JP2014234981A - 燃焼炉内の燃焼管理システムおよび燃焼炉の燃焼制御システム - Google Patents

燃焼炉内の燃焼管理システムおよび燃焼炉の燃焼制御システム Download PDF

Info

Publication number
JP2014234981A
JP2014234981A JP2013118765A JP2013118765A JP2014234981A JP 2014234981 A JP2014234981 A JP 2014234981A JP 2013118765 A JP2013118765 A JP 2013118765A JP 2013118765 A JP2013118765 A JP 2013118765A JP 2014234981 A JP2014234981 A JP 2014234981A
Authority
JP
Japan
Prior art keywords
combustion
image
furnace
combustion furnace
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013118765A
Other languages
English (en)
Inventor
林 潤
Jun Hayashi
潤 林
史光 赤松
Fumimitsu Akamatsu
史光 赤松
吉司 松田
Kichiji Matsuda
吉司 松田
宗親 井藤
Munechika Ito
宗親 井藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2013118765A priority Critical patent/JP2014234981A/ja
Publication of JP2014234981A publication Critical patent/JP2014234981A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Abstract

【課題】 同一手段で、非接触で、時間応答性が速く、しかも燃焼炉内のガス温度分布を正確に測定することができると同時に、正確に燃焼炉内の燃焼対象物の燃切点を検出することができる燃焼炉の燃焼制御システム。
【解決手段】 燃焼炉10内の燃焼対象物および燃焼対象物の上部空間を撮影対象とする少なくとも1つの力ラー力メラ20と、力ラー力メラ20によって写された画像を受信する画像受信手段30と、画像の画像解析を行う画像解析手段40と、を有し、得られた画像を複数のエリアに分割し、エリアごとに画像解析を行うことによって、燃焼炉10内の温度分布の測定と燃焼炉10内の燃焼対象物の燃切点の検出を同時に行う。
【選択図】 図1

Description

本発明は燃焼炉内の燃焼管理システムおよび燃焼炉の燃焼制御システムに関し、特に、ゴミ焼却炉などの燃焼管理に好適な技術に関する。
近年、ゴミ処理施設においては、排ガス中の窒素酸化物(NOx)濃度の低減やダイオキシン類の発生防止を図って環境汚染を防止するとともに、熱回収の高効率化および排ガス処理設備の小型化等を可能とした次世代型燃焼方式が多く提案されている。この次世代型燃焼方式においては、安定した燃焼制御が要求され、具体的には(i)燃焼熱量の安定化、(ii)目標とする空気比での安定燃焼、(iii)ダイオキシンや一酸化炭素(CO)の発生抑制およびNOxの変動抑制などが要求されることになる。
そのためには、燃焼炉内のガス温度分布の把握は重要な意味があり、従来は、接触式の熱電対が用いられてきた一方、こうした接触式では、使用環境下での耐久性、時間応答性や取り付け位置と長さによる定点測定しかできないことから、非接触で時間応答性の速い温度計測方法が求められ、こうした測定方法を用いた燃焼制御装置が提案されてきた。また、燃焼炉内の効率的な燃焼条件を確保するためには、燃焼炉内において移送される燃焼対象物について、未燃焼物が殆どなくなる位置(燃え切り位置または燃え切り点といい、本願では「燃切点」という)の把握が重要となる。
例えば、図7に例示するような燃焼制御装置を挙げることができる。一次燃焼部111の代表温度であるごみ表面温度と二次燃焼部112の代表温度である炉内温度を精度良く計測して燃焼制御を行うことで燃焼制御の信頼性を高め、ダイオキシン類等の有害ガスを低減させることができる。具体的には、ごみ焼却炉100における一次燃焼部111のごみ表面温度を、赤外線を介して測定するごみ表面温度測定器220と、炉内温度を測定する炉内温度センサ210と、ごみ表面温度および炉内温度に基づいて、燃焼制御を行う制御装置300とを備えている(例えば特許文献1参照)。
また、水平ストーカ式ゴミ焼却炉とその計装系において、図8に示すようなストーカ温度制御装置を挙げることができる。各ストーカ温度、現在の各ゴミ層厚さ指標や炉内画像を画像処理して得られる燃え切り位置のような情報に基づいてあらかじめ作成された知識ベースから求めることで、ストーカの温度を望ましい範囲内に制御する。具体的には、焼却すべきごみ611はホッパ612に供給され、ホッパ612の底部に設けられたフィーダ613の周期的なオン/オフ動作により、焼却炉の炉内614に供給される。炉内614の底部には炉内614に供給されたごみ611を載置し、炉内614の出口615、すなわち焼却灰の出口に向かってごみを移動させるストーカ616が設けられている。ストーカ616は、ここでは4つのゾーン616−1〜616−4に分割され、各ゾーン毎にストーカ616の速度、すなわちごみの移送速度を操作できる構成になっている。ストーカ616には各ゾーン毎にそれぞれ、ストーカの温度を測定するための温度測定装置631−1〜631−4が設けられている。ここでは、各ゾーンを代表する位置のストーカに直接熱電対が埋め込まれて温度測定が行われ、炉内カメラ625により得られた炉内画像から画像処理によって炉内の燃切点が算出される(例えば特許文献2参照)。ここで、618−1〜618−4はダクト、619−1〜619−4はダンパ、623は二次燃焼空気供給口を示す。
特開2003−106509号公報 特許3763963号公報
しかしながら、上記従来技術には、次のような課題がある。
(i)接触式の熱電対の場合、高温で水分量も多く、腐蝕性ガスが共存する等、厳しい使用環境下での耐久性が求められることが多く、従前こうした要請に対応するには、比較的短期間での定期的な部品等の交換が必要であった。具体的には、1〜2ケ月程度での定期交換を実施されることが多くあった。
(ii)また、接触式については、そのポイントでの測定は正確に行うことができるが、上記のように応答性に劣ることから、制御を目的とする場合には時間遅れTd及び応答時間(例えば90%応答T90)の補正等を必要とする。例えば、時間遅れTdが約7分程度となることがあり、昨今要求される高速制御には適さない。
(iii)一方、一般的な非接触式の温度測定装置として多用されている赤外線放射温度計を用いた場合、炉壁からの輻射の影響を受け、燃焼炉内のガス温度そのものの測定が困難となること、あるいは測定精度が悪くなるために正確な燃焼制御ができないという課題があった。こうした現状から、実用可能な非接触式の燃焼炉内の温度分布の測定方法に対する強い要請があった。
(iv)さらに、炉内の燃切点を得るためには、上記のように、炉内カメラ等を別途炉壁に設け、得られた炉内画像から画像処理を行う必要があった。
(v)また、炉内の温度分布と燃切点が、別々の手段で測定された場合には、それぞれの測定データの時間的なズレ等によって、正確な燃焼制御ができない。特に、高温条件等負荷の大きな条件に対する両者の特性への影響度の相違から、連続的な測定での制御指標としての正確性を確保することが難しい。
そこで、本発明の目的は、上記従来技術の有する問題点に鑑みて、同一手段で、非接触で、時間応答性が速く、しかも燃焼炉内の温度分布を正確に測定することができると同時に、正確に燃焼炉内の燃焼対象物の燃切点を検出することができる燃焼管理システムを提供することにある。また、炉内燃焼状況を正確に把握し、ゴミ送りや燃焼空気量などを制御し、現実の燃焼炉の運転状態を最適な燃焼状態(理想の燃焼状態)に近づけることができる燃焼炉の燃焼制御システムを提供することにある。
本発明者らは、鋭意研究を重ねた結果、以下に示す燃焼炉内の燃焼管理システムおよび燃焼炉の燃焼制御システムにより上記目的を達成できることを見出し、本発明を完成するに到った。
本発明に係る燃焼炉内の燃焼管理システムは、燃焼炉内の燃焼対象物および該燃焼対象物の上部空間を撮影対象とする少なくとも1つの力ラー力メラと、該力ラー力メラによって写された画像を受信する画像受信手段と、該画像の画像解析を行う画像解析手段と、を有し、得られた画像を複数のエリアに分割し、該得られた画像の画素ごとの画像情報を基に、該エリアごとに画像解析を行うことによって、前記燃焼炉内の温度分布の測定と前記燃焼炉内の燃焼対象物の燃切点の検出を同時に行うことを特徴とする。
こうした構成によって、燃焼炉内において直接燃焼ガスと接触することなく、時間応答性が速く、しかも正確に、温度分布の測定と燃切点の検出を同時に行うことが可能となった。つまり、本発明者は、ゴミ焼却炉などの燃焼管理システムの検証過程において、力ラー力メラによって写された燃焼対象物およびその上部空間に係る画像から、画像上の各点に対する色温度を検出する要素とともに、同じ画像を細分化したエリアの色情報を比較することによって燃焼対象物の燃焼状態の差異を検出する要素を2次元情報として取り出すことができることを見出した。時間遅れのない瞬間あるいは短時間の集約された画像情報を入手することができ、その後の外乱影響を受けない、温度分布と燃切点に係る2次元情報を同時に処理することができる。具体的には、画像を後述するいくつかの方法で画像解析を行うことによって、測定精度の高い温度分布と燃切点の2次元情報を取り出すことができ、燃焼炉内の燃焼管理にとって重要な制御指標として用いることが可能となった。
本発明は、上記燃焼炉内の燃焼管理システムであって、前記画像解析手段において、前記画像情報から、設定時間ごとに、設定されたエリア内の画素ごとの複数の色領域に係る光強度から色温度を算出し前記温度分布を演算すると同時に、該画素ごとの1または複数の色領域に係る輝度から輝度階調を算出し前記燃切点を演算することを特徴とする。
上記のように、力ラー力メラによって写された燃焼対象物およびその上部空間に係る力ラー画像からは、細分化したエリア内の画素ごとの色情報を得ることができる。本発明は、こうした画素ごとの複数の色領域に係る光強度の解析と同時に、画素ごとの1または複数の色領域に係る輝度階調を算出することによって、同一手段で、非接触で、時間応答性が速く、しかも正確に温度分布と燃切点の検出することを可能とした。なお、ここでいう「色領域」とは、特定波長域の可視光(可視領域;例えば波長620〜750nmの赤色光)をいい、特定波長の単色光(輝線;例えば波長700nmの赤色光)も含まれる。例えば色の三原色の赤領域R,緑領域Gおよび青領域B(これらを総称して「RGB」ということがある)を挙げることができる。また、「色領域の光強度」あるいは「色領域の輝度」とは、特定波長の単色光の光強度あるいは輝度、または特定波長域の光の平均光強度あるいは平均輝度をいい、いずれをも用いることができる。
本発明は、上記燃焼炉内の燃焼管理システムであって、前記燃焼炉内の温度分布の測定において、
(1)前記設定されたエリア内の画素ごとの複数の色領域に係る光強度を解析し、
(2)該複数の色領域に係る光強度の相対比から画素ごとの色温度を算出し、
(3)前記設定されたエリア内、さらに前記画像全体の温度分布を演算する
ことを特徴とする。
上記のように、燃焼炉内の画像情報から、燃焼炉内の色温度を2次元情報として取り出すことによって燃焼炉内の温度分布の測定を行うことができる。本発明は、画素ごとに複数の色領域に係る光強度を解析し、その相対比から画素ごとの色温度を算出することによって、精度の高い2次元の温度分布情報を得ることが可能となった。なお、相対比からの色温度の算出は、2つの色領域を利用する2色温度法とともに、激しい温度変化を伴う場合には、3つ以上の色領域を利用することによって精度のよい色温度を得ることができる。
本発明は、上記燃焼炉内の燃焼管理システムであって、前記燃焼炉内の燃焼対象物の燃切点の検出において、
(4a)予め燃切点の基準となる輝度を設定し、
(5a)実測の、1の色領域の画素ごとの輝度階調、複数の色領域の輝度階調の画素ごとの平均値、あるいは1または複数の色領域の輝度階調のエリア内での平均値から、実測輝度を算出し、
(6a)上記(4a)で設定された輝度と上記(5a)のいずれかの実測輝度を比較し、該実測輝度が設定された輝度を超える点を、その画素ごとあるいはエリアごとの前記燃切点とし、
(7)前記画像全体の前記燃切点を演算する
ことを特徴とする。
また、前記燃焼炉内の燃焼対象物の燃切点の検出において、
(4a)予め燃切点の基準となる輝度を設定し、および(4b)設定されたエリア内の燃切点の基準となる画素数の割合を設定し、
(5b)実測の、1の色領域の画素ごとの輝度階調、あるいは複数の色領域の輝度階調の画素ごとの平均値から、画素ごとの実測輝度を算出し、
(6b)画素ごとに、上記(4a)で設定された輝度と上記(5b)のいずれかの実測輝度を比較し、該実測輝度が設定された輝度を超える画素数を算出し、
(6c)設定されたエリア内における画素の全数に対する前記輝度を超える画素数の割合を算出し、予め上記(4b)で設定された割合を超えるエリアを、前記燃切点とし、
(7)前記画像全体の前記燃切点を演算する
ことを特徴とする。
燃焼炉内の燃切点(点)は時々刻々変動することから、時間的および領域的に一定の範囲を設定して燃焼対象物の燃焼状態の差異を検出することが好ましい。本発明は、画像のカラー情報から、複数の色領域の輝度階調の画素ごとの平均値、あるいは1または複数の色領域の輝度階調のエリア内での平均値、のいずれかを用いて算出された実測輝度、または、1の色領域の画素ごとの輝度階調あるいは複数の色領域の輝度階調の画素ごとの平均値から算出された画素ごとの実測輝度のエリア内での割合から燃切点を演算することによって、精度の高い安定した燃切点を検出することが可能となった。
本発明に係る燃焼炉の燃焼制御システムは、上記いずれかの燃焼管理システムから取得された燃焼炉内の温度分布および燃切点に基づいて、少なくとも燃焼炉に投入される燃焼対象物の量、燃焼対象物の質、燃焼空気の量、燃焼空気の温度、あるいはストーカ速度のいずれかを制御対象として、燃焼制御されることを特徴とする。
燃焼炉内の燃焼状態は、燃焼対象物の量と質あるいは炉内の堆積量、燃焼空気の供給量や供給位置、燃焼空気の温度、あるいはストーカ速度を主たる変動要素として変化する。炉内の温度分布および燃切点も、その変化に応じて変動し、特定の変動要素の変化に応じた温度分布および燃切点の変動を、所定の精度で制御することが可能である。つまり、燃焼炉内の温度分布および燃切点に基づいて、こうした変動要素を制御対象として燃焼制御することによって、より精度の高い燃焼炉内の燃焼管理を行うことが可能となる。
本発明に係る燃焼炉内の燃焼管理システムの構成例を示す概略図 燃焼炉内の燃焼状態および燃焼管理システムを例示する説明図 撮影された燃焼炉内の画像を例示する説明図 本発明に係る燃焼管理システムにおける画像解析を例示する説明図 画像解析を行うためにエリア分割された画像を例示する説明図 本発明に係る燃焼炉内の温度制御システムの構成例を示す概略図 従来技術に係る燃焼制御装置の構成例を示す概略図 従来技術に係るストーカ温度制御装置の構成例を示す概略図
以下、本発明の実施形態を、図面を参照して詳細に説明する。ここでは、本発明に係る燃焼炉内の燃焼管理システムおよび燃焼炉の燃焼制御システムを、ストーカ式ゴミ焼却炉(燃焼炉に相当し、以下「焼却炉」ということがある)に適用した場合について説明する。
<本発明に係る燃焼炉内の燃焼管理システム>
本発明に係る燃焼炉内の燃焼管理システム(以下「本燃焼管理システム」という)は、燃焼炉内の燃焼対象物および該燃焼対象物の上部空間を撮影対象とする少なくとも1つの力ラー力メラと、該力ラー力メラによって写された画像を受信する画像受信手段と、該画像の画像解析を行う画像解析手段と、を有する。画像解析手段において、画像受信手段によって得られた画像を複数のエリアに分割し、得られた画像の画素ごとの画像情報を基にエリアごとに画像解析を行い、燃焼炉内の温度分布の測定と燃焼炉内の燃焼対象物の燃切点の検出を同時に行うことによって、非接触で、時間応答性が速く、しかも正確に、温度分布の測定と燃切点の検出を同時に行うことができる。ここでは、燃焼炉として、ストーカ式ゴミ焼却炉に対して適用された場合を例示する。
図1は、ゴミ焼却炉(燃焼炉)10に適用された本燃焼管理システムの概略全体構成例を示す(第1構成例)。燃焼炉10内の燃焼対象物および該燃焼対象物の上部空間を撮影対象とする少なくとも1つの力ラー力メラ20と、力ラー力メラ20によって写された画像を送信する通信手段21と、該画像を受信する画像受信手段30と、画像の画像解析を行う画像解析手段40が設けられる。画像解析手段40においては、燃焼炉10内の温度分布および燃切点が演算されるとともに、後述するように、演算結果が制御装置(図示せず)に送信され、燃焼炉10の燃焼制御を担う制御指標として供される。
燃焼炉10は、処理されるゴミ(燃焼対象物に相当)を貯留するホッパ1とゴミを燃焼させるストーカ3が炉本体2に設けられ、ホッパ1のゴミは、ゴミ供給装置4によってストーカ3に送られる。ストーカ3は、乾燥ストーカ3aと燃焼ストーカ3bと後燃焼ストーカ3cとから構成され、それぞれ別々に往復移動駆動されてゴミを送給する。炉本体2には、ストーカ3の上部に設けられた一次燃焼ゾーン2aと、さらにその上部の二次燃焼ゾーン2bと、ストーカ3と一次燃焼ゾーン2aおよび二次燃焼ゾーン2bに燃焼空気を供給する燃焼空気供給装置(図示せず)と、塵灰を排出する塵灰排出部(図示せず)と、排ガスを排出する排ガス排出部(図示せず)が設けられる。
ホッパ1に投入されたゴミは、乾燥ストーカ3a・燃焼ストーカ3b・後燃焼ストーカ3cの順に送られながら、一次燃焼ゾーン2aにおいて、一次燃焼空気によって一次燃焼する。乾燥ストーカ3aでは、後段の燃焼ストーカ3b・後燃焼ストーカ3cでの燃焼により生じる高温燃焼ガスによって主としてゴミが乾燥し、一部燃焼が始まる。乾燥ストーカ3a上のゴミから発生するガスは、水分の蒸発による水蒸気、乾留によって生じる炭化水素ガス、不完全燃焼によって生じるCOや完全燃焼による二酸化炭素(CO)などである。燃焼ストーカ3bでは、一次燃焼空気により、主としてゴミが燃焼する。燃焼ストーカ3bに供給される一次燃焼空気はゴミの燃焼に必要十分な量であり、燃焼ストーカ3b上のゴミから発生するガスは高濃度のNOxを含んでいる。給送されたゴミの多くが、燃焼ストーカ3b上において燃焼し、焼却灰中の未燃分が、後燃焼ストーカ3cで燃え切る。二次燃焼ゾーン2bでは、その下部,中部,上部に二次燃焼空気を供給して、一次燃焼ゾーン2aからの未燃物または不完全燃焼物を完全燃焼させる。燃焼によって発生した塵灰は、灰排出部から排出され、炉内の排ガスは、排ガス排出部から排出される。このとき、排ガス中のCOやNOxおよび酸素(O)などが所定濃度以下となるように管理される。燃焼状態にある燃焼炉10内においては、燃焼ストーカ3bおよび後燃焼ストーカ3cの上部に、燃焼状態のゴミの燃切点が形成される。また、燃焼状態のゴミMの上部には、高温の火炎Fが形成される。
〔燃焼炉内の画像の作製〕
少なくとも1つの力ラー力メラ20が、図2に例示するように、燃焼炉10の側壁の、燃焼炉10内を斜方向から捉えた燃焼対象物(ゴミ)Mおよびその上部空間Sが撮影できる位置に配設される。燃焼炉10内の燃焼状態を把握するためには、一次燃焼ゾーン2aと二次燃焼ゾーン2b両方の温度分布を把握することが好ましい。特に、燃焼管理上は、燃焼直後の(1次燃焼)のゴミMからの火炎Fの状態を把握することが不可欠である。また、ゴミMの燃切点Bを検出するために、少なくとも燃焼ストーカ3bおよび後燃焼ストーカ3cを含む領域が撮影対象となる。つまり、カラーカメラ20の撮影対象は、少なくともゴミMの上部空間Sを含む領域(一次燃焼ゾーン2a)が好適である。
図3は、カラーカメラ20によって撮影された画像10aを例示する。上流側(画像上部)に相当する燃焼ストーカ3bから下流側(画像下部)に相当する後燃焼ストーカ3c(図示せず)の上部を移動するゴミM(焼却灰を含む)およびその上部空間S、あるいは燃焼状態での火炎Fが、正面から撮影されている。画像下方に示す区分された画像10bは、燃焼状態のゴミMと燃焼済部分の画像解析により検出された「燃切点」を模式的に白黒表示で表した画像で、その白黒の境界が燃切点Bとなる。主として画像10bを含む画像下方領域が、燃切点の検出エリアとしなる。また、画像10aにおいて、図中の火炎F部分を含む中央上部領域の上部空間Sを主とし、一次燃焼ゾーン2a全体が燃焼炉10内の温度分布の検出エリアとしなる。各検出エリアについて、それぞれの画像解析を同時に行うことによって、燃切点を炉内温度分布と同時に測定することができる。
〔画像の解析〕
カラーカメラ20によって撮影された燃焼炉10内の画像は、図4に例示するように、画像受信手段30に送信され、受信された画像が画像解析手段40によって解析される。画像の解析は、画像解析された情報は、燃焼炉10内の温度分布の測定情報および燃切点の検出情報として出力され、例えば、後述するように、燃焼炉10の燃焼制御用の指標として利用される。
具体的には、受信された画像は、画像解析手段40において2つの系統に分けられる。1つの系統では、温度解析部41aにおいて、設定時間ごとに、設定されたエリア内の画素ごとの複数の色領域に係る光強度が解析され、さらに温度演算部42aにおいて、得られた画像全域の温度が演算され、温度分布が作成される。画像解析された温度情報は、燃焼炉10内の温度分布の測定情報として出力される。他の系統では、燃切点解析部41bにおいて、設定時間ごとに、設定されたエリア内の画素ごとの1または複数の色領域に係る輝度が解析され、さらに燃切点演算部42bにおいて、基準輝度設定部43において設定された基準となる輝度と比較し、得られた画像全域の燃切点が連続点あるいは断続点として演算され、燃切点の測定画像が作成される。画像解析された燃切点の情報は、燃焼炉10内の燃切点の測定情報として出力される。1つの画像から、同一手段で、時間応答性が速く、しかも正確に温度分布と燃切点を検出することができる。
得られた画像は、温度解析部41aおよび燃切点解析部41b(画像解析手段40)において、複数のエリアに分割され、得られた画像の画素ごとの画像情報を基に、エリアごとに画像解析が行われる。具体的には、図5(A)に例示するエリア10bの画像において、図5(B)に例示するように、水平方向にm個、垂直方向にn個のエリアAij[A11,・・A1m,A21,・・A2m,・・An1,・・Amn]に分割される。それぞれのエリアAijは、同じ数の画素によって構成され、画素ごとに画像情報が形成されている。この画像情報には、デジタル化された色情報が含まれ、1または複数の色領域に係る情報を取り出すことができる。例えば、三原色の赤領域R,緑領域Gおよび青領域Bという3つの色領域(RGB)を設定し、この色情報を区分して各色領域の光強度や輝度を求めることができる。得られた光強度は、予め基準となる尺度(例えば強度0〜100)によって企画化され、後述するように、RGBのうちの2または3の色領域の値の相対比を求めることで、画素ごとの色温度を算出することができる。また、得られた輝度は、輝度階調が算出され、後述するように、RGBのうちの1または複数の色領域の画素ごとあるいはエリアごとの実測輝度を、予め設定された基準となる輝度と比較することによって、画素ごとあるいはエリア内の燃切点を演算することができる。
〔温度分布の測定〕
燃焼炉10内の温度分布は、1次燃焼ゾーン2aからの放射光を受けて、カラーカメラ20によって撮影された画像を基に、設定時間ごとに、設定されたエリア内の画素ごとの複数の色領域に係る光強度から色温度を算出し、画像全体の温度分布を演算することによって、測定される。具体的には、撮影された画像を基に、以下の処理が行われる。
(1)設定されたエリア内の画素ごとの複数の色領域に係る光強度を解析し、
(2)該複数の色領域に係る光強度の相対比から画素ごとの色温度を算出し、
(3)設定されたエリア内、さらに画像全体の温度分布を演算する
上記〔画像の解析〕によって得られた図5(A)に例示するエリア10bの画像において、図5(B)に例示する各エリアAijを構成する各画素について、複数の色領域の光強度を取り出し、複数の色領域の光強度の相対比を算出することによって、画素ごとの色温度を演算することができる。2次元の温度情報として演算することによって、燃焼炉10内の温度分布を作成することができる。
ここで、放射光の強度と温度の対照は、一般的に知られた既知温度の黒体輻射の関係に基づき行われる。本燃焼管理システムにおいては、予めタングステンの設定温度と所定波長域の放射光量の相関を校正表あるいは校正関数として求めておき、測定された特定の複数の波長域の放射光量(光強度)の比から温度換算される。異なる波長域の放射光量の比を演算することによって燃焼炉10内のダストや飛沫等による減光や散乱等の外乱影響を補正することができる。
例えば、2つの色領域、波長λおよびλの光強度を用いた場合(以下「2色温度法」という)、温度Tの測定部位の放射率をε,ε、測定部位から光測定手段40までの透過率をτ,τとすると、Wienの放射エネルギーの近似式から、2つの波長域の放射エネルギーの比率Rは、下式1となる(cは、放射定数を示す)。
Figure 2014234981
・・・(式1)
このとき、炉壁を構成する素材を含めた多くの金属やセラミックでは、2つの可視領域での放射率ε、εはほぼ等しく、ε/ε=1となる。また、測定部位から力ラー力メラ20までの光導入路の透過率τ,τも、2つの可視領域では、ほぼ等しく、τ/τ=1となる。つまり、使用波長λおよびλが選択・設定された場合には、比率Rは、温度の逆数に比例する。従って、当該比率Rを演算することによって、測定部位の放射率に無関係であり、レンズやガラス、ガス等物体と測定システムとの間に介在するもの透過率にも、影響されることがなく、精度の高い温度計測が可能となる。
本燃焼管理システムを用いた燃焼炉10内の温度分布の測定においては、温度計測に用いる光の波長域を可視領域に特定することによって、炉壁の輻射等の影響を低減・排除することができる。例えば可視領域の単色光として赤色(R)と緑色(G)を用い、その光の強度の差分あるいは強度比を演算することによって、外乱の影響の少ない温度情報を得ることができる。なお、ここでいう「単色光」は、例えば緑色(G)を波長546nmに限定するのではなく、一般的な概念として規定される500〜570nmの狭帯域の光をいい、赤色(R)は620〜750nm、青色(B)は450〜500nmの狭帯域の光をいう。
また、2色温度法の波長λおよびλの色領域に加え、その中間の色領域あるいは別の色領域を用い、3あるいは3以上の色領域の光強度による色温度の測定を行うことによって、さらに測定精度を上げることができる。つまり、燃焼炉10内、特に一次燃焼ゾーン2aでは、温度の変化に加え、火炎の揺らぎや粉塵等の飛散等の状態の変動が激しく、色温度の測定において無視できない影響を与える。こうした影響値は、色領域によって異なることから、測定に係る色領域を増やすことによって、こうした誤差要因を補正することができる。また、本燃焼管理システムにおいては、画像解析された色情報を燃切点の検出のために用い、例えば、RGBの3つの色領域の輝度を用いて演算することから、こうした3つの色領域の色情報として光強度を容易に用いることができる。
〔燃切点の検出〕
燃焼炉10内の燃切点は、カラーカメラ20によって撮影された画像の、主として下方領域の画像を基に、設定時間ごとに、設定されたエリア内の画素ごとの1または複数の色領域に係る輝度から輝度階調を算出し、燃切点を演算することによって、測定される。具体的には、上記図5(B)に例示する各エリアAijを構成する各画素について、1または複数の色領域の実測輝度を算出し、画素ごとあるいはエリアごとに算出された実測輝度を、予め設定された燃切点の基準となる輝度との比較を行い、画素ごとあるいは設定されたエリア内、さらに画像全体の燃切点として演算されることによって、燃焼炉10内の燃切点を、精度よく検出することができる。詳細には、以下の2つの演算処理a,bを行うことができる。ただし、これらに限定されるものでないことはいうまでもない。
(a)演算処理a
本燃焼管理システムにおける燃切点の検出においては、以下の演算処理が挙げられる。
(4a)予め燃切点の基準となる輝度を設定し、
(5a)実測の、1の色領域の画素ごとの輝度階調、複数の色領域の輝度階調の画素ごとの平均値、あるいは1または複数の色領域の輝度階調のエリア内での平均値から、実測輝度を算出し、
(6a)上記(4a)で設定された輝度と上記(5a)のいずれかの実測輝度を比較し、該実測輝度が設定された輝度を超える点を、その画素ごとあるいはエリアごとの前記燃切点とし、
(7)前記画像全体の前記燃切点を演算する。
まず、(4a)予め燃切点の基準となる輝度が設定される。実測輝度との比較を行い、客観的な燃切点の確定を行うことができる。次に、
(5a−1)画像情報から得られた輝度を基に、特定のエリア内における画素ごとに、1または複数の色領域の輝度階調が算出される。具体例として、単純化するために、画像として画素が3列4行に配設され、各列がそれぞれのエリアを構成する場合の輝度階調の算出結果の例を、下表1に示す。RGBの輝度から、それぞれ0〜255の256段階に輝度諧調が得られる。
Figure 2014234981
次に、上表1に示す輝度階調の算出結果を基に、以下(5a−2)〜(5a−5)の値を算出し、実測輝度が算出される。実測輝度の算出結果を下表2に示す。
(5a−2)1の色領域(赤領域に設定する)の画素ごとの輝度階調:特定の色領域における細分化された区分における実測輝度を算出することができる。
(5a−3)複数の色領域(RGB)の輝度階調の画素ごとの平均値:色領域によるバラツキが平準化された実測輝度を算出することができる。
(5a−4)1の色領域の輝度階調のエリア内での平均値:画素ごとのバラツキが平準化された実測輝度を算出することができる。
(5a−5)複数の色領域の輝度階調のエリア内での平均値:色領域および画素ごとのバラツキが平準化された実測輝度を算出することができる。
Figure 2014234981
次に、(6a)上記(4a)で設定された輝度(基準輝度)と上記(5a−2)〜(5a−5)のいずれかの実測輝度を比較し、該実測輝度が設定された輝度を超える点を、その画素ごとあるいはエリア内の燃切点とする。上表2において、基準輝度を、例えば「50」と設定した場合について、斜体太字で示す。次に、
(7)画像全体の燃切点を演算する。比較的燃焼条件が安定で、燃切点の変動の少ない場合には、画素ごとに燃切点を設定することによって、精緻な燃焼管理を行うことができ、燃焼条件の変動が大きく、燃切点の変動の大きな場合には、エリアごとに燃切点を設定することによって、変動に対応したダイナミックな燃焼管理を行うことができる。また、燃焼条件が変化し、燃切点の変動の大きさが変化する場合には、燃切点の設定を「画素ごと」と「エリアごと」の切り換えを行うことによって、燃焼条件の変化に対応した適切な燃焼管理を行うことができる。
(b)演算処理b
また、以下の演算処理が挙げられる。
(4a)予め燃切点の基準となる輝度を設定し、および
(4b)設定されたエリア内の燃切点の基準となる画素数の割合を設定し、
(5b)実測の、1の色領域の画素ごとの輝度階調、あるいは複数の色領域の輝度階調の画素ごとの平均値から、画素ごとの実測輝度を算出し、
(6b)画素ごとに、上記(4a)で設定された輝度と上記(5b)のいずれかの実測輝度を比較し、該実測輝度が設定された輝度を超える画素数を算出し、
(6c)設定されたエリア内における画素の全数に対する前記輝度を超える画素数の割合を算出し、予め上記(4b)で設定された割合を超えるエリアを、前記燃切点とし、
(7)前記画像全体の前記燃切点を演算する。
まず、(4a)予め燃切点の基準となる輝度を設定するとともに、
(4b)設定されたエリア内の燃切点の基準となる画素数Naの割合(基準割合)Raを設定する。画素ごとの微小部分ではなく、エリアごとの実測輝度との比較を行い、確実な燃切点の確定を行うことができる。次に、
(5b)画像情報から得られた輝度を基に、特定のエリア内における画素ごとに、1または複数の色領域の輝度階調が算出される。具体例として、上記(5a−1)と同様、上表1に示す。次に、上表1に示す輝度階調の算出結果を基に、実測輝度が算出される。実測輝度の算出結果は、1の色領域(赤領域に設定する)の画素ごとの輝度階調については上記(5a−2)と同様、複数の色領域(RGB)の輝度階調の画素ごとの平均値については上記(5a−3)と同様であり、上表2の「5a−2」欄および「5a−3」欄に示す。
次に、(6b)上記(4a)で設定された輝度(基準輝度)と上記(5b)のいずれかの実測輝度(上記(5a−2),(5a−3)のいずれか)を比較し、該実測輝度が設定された輝度を超える画素数Nbを算出する。上表2において、基準輝度を、例えば「50」と設定した場合について、斜体太字で示す。次に、
(6c)設定されたエリア内における画素の全数に対する輝度を超える画素数Nbの割合Rbを算出し、予め上記(4b)で設定された割合Raを超えるエリアを、燃切点とする。下表3に、各エリア(第1〜4行)の画素数Nbと割合Rbを示すとともに、基準割合Raを、例えば「0.5」と設定した場合の、割合Raを超えるエリアを斜体太字で示す。
Figure 2014234981
次に、(7)画像全体の燃切点を演算する。燃焼条件の変動による燃切点の変動が画素ごとにあった場合でも、エリアごとに燃切点を設定することによって、変動に対応した適切な燃焼管理を行うことができる。また、燃焼条件が変化し、燃切点の変動の大きさが変化する場合には、(a)演算処理aと(b)演算処理bの切り換えを行うことによって、燃焼条件の変化に対応した最適な燃焼管理を行うことができる。
<本発明に係る燃焼炉の燃焼制御システム>
本発明に係る燃焼炉の燃焼制御システム(以下「本燃焼システム」という)は、上記本燃焼管理システムから取得された燃焼炉内の温度分布および燃切点に基づいて、少なくとも燃焼炉に投入されるゴミ(燃焼対象物)の量、ゴミの質、燃焼空気の量、燃焼空気の温度、あるいはストーカ速度のいずれかが制御対象として、燃焼制御される。本燃焼システムは、処理されるゴミおよび助燃用空気を入力とし、発生する熱量、排ガスおよび塵灰を出力とする。燃焼炉内の燃焼状態は、ゴミの量と質あるいは炉内の堆積量、燃焼空気の供給量や供給位置、燃焼空気の温度、およびストーカ速度を主たる変動要素として変化する。こうした要素の変動に伴う燃焼状態の変化は、燃焼炉内の温度、ガス濃度、ガス流れ方向、ガス流速、あるいはこれらの燃焼炉10内の分布(以下「炉内分布」ということがある)や燃切点や蒸発量(以下、これらを「プロセスデータ」ということがある)を指標として制御することが好ましい。特に、燃焼炉10内の温度分布および燃切点は、上記変動要素のいずれの変動に対しても、その変動に対応した独自の変化を生じることから、本燃焼システムは、これを測定対象とする本燃焼管理システムを適用することによって最適な燃焼状態に近づけることができる。
本燃焼システムの具体的な構成は、図6に例示するように、以下の構成要素を備える。
(a)焼却炉10に設けられ、制御操作が行われる各制御対象に係る制御機構OP
(b)プロセスデータが得られる各制御指標に係る測定手段を有する計測手段SE
(c)制御機構OPとの間の制御信号および計測手段SEとの間の出力信号を送受信するとともに、所定の制御を行う制御装置50
(d)制御対象に係る制御量あるいは/および制御指標についてのプロセスデータを解析して、境界条件あるいは炉内分布を作成する燃焼解析装置60
(e)必要に応じて備えられ、制御量あるいは/およびプロセスデータを基に、特定の制御指標についてのシミュレーションを行い、シミュレーションデータを作成するシミュレーション装置70
(f)必要に応じて備えられ、理想状態と実測状態の2つの解析結果データを対比させて表示される燃焼状態比較表示装置80
こうした構成によって、上記本燃焼管理システムによって得られた燃焼炉10内の温度分布および燃切点を含むプロセスデータにより燃焼炉10内の燃焼状態を正確に把握し、それを制御指標として反映させることにより燃焼空気の最適分配等の燃焼制御に適応することができる。具体的には、燃焼熱量の安定化、目標とする空気比での安定燃焼、ダイオキシン、CO、NOxの発生抑制等の最適な燃焼制御を行うことができる。また、シミュレーション解析の検証にも用いることによって、シミュレーション解析内容の精度向上、さらに最適な燃焼炉の形状や燃焼空気の吹込位置等を決定することができる。さらに、既設の施設にも、簡便に、安価で容易に設置できるため、広い範囲に適用することができる。以下、本燃焼システムの構成要素(a)〜(e)について詳述する。
(a)制御機構OP
本燃焼システムの制御機構OPは、以下の機構を有することが好ましい。
(a−1)ゴミの投入量を制御操作するゴミ供給装置4
(a−2)ストーカ3の速度を制御操作するストーカ駆動装置
ストーカ3の速度は、特に燃焼炉10内の燃切点に大きな影響を与えることから、燃切点を制御指標として、ストーカ3の速度制御の補正(例えばPID補正)を行うことが好ましい。例えば、実測の燃切点が、予め設定した燃切点から上流側(ストーカ3の移動方向に対して)に変動した場合には、ストーカ3の駆動を加速し、下流側に変動した場合には、ストーカ3の駆動を減速することによって、適切な燃焼条件を安定的に確保することができる。
(a−3)一次,二次燃焼空気供給装置に設けられ、一次,二次燃焼空気の全量を制御操作する送風機と、ストーカ3a〜3cに対応するように各空気量を制御操作する調整弁あるいはノズル
(a−4)一次,二次燃焼空気の温度を制御操作する一次,二次燃焼空気予熱器
燃焼空気供給位置あるいは供給量は、燃焼炉10内の温度等の分布および燃切点に大きな影響を与えることから、一次,二次燃焼空気量のバランスおよび一次,二次燃焼空気の調整弁やノズルの配置とそこから供給する空気量のバランスを適切に制御することが必要となる。一次,二次燃焼空気供給装置の配置については、本燃焼システムの設計条件から、理想の燃焼状態を形成できるように設定され、空気量は、実動条件での燃焼状態から制御操作される。
(b)計測手段SE
本燃焼システムは、少なくとも以下の測定手段を備えた計測手段SEを有することが好ましい。
(b−1)燃焼炉10内の温度分布および燃切点を測定する測定手段として、上記本燃焼管理システムのように、燃焼炉10の側壁に設けられた力ラー力メラ20が設けられる。力ラー力メラ20によって写された画像は通信手段21を介して画像受信手段30に送信される。
(b−2)ホッパ1に投入されるゴミの量と質を測定する測定手段として、ゴミ投入重量検出センサやレーザ距離計が設けられる。レーザ距離計により、ゴミ表面までの距離を測定して、投入されるゴミ体積を測定する。ゴミ投入重量検出センサは、ゴミの重量を測定する。ゴミの体積と重量を検出することにより、ゴミの比重の変化を所定時間間隔で検出することができる。ゴミ比重が分かれば、ある程度ゴミ質を予測することができる。
(b−3)焼却炉10内の燃焼状態を検出する測定手段が設けられている。つまり、ガス分布に関するプロセスデータを検出する測定手段として、例えば、NOx濃度計、O濃度計、CO濃度計が二次燃焼ゾーン2b、一次燃焼ゾーン2aの少なくとも一方に設けられている。ここで、NOx濃度計、O濃度計、CO濃度計としては、レーザ発信器(図示せず)が波長をスキャンしながら強さ一定のレーザ光をガスに照射し、レーザ受信器によって残存のレーザ光を測定することにより、ガスの濃度や温度を検出する方式を採用してもよい。また、各ガスの濃度を検出する公知の測定手段を使用しても良い。さらに、ガス流れ方向に関するセンサ部として、例えば、ガス流速計が一次燃焼ゾーン2aに設けられる。燃焼炉10の終端には、燃焼に伴うエネルギー量に相当する蒸発量を測定する測定手段として、ゴミから生じる蒸気流量を検出する蒸気流量計が設けられる。他の測定手段としては、発電量検出計などを用いることが可能である。これら測定手段からの各検出信号(検出情報)が、プロセスデータとしてそれぞれ制御装置50に入力される。
(c)制御装置
本燃焼システムにおいて、制御装置50は、上記本燃焼管理システムの機能に加え、制御機構OPとの間の制御信号および計測手段SEとの間の出力信号を送受信するとともに、この計測手段SEからのプロセスデータを取得するプロセスデータ取得部50aと、燃焼解析装置60からの解析データに基づいて制御機構OPを制御操作する操作量を算出する操作量算出部50bとを備えることが好ましい。つまり、プロセスデータ取得部50aで取得されたデータは、燃焼解析装置60へ送信される。ここで、プロセスデータ取得部50aには、本燃焼管理システムにおける力ラー力メラ20によって写された画像を受信する画像受信手段30と画像の画像解析を行う画像解析手段40が含まれる。また、操作量算出部50bには、燃焼解析装置60からの理想の燃焼状態における境界条件あるいは炉内分布と、実動の燃焼状態における境界条件あるいは炉内分布との差異に対応した、操作量が算出されるとともに、制御機構OPが制御操作される。このとき、演算前にプロセスデータに対し次のような所定の処理を行うことが好ましく、こうした処理機能を有することによって、より正確な演算処理を行うことができる。
(c−1)所定時間あるいは所定数のデータの平均処理機能、特に移動平均処理機能
(c−2)いわゆるスパイクノイズを削除するために、所定時間内のデータあるいは所定数のデータから上位値および下位値を削除して平均する機能
(c−3)特定のプロセスデータを基準にし、他のプロセスデータの時間遅れを補正する機能
(d)燃焼解析装置
本燃焼システムは、制御装置50からのプロセスデータを取得するプロセスデータ記憶部60aと、境界条件あるいは炉内分布を作成する境界条件設定部60bと、理想燃焼状態算出部60cと、現実燃焼状態算出部60dとを備えた燃焼解析装置60を有する。境界条件設定部60bは、境界条件あるいは炉内分布を作成するための、制御対象に係る制御量あるいは/および制御指標についてのプロセスデータを解析する演算条件、演算式などが記憶され、本燃焼システムの設置条件や要求仕様あるいは設計条件が入力可能に記憶される。例えば、要求蒸発量や法規制の対象となる排ガス中のCOやNOx等の濃度なども記憶される。理想燃焼状態算出部60cは、本燃焼システムの設計条件等(制御対象に係る制御量あるいは制御指標についてのプロセスデータを含む)から、理想の燃焼状態における境界条件あるいは炉内分布を算出し作成する。このとき、解析手段としては、多変量解析法やARアルゴリズムを用いた自己回帰推定法などを基本とし、本燃焼システムにおける模擬試験あるいは実装試験の結果や従前の炉内燃焼実績などに合致するように、修正された手法を用いることが好ましい。現実燃焼状態算出部60dは、制御対象に係る制御量および制御指標についてのプロセスデータを解析して、実動の燃焼状態における境界条件あるいは炉内分布を算出し作成する。このとき、特定の制御指標についてのシミュレーション解析を行い、後述するシミュレーション装置70において得られたシミュレーションデータから、その境界条件あるいは炉内分布が作成される。また、上記(c)と同様、演算前にプロセスデータに対し所定の処理(c−1)〜(c−3)を行うことが好ましく、理想燃焼状態算出部60cおよび現実燃焼状態算出部60dには、こうした処理機能を有することが好ましい。
(e)シミュレーション装置
シミュレーション装置70は、予め設定した、実動条件における制御量あるいは/およびプロセスデータを基に、特定の制御指標についてのシミュレーションを行い、シミュレーションデータを作成するとともに、得られたシミュレーションデータから、その境界条件あるいは炉内分布を作成する。ゴミの質(組成)や含有水分量などが時々刻々変化するゴミ焼却炉等においては、ゴミの燃焼状態の変化に伴う炉内燃焼状況の変化を局部的な観点ではなく、システム全体としての燃焼状況を把握しながら理想の燃焼状態に近づけるように制御することによって、常に最適な燃焼制御を行うことができ、突発的なCOピークや有害ガスの発生などを未然に防止することが可能となる。具体的には、作成された境界条件あるいは炉内分布を、理想の燃焼状態における境界条件あるいは炉内分布と比較し、その差異に対応した、操作量が算出されるとともに、制御機構OPが制御操作される。このとき、上記(c),(d)と同様、演算前にプロセスデータに対し所定の処理(c−1)〜(c−3)を行うことが好ましく、こうした処理機能を有することが好ましい。
(f)燃焼状態比較表示装置
本燃焼システムにおいて、理想と現実の2つの解析結果データを対比させて表示するために、燃焼状態比較表示装置80を設けることが好ましい。例えば、燃焼炉10内の温度分布および燃切点を、図3のように、可視化することによって、制御量やプロセスデータを基に燃焼状態の適否を判断するだけではなく、燃焼炉10全体の動きから燃焼状態の適否を判断することができる。起動時あるいは実動運転時に定期的に点検確認作業を行うときに有用である。また、こうした表示から測定手段の配置や本燃焼システムの制御方法全体の見直しを図ることが可能となる。
本発明に係る燃焼管理システムおよび燃焼制御システムを適用できる燃焼炉としては、焼却炉に限定されるものではなく、電気式灰溶融炉、ガス化溶融炉などであってもよい。その場合、電気式灰溶融炉が取得するプロセスデータとしては、灰供給、スラグ流れ、電極間距離、温度分布、燃切点、O分布、CO分布、NOx分布、ガス流れ方向、ガス流速などを例示できる。また、ガス化溶融炉が取得するプロセスデータとしては、温度分布、燃切点、O分布、CO分布、NOx分布、ガス流れ方向、ガス流速などを例示できる。
上記の変動要素の変化に伴う燃焼炉内の燃焼状態の変化は、燃焼炉内の温度分布(主としてガスの温度分布)および燃切点だけではなく、燃焼炉内のガス濃度,ガス流れ方向,ガス流速あるいは蒸発量等も変動する。こうした変動に伴い最適な燃焼状態から乖離した場合は、燃焼効率の低下を招来するとともに、燃焼炉内での未燃成分の発生や、局部的な過熱等に伴うNOxやダイオキシン等の発生等を招来する。本発明は、燃焼炉内の温度分布および燃切点に加え、少なくともガス濃度、ガス流れ方向、ガス流速、蒸発量のいずれかを制御指標として、燃焼制御を行うことによって、こうした状態の発生を未然に防止することができる。
1 ホッパ
2 炉本体
2a 一次燃焼ゾーン
2b 二次燃焼ゾーン
3 ストーカ
3a 乾燥ストーカ
3b 燃焼ストーカ
3c 後燃焼ストーカ
4 ゴミ供給装置
10 ゴミ焼却炉(燃焼炉)
20 カラーカメラ
21 通信手段
30 画像受信手段
40 画像解析手段

Claims (6)

  1. 燃焼炉内の燃焼対象物および該燃焼対象物の上部空間を撮影対象とする少なくとも1つの力ラー力メラと、該力ラー力メラによって写された画像を受信する画像受信手段と、該画像の画像解析を行う画像解析手段と、を有し、得られた画像を複数のエリアに分割し、該得られた画像の画素ごとの画像情報を基に、該エリアごとに画像解析を行うことによって、前記燃焼炉内の温度分布の測定と前記燃焼炉内の燃焼対象物の燃切点の検出を同時に行うことを特徴とする燃焼炉内の燃焼管理システム。
  2. 前記画像解析手段において、前記画像情報から、設定時間ごとに、設定されたエリア内の画素ごとの複数の色領域に係る光強度から色温度を算出し前記温度分布を演算すると同時に、該画素ごとの1または複数の色領域に係る輝度から輝度階調を算出し前記燃切点を演算することを特徴とする請求項1記載の燃焼炉内の燃焼管理システム。
  3. 前記燃焼炉内の温度分布の測定において
    (1)前記設定されたエリア内の画素ごとの複数の色領域に係る光強度を解析し、
    (2)該複数の色領域に係る光強度の相対比から画素ごとの色温度を算出し、
    (3)前記設定されたエリア内、さらに前記画像全体の温度分布を演算する
    ことを特徴とする請求項1または2記載の燃焼炉内の燃焼管理システム。
  4. 前記燃焼炉内の燃焼対象物の燃切点の検出において、
    (4a)予め燃切点の基準となる輝度を設定し、
    (5a)実測の、1の色領域の画素ごとの輝度階調、複数の色領域の輝度階調の画素ごとの平均値、あるいは1または複数の色領域の輝度階調のエリア内での平均値から、実測輝度を算出し、
    (6a)上記(4a)で設定された輝度と上記(5a)のいずれかの実測輝度を比較し、該実測輝度が設定された輝度を超える点を、その画素ごとあるいはエリアごとの前記燃切点とし、
    (7)前記画像全体の前記燃切点を演算する
    ことを特徴とする請求項1〜3のいずれかに記載の燃焼炉内の燃焼管理システム。
  5. 前記燃焼炉内の燃焼対象物の燃切点の検出において、
    (4a)予め燃切点の基準となる輝度を設定し、および(4b)設定されたエリア内の燃切点の基準となる画素数の割合を設定し、
    (5b)実測の、1の色領域の画素ごとの輝度階調、あるいは複数の色領域の輝度階調の画素ごとの平均値から、画素ごとの実測輝度を算出し、
    (6b)画素ごとに、上記(4a)で設定された輝度と上記(5b)のいずれかの実測輝度を比較し、該実測輝度が設定された輝度を超える画素数を算出し、
    (6c)設定されたエリア内における画素の全数に対する前記輝度を超える画素数の割合を算出し、予め上記(4b)で設定された割合を超えるエリアを、前記燃切点とし、
    (7)前記画像全体の前記燃切点を演算する
    ことを特徴とする請求項1〜3のいずれかに記載の燃焼炉内の燃焼管理システム。
  6. 請求項1〜5のいずれかに記載の燃焼管理システムから取得された燃焼炉内の温度分布および燃切点に基づいて、少なくとも燃焼炉に投入される燃焼対象物の量、燃焼対象物の質、燃焼空気の量、燃焼空気の温度、あるいはストーカ速度のいずれかを制御対象として、燃焼制御されることを特徴とする燃焼炉の燃焼制御システム。
JP2013118765A 2013-06-05 2013-06-05 燃焼炉内の燃焼管理システムおよび燃焼炉の燃焼制御システム Pending JP2014234981A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013118765A JP2014234981A (ja) 2013-06-05 2013-06-05 燃焼炉内の燃焼管理システムおよび燃焼炉の燃焼制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013118765A JP2014234981A (ja) 2013-06-05 2013-06-05 燃焼炉内の燃焼管理システムおよび燃焼炉の燃焼制御システム

Publications (1)

Publication Number Publication Date
JP2014234981A true JP2014234981A (ja) 2014-12-15

Family

ID=52137819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013118765A Pending JP2014234981A (ja) 2013-06-05 2013-06-05 燃焼炉内の燃焼管理システムおよび燃焼炉の燃焼制御システム

Country Status (1)

Country Link
JP (1) JP2014234981A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040534A (ja) * 2016-09-07 2018-03-15 Jfeエンジニアリング株式会社 廃棄物ガス化溶融装置及び廃棄物ガス化溶融方法
JP2019074240A (ja) * 2017-10-13 2019-05-16 三菱重工業株式会社 炉内状態量推定装置、推定モデル作成装置、それらのプログラムおよび方法
JP2019196845A (ja) * 2018-05-07 2019-11-14 一般財団法人電力中央研究所 燃焼場の観察方法、観察装置、及び観察プログラム
WO2020080368A1 (ja) * 2018-10-16 2020-04-23 古河電気工業株式会社 温度計測システム、温度計測方法およびレーザ加工装置
JP2020091054A (ja) * 2018-12-04 2020-06-11 株式会社プランテック 燃焼制御方法、焼却炉
WO2021111742A1 (ja) * 2019-12-04 2021-06-10 三菱重工業株式会社 燃焼設備の制御装置、燃焼設備の制御方法およびプログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755125A (ja) * 1993-08-09 1995-03-03 Sumitomo Heavy Ind Ltd ごみ焼却炉の燃焼制御方法及び装置
JPH08296828A (ja) * 1995-04-25 1996-11-12 Sumitomo Heavy Ind Ltd ごみ焼却炉の燃焼状態判定方法及びこれを用いた燃焼制御装置
JPH09196330A (ja) * 1996-01-18 1997-07-29 Kubota Corp 廃棄物焼却炉及びその燃焼制御方法
JPH10253031A (ja) * 1997-03-10 1998-09-25 Kubota Corp ゴミ焼却炉の燃焼制御装置
JPH11248126A (ja) * 1998-03-06 1999-09-14 Sumitomo Heavy Ind Ltd ごみ焼却炉における燃焼位置、燃え切り点位置の検出方式
JP2000179820A (ja) * 1998-12-15 2000-06-27 Kawasaki Heavy Ind Ltd ごみ焼却炉の燃え切り点検出方法及び装置
JP2005201553A (ja) * 2004-01-16 2005-07-28 Jfe Engineering Kk 廃棄物焼却炉の燃焼制御方法及び装置、該燃焼制御装置を備えた廃棄物焼却炉
US20090190799A1 (en) * 2006-09-20 2009-07-30 Forschungszentrum Karlsruhe Gmbh Method for characterizing the exhaust gas burn-off quality in combustion systems

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755125A (ja) * 1993-08-09 1995-03-03 Sumitomo Heavy Ind Ltd ごみ焼却炉の燃焼制御方法及び装置
JPH08296828A (ja) * 1995-04-25 1996-11-12 Sumitomo Heavy Ind Ltd ごみ焼却炉の燃焼状態判定方法及びこれを用いた燃焼制御装置
JPH09196330A (ja) * 1996-01-18 1997-07-29 Kubota Corp 廃棄物焼却炉及びその燃焼制御方法
JPH10253031A (ja) * 1997-03-10 1998-09-25 Kubota Corp ゴミ焼却炉の燃焼制御装置
JPH11248126A (ja) * 1998-03-06 1999-09-14 Sumitomo Heavy Ind Ltd ごみ焼却炉における燃焼位置、燃え切り点位置の検出方式
JP2000179820A (ja) * 1998-12-15 2000-06-27 Kawasaki Heavy Ind Ltd ごみ焼却炉の燃え切り点検出方法及び装置
JP2005201553A (ja) * 2004-01-16 2005-07-28 Jfe Engineering Kk 廃棄物焼却炉の燃焼制御方法及び装置、該燃焼制御装置を備えた廃棄物焼却炉
US20090190799A1 (en) * 2006-09-20 2009-07-30 Forschungszentrum Karlsruhe Gmbh Method for characterizing the exhaust gas burn-off quality in combustion systems

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040534A (ja) * 2016-09-07 2018-03-15 Jfeエンジニアリング株式会社 廃棄物ガス化溶融装置及び廃棄物ガス化溶融方法
JP2019074240A (ja) * 2017-10-13 2019-05-16 三菱重工業株式会社 炉内状態量推定装置、推定モデル作成装置、それらのプログラムおよび方法
JP2019196845A (ja) * 2018-05-07 2019-11-14 一般財団法人電力中央研究所 燃焼場の観察方法、観察装置、及び観察プログラム
JP7403942B2 (ja) 2018-05-07 2023-12-25 一般財団法人電力中央研究所 燃焼場の観察方法、観察装置、及び観察プログラム
WO2020080368A1 (ja) * 2018-10-16 2020-04-23 古河電気工業株式会社 温度計測システム、温度計測方法およびレーザ加工装置
JPWO2020080368A1 (ja) * 2018-10-16 2021-09-16 古河電気工業株式会社 温度計測システム、温度計測方法およびレーザ加工装置
JP7382952B2 (ja) 2018-10-16 2023-11-17 古河電気工業株式会社 温度計測システム、温度計測方法およびレーザ加工装置
JP2020091054A (ja) * 2018-12-04 2020-06-11 株式会社プランテック 燃焼制御方法、焼却炉
WO2021111742A1 (ja) * 2019-12-04 2021-06-10 三菱重工業株式会社 燃焼設備の制御装置、燃焼設備の制御方法およびプログラム
JP2021089097A (ja) * 2019-12-04 2021-06-10 三菱重工業株式会社 燃焼設備の制御装置、燃焼設備の制御方法およびプログラム
JP7093757B2 (ja) 2019-12-04 2022-06-30 三菱重工業株式会社 燃焼設備の制御装置、燃焼設備の制御方法およびプログラム

Similar Documents

Publication Publication Date Title
JP2014234981A (ja) 燃焼炉内の燃焼管理システムおよび燃焼炉の燃焼制御システム
Yan et al. Monitoring and characterisation of pulverised coal flames using digital imaging techniques
JP6824859B2 (ja) 炉内状態量推定装置、推定モデル作成装置、それらのプログラムおよび方法
JP6342367B2 (ja) 廃棄物の発熱量推算方法およびこれを用いた廃棄物処理装置
KR102236283B1 (ko) 쓰레기 소각 설비 및 쓰레기 소각 설비의 제어 방법
JP6723864B2 (ja) ごみ移動速度検出機能を備えた燃焼制御装置
JP2017096517A (ja) 廃棄物の燃焼制御方法およびこれを適用した燃焼制御装置
Salinero et al. Measurement of char surface temperature in a fluidized bed combustor using pyrometry with digital camera
US7600997B2 (en) Method for increasing the throughput of packages in rotary tubular kiln apparatus
RU2596686C2 (ru) Способ регулирования устройства для сжигания и/или газификации
KR101053292B1 (ko) 가열로에서의 가연 가스 연소 제어 방법
US6551094B2 (en) Method and device for determining a soot charge in a combustion chamber
JP5452906B2 (ja) 燃焼炉の燃焼制御システムおよびその燃焼制御方法
JP2014219113A (ja) 燃焼炉内の温度計測システムおよび燃焼炉の燃焼制御システム
Peña et al. Experimental study on the effects of co-firing coal mine waste residues with coal in PF swirl burners
JP4809230B2 (ja) 燃焼設備における排ガス燃焼を最適化するための装置および方法
NO318569B1 (no) Fremgangsmate for automatisk fyringsinnstilling av et soppelforbrenningsanlegg
JP5179163B2 (ja) 燃焼炉の燃焼制御システムおよびその燃焼制御方法
US11994287B2 (en) Method for operating a furnace unit
JP2017180964A (ja) 廃棄物処理炉装置
JPH05272732A (ja) 廃棄物焼却炉の燃焼制御方法
JP7104653B2 (ja) 燃焼設備の操業方法
JP2001004116A (ja) 燃焼炉の燃焼制御方法及び燃焼制御装置
JP4230925B2 (ja) 発熱量推定装置及び発熱量推定方法並びに燃焼制御装置
Matthes et al. Detection of empty grate regions in firing processes using infrared cameras

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171003