JP2014222725A - Bonding wire for high-speed signal - Google Patents

Bonding wire for high-speed signal Download PDF

Info

Publication number
JP2014222725A
JP2014222725A JP2013102191A JP2013102191A JP2014222725A JP 2014222725 A JP2014222725 A JP 2014222725A JP 2013102191 A JP2013102191 A JP 2013102191A JP 2013102191 A JP2013102191 A JP 2013102191A JP 2014222725 A JP2014222725 A JP 2014222725A
Authority
JP
Japan
Prior art keywords
bonding wire
mass
silver
alloy
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013102191A
Other languages
Japanese (ja)
Other versions
JP5399581B1 (en
Inventor
優希 安徳
Yuki Yasutoku
優希 安徳
和彦 安原
Kazuhiko Yasuhara
和彦 安原
千葉 淳
Atsushi Chiba
淳 千葉
▲イ▼ 陳
I Chen
▲い▼ 陳
純一 岡崎
Junichi Okazaki
純一 岡崎
菜那子 前田
Nanako Maeda
菜那子 前田
Original Assignee
田中電子工業株式会社
Tanaka Electronics Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中電子工業株式会社, Tanaka Electronics Ind Co Ltd filed Critical 田中電子工業株式会社
Priority to JP2013102191A priority Critical patent/JP5399581B1/en
Application granted granted Critical
Publication of JP5399581B1 publication Critical patent/JP5399581B1/en
Publication of JP2014222725A publication Critical patent/JP2014222725A/en
Active legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05664Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05669Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48663Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48663Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48669Platinum (Pt) as principal constituent

Abstract

PROBLEM TO BE SOLVED: To provide a bonding wire for a high-speed signal of an Ag-Pd-Au group alloy capable of sending an ultrahigh frequency signal of a stable several giga Hz band or the like with no strong silver-sulfide (AgS) film even when an unstable silver-sulfide layer is formed on a surface of the bonding wire.SOLUTION: A bonding wire for a high-speed signal is formed from a ternary alloy including palladium (Pd) in 2.5 to 4.0 mass%, gold (Au) in 1.5 to 2.5 mass% and silver (Ag) of purity of 99.99 mass% or more for the remainder. A cross section of the bonding wire is formed from a skin film and a core material. The skin film is formed from a continuous casting surface the diameter of which is reduced after continuous casting, and a surface segregation layer. The surface segregation layer is formed from an alloy region in which a content of silver (Ag) is gradually increased and a content of gold (Au) is gradually decreased rather than the core material.

Description

本発明は、半導体素子のパッド電極と配線基板上のリード電極とを接続する高速信号線用ボンディングワイヤに関し、特に1〜15ギガHzの周波数を用いる高速信号線用ボンディングワイヤに関する。   The present invention relates to a high-speed signal line bonding wire for connecting a pad electrode of a semiconductor element and a lead electrode on a wiring board, and more particularly to a high-speed signal line bonding wire using a frequency of 1 to 15 GHz.

近年、半導体装置の製造技術の発展に伴い、数ギガHz帯を超える超高周波を用いる高速信号線用の半導体集積回路装置を携帯電話機等に組み込むことが増えてきた。高周波伝送には、従来から純度99.99質量%以上の高純度金ボンディングワイヤが一般的に使用されてきた。しかし、数ギガないし十数ギガHz帯に通常のボンディングワイヤを使用して超高周波を用いる高速・超高速信号線用の半導体素子と配線電極等を接続すると、超高周波信号がボンディングワイヤの表皮層を流れるので、超高周波信号による高周波抵抗が一段と大きくなる。よって、高純度金ボンディングワイヤを用いたのでは、受信感度や送信出力等を低下させる原因となる。   2. Description of the Related Art In recent years, with the development of semiconductor device manufacturing technology, a semiconductor integrated circuit device for a high-speed signal line using an ultra-high frequency exceeding several gigahertz band has been incorporated into a cellular phone or the like. Conventionally, high-purity gold bonding wires having a purity of 99.99% by mass or more have been generally used for high-frequency transmission. However, if a semiconductor element for a high-speed / ultra-high-speed signal line using a normal bonding wire in the several gigahertz to tens of gigahertz band is connected to a wiring electrode or the like, the super-high frequency signal is applied to the skin layer of the bonding wire. Therefore, the high frequency resistance due to the super high frequency signal is further increased. Therefore, using a high-purity gold bonding wire causes a decrease in reception sensitivity, transmission output, and the like.

このため電気比抵抗値が高純度金(Au)の2.4μΩcmに対し、電気比抵抗値が1.6μΩcmの純度99.99%の高純度銀(Ag)などのワイヤが検討された。しかし、溶解・鋳造後洗浄してから連続伸線を経てボンディングワイヤが製造される過程において、バルクの高純度銀(Ag)ワイヤは軟らかすぎて実用化に適さない。また、大気中で銀(Ag)が硫化してボンディングワイヤの表皮層に硫化銀(AgS)膜が形成され、溶融ボールを硬くしてしまうので、フリー・エアー・ボール(FAB)によるボールボンディング特性を損なってしまうという欠点がある。よって、純銀ボンディングワイヤが直接数μmの表皮層を流れる高周波伝送用に使用されることはなく、特開昭57−21830号公報でAg−Pd合金ワイヤが提案されたものの、特開2003−59963号公報(後述する特許文献1)に見られるように、純金メッキをした純銀ボンディングワイヤが実用化されているにすぎなかった。このように、純銀ボンディングワイヤが実用化されなかったのは、超高周波を用いる高速信号線として用いる以前に、安定した溶融ボールを形成することができなかったからである。すなわち、フリー・エアー・ボール(FAB)によるボールボンディングに用いようとして溶融ボールを形成したとき、ワイヤ表面に形成された強固な硫化銀(AgS)が溶融ボールを硬くするため、第一ボンディングにおいてチップ割れ等を生じていた。 For this reason, wires such as high-purity silver (Ag) having a purity of 99.99% with an electrical resistivity of 1.6 μΩcm and an electrical resistivity of 2.4 μΩcm were investigated. However, in a process in which a bonding wire is manufactured through continuous drawing after being melted and cast and washed, bulk high-purity silver (Ag) wire is too soft to be suitable for practical use. In addition, since silver (Ag) is sulfided in the atmosphere and a silver sulfide (Ag 2 S) film is formed on the skin layer of the bonding wire, which hardens the molten ball, a ball made of free air ball (FAB) There is a disadvantage that bonding characteristics are impaired. Therefore, a pure silver bonding wire is not used for high-frequency transmission directly flowing through a skin layer of several μm, and an Ag—Pd alloy wire was proposed in Japanese Patent Laid-Open No. 57-21830, but Japanese Patent Laid-Open No. 2003-59963. As can be seen in Japanese Patent Publication (Patent Document 1 described later), a pure silver bonding wire plated with pure gold has only been put into practical use. The reason why the pure silver bonding wire was not put to practical use in this way was that a stable molten ball could not be formed before it was used as a high-speed signal line using ultra-high frequency. That is, when a molten ball is formed for use in ball bonding with a free air ball (FAB), the strong silver sulfide (Ag 2 S) formed on the surface of the wire hardens the molten ball. Chip cracking and the like occurred.

他方、電気伝導性の高いAgの電気比抵抗を利用することを目的として、現在広く使用されている純度99%のAuワイヤ並の3.1μΩcm以下とさほど低下させることなく、Agに10000〜55000質量ppm(1〜5.5質量%)のAuおよび1〜100質量ppmのBiを添加するAg−Au二元系合金のボンディングワイヤが開発され、さらに、このワイヤにPdを20000質量ppm以下添加したAg−Au−Pd三元系合金のボンディングワイヤも開発されている(特開2012−49198号公報(後述する特許文献2))。ここで、Pdの添加量を20000質量ppm(2質量%)以下とするのは、「20000質量ppmを超えて添加するとボールの硬度が高くなってボールボンディング時のパッドダメージが発生する(同公報0021段落参照)」からであるとされる。 On the other hand, for the purpose of utilizing the electrical resistivity of Ag having high electrical conductivity, it is not less than 3.1 μΩcm, which is comparable to that of 99% purity Au wire, which is currently widely used. A bonding wire of Ag-Au binary alloy to which Au of mass ppm (1 to 5.5 mass%) and Bi of 1 to 100 massppm is added was developed, and Pd was added to this wire in an amount of 20000 ppm by mass or less. An Ag—Au—Pd ternary alloy bonding wire has also been developed (Japanese Patent Laid-Open No. 2012-49198 (Patent Document 2 described later)). Here, the amount of Pd to be added is 20000 ppm by mass (2% by mass) or less because “when it exceeds 20000 ppm by mass, the hardness of the ball increases and pad damage occurs during ball bonding (the same publication). (See paragraph 0021).

また、Ca、Cu、Gd、Smから選ばれる2種以上の元素を合計で5〜500重量ppm含み、Pd、Auから選ばれる1種以上の元素を合計で0.5〜5.0重量%含んで、それ以外がAg及び不可避不純物からなることを特徴とするボールボンディング用ワイヤ(特開2012−151350号公報(後述する特許文献3))も開示されている。しかしながら、このボンディングワイヤは、半導体素子のNi/Pd/Au被覆された電極と回路配線基板の導体配線をボールボンディング法によって接続するためのボンディング用ワイヤ(W)であって、Al合金(Al−Si−Cu等)パッド電極を接合するものではない。「AlとAgとの接合個所は腐食し易い(特開2012−151350号公報(後述する特許文献3)0015段落参照)」とされるからである。 Further, it contains 5 to 500 ppm by weight in total of two or more elements selected from Ca, Cu, Gd, and Sm, and 0.5 to 5.0% by weight in total of one or more elements selected from Pd and Au. In addition, a ball bonding wire (Japanese Patent Laid-Open No. 2012-151350 (Patent Document 3 to be described later)) characterized in that the other is composed of Ag and inevitable impurities is also disclosed. However, this bonding wire is a bonding wire (W) for connecting a Ni / Pd / Au coated electrode of a semiconductor element and a conductor wiring of a circuit wiring board by a ball bonding method, and is an Al alloy (Al-- Si-Cu etc.) Pad electrodes are not joined. This is because “the joint between Al and Ag is easily corroded (see Japanese Patent Laid-Open No. 2012-151350 (Patent Document 3 described later) paragraph 0015)”.

さらに、「銀(Ag)を主成分とし、10000〜90000質量ppmの金(Au)、10000〜50000質量ppmのパラジウム(Pd)、10000〜30000質量ppmの銅(Cu)、10000〜20000質量ppmのニッケル(Ni)から選ばれた少なくとも1種以上の成分を含み、塩素(Cl)含有量が1質量ppm未満」のボンディングワイヤも開示されている(特開2012−99577号公報(後述する特許文献4))。しかしながら、このボンディングワイヤは、「波長380〜560nmの光の反射率が95%以上であるため、青色系の発光を使用する白色LEDにも有効である(同公報0010段落参照)」とあるように、LED用であり、高速信号線用ボンディングワイヤとは目的・効果が異なる。 Furthermore, “mainly composed of silver (Ag), 10,000 to 90000 mass ppm of gold (Au), 10,000 to 50000 mass ppm of palladium (Pd), 10,000 to 30000 mass ppm of copper (Cu), 10,000 to 20000 mass ppm Also disclosed is a bonding wire that contains at least one component selected from nickel (Ni) and has a chlorine (Cl) content of less than 1 ppm by mass (Japanese Patent Laid-Open No. 2012-99777 (patents to be described later)). Reference 4)). However, this bonding wire is said to be “effective for white LEDs using blue light emission because the reflectance of light with a wavelength of 380 to 560 nm is 95% or more (see paragraph 0010 of the same publication)”. Furthermore, it is for LED and has a different purpose and effect from the bonding wire for high-speed signal lines.

特開2003−59963号公報JP 2003-59963 A 特開2012−49198号公報JP2012-49198A 特開2012−151350号公報JP 2012-151350 A 特開2012−99577号公報JP2012-99577A

本発明は、Ag−Pd−Au基合金のボンディングワイヤの表面に、高濃度の純銀層および低濃度の金合金化層(以下、「高濃度純銀層」と略す)を偏析させることにより、その偏析した均一な厚さの高濃度純銀層の形成によってフリー・エアー・ボール(FAB)によるボンディング特性を良好にすると同時に、大気中に放置しても一定期間硫化銀の形成ないし内部進行を阻止し、安定した数ギガHz帯等の超高周波信号を送ることができるAg−Pd−Au基合金の高速信号線用ボンディングワイヤを提供することを目的とする。   The present invention segregates a high-concentration pure silver layer and a low-concentration gold alloyed layer (hereinafter abbreviated as “high-concentration pure silver layer”) on the surface of a bonding wire of an Ag—Pd—Au-based alloy. By forming a segregated and uniform high-concentration pure silver layer, the bonding characteristics of the free air ball (FAB) are improved, and at the same time, the formation of silver sulfide or internal progress is prevented even if left in the atmosphere. Another object of the present invention is to provide a bonding wire for high-speed signal lines of an Ag—Pd—Au base alloy capable of sending a stable ultra-high frequency signal such as several gigahertz band.

本発明の課題を解決するための高速信号線用ボンディングワイヤの一つは、 半導体素子のパッド電極と配線基板上のリード電極とをフリー・エアー・ボール(FAB)により接続するための微量添加元素を含有するAg−Pd−Au基合金ボンディングワイヤであって、当該ボンディングワイヤはパラジウム(Pd)を2.5〜4.0質量%、金(Au)を1.5〜2.5質量%および残部が純度99.99質量%以上の銀(Ag)からなる三元合金であって、そのボンディングワイヤの表面は連続鋳造後に縮径された連鋳面からなり、そのボンディングワイヤの断面は表面偏析層と芯材とからなり、その表面偏析層は、芯材よりも銀(Ag)の含有量が漸増し、かつ、金(Au)の含有量が漸減している合金領域からなる高濃度純銀層である。   One of the high-speed signal line bonding wires for solving the problems of the present invention is a trace additive element for connecting a pad electrode of a semiconductor element and a lead electrode on a wiring board by a free air ball (FAB). An Ag—Pd—Au based alloy bonding wire containing, wherein the bonding wire is 2.5 to 4.0 mass% of palladium (Pd), 1.5 to 2.5 mass% of gold (Au) and The balance is a ternary alloy composed of silver (Ag) with a purity of 99.99% by mass or more, and the surface of the bonding wire is a continuous cast surface whose diameter is reduced after continuous casting. A high-concentration pure silver consisting of an alloy region in which the content of silver (Ag) is gradually increased and the content of gold (Au) is gradually decreased. In layers That.

また、本発明の課題を解決するための高速信号線用ボンディングワイヤの一つは、半導体素子のパッド電極と配線基板上のリード電極とをフリー・エアー・ボール(FAB)により接続するための微量添加元素を含有するAg−Pd−Au基合金ボンディングワイヤであって、当該ボンディングワイヤはパラジウム(Pd)を2.5〜4.0質量%、金(Au)を1.5〜2.5質量%、並びに、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)、銅(Cu)、ニッケル(Ni)、鉄(Fe)、マグネシウム(Mg)、亜鉛(Zn)、アルミニウム(Al)、インジウム(In)、シリコン(Si)、ゲルマニウム(Ge)、ベリリウム(Be)、ビスマス(Bi)、セレン(Se)、セリウム(Ce)、イットリウム(Y)、ランタン(La)、カルシウム(Ca)またはユーロピウム(Eu)のうちの少なくとも1種以上の加微量元素をその合計で5〜300質量ppm、および残部が純度99.99質量%以上の銀(Ag)からなる三元系合金であって、そのボンディングワイヤの表面は連続鋳造後に縮径された連鋳面からなり、そのボンディングワイヤの断面は表面偏析層と芯材とからなり、その表面偏析層は、芯材よりも銀(Ag)の含有量が漸増し、かつ、金(Au)の含有量が漸減している合金領域からなる高濃度純銀層である。   One of the high-speed signal line bonding wires for solving the problems of the present invention is a small amount for connecting a pad electrode of a semiconductor element and a lead electrode on a wiring board by a free air ball (FAB). An Ag—Pd—Au based alloy bonding wire containing an additive element, the bonding wire containing 2.5 to 4.0 mass% of palladium (Pd) and 1.5 to 2.5 mass of gold (Au). , Rhodium (Rh), iridium (Ir), ruthenium (Ru), copper (Cu), nickel (Ni), iron (Fe), magnesium (Mg), zinc (Zn), aluminum (Al), indium (In), silicon (Si), germanium (Ge), beryllium (Be), bismuth (Bi), selenium (Se), cerium (Ce), yttrium (Y), La Silver (Ag) having a total of 5 to 300 mass ppm of at least one trace element of tan (La), calcium (Ca) or europium (Eu) and the balance being 99.99 mass% or more The surface of the bonding wire consists of a continuous casting surface that has been reduced in diameter after continuous casting, and the bonding wire has a cross-section consisting of a surface segregation layer and a core material. The high-concentration pure silver layer is composed of an alloy region in which the content of silver (Ag) is gradually increased and the content of gold (Au) is gradually decreased as compared with the core material.

また、本発明の課題を解決するための高速信号線用Ag−Pd−Au基合金ボンディングワイヤの好ましい態様の一つは、上記高速信号が1〜15ギガHzの周波数であることである。   Moreover, one of the preferable aspects of the Ag-Pd-Au base alloy bonding wire for high-speed signal lines for solving the problems of the present invention is that the high-speed signal has a frequency of 1 to 15 GHz.

また、本発明の課題を解決するための高速信号線用Ag−Pd−Au基合金ボンディングワイヤの好ましい態様の一つは、上記パッド電極が純度99.9質量%以上のアルミニウム(Al)金属または0.5〜2.0質量%のシリコン(Si)または銅(Cu)および残部純度99.9質量%以上のアルミニウム(Al)合金であることである。   One of the preferred embodiments of the Ag—Pd—Au base alloy bonding wire for high-speed signal lines for solving the problems of the present invention is that the pad electrode is an aluminum (Al) metal having a purity of 99.9% by mass or more. It is an aluminum (Al) alloy of 0.5 to 2.0% by mass of silicon (Si) or copper (Cu) and the balance purity of 99.9% by mass or more.

また、本発明の課題を解決するための高速信号線用Ag−Pd−Au基合金ボンディングワイヤの好ましい態様の一つは、上記パッド電極が金(Au)、パラジウム(Pd)または白金(Pt)の表層からなる電極パッドであることである。   One of the preferred embodiments of the Ag—Pd—Au based alloy bonding wire for high-speed signal lines for solving the problems of the present invention is that the pad electrode is gold (Au), palladium (Pd) or platinum (Pt). It is that it is an electrode pad which consists of a surface layer.

なお、本発明の課題を解決するための高速信号線用Ag−Pd−Au基合金ボンディングワイヤは、純金ボンディングワイヤと同様に、ダイヤモンドダイスにより断面減少率が99%以上縮径され、連続して冷間伸線加工され、その後、調質熱処理によってボンディングワイヤの機械的特性が調えられる。この調質熱処理は、温度が低く、処理時間も短いので、高濃度純銀層の表面偏析層は消滅しない。   Note that the Ag—Pd—Au base alloy bonding wire for high-speed signal lines for solving the problems of the present invention is continuously reduced in diameter by 99% or more by a diamond die, like a pure gold bonding wire, and continuously. After cold drawing, the mechanical properties of the bonding wire are adjusted by tempering heat treatment. Since this tempering heat treatment has a low temperature and a short treatment time, the surface segregation layer of the high concentration pure silver layer does not disappear.

(主添加元素)
本発明において、残部の銀(Ag)に純度99.99質量%以上のものを用いるのは、銀(Ag)の含有量が多い合金の表面偏析層をワイヤの全周縁に均一に生じさせるためである。純度が低いと、不純物の影響により銀(Ag)の含有量が多い合金の表面偏析層の厚さがばらつくおそれがあるからである。
(Main additive element)
In the present invention, the remaining silver (Ag) having a purity of 99.99% by mass or more is used to uniformly generate a surface segregation layer of an alloy having a high silver (Ag) content on the entire periphery of the wire. It is. This is because if the purity is low, the thickness of the surface segregation layer of the alloy having a high silver (Ag) content may vary due to impurities.

純銀ボンディングワイヤの場合、硫化物が酸化物より安定するので、この硫化物が形成されるのを嫌う。これまでの純銀ボンディングワイヤでは、大気中の高純度銀(Ag)表面で表面の銀(Ag)がイオンとなり、大気中の硫化水素と結合して硫化物となる。この硫化物は、最初は純銀ワイヤ表面で不安定な硫化銀層が形成されるものの、この硫化銀層が純銀ボンディングワイヤの内部へ進んでいき、やがて硫化銀層が成長して数nm程度の強固な硫化銀(AgS)膜が純銀ボンディングワイヤの表面に確保されてしまう。しかも、この表皮層に存在するイオウ化合物は、結晶粒界を伝って更に純銀ボンディングワイヤの内部へ入り込んで強固な硫化銀(AgS)膜が拡がるものと考えられる。 In the case of a pure silver bonding wire, the sulfide is more stable than the oxide, and therefore it is not desirable to form this sulfide. In conventional pure silver bonding wires, surface silver (Ag) becomes ions on the surface of high-purity silver (Ag) in the atmosphere, and combines with hydrogen sulfide in the atmosphere to form sulfide. Although this sulfide initially forms an unstable silver sulfide layer on the surface of the pure silver wire, the silver sulfide layer advances into the pure silver bonding wire, and eventually the silver sulfide layer grows to about several nanometers. A strong silver sulfide (Ag 2 S) film is secured on the surface of the pure silver bonding wire. Moreover, it is considered that the sulfur compound existing in the skin layer further penetrates into the inside of the pure silver bonding wire through the crystal grain boundary, and the strong silver sulfide (Ag 2 S) film expands.

純銀(Ag)にパラジウム(Pd)および金(Au)を合金化したバルクのAg−Pd−Au合金の場合、高濃度純銀層の硫化銀層の形成は純銀ボンディングワイヤよりも弱くなる。しかも、本発明のAg−Pd−Au基合金の場合、金(Au)濃度が表層から芯材内部に行くほど漸増し、芯材のほうはパラジウム(Pd)および金(Au)が4.0〜6.5質量%の含有量があるので、表面に形成された硫化銀(AgS)膜を内部へ入り込んでいくのを時間的に遅延させることができる。 In the case of a bulk Ag-Pd-Au alloy obtained by alloying pure silver (Ag) with palladium (Pd) and gold (Au), the formation of the silver sulfide layer of the high concentration pure silver layer is weaker than that of the pure silver bonding wire. Moreover, in the case of the Ag—Pd—Au base alloy of the present invention, the gold (Au) concentration gradually increases from the surface layer to the inside of the core material, and the core material is composed of palladium (Pd) and gold (Au) of 4.0. Since there is content of ˜6.5% by mass, it is possible to delay the time for the silver sulfide (Ag 2 S) film formed on the surface to enter the inside.

Ag−Pd−Au基合金からなるボンディングワイヤのパラジウム(Pd)含有量を金(Au)の含有量よりも多くしたのは、銀(Ag)マトリックスよりも耐硫化性に対して貴なAg−Pdマトリックスを構成し、そのAg−Pdマトリックス中にさらに貴な金(Au)による表面偏析層を形成するためである。   The reason why the palladium (Pd) content of the bonding wire made of an Ag—Pd—Au-based alloy is made larger than the content of gold (Au) is that Ag— which is more precious against sulfidation resistance than the silver (Ag) matrix. This is because a Pd matrix is formed, and a surface segregation layer made of noble gold (Au) is formed in the Ag-Pd matrix.

本発明において、パラジウム(Pd)を所定量添加するのは、硫化の進行を遅らせるためである。湿気が多い環境下でボンディングワイヤを使用する場合などは、ボンディングワイヤ表面が硫化しやすくなるので、ワイヤ自体に耐硫化性のあるAg−Pd−Au基合金からなるワイヤが必要になる。パラジウム(Pd)含有量が2.5質量%あれば、純銀ボンディングワイヤの表面に強固な硫化銀(AgS)膜が形成されてしまうのを遅延させることができる。他方、パラジウム(Pd)が2.5質量%を超えていくと、銀濃度が低下するため高周波特性は多少悪くなり、超高周波信号線としては不適当になるが、高濃度純銀層が形成されているので、実用上4.0質量%までは差支えがない。 In the present invention, the predetermined amount of palladium (Pd) is added to delay the progress of sulfidation. When the bonding wire is used in a humid environment, the surface of the bonding wire is likely to be sulfided, and thus a wire made of an Ag—Pd—Au base alloy having resistance to sulfur is necessary for the wire itself. If the palladium (Pd) content is 2.5 mass%, it is possible to delay the formation of a strong silver sulfide (Ag 2 S) film on the surface of the pure silver bonding wire. On the other hand, when palladium (Pd) exceeds 2.5 mass%, the silver concentration decreases, so the high-frequency characteristics are somewhat deteriorated and become unsuitable as an ultra-high frequency signal line, but a high-concentration pure silver layer is formed. Therefore, there is no problem up to 4.0% by mass in practical use.

また、パラジウム(Pd)は著しく硬さを増す合金化元素であり、パラジウム(Pd)含有量が2.5質量%以上存在すると、フリー・エアー・ボール(FAB)を形成したとき、溶融ボールの硬度が高くなってボールボンディング時のチップ割れが懸念される(特許文献2第0021段落参照)が、金(Au)の含有量を多くして低融点の高濃度純銀層を設けることで、パラジウム(Pd)含有量が4.0質量%以内の範囲であれば、この問題は解決できた。なお、パラジウム(Pd)の濃度は、高濃度純銀層中も芯材中もほぼ一定である。 Palladium (Pd) is an alloying element that remarkably increases the hardness. When the palladium (Pd) content is 2.5% by mass or more, when a free air ball (FAB) is formed, There is concern about chip cracking during ball bonding due to high hardness (see Patent Document 2, paragraph 0021), but by increasing the content of gold (Au) and providing a high-concentration pure silver layer with a low melting point, palladium If the (Pd) content was within a range of 4.0% by mass, this problem could be solved. The concentration of palladium (Pd) is substantially constant both in the high concentration pure silver layer and in the core material.

本発明において金(Au)の合金化元素は、銀(Ag)およびパラジウム(Pd)よりも比重が高く、Ag−Pd基合金マトリックスに対して表面偏析効果を発揮する。表面偏析した高濃度純銀層は、希薄合金の固相・気相間の表面現象を利用するものなので、この高濃度純銀層は一定の幅の層をボンディングワイヤの全周にわたって均一に形成することができる。この高濃度純銀層において、ワイヤの表面から中心をみた場合、銀(Ag)濃度が漸減して低くなると(図1の上側の曲線)、逆に金(Au)の合金化元素の濃度は漸増して高くなる(図1の下側の曲線)。そして、ワイヤ内には銀(Ag)が相対的に高濃度の高濃度純銀層の領域と相対的に低濃度の芯材の領域の二領域が存在することになる。このため、高濃度のワイヤ表面で不安定な硫化銀層が形成されても、銀(Ag)よりも貴な合金化元素(パラジウム(Pd)および金(Au))が存在することと相まって、室温大気中でボンディングワイヤが製造後信号線として使用されるまでの放置期間中は、銀合金表面のイオウ化合物が内部へ進行するのを遅延させるとともに、銀合金表面で強固な硫化銀(AgS)膜が形成されるのも遅延させることができる。 In the present invention, the alloying element of gold (Au) has a higher specific gravity than silver (Ag) and palladium (Pd), and exhibits a surface segregation effect on the Ag—Pd based alloy matrix. Since the surface-segregated high-concentration pure silver layer uses the surface phenomenon between the solid phase and the gas phase of a dilute alloy, this high-concentration pure silver layer can form a uniform width layer uniformly around the entire circumference of the bonding wire. it can. In this high-concentration pure silver layer, when the center is viewed from the surface of the wire, if the silver (Ag) concentration is gradually decreased and lowered (the upper curve in FIG. 1), conversely, the concentration of the alloying element of gold (Au) gradually increases. (The lower curve in FIG. 1). In the wire, there are two regions, a region of a high concentration pure silver layer having a relatively high concentration of silver (Ag) and a region of a core material having a relatively low concentration. For this reason, even if an unstable silver sulfide layer is formed on the surface of a high concentration of wire, coupled with the presence of alloying elements (palladium (Pd) and gold (Au)) that are nobler than silver (Ag), During the standing period until the bonding wire is used as a signal wire after manufacturing in the air at room temperature, the sulfur compound on the surface of the silver alloy is delayed from progressing to the inside, and the silver sulfide (Ag 2) is strong on the surface of the silver alloy. S) The formation of the film can also be delayed.

高純度のAg−Pd合金マトリックスに対し高純度の金(Au)は表面偏析するので、パラジウム(Pd)と金(Au)を高純度の銀(Ag)に添加して連続鋳造すると、表皮層近傍に銀(Ag)の高濃度領域と金(Au)の低濃度領域の高濃度純銀層がドーナッツ状に形成される。ボンディングワイヤの製造工程において、この高濃度層を保持したまま、水で冷却などして冷間で連続伸線すれば、この高濃度層は細線の線径に比例して縮径される。よって、この高濃度純銀層は、数ギガヘルツ(Hz)以上の高周波信号用に利用することができる。 Since the high purity gold (Au) is segregated on the surface of the high purity Ag-Pd alloy matrix, when the continuous casting is performed by adding palladium (Pd) and gold (Au) to the high purity silver (Ag), the skin layer In the vicinity, a high concentration pure silver layer of a high concentration region of silver (Ag) and a low concentration region of gold (Au) is formed in a donut shape. In the manufacturing process of the bonding wire, if the high-concentration layer is retained and then cooled with water and continuously drawn cold, the high-concentration layer is reduced in proportion to the wire diameter of the thin wire. Therefore, this high concentration pure silver layer can be used for high frequency signals of several gigahertz (Hz) or more.

直径8mmの連続鋳造ワイヤを20μmのボンディングワイヤまで縮径する場合(断面減少率99.9%以上)、ボンディングワイヤの表皮には理論的には表面から数nm以下の銀(Ag)の高濃度層が残り、実際に直径8mmの連続鋳造ワイヤから直径20μmのワイヤの伸線段階で、図1のような銀(Ag)の高濃度領域(図1の上側の曲線)と金(Au)の低濃度領域(図1の下側の曲線)の高濃度純銀層が観察された。 When a continuous casting wire with a diameter of 8 mm is reduced to a bonding wire with a diameter of 20 μm (cross-sectional reduction rate of 99.9% or more), the surface of the bonding wire theoretically has a high concentration of silver (Ag) of several nm or less from the surface. The layer remains, and in the wire drawing stage of a continuous casting wire having a diameter of 8 mm to a wire having a diameter of 20 μm, a high concentration region of silver (Ag) as shown in FIG. 1 (upper curve in FIG. 1) and gold (Au) A high concentration pure silver layer in a low concentration region (lower curve in FIG. 1) was observed.

一般的に数ギガHzの高周波信号は1μm程度の表層を流れ、周波数が高くなればなるほどより表面近傍を流れるとされているので、高濃度の銀(Ag)層が表層に存在すれば、高濃度層が無い従来のボンディングワイヤに比べて、信号量が増え、なおかつ、信号波形を安定させることができる。
Generally, a high frequency signal of several gigahertz flows on the surface layer of about 1 μm, and it is said that the higher the frequency, the closer to the surface, so if a high concentration silver (Ag) layer exists on the surface layer, Compared to a conventional bonding wire without a concentration layer, the signal amount is increased and the signal waveform can be stabilized.

パラジウム(Pd)の範囲が2.5〜4.0質量%のとき、金(Au)の範囲が1.5〜2.5質量%であれば、FABの溶融ボールがチップ割れを起こすこともなく、安定したボンディング特性を得ることができる。 When the range of palladium (Pd) is 2.5 to 4.0% by mass, the molten ball of FAB may cause chip cracking if the range of gold (Au) is 1.5 to 2.5% by mass. And stable bonding characteristics can be obtained.

(微量添加元素)
本発明のAg−Pd−Au基合金は、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)、銅(Cu)、ニッケル(Ni)、鉄(Fe)、マグネシウム(Mg)、亜鉛(Zn)、アルミニウム(Al)、マンガン(Mn)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、ベリリウム(Be)、ビスマス(Bi)、セレン(Se)、セリウム(Ce)、チタン(Ti)、イットリウム(Y)、カルシウム(Ca)、ランタン(La)、ユーロピウム(Eu)またはアンチモン(Sb)の少なくとも1種が合計で5〜300質量ppm添加することができる。 The Ag-Pd-Au-based alloy of the present invention contains rhodium (Rh), ruthenium (Ru), iridium (Ir), copper (Cu), nickel (Ni), iron (Fe), magnesium (Mg), and zinc (Zn). ), Aluminum (Al), Manganese (Mn), Indium (In), Silicon (Si), Germanium (Ge), Tin (Sn), Berylium (Be), Bismus (Bi), Serene (Se), Celium (Ce) ), Titanium (Ti), Ittrium (Y), Calcium (Ca), Lantern (La), Europium (Eu) or Antimon (Sb), a total of 5 to 300 mass ppm can be added. これらの微量添加元素は、Ag−Pd−Au基合金の表面偏析層を変化させることはないが、高濃度純銀層の無いAg−Pd−Au基合金ボンディングワイヤにおいてボンディング特性に効果があるので、本発明のA−Pd−Au基合金ボンディングワイヤにおいても採択した。 These trace addition elements do not change the surface segregation layer of the Ag-Pd-Au group alloy, but are effective in bonding characteristics in the Ag-Pd-Au group alloy bonding wire without the high concentration pure silver layer. It was also adopted in the A-Pd-Au-based alloy bonding wire of the present invention. 具体的には、溶融ボールとアルミニウム(Al)金属またはアルミニウム(Al)合金のパッド電極との接合性、特に長期間の安定性に効果がある。 Specifically, it is effective in the bondability between the molten ball and the pad electrode of aluminum (Al) metal or aluminum (Al) alloy, particularly in long-term stability. また、Ag−Pd−Au基合金にロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)、銅(Cu)、ニッケル(Ni)、鉄(Fe)、マグネシウム(Mg)、亜鉛(Zn)、アルミニウム(Al)、マンガン(Mn)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、ベリリウム(Be)、ビスマス(Bi)、セレン(Se)、セリウム(Ce)、チタン(Ti)、イットリウム(Y)、カルシウム(Ca)、ランタン(La)、ユーロピウム(Eu)またはアンチモン(Sb)の元素を所定範囲内で添加すると、FABの形状を損なうことなくボンディングワイヤのしなやかさを増す。 In addition, rhodium (Rh), ruthenium (Ru), iridium (Ir), copper (Cu), nickel (Ni), iron (Fe), magnesium (Mg), zinc (Zn), etc. are added to the Ag-Pd-Au group alloy. Aluminum (Al), Manganese (Mn), Indium (In), Silicon (Si), Germanium (Ge), Tin (Sn), Berylium (Be), Bismus (Bi), Selene (Se), Cerium (Ce), When elements of titanium (Ti), indium (Y), calcium (Ca), lanthanum (La), europium (Eu) or antimony (Sb) are added within a predetermined range, the bonding wire is supple without impairing the shape of the FAB. Increase. しかし、これらの元素の合計が5質量ppm未満では添加効果が無く、300質量ppmを超えるとFABを形成したときの溶融ボールの結晶粒が硬くなりすぎ、チップ割れを起こす。 However, if the total of these elements is less than 5 mass ppm, there is no addition effect, and if it exceeds 300 mass ppm, the crystal grains of the molten balls when FAB is formed become too hard, causing chip cracking. よって、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)、銅(Cu)、ニッケル(Ni)、鉄(Fe)、マグネシウム(Mg)、亜鉛(Zn)、アルミニウム(Al)、マンガン(Mn)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、ベリリウム(Be)、ビスマス(Bi)、セレン(Se)、セリウム(Ce)、チタン(Ti)、イットリウム(Y)、カルシウム(Ca)、ランタン(La)、ユーロピウム(Eu)またはアンチモン(Sb)のうちの少なくとも1種が合計で5〜300質量ppmの範囲とした。 Therefore, rhodium (Rh), ruthenium (Ru), iridium (Ir), copper (Cu), nickel (Ni), iron (Fe), magnesium (Mg), zinc (Zn), aluminum (Al), manganese (Mn). ), Indium (In), Silicon (Si), Germanium (Ge), Tin (Sn), Berylium (Be), Bismus (Bi), Serene (Se), Celium (Ce), Titanium (Ti), Ittium (Y) ), Calcium (Ca), Lantern (La), Europium (Eu) or Antimon (Sb) in the range of 5 to 300 mass ppm in total. 通常のボンディングワイヤは、これらの微量添加元素は合計で100質量ppm以下で使用されることが多いので、これらの微量添加元素は5〜100質量ppmが好ましい。 In ordinary bonding wires, these trace additive elements are often used in a total amount of 100 mass ppm or less, and therefore, these trace additive elements are preferably 5 to 100 mass ppm. (Trace addition element) (Trace addition element)
The Ag—Pd—Au base alloy of the present invention is composed of rhodium (Rh), ruthenium (Ru), iridium (Ir), copper (Cu), nickel (Ni), iron (Fe), magnesium (Mg), zinc (Zn ), Aluminum (Al), manganese (Mn), indium (In), silicon (Si), germanium (Ge), tin (Sn), beryllium (Be), bismuth (Bi), selenium (Se), cerium (Ce) ), Titanium (Ti), yttrium (Y), calcium (Ca), lanthanum (La), europium (Eu) or antimony (Sb) can be added in a total amount of 5 to 300 ppm by mass. These trace additive elements do not change the surface segregation layer of the Ag—Pd—Au base alloy, but have an effect on bonding characteristics in an Ag—Pd—Au base alloy bonding wire without a high-concentration pure silver layer. It was also adopted in the A-Pd-Au base alloy bonding wire of the present invention. Specifically, it has an effect on the bondability between a molten ball and a pad electrode made of aluminum (Al) metal or aluminum (Al) alloy, in particular, long-term stability. Moreover, rhodium (Rh), ruthenium (Ru) The Ag—Pd—Au base alloy of the present invention is composed of rhodium (Rh), ruthenium (Ru), iridium (Ir), copper (Cu), nickel (Ni), iron (Fe), magnesium (Mg), zinc (Zn), Aluminum (Al), manganese (Mn), indium (In), silicon (Si), germanium (Ge), tin (Sn), beryllium (Be), bismuth (Bi), selenium (Se), cerium (Ce)), Titanium (Ti), yttrium (Y), calcium (Ca), lanthanum (La), europium (Eu) or antimony (Sb) can be added in a total amount of 5 to 300 ppm by mass. These trace additive elements do not change the surface segregation layer of the Ag—Pd—Au base alloy, but have an effect on bonding characteristics in an Ag—Pd—Au base alloy bonding wire without a high-concentration pure silver layer. It was Also adopted in the A-Pd-Au base alloy bonding wire of the present invention. Specifically, it has an effect on the bondability between a molten ball and a pad electrode made of aluminum (Al) metal or aluminum (Al) alloy, in particular, long-term stability. Moreover, rhodium (Rh), ruthenium (Ru) , iridium (Ir), copper (Cu), nickel (Ni), iron (Fe), magnesium (Mg), zinc (Zn), Ag—Pd—Au base alloy, Aluminum (Al), manganese (Mn), indium (In), silicon (Si), germanium (Ge), tin (Sn), beryllium (Be), bismuth (Bi), selenium (Se), cerium (Ce), Addition of titanium (Ti), yttrium (Y), calcium (Ca), lanthanum (La), europium (Eu) or antimony (Sb) within a predetermined range makes the bonding wire flexible without damaging the FAB shape. Increase the size. However, if the total of these elements is less than 5 ppm by mass, there is no effect of addition, and if it exceeds 300 ppm by mass, the crystal grains of the molten ball when FAB is formed become too hard and chip cracking occurs. Therefore, rhodium (Rh), ruthenium (Ru), iridium (Ir), copper (Cu), nickel (Ni), iron (Fe), magnesium (Mg), zinc (Zn), aluminum (Al), manganese (Mn ), Indium (In), silicon (Si), germanium (Ge), tin (Sn), beryllium (Be), bismuth (Bi), selenium (Se), cerium (Ce), titanium (Ti), yttrium (Y) ), Calcium (Ca), lant , iridium (Ir), copper (Cu), nickel (Ni), iron (Fe), magnesium (Mg), zinc (Zn), Ag—Pd—Au base alloy, Aluminum (Al), manganese (Mn), indium (In), silicon (Si), germanium (Ge), tin (Sn), beryllium (Be), bismuth (Bi), selenium (Se), cerium (Ce), Addition of titanium (Ti), yttrium (Y) , calcium (Ca), lanthanum (La), europium (Eu) or antimony (Sb) within a predetermined range makes the bonding wire flexible without damaging the FAB shape. Increase the size. However, if the total of these elements is less than 5 ppm by mass, there is no effect of addition, and if it exceeds 300 ppm by mass, the crystal grains of the molten ball when FAB is formed become too hard and chip cracking occurs. Therefore, rhodium (Rh), ruthenium (Ru) ), iridium (Ir), copper (Cu), nickel (Ni), iron (Fe), magnesium (Mg), zinc (Zn), aluminum (Al), manganese (Mn), Indium (In), silicon (Si) ), germanium (Ge), tin (Sn), beryllium (Be), bismuth (Bi), selenium (Se), cerium (Ce), titanium (Ti), yttrium (Y)), Calcium (Ca), lant hanum (La), europium (Eu) or antimony (Sb) in a total range of 5 to 300 ppm by mass. In ordinary bonding wires, these trace additive elements are often used in a total amount of 100 ppm by mass or less, and therefore these trace additive elements are preferably 5 to 100 ppm by mass. hanum (La), europium (Eu) or antimony (Sb) in a total range of 5 to 300 ppm by mass. In ordinary bonding wires, these trace additive elements are often used in a total amount of 100 ppm by mass or less, and therefore these trace additive elements are preferably 5 to 100 ppm by mass.

なお、パッド電極は、金(Au)、パラジウム(Pd)または金(Au)または白金(Pt)の表層からなる電極パッドであることが好ましい。本発明のAg−Pd−Au三元合金およびAg−Pd−Au三元系合金のボンディングワイヤは、低融点の高濃度純銀層があるためこれらの電極パッドとFABによる接合性が良いからである。   The pad electrode is preferably an electrode pad made of a surface layer of gold (Au), palladium (Pd), gold (Au), or platinum (Pt). This is because the bonding wires of the Ag—Pd—Au ternary alloy and the Ag—Pd—Au ternary alloy according to the present invention have a high-concentration pure silver layer having a low melting point, so that these electrode pads and FAB have good bondability. .

本発明のAg−Pd−Au三元合金およびAg−Pd−Au三元系合金のAg−Pd−Au基合金ボンディングワイヤは、高速信号の伝達に適した高濃度の銀(Ag)の高濃度純銀層を確実に形成することができ、高濃度純銀層および低濃度金(Au)層がAg−Pd−Au三元合金およびAg−Pd−Au三元系合金の芯材に付加されているので、従来のボンディングワイヤよりもパッドとの接合性も良く、数ギガないし十数ギガHzの高周波信号の伝送に適した安定した富銀合金の信号層が形成できる。
また、本発明のAg−Pd−Au基合金ボンディングワイヤは、高濃度純銀層の厚さが薄いので、ワイヤ自体のバルクの機械的強度があり、これまでのボンディングワイヤと同様の優れたループ特性を有する。 Further, since the Ag-Pd-Au-based alloy bonding wire of the present invention has a thin high-concentration pure silver layer, it has bulk mechanical strength of the wire itself, and has excellent loop characteristics similar to those of conventional bonding wires. Have.
また、FAB特性やなどのボンディング特性は、低融点の高濃度純銀層が表層にあるので、溶融ボールとパッド電極との接合性およびセカンド接合性については高濃度純銀層が無いボンディングワイヤよりも優れているという追加的効果がある。 Further, the bonding characteristics such as FAB characteristics are superior to the bonding wire without the high concentration pure silver layer in the bondability between the molten ball and the pad electrode and the second bondability because the high concentration pure silver layer having a low melting point is on the surface layer. There is an additional effect of being. 特に、パッド電極の表層が、金(Au)、パラジウム(Pd)または金(Au)または白金(Pt)からなる電極パッドの場合は接合強度が安定している。 In particular, when the surface layer of the pad electrode is an electrode pad made of gold (Au), palladium (Pd) or gold (Au) or platinum (Pt), the bonding strength is stable. The Ag—Pd—Au ternary alloy and the Ag—Pd—Au ternary alloy Ag—Pd—Au based alloy bonding wire of the present invention have a high concentration of silver (Ag) suitable for high-speed signal transmission. A pure silver layer can be reliably formed, and a high-concentration pure silver layer and a low-concentration gold (Au) layer are added to the core material of an Ag—Pd—Au ternary alloy and an Ag—Pd—Au ternary alloy. Therefore, the bonding property to the pad is better than that of the conventional bonding wire, and a stable silver-rich alloy signal layer suitable for transmitting a high frequency signal of several giga to several tens of gigahertz can be formed. The Ag—Pd—Au ternary alloy and the Ag—Pd—Au ternary alloy Ag—Pd—Au based alloy bonding wire of the present invention have a high concentration of silver (Ag) suitable for high-speed signal transmission. A pure silver layer can be reliably formed, and a high-concentration pure silver layer and a low-concentration gold (Au) layer are added to the core material of an Ag—Pd—Au ternary alloy and an Ag—Pd—Au ternary alloy. , the bonding property to the pad is better than that of the conventional bonding wire, and a stable silver-rich alloy signal layer suitable for transmitting a high frequency signal of several giga to several tens of gigahertz can be formed.
In addition, the Ag—Pd—Au based alloy bonding wire of the present invention has a bulk mechanical strength of the wire itself because the high-concentration pure silver layer is thin, and has excellent loop characteristics similar to those of conventional bonding wires. Have In addition, the Ag—Pd—Au based alloy bonding wire of the present invention has a bulk mechanical strength of the wire itself because the high-concentration pure silver layer is thin, and has excellent loop characteristics similar to those of conventional bonding wires. Have
Also, the bonding characteristics such as FAB characteristics and the like have a low melting point high-concentration pure silver layer on the surface layer, so that the bonding property between the molten ball and the pad electrode and the second bonding property are superior to the bonding wire without the high-concentration pure silver layer. There is an additional effect. In particular, when the surface layer of the pad electrode is an electrode pad made of gold (Au), palladium (Pd), gold (Au), or platinum (Pt), the bonding strength is stable. Also, the bonding characteristics such as FAB characteristics and the like have a low melting point high-concentration pure silver layer on the surface layer, so that the bonding property between the molten ball and the pad electrode and the second bonding property are superior to the bonding wire without the high-concentration pure silver layer. There is an additional effect. In particular, when the surface layer of the pad electrode is an electrode pad made of gold (Au), tetrahydrofuran (Pd), gold (Au), or platinum (Pt), the bonding strength is stable.

また、本発明のAg−Pd−Au基合金ボンディングワイヤは、ボンディングワイヤの機械的強度に影響を与えるパラジウム(Pd)の添加量が4.0質量%以下および金(Au)の添加量が2.5質量%以下なので、低融点の表面偏析層によってFABを形成したときの溶融ボールの結晶粒が硬くなりすぎることも無い。また、本発明のAg−Pd−Au基合金ボンディングワイヤは、純度99.9質量%以上のアルミニウム(Al)金属または0.5〜2.0質量%のシリコン(Si)または銅(Cu)および残部純度99.9質量%以上のアルミニウム(Al)合金からなるやわらかいアルミパッドを用いた場合でも、低融点の表面偏析層によってチップ割れやパッドめくれが生じることは無い。この結果、一定期間室温大気中で放置しても、接合界面にマイグレーションが発生せず、高周波信号を安定して伝送できる効果がある。 Further, the Ag—Pd—Au based alloy bonding wire of the present invention has an addition amount of palladium (Pd) that affects the mechanical strength of the bonding wire of 4.0% by mass or less and an addition amount of gold (Au) of 2. Since it is 5 mass% or less, the crystal grains of the molten ball when the FAB is formed by the low melting point surface segregation layer will not be too hard. In addition, the Ag—Pd—Au based alloy bonding wire of the present invention includes an aluminum (Al) metal having a purity of 99.9% by mass or more, silicon (Si) or copper (Cu) having a purity of 0.5 to 2.0% by mass, and Even when a soft aluminum pad made of an aluminum (Al) alloy having a remaining purity of 99.9% by mass or more is used, chip cracking and pad turn-up do not occur due to a low melting point surface segregation layer. As a result, even if left for a certain period of time in the air at room temperature, no migration occurs at the bonding interface, and there is an effect that a high-frequency signal can be transmitted stably.

表1に示す成分組成を有するAg−Pd−Au三元合金およびAg−Pd−Au三元系合金(いずれも、パラジウム(Pd)および金(Au)の純度は99.99質量%以上とし、銀(Ag)の純度は99.999質量%以上とし、 微量添加元素として、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)、銅(Cu)、ニッケル(Ni)、鉄(Fe)、マグネシウム(Mg)、亜鉛(Zn)、アルミニウム(Al)、マンガン(Mn)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、ベリリウム(Be)、ビスマス(Bi)、セレン(Se)、セリウム(Ce)、チタン(Ti)、イットリウム(Y)、カルシウム(Ca)、ランタン(La)、ユーロピウム(Eu)、アンチモン(Sb)の合計を5〜300ppmとした。また、その製造方法は、通常の純金ボンディングワイヤと同様に溶解し、不活性雰囲気中で8mm径まで連続鋳造した。引き続き、この連続鋳造した太線をダイヤモンドダイスにより連続して20μmの最終線径まで湿式で断面減少率が99.99%以上の連続冷間伸線をし、所定の調質熱処理を施して、20μmの線径を有する本発明に係るボンディングワイヤ(以下、「実施品」という)1〜21を製造した。
実施例1〜9が請求項1に係る実施品および実施例10〜21が請求項2に係る実施品である。 Examples 1 to 9 are the product according to claim 1, and Examples 10 to 21 are the product according to claim 2. Ag-Pd-Au ternary alloy and Ag-Pd-Au ternary alloy having the composition shown in Table 1 (both the purity of palladium (Pd) and gold (Au) is 99.99 mass% or more, The purity of silver (Ag) is 99.999% by mass or more, and rhodium (Rh), ruthenium (Ru), iridium (Ir), copper (Cu), nickel (Ni), iron (Fe), Magnesium (Mg), zinc (Zn), aluminum (Al), manganese (Mn), indium (In), silicon (Si), germanium (Ge), tin (Sn), beryllium (Be), bismuth (Bi), Combination of selenium (Se), cerium (Ce), titanium (Ti), yttrium (Y), calcium (Ca), lanthanum (La), europium (Eu), antimony (Sb) In addition, the manufacturing method was dissolved in the same manner as a normal pure gold bonding wire, and was continuously cast up to a diameter of 8 mm in an inert atmosphere. The bonding wire according to the present invention having a wire diameter of 20 μm (hereinafter referred to as “the wire”) having a wire diameter of 20 μm is subjected to continuous cold drawing with a cross-section reduction rate of 99.99% or Ag-Pd-Au ternary alloy and Ag-Pd-Au ternary alloy having the composition shown in Table 1 (both the purity of epitaxial (Pd) and gold (Au) is 99.99 mass% or more, The purity of silver (Ag) is 99.999% by mass or more, and rhodium (Rh), ruthenium (Ru), iridium (Ir), copper (Cu), nickel (Ni), iron (Fe), Magnesium (Mg), zinc (Zn), aluminum (Al), manganese (Mn), indium (In), silicon (Si), germanium (Ge), tin (Sn), beryllium (Be), bismuth (Bi), Combination of selenium (Se), cerium (Ce) , titanium (Ti), yttrium (Y), calcium (Ca), lanthanum (La), europium (Eu), antimony (Sb) In addition, the manufacturing method was dissolved in the same manner as a normal pure gold bonding wire, and was continuously cast up to a diameter of 8 mm in an immune atmosphere. The bonding wire according to the present invention having a wire diameter of 20 μm (hereinafter referred to as “the wire”) having a wire diameter of 20 μm is subjected to continuous cold drawing with a cross-section reduction rate of 99.99% or more by wet treatment up to a final wire diameter of 20 μm and a predetermined tempering heat treatment. 1 to 21). more by wet treatment up to a final wire diameter of 20 μm and a predetermined tempering heat treatment. 1 to 21).
Examples 1 to 9 are products according to claim 1 and Examples 10 to 21 are products according to claim 2. Examples 1 to 9 are products according to claim 1 and Examples 10 to 21 are products according to claim 2.

比較例Comparative example

実施例と同様にして、本発明の組成範囲に入らない表1に示す成分組成の比較品のボンディングワイヤ22〜25(以下、「比較品」という)を製造した。
なお、比較品25は、実施例と同様にして連続鋳造した8mmφの太線を80℃の希硝酸で酸洗いした素線を連続伸線(縮径)し、表層に表面偏析層がないボンディングワイヤを形成したものである。 The comparative product 25 is a bonding wire obtained by continuously drawing (reducing the diameter) a wire obtained by continuously casting a thick wire of 8 mmφ and pickling it with dilute nitric acid at 80 ° C., and having no surface segregation layer on the surface layer. Is formed. よって、比較品25は、組成範囲は本発明の範囲内にあるが、酸洗いされている点で実施品と異なっている。 Therefore, the comparative product 25 is different from the actual product in that the composition range is within the range of the present invention, but it is pickled. In the same manner as in the examples, comparative bonding wires 22 to 25 (hereinafter referred to as “comparative products”) having the composition shown in Table 1 that do not fall within the composition range of the present invention were manufactured. In the same manner as in the examples, comparative bonding wires 22 to 25 (hereinafter referred to as “comparative products”) having the composition shown in Table 1 that do not fall within the composition range of the present invention were manufactured.
The comparative product 25 is a bonding wire in which a 8 mmφ thick wire continuously cast in the same manner as in the Examples is continuously drawn (reduced) by pickling with 80 ° C. diluted nitric acid, and the surface layer does not have a surface segregation layer. Is formed. Therefore, the comparative product 25 has a composition range within the range of the present invention, but is different from the actual product in that it is pickled. The comparative product 25 is a bonding wire in which a 8 mmφ thick wire continuously cast in the same manner as in the Examples is continuously drawn (reduced) by pickling with 80 ° C. diluted nitric acid, and the surface layer does not have a surface segregation layer. Is formed. Therefore, the comparative product 25 has a composition range within the range of the present invention, but is different from the actual product in that it is pickled.

なお、本発明および比較例における調質熱処理は、金線の場合と同様に、管状炉において、温度およびスピードを調整の上、引張り破断試験機による測定で伸びが所定の値となるように調整するための熱処理であり、この調質熱処理では実施品の表面に偏析したドーナッツ状の高濃度純銀層が消失することは無かった。
[高濃度純銀層の確認] The tempering heat treatment in the present invention and the comparative example is adjusted so that the elongation becomes a predetermined value as measured by a tensile fracture tester in a tubular furnace after adjusting the temperature and speed in the same manner as in the case of a gold wire. In this tempering heat treatment, the donut-like high concentration pure silver layer segregated on the surface of the product was not lost. [Confirmation of high-concentration sterling silver layer] The tempering heat treatment in the present invention and the comparative example is adjusted so that the elongation becomes a predetermined value as measured by a tensile fracture tester in a tubular furnace after adjusting the temperature and speed in the same manner as in the case of a gold wire. In this tempering heat treatment, the donut-like high concentration pure silver layer segregated on the surface of the product was not lost.
[Confirmation of high-concentration pure silver layer] [Confirmation of high-concentration pure silver layer]

実施品1の組成を有するAg−Pd−Au基合金を不活性雰囲気下で直径8mmの太線に連続鋳造した。この太線を水冷で連続伸線し、伸び率が4%となるように調質熱処理して直径20μmのボンディングワイヤを得た。このボンディングワイヤの銀(Ag)および金(Au)元素について表層から中心方向への深さ方向のオージェ分析をした。その結果は図1上側の模式図で示す曲線および下側の曲線のようになった。
図1の模式図で示す通り、実施品は表面から10nm近辺まで高濃度の銀(Ag)の漸減層が存在し、対照的に、金(Au)の合金化元素は逆の低濃度の漸増層が存在する。 As shown in the schematic diagram of FIG. 1, the product has a high concentration of silver (Ag) tapering layer from the surface to the vicinity of 10 nm, and in contrast, the alloying element of gold (Au) has a reverse low concentration of tapering. There is a layer. なお、パラジウム(Pd)の濃度は、図示していないが、高濃度純銀層中も芯材中もほぼ一定であった。 Although the concentration of palladium (Pd) is not shown, it was almost constant in both the high-concentration pure silver layer and the core material.
[硫化銀の確認] An Ag—Pd—Au base alloy having the composition of Example 1 was continuously cast into a thick wire having a diameter of 8 mm under an inert atmosphere. The thick wire was continuously drawn with water cooling, and tempered and heat-treated so that the elongation was 4% to obtain a bonding wire having a diameter of 20 μm. Auger analysis in the depth direction from the surface layer toward the center was performed on the silver (Ag) and gold (Au) elements of the bonding wire. As a result, the curve shown in the schematic diagram on the upper side of FIG. 1 and the curve on the lower side were obtained. [Confirmation of silver sulfide] An Ag—Pd—Au base alloy having the composition of Example 1 was continuously cast into a thick wire having a diameter of 8 mm under an inert atmosphere. The thick wire was continuously drawn with water cooling, and tempered Auger analysis in the depth direction from the surface layer toward the center was performed on the silver (Ag) and gold (Au) elements and heat-treated so that the elongation was 4% to obtain a bonding wire having a diameter of 20 μm. of the bonding wire. As a result, the curve shown in the schematic diagram on the upper side of FIG. 1 and the curve on the lower side were obtained.
As shown in the schematic diagram of FIG. 1, the product has a gradually decreasing layer of silver (Ag) with a high concentration from the surface to around 10 nm, and in contrast, the alloying element of gold (Au) has an increasing concentration at the opposite low concentration. There is a layer. Although the concentration of palladium (Pd) is not shown, it was almost constant both in the high concentration pure silver layer and in the core material. As shown in the schematic diagram of FIG. 1, the product has a gradually decreasing layer of silver (Ag) with a high concentration from the surface to around 10 nm, and in contrast, the alloying element of gold (Au) has an increasing Concentration at the opposite low concentration. There is a layer. Although the concentration of lithography (Pd) is not shown, it was almost constant both in the high concentration pure silver layer and in the core material.
[Confirmation of silver sulfide] [Confirmation of silver sulfide]

実施品1のボンディングワイヤを室温の大気中に30日間放置して、硫化膜厚測定機(サーマトロニクス社製QC−200)を用いて、最表面を連続電気化学還元法による硫化銀(AgS)の膜厚を測定した。その結果、硫化銀(AgS)膜は検出されなかった。これを図2の赤線(L字状曲線)に示す。 The bonding wire of the product 1 was left in the atmosphere at room temperature for 30 days, and the outermost surface was silver sulfide (Ag 2) by a continuous electrochemical reduction method using a sulfide film thickness measuring machine (QC-200 manufactured by Thermatronics). The film thickness of S) was measured. As a result, a silver sulfide (Ag 2 S) film was not detected. This is shown in the red line (L-shaped curve) in FIG.

比較品22のボンディングワイヤを実施品1と同様に、室温の大気中に30日間放置して、硫化銀(AgS)の膜厚を測定した。その結果、硫化銀(AgS)膜が検出された。これを図2の緑線(階段状曲線)に示す。 The bonding wire of the comparative product 22 was left in the air at room temperature for 30 days in the same manner as the working product 1, and the film thickness of silver sulfide (Ag 2 S) was measured. As a result, a silver sulfide (Ag 2 S) film was detected. This is shown by the green line (stepped curve) in FIG.

詳述すると、図2は時間に伴う電圧変化をグラフ化したものである。硫化銀(AgS)を形成した比較品22の場合、電圧が−0.25〜−0.80Vの区間において時間が変化した場合でも、図2の緑線(階段状曲線)に示すように、硫化銀(AgS)膜が存在する範囲で、電圧は変化しない現象が生じる。一方、実施品1のボンディングワイヤは、上述した電圧の区間において、上述した階段状現象はみられず、図2の赤線(L字状曲線)に示すように、時間の経過に伴って電圧が変化した。電圧が変化しなかった領域がなかったことから、実施品1のボンディングワイヤの最表面は、硫化銀(AgS)膜を形成していないことがわかる。 More specifically, FIG. 2 is a graph showing voltage changes with time. In the case of the comparative product 22 in which silver sulfide (Ag 2 S) is formed, even when the time changes in the section where the voltage is −0.25 to −0.80 V, as shown by the green line (stepped curve) in FIG. In addition, a phenomenon in which the voltage does not change occurs in the range where the silver sulfide (Ag 2 S) film exists. On the other hand, the bonding wire of the product 1 does not show the above-mentioned step-like phenomenon in the above-described voltage section, and the voltage with time elapses as shown by the red line (L-shaped curve) in FIG. Changed. Since there was no region where the voltage did not change, it can be seen that the outermost surface of the bonding wire of the product 1 did not form a silver sulfide (Ag 2 S) film.

また、実施品1の最表面を走査型オージェ分析装置(VG社製MICROLAB-310D)によって定性分析したところ、イオウ(S)が検出された。この定性分析結果を図3に示す。
図3に示すように、実施品1のボンディングワイヤの最表面にはイオウ(S)が存在していることがわかる。 As shown in FIG. 3, it can be seen that sulfur (S) is present on the outermost surface of the bonding wire of the product 1. しかし、図2の結果から硫化銀(Ag S)膜が検出されなかったことから、実施品1のボンディングワイヤのイオウ(S)は最表面に存在する銀(Ag)と反応しているものの、強固な硫化銀(Ag S)膜を形成していないことから、物理的に吸着した不安定な硫化銀の結合状態であることがわかる。 However, since the silver sulfide (Ag 2 S) film was not detected from the result of FIG. 2, the sulfur (S) of the bonding wire of the product 1 was reacting with the silver (Ag) existing on the outermost surface. Since a strong silver sulfide (Ag 2 S) film is not formed, it can be seen that the physically adsorbed unstable silver sulfide is in a bonded state. また、図3から明らかな通り、実施品1のボンディングワイヤの最表面の金属元素には、銀(Ag)以外のパラジウム(Pd)と金(Au)が検出されず、実質的に高濃度の銀(Ag)層だけなので、高速信号層として最適な構成であることがわかる。 Further, as is clear from FIG. 3, palladium (Pd) and gold (Au) other than silver (Ag) were not detected in the metal element on the outermost surface of the bonding wire of the product 1, and the concentration was substantially high. Since it has only a silver (Ag) layer, it can be seen that it has an optimum configuration as a high-speed signal layer.
[アルミスプラッシュ試験] Moreover, when the outermost surface of the implementation product 1 was qualitatively analyzed with a scanning Auger analyzer (MICROLAB-310D manufactured by VG), sulfur (S) was detected. The qualitative analysis results are shown in FIG. [Aluminum splash test] Moreover, when the outermost surface of the implementation product 1 was qualitatively analyzed with a scanning Auger analyzer (MICROLAB-310D manufactured by VG), sulfur (S) was detected. The qualitative analysis results are shown in FIG.
As shown in FIG. 3, it can be seen that sulfur (S) is present on the outermost surface of the bonding wire of the product 1. However, since no silver sulfide (Ag 2 S) film was detected from the results of FIG. 2, the sulfur (S) of the bonding wire of Example 1 reacted with silver (Ag) present on the outermost surface. From the fact that a strong silver sulfide (Ag 2 S) film is not formed, it can be understood that the bonded state is unstable silver sulfide physically adsorbed. Further, as is apparent from FIG. 3, palladium (Pd) and gold (Au) other than silver (Ag) are not detected in the metal element on the outermost surface of the bonding wire of the product 1, and the concentration is substantially high. Since it is only a silver (Ag) layer, it turns out that it is the optimal structure as a high-speed signal layer. As shown in FIG. 3, it can be seen that sulfur (S) is present on the outermost surface of the bonding wire of the product 1. However, since no silver sulfide (Ag 2 S) film was detected from the results of FIG. 2, the sulfur (S) of the bonding wire of Example 1 with silver (Ag) present on the outermost surface. From the fact that a strong silver sulfide (Ag 2 S) film is not formed, it can be understood that The bonded state is unstable silver sulfide physically adsorbed. Further, as is apparent from FIG. 3, epitaxial (Pd) and gold (Au) other than silver (Ag) are not detected in the metal element on the outermost surface of the bonding wire Of the product 1, and the concentration is substantially high. Since it is only a silver (Ag) layer, it turns out that it is the optimal structure as a high-speed signal layer.
[Aluminum splash test] [Aluminum splash test]

これらの実施品1〜21および比較品22〜25を汎用のワイヤボンダーにセットし、ダミーの半導体IC(テストパターンをウェーハに埋め込んだもの、略称「TEG」)表面のAl−1.0質量%Si−0.5質量%Cu合金からなる70μm角アルミパッド(表面に20nmの金(Au)層を蒸着したもの)に、吹付け窒素雰囲気下にて38μm狙いでフリー・エアー・ボール(FAB)を作製し、基材の加熱温度:200℃、ループ長さ:5mm、ループ高さ:220μm、圧着ボール径:50μm、圧着ボール高さ:10μm、の条件でボールボンディングをおこなった。アルミスプラッシュ量の測定方法は、汎用の走査型電子顕微鏡(SEM)を用いて各ワイヤの圧着ボールを直上から観察し、圧着ボールの外周部を基点とし、圧着ボールから最もはみ出したアルミニウムの位置を計測した。はみだしたアルミニウム量が2μm未満の場合を○とし、2μm以上4μ未満の場合を△、4μm以上を×と判定した。このアルミスプラッシュ試験について評価結果を表2に示す。   These products 1 to 21 and comparative products 22 to 25 are set in a general-purpose wire bonder, and Al-1.0 mass% on the surface of a dummy semiconductor IC (a test pattern embedded in a wafer, abbreviated as “TEG”) Free air ball (FAB) aiming at 38 μm in a spraying nitrogen atmosphere on a 70 μm square aluminum pad (with a 20 nm gold (Au) layer deposited on the surface) made of Si-0.5 mass% Cu alloy The substrate was heated under the conditions of 200 ° C., loop length: 5 mm, loop height: 220 μm, pressure ball diameter: 50 μm, pressure ball height: 10 μm. The method of measuring the amount of aluminum splash is to observe the pressure-bonded ball of each wire from directly above using a general-purpose scanning electron microscope (SEM), and use the outer periphery of the pressure-bonded ball as the base point to determine the position of the aluminum that protrudes most from the pressure-bonded ball. Measured. The case where the amount of protruding aluminum was less than 2 μm was evaluated as “◯”, the case where it was 2 μm or more and less than 4 μm was evaluated as Δ, and the case where it was 4 μm or more was determined as ×. The evaluation results for this aluminum splash test are shown in Table 2.

[チップダメージ試験] [Chip damage test] [チップダメージ試験] [Chip damage test] [チップダメージ試験] [Chip damage test] [チップダメージ試験] [Chip damage test]

さらに、この試料についてチップダメージをみた。チップダメージ試験は、水酸化ナトリウム水溶液で上記の基材のアルミパッドを溶かした後にチップを実体顕微鏡で観察した結果である。表2中の「チップダメージ試験」は、、傷やクラックが少しでも入っている場合は×とし、傷やクラックがまったくない場合を○として、それぞれ。表2に示す。

[信号波形の劣化試験] Furthermore, chip damage was observed for this sample. The chip damage test is a result of observing the chip with a stereomicroscope after dissolving the aluminum pad of the base material with an aqueous sodium hydroxide solution. “Chip damage test” in Table 2 is indicated as “x” when any scratches or cracks are present, and “◯” when no scratches or cracks are present. It shows in Table 2. [Signal waveform deterioration test] Furthermore, chip damage was observed for this sample. The chip damage test is a result of observing the chip with a stereomicroscope after reducing the aluminum pad of the base material with an aqueous sodium hydroxide solution. test ”in Table 2 is indicated as“ x ”when any scratches or cracks are present, and“ ◯ ”when no scratches or cracks are present. It shows in Table 2.

[Deterioration test of signal waveform] [Deterioration test of signal waveform]

次に、信号波形の劣化試験は四端子法を用いて測定した。試料は実施品・比較品のワイヤ(それぞれ、線径20μm、長さ100mm)を使用した。測定には汎用性ファンクションジェネレーターを用いて10GHz、2Vのパルス波形を実施品ワイヤおよび比較品ワイヤへ伝播させ、10GHz帯域のパルス波形が測定可能な所定の汎用のデジタルオシロスコープおよびプローブを用いて信号波形を測定した。測定用プローブ間隔は50mmとした。信号波形の劣化の度合いはワイヤへ伝播する出力信号波形が入力電圧値に達するまでの遅延時間を測定した。ここで、実験結果より従来の純金ワイヤ(Ca15ppm、Eu20ppmおよび残部99.999質量%Au)の信号遅延時間は20%であることを確認した。したがって、信号遅延時間の判定は、遅延時間が従来のワイヤと比較して20%未満の場合は○、20%より遅延が大きい場合は×とした。この信号波形の劣化試験について実施品・比較品のワイヤの評価結果を表2に示す。
[圧着ボールのシェア強度試験] Next, the signal waveform degradation test was measured using the four probe method. As the sample, the wire of the implemented product / comparative product (wire diameter 20 μm, length 100 mm, respectively) was used. For measurement, a 10 GHz, 2 V pulse waveform is propagated to the product wire and comparative product wire using a general-purpose function generator, and a signal waveform is measured using a predetermined general-purpose digital oscilloscope and probe capable of measuring a 10 GHz pulse waveform. Was measured. The measurement probe interval was 50 mm. The degree of deterioration of the signal waveform was measured by measuring the delay time until the output signal waveform propagating to the wire reaches the input voltage value. Here, from the experimental results, it was confirmed that the signal delay time of the conventional pure gold wire (Ca 15 ppm, Eu 20 ppm and the balance 99.999 mass% Au) was 20%. Therefore, the determination of the signal de [Share strength test of crimping ball] Next, the signal waveform degradation test was measured using the four probe method. As the sample, the wire of the implemented product / comparative product (wire diameter 20 μm, length 100 mm, respectively) was used For measurement, a 10 GHz, 2 V pulse waveform is propagated to the product wire and comparative product wire using a general-purpose function generator, and a signal waveform is measured using a predetermined general-purpose digital oscilloscope and probe capable of measuring a 10 GHz pulse waveform. Was measured. The measurement probe interval was 50 mm. The degree of deterioration of the signal waveform was measured by measuring the delay time until the output signal waveform propagating to the wire reaches the input voltage value. Here, from the experimental results, it was confirmed that the signal delay time of the conventional pure gold wire (Ca 15 ppm, Eu 20 ppm and the balance 99.999 mass% Au) was 20%. Therefore, the determination of the signal de lay time is ○ when the delay time is less than 20% compared to the conventional wire, and × when the delay is larger than 20%. Table 2 shows the evaluation results of the implemented product and comparative product wire for this signal waveform degradation test. lay time is ○ when the delay time is less than 20% compared to the conventional wire, and × when the delay is larger than 20%. Table 2 shows the evaluation results of the implemented product and comparative product wire for this signal waveform degradation test ..
[Pressure ball shear strength test] [Pressure ball shear strength test]

アルミスプラッシュ試験と同様の部材および評価装置を用いて、実施品ワイヤおよび比較品ワイヤに対し、専用のICチップにワイヤボンダーでボンディングを行い、100点について、デイジ社製の製品名「万能ボンドテスター(BT)(型式4000)」を用い、ボールボンディング時の圧着ボールのシェア強度評価を行った。この圧着ボールのシェア評価結果を表2に示す。   Using the same members and evaluation equipment as in the aluminum splash test, bonding was performed on the product wire and the comparative product wire on a dedicated IC chip with a wire bonder. About 100 points, the product name “Universal Bond Tester” (BT) (model 4000) "was used to evaluate the shear strength of the press-bonded ball during ball bonding. Table 2 shows the result of the shear evaluation of this press-bonded ball.

表2中、「ボールシェア」は、第一ボンドにおけるシェア荷重値を示し、○は12kg/mm以上、△は10kg/mm以上12kg/mm未満、そして、×は10kg/mm未満もしくはボール剥がれが発生した場合を示す。 In Table 2, “Ball share” indicates the shear load value in the first bond, ○ is 12 kg / mm 2 or more, Δ is 10 kg / mm 2 or more and less than 12 kg / mm 2 , and × is less than 10 kg / mm 2 Or it shows the case where the ball peeling occurs.

表2の結果から明らかな通り、信号波形の劣化試験について、本発明の実施品1〜21はすべて劣化が見られないのに対し、比較品22〜25はいずれも劣っていることがわかる。
また、アルミスプラッシュ試験、チップダメージ試験および圧着ボールのシェア強度試験については、本発明の実施品1〜21はすべて良好であるのに対し、比較品22は圧着ボールのシェア強度試験が劣っており、比較品23と24はアルミスプラッシュ試験およびチップダメージ試験が劣っていることがわかる。
As is clear from the results of Table 2, it can be seen that in the deterioration test of the signal waveform, all the products 1 to 21 of the present invention are not deteriorated, whereas the comparison products 22 to 25 are all inferior.
In addition, regarding the aluminum splash test, chip damage test, and shear strength test of the press-bonded ball, all of the products 1 to 21 of the present invention are good, whereas the comparative product 22 is inferior in the shear strength test of the press-bonded ball. It can be seen that Comparative products 23 and 24 are inferior in the aluminum splash test and the chip damage test. In addition, regarding the aluminum splash test, chip damage test, and shear strength test of the press-bonded ball, all of the products 1 to 21 of the present invention are good, particularly the comparative product 22 is inferior in the shear strength test Of the press-bonded ball. It can be seen that Comparative products 23 and 24 are inferior in the aluminum splash test and the chip damage test.

本発明のボンディングワイヤは、数ギガないし十数ギガヘルツの超高周波信号の伝送に最適なボンディングワイヤであり、広く高周波信号の伝送に適した信号用ボンディングワイヤの用途がある。
The bonding wire of the present invention is an optimum bonding wire for transmission of ultra high frequency signals of several gigahertz to several tens of gigahertz, and is widely used as a signal bonding wire suitable for transmission of high frequency signals. The bonding wire of the present invention is an optimum bonding wire for transmission of ultra high frequency signals of several gigahertz to several tens of gigahertz, and is widely used as a signal bonding wire suitable for transmission of high frequency signals.

図1は、本発明の高濃度純銀層の分布を示す断面模式図で、上方の曲線は銀(Ag)濃度を示し、下方の曲線は金(Au)濃度を示す。 FIG. 1 is a schematic cross-sectional view showing the distribution of the high-concentration pure silver layer of the present invention. The upper curve shows the silver (Ag) concentration, and the lower curve shows the gold (Au) concentration. 図2は、実施品1および比較品22の時間に伴う電圧変化をグラフ(L字形曲線および階段形曲線)にした図である。 FIG. 2 is a graph showing voltage changes with time of the product 1 and the comparative product 22 (L-shaped curve and step-shaped curve). 図3は、実施品1の最表面近傍を定性分析した結果を示す。 FIG. 3 shows the result of qualitative analysis of the vicinity of the outermost surface of the product 1.

Claims (6)

  1. 半導体素子のパッド電極と配線基板上のリード電極とをフリー・エアー・ボール(FAB)により接続するためのAg−Pd−Au基合金ボンディングワイヤであって、当該ボンディングワイヤがパラジウム(Pd)を2.5〜4.0質量%、金(Au)を1.5〜2.5質量%および残部が純度99.99質量%以上の銀(Ag)からなる三元合金であって、そのボンディングワイヤの表面は連続鋳造後に縮径された連鋳面からなり、そのボンディングワイヤの断面は表面偏析層と芯材とからなり、その表面偏析層は、最表面から芯材に向かって銀(Ag)の含有量が漸減し、かつ、金(Au)の含有量が漸増している合金領域からなることを特徴とする高速信号線用ボンディングワイヤ。   An Ag—Pd—Au based alloy bonding wire for connecting a pad electrode of a semiconductor element and a lead electrode on a wiring board by a free air ball (FAB), the bonding wire containing palladium (Pd) 2 A ternary alloy consisting of silver (Ag) having a purity of 5 to 4.0% by mass, gold (Au) of 1.5 to 2.5% by mass and the balance of 99.99% by mass or more, and its bonding wire The surface of the wire consists of a continuous cast surface that has been reduced in diameter after continuous casting, and the cross section of the bonding wire is composed of a surface segregation layer and a core material, and the surface segregation layer is silver (Ag) from the outermost surface toward the core material. A bonding wire for a high-speed signal line, characterized by comprising an alloy region in which the content of gold is gradually decreased and the content of gold (Au) is gradually increased.
  2. 半導体素子のパッド電極と配線基板上のリード電極とをフリー・エアー・ボール(FAB)により接続するための微量添加元素を含有するAg−Pd−Au基合金ボンディングワイヤであって、当該ボンディングワイヤがパラジウム(Pd)を2.5〜4.0質量%、金(Au)を1.5〜2.5質量%、並びに、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)、銅(Cu)、ニッケル(Ni)、鉄(Fe)、マグネシウム(Mg)、亜鉛(Zn)、アルミニウム(Al)、インジウム(In)、シリコン(Si)、ゲルマニウム(Ge)、ベリリウム(Be)、ビスマス(Bi)、セレン(Se)、セリウム(Ce)、イットリウム(Y)、ランタン(La)、カルシウム(Ca)またはユーロピウム(Eu)のうちの少なくとも1種以上含んでおり、添加微量元素の合計が5〜300質量ppmおよび残部が純度99.99質量%以上の銀(Ag)からなる三元系合金であって、そのボンディングワイヤの表面は連続鋳造後に縮径された連鋳面からなり、そのボンディングワイヤの断面は表面偏析層と芯材とからなり、その表面偏析層は、最表面から芯材に向かって銀(Ag)の含有量が漸減し、かつ、金(Au)の含有量が漸増している合金領域からなることを特徴とする高速信号線用ボンディングワイヤ。   An Ag—Pd—Au based alloy bonding wire containing a trace amount of additive element for connecting a pad electrode of a semiconductor element and a lead electrode on a wiring board by a free air ball (FAB), Palladium (Pd) is 2.5 to 4.0 mass%, gold (Au) is 1.5 to 2.5 mass%, and rhodium (Rh), iridium (Ir), ruthenium (Ru), copper (Cu ), Nickel (Ni), iron (Fe), magnesium (Mg), zinc (Zn), aluminum (Al), indium (In), silicon (Si), germanium (Ge), beryllium (Be), bismuth (Bi) ), Selenium (Se), cerium (Ce), yttrium (Y), lanthanum (La), calcium (Ca) or europium (Eu) Is a ternary alloy made of silver (Ag) having a total amount of added trace elements of 5 to 300 mass ppm and a balance of 99.99 mass% or more, and the surface of the bonding wire is It consists of a continuous casting surface that has been reduced in diameter after continuous casting, and the bonding wire has a surface segregation layer and a core material, and the surface segregation layer contains the silver (Ag) content from the outermost surface toward the core material. A bonding wire for a high-speed signal line, characterized by comprising an alloy region in which the content of gold (Au) is gradually increased.
  3. 上記ボンディングワイヤの銀(Ag)が純度99.999質量%以上であることを特徴とする請求項1または請求項2のいずれかに記載の高速信号線用ボンディングワイヤ。 3. The high-speed signal line bonding wire according to claim 1, wherein silver (Ag) of the bonding wire has a purity of 99.999% by mass or more. 4.
  4. 上記高速信号が1〜15ギガHzの周波数であることを特徴とする請求項1または請求項2のいずれかに記載の高速信号線用ボンディングワイヤ。 3. The high-speed signal line bonding wire according to claim 1, wherein the high-speed signal has a frequency of 1 to 15 GHz.
  5. 上記パッド電極が純度99.9質量%以上のアルミニウム(Al)金属または0.5〜2.0質量%のシリコン(Si)または銅(Cu)および残部純度99.9質量%以上のアルミニウム(Al)合金であることを特徴とする請求項1または請求項2のいずれかに記載の高速信号線用ボンディングワイヤ。 The pad electrode is made of aluminum (Al) metal having a purity of 99.9% by mass or more, or silicon (Si) or copper (Cu) having a purity of 0.5 to 2.0% by mass and aluminum having a remaining purity of 99.9% by mass or more (Al 3. The bonding wire for high-speed signal lines according to claim 1, wherein the bonding wire is an alloy.
  6. 上記パッド電極が金(Au)、パラジウム(Pd)または白金(Pt)の表層からなる電極パッドであることを特徴とする請求項1または請求項2のいずれかに記載の高速信号線用ボンディングワイヤ。




    3. The high-speed signal line bonding wire according to claim 1, wherein the pad electrode is an electrode pad made of a surface layer of gold (Au), palladium (Pd), or platinum (Pt). .




JP2013102191A 2013-05-14 2013-05-14 High speed signal bonding wire Active JP5399581B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013102191A JP5399581B1 (en) 2013-05-14 2013-05-14 High speed signal bonding wire

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013102191A JP5399581B1 (en) 2013-05-14 2013-05-14 High speed signal bonding wire
KR1020130138234A KR101568479B1 (en) 2013-05-14 2013-11-14 Bonding wire for high speed signal
SG2013094669A SG2013094669A (en) 2013-05-14 2013-12-20 Bonding wire for high speed signal
TW103101755A TWI508204B (en) 2013-05-14 2014-01-17 High-speed signal line with bonding wire
CN201410108092.5A CN104157625B (en) 2013-05-14 2014-03-21 HW High Way closing line

Publications (2)

Publication Number Publication Date
JP5399581B1 JP5399581B1 (en) 2014-01-29
JP2014222725A true JP2014222725A (en) 2014-11-27

Family

ID=50112383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013102191A Active JP5399581B1 (en) 2013-05-14 2013-05-14 High speed signal bonding wire

Country Status (5)

Country Link
JP (1) JP5399581B1 (en)
KR (1) KR101568479B1 (en)
CN (1) CN104157625B (en)
SG (1) SG2013094669A (en)
TW (1) TWI508204B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105296788A (en) * 2015-11-13 2016-02-03 汕头市骏码凯撒有限公司 Silver alloy bonding wire and manufacturing method thereof
JP2018530899A (en) * 2015-09-29 2018-10-18 ヘレウス マテリアルズ シンガポール ピーティーイー. リミテッド Silver alloy wire
EP3549715A1 (en) * 2015-11-23 2019-10-09 Heraeus Materials Singapore Pte. Ltd. Coated wire

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6343197B2 (en) * 2014-07-16 2018-06-13 タツタ電線株式会社 Bonding wire
JP2016029691A (en) * 2014-07-25 2016-03-03 田中電子工業株式会社 Structure of surface property-modified silver palladium alloy wire
JP5669335B1 (en) * 2014-09-26 2015-02-12 田中電子工業株式会社 Silver-gold alloy bonding wire
MY160982A (en) 2015-02-26 2017-03-31 Nippon Micrometal Corp Bonding wire for semiconductor device
EP3131113A4 (en) * 2015-06-15 2017-03-22 Nippon Micrometal Corporation Bonding wire for semiconductor device
JP5893230B1 (en) 2015-07-23 2016-03-23 日鉄住金マイクロメタル株式会社 Bonding wires for semiconductor devices
SG10201508104TA (en) * 2015-09-29 2017-04-27 Heraeus Materials Singapore Pte Ltd Alloyed silver wire
CN105296789B (en) * 2015-11-13 2018-02-02 汕头市骏码凯撒有限公司 A kind of high reliability silver alloy bonding wire and its manufacture method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288962A (en) * 1998-04-01 1999-10-19 Sumitomo Metal Mining Co Ltd Bonding wire
JP4868694B2 (en) * 2000-09-18 2012-02-01 新日鉄マテリアルズ株式会社 Bonding wire for semiconductor
JP2003059963A (en) * 2001-08-01 2003-02-28 Doko Cho Gold wire for package and high-frequency transmission, and manufacturing method thereof
JP5116101B2 (en) * 2007-06-28 2013-01-09 新日鉄住金マテリアルズ株式会社 Bonding wire for semiconductor mounting and manufacturing method thereof
TWI373382B (en) * 2009-01-23 2012-10-01 Lee Jun Der
JP5616165B2 (en) * 2010-08-24 2014-10-29 タツタ電線株式会社 Silver bonding wire
JP2012099577A (en) * 2010-10-29 2012-05-24 Sumitomo Metal Mining Co Ltd Bonding wire
CN102130068B (en) * 2011-01-07 2012-09-05 四川威纳尔特种电子材料有限公司 Alloy-type bonding wire with composite plating on surface
JP5064577B2 (en) * 2011-01-20 2012-10-31 タツタ電線株式会社 Ball bonding wire
JP4771562B1 (en) * 2011-02-10 2011-09-14 田中電子工業株式会社 Ag-Au-Pd ternary alloy bonding wire
JP2013004781A (en) 2011-06-17 2013-01-07 Sanken Electric Co Ltd Semiconductor device and semiconductor device manufacturing method
TWI365458B (en) * 2011-07-11 2012-06-01
JP2013033811A (en) * 2011-08-01 2013-02-14 Tatsuta Electric Wire & Cable Co Ltd Ball bonding wire
JP5165810B1 (en) * 2012-09-12 2013-03-21 田中電子工業株式会社 Silver gold palladium alloy bump wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018530899A (en) * 2015-09-29 2018-10-18 ヘレウス マテリアルズ シンガポール ピーティーイー. リミテッド Silver alloy wire
CN105296788A (en) * 2015-11-13 2016-02-03 汕头市骏码凯撒有限公司 Silver alloy bonding wire and manufacturing method thereof
EP3549715A1 (en) * 2015-11-23 2019-10-09 Heraeus Materials Singapore Pte. Ltd. Coated wire

Also Published As

Publication number Publication date
CN104157625B (en) 2017-03-01
TW201444005A (en) 2014-11-16
SG2013094669A (en) 2014-12-30
KR101568479B1 (en) 2015-11-11
KR20140134593A (en) 2014-11-24
CN104157625A (en) 2014-11-19
TWI508204B (en) 2015-11-11
JP5399581B1 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
KR100717667B1 (en) Bonding wire for semiconductor and method of manufacturing the bonding wire
US7952028B2 (en) Bonding wire for semiconductor device
JP4886899B2 (en) Bonding wire for semiconductor
JP5246314B2 (en) Copper alloy bonding wire for semiconductors
KR101323246B1 (en) Bonding wire for semiconductor devices, and the manufacturing method, and light emitting diode package including the bonding wire for semiconductor devices
CN103155130B (en) Ag-Au-Pd ternary alloy three-partalloy closing line
US8836147B2 (en) Bonding structure of multilayer copper bonding wire
KR101016158B1 (en) Bonding wire for semiconductor device
JP5073759B2 (en) Bonding wires for semiconductor devices
JP4349641B1 (en) Coated copper wire for ball bonding
TWI395823B (en) Palladium cladded copper ball bonding wire
US8101030B2 (en) Manufacturing method for composite alloy bonding wire
CN103409654B (en) Silver-gold-palladium alloy bump manufacture line
WO2010087053A1 (en) Bonding wire
KR101355694B1 (en) Solder ball for semiconductor mounting and electronic member
CN105023902B (en) Bonding wire for semiconductor
JP5616165B2 (en) Silver bonding wire
TWI618802B (en) Bonding wire for semiconductor device
KR100427749B1 (en) Au-Ag alloy bonding wire for semiconductor device
KR20070108541A (en) Copper bonding or superfine wire with improved bonding and corrosion properties
EP1160344A1 (en) Gold wire for semiconductor element connection and semiconductor element connection method
KR100702662B1 (en) Copper bonding wire for semiconductor packaging
JP4904252B2 (en) Bonding wires for semiconductor devices
US9589694B2 (en) Alloyed 2N copper wires for bonding in microelectronics devices
JP6019547B2 (en) Copper bonding wire

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131023

R150 Certificate of patent or registration of utility model

Ref document number: 5399581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees