性行または導電性列の少なくとも一部分上に反射率制御層を配設することをさらに備える、[61]に記載の方法。

Claims (64)

  1. 不透明材料を含む導電性行であって、前記導電性行が第1の検知要素を形成し、前記第1の検知要素が、非導電性の光学的に透明な材料を含む第1のボリュームを少なくとも部分的に画定する、導電性行と、
    不透明材料を含む導電性列であって、前記導電性列が第2の検知要素を形成し、前記第2の検知要素が、非導電性の光学的に透明な材料を含む第2のボリュームを少なくとも部分的に画定する、導電性列と
    を備えるセンサーアレイ。
  2. 前記導電性行と前記導電性列との間に配設された絶縁層をさらに備える、請求項1に記載のセンサーアレイ。
  3. 前記導電性行がアルミニウムまたはモリブデンを含む、請求項1に記載のセンサーアレイ。
  4. 前記導電性列がアルミニウムまたはモリブデンを含む、請求項1に記載のセンサーアレイ。
  5. 前記導電性行の少なくとも一部分上に配設された第1の反射率制御層をさらに備える、請求項1に記載のセンサーアレイ。
  6. 前記第1の反射率制御層が、ブラッククロムと、ポリマーと、干渉スタックとのうちの少なくとも1つを含む、請求項5に記載のセンサーアレイ。
  7. 前記干渉スタックが吸収層と光学的に透明な層とを含み、前記光学的に透明な層が前記吸収層と前記導電性行との間に少なくとも部分的に配設された、請求項6に記載のセンサーアレイ。
  8. 前記導電性列の少なくとも一部分上に配設された第2の反射率制御層をさらに備える、請求項5に記載のセンサーアレイ。
  9. 前記第1の反射率制御層を特徴づける反射率が30%未満である、請求項5に記載のセンサーアレイ。
  10. 前記第1のボリュームと前記第2のボリュームとのうちの少なくとも1つを通して光を受光するように構成された反射ディスプレイ要素をさらに備える、請求項1に記載のセンサーアレイ。
  11. 前記反射ディスプレイ要素が、前記第1のボリュームと前記第2のボリュームとのうちの少なくとも1つを通して光を反射するように構成された、請求項10に記載のセンサーアレイ。
  12. 前記反射ディスプレイ要素が干渉変調器を含む、請求項10に記載のセンサーアレイ。
  13. 前記第1の検知要素が、非導電性の光学的に透明な材料を含む第3のボリュームを少なくとも部分的に画定し、前記第2の検知要素が、非導電性の光学的に透明な材料を含む第4のボリュームを少なくとも部分的に画定する、請求項1に記載のセンサーアレイ。
  14. 前記第1の検知要素が、非導電性の光学的に透明な材料を含む第5のボリュームを少なくとも部分的に画定し、前記第2の検知要素が、非導電性の光学的に透明な材料を含む第6のボリュームを少なくとも部分的に画定する、請求項13に記載のセンサーアレイ。
  15. 前記導電性行の少なくとも一部分が、前記導電性列の少なくとも一部分と重なる、請求項1に記載のセンサーアレイ。
  16. 前記導電性行が第1のセグメントを備え、前記導電性列が第2のセグメントを備え、前記第1のセグメントが、前記第2のセグメントに対して実質的に平行に延在する、請求項1に記載のセンサーアレイ。
  17. 前記第1のセグメントと前記第2のセグメントとの間に少なくとも部分的に画定されたボリュームが、前記第1のボリュームと前記第2のボリュームとのうちの少なくとも一部分を含む、請求項16に記載のセンサーアレイ。
  18. 電流を伝導するための第1の手段であって、前記第1の導電手段が不透明材料を含み、前記第1の導電手段が第1の検知手段を形成し、前記第1の検知手段が、非導電性の光学的に透明な材料を含むボリュームを少なくとも部分的に画定する、電流を伝導するための第1の手段と、
    電流を伝導するための第2の手段であって、前記第2の導電手段が不透明材料を含み、前記第2の導電手段が第2の検知手段を形成し、前記第2の検知手段が、非導電性の光学的に透明な材料を含む第2のボリュームを少なくとも部分的に画定する、電流を伝導するための第2の手段と
    を備えるセンサーアレイ。
  19. 前記第1の導電性手段の少なくとも一部分上に配設された第1の反射率制御手段をさらに備える、請求項18に記載のセンサーアレイ。
  20. 前記第2の導電性手段の少なくとも一部分上に配設された第2の反射率制御手段をさらに備える、請求項19に記載のセンサーアレイ。
  21. 前記第1の導電手段の少なくとも一部分が、前記第2の導電手段の少なくとも一部分と重なる、請求項18に記載のセンサーアレイ。
  22. センサーアレイを製造する方法であって、前記方法は、
    不透明材料を含む導電性行を形成することであって、前記導電性行が、第1のボリュームを少なくとも部分的に画定する第1の検知要素を含み、前記第1のボリュームが非導電性の光学的に透明な材料を含む、導電性行を形成することと、
    不透明材料を含む導電性列を形成することであって、前記導電性列が、第2のボリュームを少なくとも部分的に画定する第2の検知要素を含み、前記第2のボリュームが非導電性の光学的に透明な材料を含む、導電性列を形成することと
    を備える方法。
  23. 反射ディスプレイ上に前記導電性行と前記導電性列とを配設することをさらに備える、請求項22に記載の方法。
  24. 前記導電性行の少なくとも一部分が、前記導電性列の少なくとも一部分と重なる、請求項22に記載の方法。
  25. 前記導電性行または導電性列の少なくとも一部分上に反射率制御層を配設することをさらに備える、請求項22に記載の方法。
  26. 不透明材料を含む導電性行であって、前記導電性行が第1のセグメントを含む、導電性行と、
    不透明材料を含む導電性列であって、前記導電性列が第2のセグメントを含む、導電性列と
    を備え、
    前記第1のセグメントが前記第2のセグメントに対して実質的に平行に延在し、前記第1のセグメントと前記第2のセグメントとが、非導電性の光学的に透明な材料を含むボリュームをそれらの間に少なくとも部分的に画定する、センサーアレイ。
  27. 前記導電性行がアルミニウムまたはモリブデンを含む、請求項26に記載のセンサーアレイ。
  28. 前記導電性列がアルミニウムまたはモリブデンを含む、請求項26に記載のセンサーアレイ。
  29. 前記導電性行の少なくとも一部分上に配設された第1の反射率制御層をさらに備える、請求項26に記載のセンサーアレイ。
  30. 前記導電性列の少なくとも一部分上に配設された第2の反射率制御層をさらに備える、請求項29に記載のセンサーアレイ。
  31. 前記ボリュームを通して光を受光するように構成された反射ディスプレイ要素をさらに備える、請求項26に記載のセンサーアレイ。
  32. 前記反射ディスプレイ要素が、前記ボリュームを通して光を反射するように構成された、請求項31に記載のセンサーアレイ。
  33. 前記反射ディスプレイ要素が干渉変調器を含む、請求項31に記載のセンサーアレイ。
  34. 電流を伝導するための第1の手段であって、前記第1の導電手段が不透明材料を含み、前記第1の導電手段が第1のセグメントを含む、電流を伝導するための第1の手段と、
    電流を伝導するための第2の手段であって、前記第2の導電手段が不透明材料を含み、前記第2の導電手段が第2のセグメントを含む、電流を伝導するための第2の手段と
    を備え、
    前記第1のセグメントが前記第2のセグメントに対して実質的に平行に延在し、前記第1のセグメントと前記第2のセグメントとが、非導電性の光学的に透明な材料を含むボリュームをそれらの間に少なくとも部分的に画定する、センサーアレイ。
  35. 前記第1の導電手段の少なくとも一部分上に配設された第1の反射率制御手段をさらに備える、請求項34に記載のセンサーアレイ。
  36. 前記第2の導電手段の少なくとも一部分上に配設された第2の反射率制御手段をさらに備える、請求項35に記載のセンサーアレイ。
  37. センサーアレイを製造する方法であって、前記方法は、
    不透明材料を含む導電性行を形成することであって、前記導電性行が第1のセグメントを含む、導電性行を形成することと、
    不透明材料を含む導電性列を形成することであって、前記導電性列は、前記第1のセグメントと第2のセグメントとが、非導電性の光学的に透明な材料を含むボリュームをそれらの間に少なくとも部分的に画定するような、前記第1のセグメントに対して実質的に平行に延在する前記第2のセグメントを含む、導電性列を形成することと
    を備える方法。
  38. 反射ディスプレイ上に前記導電性行と前記導電性列とを配設することをさらに備える、請求項37に記載の方法。
  39. 第1の検知要素を含む導電性行であって、前記第1の検知要素が、非導電性の光学的に透明な材料を含む第1のボリュームを少なくとも部分的に画定する、導電性行と、
    第2の検知要素を含む導電性列であって、前記第2の検知要素が、非導電性の光学的に透明な材料を含む第2のボリュームを少なくとも部分的に画定する、導電性列と
    を備えるセンサーアレイ。
  40. 前記導電性行と前記導電性列との間に配設された絶縁層をさらに備える、請求項39に記載のセンサーアレイ。
  41. 前記導電性行の少なくとも一部分上に配設された第1の反射率制御層をさらに備える、請求項39に記載のセンサーアレイ。
  42. 前記第1の反射率制御層が、ブラッククロムと、ポリマーと、干渉スタックとのうちの少なくとも1つを含む、請求項41に記載のセンサーアレイ。
  43. 前記干渉スタックが吸収層と光学的に透明な層とを含み、前記光学的に透明な層が前記吸収層と前記導電性行との間に少なくとも部分的に配設された、請求項42に記載のセンサーアレイ。
  44. 前記導電性列の少なくとも一部分上に配設された第2の反射率制御層をさらに備える、請求項41に記載のセンサーアレイ。
  45. 前記第1の反射率制御層を特徴づける反射率が30%未満である、請求項41に記載のセンサーアレイ。
  46. 前記第1のボリュームと前記第2のボリュームとのうちの少なくとも1つを通して光を受光するように構成された反射ディスプレイ要素をさらに備える、請求項39に記載のセンサーアレイ。
  47. 前記反射ディスプレイ要素が、前記第1のボリュームと前記第2のボリュームとのうちの少なくとも1つを通して光を反射するように構成された、請求項46に記載のセンサーアレイ。
  48. 前記反射ディスプレイ要素が干渉変調器を含む、請求項46に記載のセンサーアレイ。
  49. 前記第1の検知要素が、非導電性の光学的に透明な材料を含む第3のボリュームを少なくとも部分的に画定し、前記第2の検知要素が、非導電性の光学的に透明な材料を含む第4のボリュームを少なくとも部分的に画定する、請求項39に記載のセンサーアレイ。
  50. 前記第1の検知要素が、非導電性の光学的に透明な材料を含む第5のボリュームを少なくとも部分的に画定し、前記第2の検知要素が、非導電性の光学的に透明な材料を含む第6のボリュームを少なくとも部分的に画定する、請求項49に記載のセンサーアレイ。
  51. 前記導電性行の少なくとも一部分が、前記導電性列の少なくとも一部分と重なる、請求項39に記載のセンサーアレイ。
  52. 前記導電性行が第1のセグメントを備え、前記導電性列が第2のセグメントを備え、前記第1のセグメントが、前記第2のセグメントに対して実質的に平行に延在する、請求項39に記載のセンサーアレイ。
  53. 前記第1のセグメントと前記第2のセグメントとの間に少なくとも部分的に画定されたボリュームが、前記第1のボリュームと前記第2のボリュームとのうちの少なくとも一部分を含む、請求項52に記載のセンサーアレイ。
  54. 前記導電性行が半透明材料を含む、請求項39に記載のセンサーアレイ。
  55. 前記半透明材料が透明導電性酸化物を含む、請求項54に記載のセンサーアレイ。
  56. 前記透明導電性酸化物が酸化インジウムスズを含む、請求項55に記載のセンサーアレイ。
  57. 電流を伝導するための第1の手段であって、前記第1の導電手段が第1の検知手段を含み、前記第1の検知手段が、非導電性の光学的に透明な材料を含むボリュームを少なくとも部分的に画定する、電流を伝導するための第1の手段と、
    電流を伝導するための第2の手段であって、前記第2の導電手段が第2の検知手段を含み、前記第2の検知手段が、非導電性の光学的に透明な材料を含む第2のボリュームを少なくとも部分的に画定する、電流を伝導するための第2の手段と
    を備えるセンサーアレイ。
  58. 前記第1の導電手段の少なくとも一部分上に配設された第1の反射率制御手段をさらに備える、請求項57に記載のセンサーアレイ。
  59. 前記第2の導電手段の少なくとも一部分上に配設された第2の反射率制御手段をさらに備える、請求項58に記載のセンサーアレイ。
  60. 前記第1の導電手段の少なくとも一部分が、前記第2の導電手段の少なくとも一部分と重なる、請求項57に記載のセンサーアレイ。
  61. センサーアレイを製造する方法であって、前記方法は、
    第1のボリュームを少なくとも部分的に画定する第1の検知要素を含む導電性行を形成することであって、前記第1のボリュームが非導電性の光学的に透明な材料を含む、導電性行を形成することと、
    第2のボリュームを少なくとも部分的に画定する第2の検知要素を含む導電性列を形成することであって、前記第2のボリュームが非導電性の光学的に透明な材料を含む、導電性列を形成することと
    を備える方法。
  62. 反射ディスプレイ上に前記導電性行と前記導電性列とを配設することをさらに備える、請求項61に記載の方法。
  63. 前記導電性行の少なくとも一部分が、前記導電性列の少なくとも一部分と重なる、請求項61に記載の方法。
  64. 前記導電性行または導電性列の少なくとも一部分上に反射率制御層を配設することをさらに備える、請求項61に記載の方法。
JP2013546236A 2010-12-21 2011-12-15 容量性タッチ検知デバイスおよびそれの製造方法 Pending JP2014508337A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/975,025 2010-12-21
US12/975,025 US20120153970A1 (en) 2010-12-21 2010-12-21 Capacitive touch sensing devices and methods of manufacturing thereof
PCT/US2011/065266 WO2012087764A1 (en) 2010-12-21 2011-12-15 Capacitive touch sensing devices and methods of manufacturing thereof

Publications (1)

Publication Number Publication Date
JP2014508337A true JP2014508337A (ja) 2014-04-03

Family

ID=45498107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013546236A Pending JP2014508337A (ja) 2010-12-21 2011-12-15 容量性タッチ検知デバイスおよびそれの製造方法

Country Status (7)

Country Link
US (1) US20120153970A1 (ja)
EP (1) EP2656186A1 (ja)
JP (1) JP2014508337A (ja)
KR (1) KR20130136510A (ja)
CN (1) CN103384867A (ja)
TW (1) TW201237722A (ja)
WO (1) WO2012087764A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016173697A (ja) * 2015-03-17 2016-09-29 富士フイルム株式会社 タッチパネル用透明導電フィルムおよびタッチパネル
US9933872B2 (en) 2014-12-01 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Touch panel
US11747938B2 (en) 2014-10-17 2023-09-05 Semiconductor Energy Laboratory Co., Ltd. Touch panel

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103294293B (zh) * 2012-07-27 2016-04-06 上海天马微电子有限公司 内嵌式电容触控屏的触控图形结构
JP6053571B2 (ja) * 2013-02-28 2016-12-27 三菱電機株式会社 タッチスクリーン、タッチパネル及びそれを備える表示装置
JP5893582B2 (ja) 2013-03-27 2016-03-23 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置及び電子機器
JP6277538B2 (ja) * 2013-06-03 2018-02-14 パナソニックIpマネジメント株式会社 タッチパネル用導電シート
TWI512566B (zh) * 2013-10-02 2015-12-11 Novatek Microelectronics Corp 觸控偵測裝置及觸控偵測方法
JP2015152946A (ja) * 2014-02-10 2015-08-24 大日本印刷株式会社 タッチパネル用電極基板、及びタッチパネル、ならびに表示装置
KR101527320B1 (ko) 2014-02-26 2015-06-09 하이디스 테크놀로지 주식회사 매트릭스 스위칭 타입 터치패널
JP2015232819A (ja) * 2014-06-10 2015-12-24 株式会社ジャパンディスプレイ センサ付き表示装置
FI20175595A1 (en) 2017-06-22 2018-12-23 Canatu Oy Transparent conductive film
US10343895B2 (en) * 2017-06-30 2019-07-09 Taiwan Semiconductor Manufacturing Co., Ltd. Micro-electro-mechanical system (MEMS) structure including isolation ring at sidewalls of semiconductor via and method for forming the same
WO2024033663A1 (en) * 2022-08-12 2024-02-15 Touch Biometrix Limited Sensors and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006099064A (ja) * 2004-09-27 2006-04-13 Idc Llc 集積mems電気スイッチを有する干渉変調器アレイ
JP2006344163A (ja) * 2005-06-10 2006-12-21 Nissha Printing Co Ltd 静電容量型タッチパネル
JP2010061502A (ja) * 2008-09-05 2010-03-18 Mitsubishi Electric Corp タッチスクリーン、タッチパネル及び表示装置
WO2010057059A1 (en) * 2008-11-15 2010-05-20 Harald Philipp Touch screen sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003216481A1 (en) * 2002-03-01 2003-09-16 Planar Systems, Inc. Reflection resistant touch screens
US7151532B2 (en) * 2002-08-09 2006-12-19 3M Innovative Properties Company Multifunctional multilayer optical film
CN1755477B (zh) * 2004-09-27 2011-11-16 高通Mems科技公司 具有集成mems电开关的干涉式调制器阵列的显示装置及方法
TW200923536A (en) * 2007-11-23 2009-06-01 Acrosense Technology Co Ltd High transmittance touch panel
US8094358B2 (en) * 2008-03-27 2012-01-10 Qualcomm Mems Technologies, Inc. Dimming mirror
US8269744B2 (en) * 2008-09-05 2012-09-18 Mitsubishi Electric Corporation Touch screen, touch panel and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006099064A (ja) * 2004-09-27 2006-04-13 Idc Llc 集積mems電気スイッチを有する干渉変調器アレイ
JP2006344163A (ja) * 2005-06-10 2006-12-21 Nissha Printing Co Ltd 静電容量型タッチパネル
JP2010061502A (ja) * 2008-09-05 2010-03-18 Mitsubishi Electric Corp タッチスクリーン、タッチパネル及び表示装置
WO2010057059A1 (en) * 2008-11-15 2010-05-20 Harald Philipp Touch screen sensor
JP2012508937A (ja) * 2008-11-15 2012-04-12 アトメル・コーポレイション タッチスクリーンセンサ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11747938B2 (en) 2014-10-17 2023-09-05 Semiconductor Energy Laboratory Co., Ltd. Touch panel
US9933872B2 (en) 2014-12-01 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Touch panel
JP2016173697A (ja) * 2015-03-17 2016-09-29 富士フイルム株式会社 タッチパネル用透明導電フィルムおよびタッチパネル

Also Published As

Publication number Publication date
EP2656186A1 (en) 2013-10-30
CN103384867A (zh) 2013-11-06
TW201237722A (en) 2012-09-16
WO2012087764A9 (en) 2013-09-19
US20120153970A1 (en) 2012-06-21
KR20130136510A (ko) 2013-12-12
WO2012087764A1 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP2014508337A (ja) 容量性タッチ検知デバイスおよびそれの製造方法
JP5694550B2 (ja) ディスプレイ一体型光加速度計
TWI507950B (zh) 具有金屬化之光轉向特徵的照明器件
JP2014517930A (ja) 一体型の容量性タッチデバイスのための配線および周辺機器
TW201319886A (zh) 與顯示器資料更新整合之觸碰感測
JP6131268B2 (ja) ディスプレイデバイスのための傾斜ファセット
JP2014529802A (ja) 光遮蔽構造を有する容量性タッチセンサー
JP2014508958A (ja) 電気機械干渉変調器デバイス
JP2014504371A (ja) 埋込みマイクロレンズアレイを有するディスプレイ
JP2015506011A (ja) ワイヤフレームタッチセンサー設計および空間線形化タッチセンサー設計
JP5752334B2 (ja) 電気機械システムデバイス
JP2015505986A (ja) 二重吸収層を用いた干渉変調器
JP5687402B1 (ja) 色ノッチフィルタを有するアナログimod
JP2015503114A (ja) 電気機械システムデバイス
JP2015501943A (ja) 伝導性ラインに沿った側壁スペーサ
JP2014510950A (ja) ライン時間低減のための方法および装置
JP5801424B2 (ja) 非アクティブダミーピクセル
JP2014519050A (ja) 機械層およびそれを製作する方法
TW201337326A (zh) 機電系統之儲存電容器及形成該系統之方法
JP2014512566A (ja) マルチカラーディスプレイを調整するためのシステムおよび方法
JP5792373B2 (ja) ピクセルビア(pixelvia)およびそれを形成する方法
JP2014534470A (ja) 垂直集積のためのスタックビア
JP2015502571A (ja) 書込み波形のポーチ重複
JP2015531891A (ja) 電気機械システムデバイス
JP2014531057A (ja) フレームレートを上げるための適応ライン時間

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106