JP2014218012A - 封止フィルム、その製造方法及び封止フィルムで封止された機能素子 - Google Patents

封止フィルム、その製造方法及び封止フィルムで封止された機能素子 Download PDF

Info

Publication number
JP2014218012A
JP2014218012A JP2013098533A JP2013098533A JP2014218012A JP 2014218012 A JP2014218012 A JP 2014218012A JP 2013098533 A JP2013098533 A JP 2013098533A JP 2013098533 A JP2013098533 A JP 2013098533A JP 2014218012 A JP2014218012 A JP 2014218012A
Authority
JP
Japan
Prior art keywords
layer
film
gas barrier
barrier layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013098533A
Other languages
English (en)
Other versions
JP6115297B2 (ja
Inventor
保彦 高向
Yasuhiko Takamukai
保彦 高向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013098533A priority Critical patent/JP6115297B2/ja
Publication of JP2014218012A publication Critical patent/JP2014218012A/ja
Application granted granted Critical
Publication of JP6115297B2 publication Critical patent/JP6115297B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】本発明の課題は、高湿度環境で保管された後に使用しても耐透湿性に優れた封止フィルム、その製造方法及び当該封止フィルムで封止された機能素子を提供することである。
【解決手段】本発明の封止フィルムは、基材と、前記基材の片方の表面上に形成されたガスバリアー層と樹脂層とをこの順に備える封止フィルムであって、前記ガスバリアー層は少なくともポリシラザンを含有する塗布液を塗布して乾燥した層に改質処理を施してなる層であり、かつ前記樹脂層は少なくともブロックイソシアネートを含有する層であることを特徴とする。
【選択図】なし

Description

本発明は、封止フィルム、その製造方法及び封止フィルムで封止された機能素子に関する。より詳しくは、高湿度環境で保管された後に使用しても耐透湿性に優れた封止フィルム、その製造方法及び封止フィルムで封止された、有機エレクトロルミネッセンス素子や太陽電池素子等の機能素子に関する。
フレキシブル性を有する有機エレクトロルミネッセンス素子(以下、単に有機EL素子ともいう。)、太陽電池素子等のフレキシブル電子デバイスにおいては、ガラス基材レベルの非常に高いガスバリアー性が要求されるため、現状では十分なガスバリアー性能を有するガスバリアー性フィルムはいまだ得られていない。
有機EL素子や有機薄膜太陽電池等の有機材料からなる機能素子は酸素や水分対する耐性が極めて低い。例えば有機EL素子を用いてディスプレイや照明装置を構成する場合に、有機材料自体が酸素や水分によって変質して、輝度が低下したり、ダークスポットといわれる非発光欠陥が発生したり、ひいては発光しなくなるといった欠点がある。
このため、片面に有機EL素子を形成した基板に対して、有機EL素子の全面を覆うように樹脂組成物層と封止基材を貼り合わせた封止構造(以下、この封止構造を「固体封止」という。)による酸素及び水蒸気の遮断性に優れた封止技術が知られている(例えば、特許文献1及び特許文献2参照。)。
上記技術では基材と接着用樹脂からなる封止フィルムが用いられるが、該封止フィルムは製造直後に用いられることは少なく、数日〜数カ月保管されたのちに使用されるのが通常であるが、特に高湿度環境で保管されたのちに使用されると耐透湿性が劣化することがわかった。
国際公開第2011/016408号 国際公開第2011/102465号
本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、高湿度環境で保管された後に使用しても耐透湿性に優れた封止フィルム、その製造方法及び当該封止フィルムで封止された機能素子を提供することである。
本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、少なくともポリシラザンを含有する塗布液を塗布して乾燥した層に改質処理を施してなるガスバリアー層を有する封止フィルムに、さらに少なくともブロックイソシアネートを含有する樹脂層を形成することによって、高湿度環境で保管された後に使用しても耐透湿性に優れた封止フィルムが得られることを見出し本発明に至った。
すなわち、本発明に係る上記課題は、以下の手段により解決される。
1.基材と、当該基材の片方の表面上に形成されたガスバリアー層と樹脂層とをこの順に備える封止フィルムであって、前記ガスバリアー層は少なくともポリシラザンを含有する塗布液を塗布して乾燥した層に改質処理を施してなる層であり、かつ前記樹脂層は少なくともブロックイソシアネートを含有することを特徴とする封止フィルム。
2.前記ガスバリアー層が、さらにアルミニウム化合物を含有することを特徴とする第1項に記載の封止フィルム。
3.前記樹脂層に含有されるブロックイソシアネートが、イソシアネート化合物をイミダゾール類でブロックしたブロックイソシアネートであることを特徴とする第1項又は第2項に記載の封止フィルム。
4.基材の片方の表面上に、ガスバリアー層と樹脂層とをこの順に形成する封止フィルムの製造方法であって、少なくともポリシラザンを含有する塗布液を塗布、乾燥した層に改質処理を施してガスバリアー層を形成する工程と、
当該ガスバリアー層上に少なくともブロックイソシアネートを含有する樹脂層液を塗布、乾燥して樹脂層を形成する工程と、
を有することを特徴とする封止フィルムの製造方法。
5.第1項から第3項までのいずれか一項に記載の封止フィルムで、封止されていることを特徴とする機能素子。
本発明の上記手段により、高湿度環境で保管された後に使用しても耐透湿性に優れた封止フィルム、その製造方法及び当該封止フィルムで封止された機能素子を提供することができる。
本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
封止フィルムの保管時においては、有機EL素子と接する接着用樹脂側が直接大気に触れて水分を吸ってしまい、この水分が固体封止時の加熱で蒸発して素子を劣化させダークスポットを発生させたり、蒸発せずに残った水分もその後の経時保管での耐透湿性の劣化を引き起こすと考えられる。
封止フィルムに吸水層を設けると、当該吸水層に含有される吸水剤が前記水分を吸収して有機EL素子への水分の影響は改良されるが、公知文献の技術の範囲ではその効果は不充分であった。
本発明の構成による封止フィルムで、高湿環境下でも耐透湿性が維持されるメカニズムは明らかではないが、当該封止フィルム上に形成した樹脂層に含有されるブロックイソシアネートが、吸湿剤のように前記水分を吸水すると同時に、ガスバリアー層中に残存する未改質部分のポリシラザンにその水分を供給する能力も有し、当該ポリシラザンの未改質部分がその水分と反応して改質し、よりガラスに近い耐透湿性の高いバリアー膜を形成することによるものと推定される。
本発明の封止フィルムの断面図 本発明に係るガスバリアー層の形成に用いられる真空プラズマCVD装置の一例を示す模式図 有機EL素子の概略構成を示す断面図 真空紫外線照射装置の一例を示す模式図
本発明の封止フィルムは、基材上に形成されたガスバリアー層と樹脂層とをこの順に備える封止フィルムであって、前記ガスバリアー層は少なくともポリシラザンを含有する塗布液を塗布して乾燥した層に改質処理を施してなる層であり、かつ前記樹脂層は少なくともブロックイソシアネートを含有することを特徴とし、かかる構成によって、高湿度環境で保管された後に使用しても耐透湿性に優れた封止フィルムを提供するものである。この特徴は、請求項1から請求項5までの請求項に係る発明に共通する技術的特徴である。
本発明の封止フィルムの実施態様としては、本発明の効果発現の観点から、前記ガスバリアー層が、さらにアルミニウム化合物を含有することが好ましく、前記樹脂層に含有されるブロックイソシアネートが、イソシアネート化合物をイミダゾール類でブロックしたブロックイソシアネートであることがより好ましい。当該構成により、耐透湿性がさらに向上した封止フィルムが得られる。
また、本発明の封止フィルムの製造方法は、少なくともポリシラザンを含有する塗布液を塗布、乾燥した層に改質処理を施してガスバリアー層を形成する工程と、当該ガスバリアー層上に少なくともブロックイソシアネートを含有する樹脂層液を塗布、乾燥して樹脂層を形成する工程と、によることが好ましい。
さらに、本発明の封止フィルムで、封止された機能素子により、例えば経時においてもダークスポットの発生や、輝度の低下が抑制された安定な有機EL素子を得ることができ、好ましい。
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
<本発明の封止フィルムの概要>
本発明の封止フィルムは、基材と、前記基材の片方の表面上に形成されたガスバリアー層と樹脂層とをこの順に備える封止フィルムであって、前記ガスバリアー層は少なくともポリシラザンを含有する塗布液を塗布して乾燥した層に改質処理を施してなる層であり、かつ前記樹脂層は少なくともブロックイソシアネートを含有する層であることを特徴とする。
図1に本発明の封止フィルムの一例を示す断面図を示す。
本発明の封止フィルム1は、少なくとも基材1aにガスバリアー層1bと樹脂層1cをこの順に形成したものである。以下、基材1aにガスバリアー層1bが形成された形態をガスバリアー性フィルムともいう。
基材1aのガスバリアー層とは反対側の面、基材1aとガスバリアー層1bの間、ガスバリアー層1bと樹脂層1cの間、及び樹脂層1cのガスバリアー層とは反対側の面に、本発明の効果を損なわない範囲で、他の層を形成することもできる。例えば、基材1aとガスバリアー層1bの間に平滑化層を設け基材表面の凹凸を平滑化したり、樹脂層1cのガスバリアー層とは反対側の面に剥離可能なセパレーターフィルムのような層を設けてもよい。また、他の層として。例えば中間層、保護層、ブリードアウト防止層、及び帯電防止層等の機能層などが挙げられる。
また、本発明に係るガスバリアー層1bと樹脂層1cは、複数の層からなってもよく、特にガスバリアー層は複数のバリアー層を積層した形態からなることが好ましい。
最初に、本発明の特徴である少なくともブロックイソシアネートを含有する樹脂層について、説明する。
≪樹脂層≫
本発明に係る樹脂層は、少なくともブロックイソシアネートを含有する層であるが、当該ブロックイソシアネートとともに少なくとも熱硬化性樹脂を含有し、機能素子を封止する際には接着層としての機能を併せ持つ層であることが好ましい。
樹脂層は当該熱硬化性樹脂以外に、耐透湿性の観点から、吸湿性金属酸化物、イオン液体、無機充填剤及び硬化促進剤等を含有してもよい。
〔ブロックイソシアネート〕
ブロックイソシアネートとは、イソシアネート化合物のイソシアネート基にブロック剤を付加反応させて得られる反応生成物である。従来はこのブロックイソシアネートを所定温度にて加熱処理することにより、このブロック剤がイソシアネート基から解離、すなわち脱ブロックして、活性なイソシアネート基が再生されて架橋等の機能を発現するが、水分が存在するとこの活性なイソシアネート基は容易に分解されてしまう。本発明においては、この活性なイソシアネート基をむしろブロックすることで水分の動きをコントロールする上述の機能が発現したことは驚くべきことであった。
本発明に係るブロックイソシアネートのイソシアネート化合物としては、イソシアネート基を分子内に有する化合物であればよく、特に限定されるものではない。
1分子中にイソシアネート基を1個有するイソシアネート化合物としては、具体的には、n−ブチルイソシアネート、イソプロピルイソシアネート、フェニルイソシアネート、ベンジルイソシアネート、(メタ)アクリロイルオキシエチルイソシアネート、1,1−ビス[(メタ)アクリロイルオキシメチル]エチルイソシアネート、ビニルイソシアネート、アリルイソシアネート、(メタ)アクリロイルイソシアネート、イソプロペニル−α,α−ジメチルベンジルイソシアネート、イソシアン酸メチル、イソシアン酸エチル、イソシアン酸プロピル、イソシアン酸イソブチル、イソシアン酸ヘキシル、イソシアン酸フェニル等が挙げられる。
また、1分子中にイソシアネート基を2個有するイソシアネート化合物としては、具体的には、1,6−ジイソシアナトヘキサン、ジイソシアン酸イソホロン、ジイソシアン酸4,4′−ジフェニルメタン、ポリメリックジフェニルメタンジイソシアネート、キシリレンジイソシアネート、2,4−ジイソシアン酸トリレン、ジイソシアン酸トルエン、2,4−ジイソシアン酸トルエン、ジイソシアン酸ヘキサメチレン、ジイソシアン酸4−メチル−m−フェニレン、ナフチレンジイソシアネート、パラフェニレンジイソシアネート、テトラメチルキシリレンジイソシアネート、シクロヘキシルメタンジイソシアネート、水添キシリレンジイソシアネート、シクロヘキシルジイソシアネート、トリジンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート、m−テトラメチルキシリレンジイソシアネート、p−テトラメチルキシリレンジイソシアネート、ダイマー酸ジイソシアネート等のジイソシアン酸エステル化合物と水酸基、カルボキシル基、アミド基含有ビニルモノマーとを等モルで反応せしめた化合物もイソシアン酸エステル化合物として使用することができる。
さらに、1分子中にイソシアネート基を2個有するイソシアネート化合物としては、具体的には芳香族ジイソシアネート、脂肪族ジイソシアネート、芳香脂肪族ジイソシアネート、脂環族ジイソシアネート等を挙げることができる。
芳香族ジイソシアネートとしては、例えば、1,3−フェニレンジイソシアネート、4,4′−ジフェニルジイソシアネート、1,4−フェニレンジイソシアネート、4,4′−ジフェニルメタンジイソシアネート(MDI)、2,4−トリレンジイソシアネート(TDI)、2,6−トリレンジイソシアネート、4,4′−トルイジンジイソシアネート、2,4,6−トリイソシアネートトルエン、1,3,5−トリイソシアネートベンゼン、ジアニシジンジイソシアネート、4,4′−ビフェニルジイソシアネート、4,4′−ジフェニルエーテルジイソシアネート、4,4′,4″−トリフェニルメタントリイソシアネート、キシリレンジイソシアネート、1,5−ナフタレンジイソシアネート、フルオレンジイソシアネート等を挙げることができる。
脂肪族ジイソシアネートとしては、例えば、メタンジイソシアネート、1,2−エチレンジイソシアネート、1,3−トリメチレンジイソシアネート、1,4−テトラメチレンジイソシアネート、1,5−ペンタメチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネート(HDI)、1,8−オクタメチレンジイソシアネート、1,12−ドデカメチレンジイソシアネート、1,2−プロピレンジイソシアネート、2,3−ブチレンジイソシアネート、1,3−ブチレンジイソシアネート、ドデカメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート、3、3′−ジイソシアネートジプロピルエーテル等を挙げることができる。
芳香脂肪族ジイソシアネートとしては、例えばω,ω′−ジイソシアネート−1,3−ジメチルベンゼン、ω,ω′−ジイソシアネート−1,4−ジメチルベンゼン、ω,ω′−ジイソシアネート−1,4−ジエチルベンゼン、1,4−テトラメチルキシリレンジイソシアネート、1,3−テトラメチルキシリレンジイソシアネート等を挙げることができる。
脂環式ジイソシアネートとしては、例えば3−イソシアネートメチル−3,5,5−トリメチルシクロヘキシルイソシアネート[別名:イソホロンジイソシアネート(IPDI)]、1,3−シクロペンタンジイソシアネート、1,3−シクロヘキサンジイソシアネート、1,4−シクロヘキサンジイソシアネート、メチル−2,4−シクロヘキサンジイソシアネート、メチル−2,6−シクロヘキサンジイソシアネート、4,4′−メチレンビス(シクロヘキシルイソシアネート)、1,3−ビス(イソシアネートメチル)シクロヘキサン、1,4−ビス(イソシアネートメチル)シクロヘキサン、ノルボルナンジイソシアネート等を挙げることができる。さらに、両末端イソシアネートであるプレポリマーも挙げることができる。
また、1分子中にイソシアネート基を3個以上有するイソシアネート基含有化合物としては、具体的には、芳香族ポリイソシアネート、リジントリイソシアネートなどの脂肪族ポリイソシアネート、芳香脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられ、1,3,6−ヘキサメチレントリイソシアネート、ジシクロヘプタントリイソシアネート、前記で説明したジイソシアネートのトリメチロールプロパンアダクト体(例えば、TDI又はHDIのTMP(トリメチロールプロパン)付加物)、水と反応したビュウレット体(例えば、HDIから製造されるビウレット)、イソシアヌレート環を有する3量体(例えば、TDIから製造されるイソシアヌレート、HDIから製造されるイソシアヌレート、IPDIから製造されるイソシアヌレート、並びにTDI及びHDIから製造されるイソシアヌレート)が挙げられる。
中でも、溶解性、反応性という点から脂環式ジイソシアネート類、芳香族ジイソシアネート類が好ましく、シクロヘキサンジイソシアネート、フェニレンジイソシアネートが、ブロック体の溶解性がよいという点でより好ましい。
ブロック剤としては、(i)オキシム類、(ii)フェノール類、(iii)アルコール類、(iv)メルカプタン類、(v)アミド類、(vi)イミド類、(vii)イミダゾール類、(viii)尿素類、(ix)アミン類、(x)イミン類、(xi)ピラゾール類、及び(xii)活性メチレン化合物類が挙げられる。ブロック剤の他の例には、ピリジノール類、チオフェノール類、ジケトン類及びエステル類が挙げられる。
(i)オキシム類
オキシム類の例としては、ホルムアミドオキシム、アセトアミドキシム、アセトキシム、メチルエチルケトオキシム及びシクロヘキサノンオキシムが挙げられる。
(ii)フェノール類
フェノール類の例としては、少なくとも一つの(好ましくは一つ又は二つの)C1−C10(炭素数1〜10)のアルキル基を場合により有していてもよいフェノールが挙げられる。フェノール類の具体例としては、フェノール;モノアルキルフェノール(例えば、クレゾール、エチルフェノール、プロピルフェノール、ブチルフェノール、ヘキシルフェノール、2−エチルヘキシルフェノール及びオクチルフェノール);並びに、ジアルキルフェノール(例えば、ジエチルフェノール、ジプロピルフェノール、ジプロピルクレゾール、ジブチルフェノール、ジ−2−エチルヘキシルフェノール、ジオクチルフェノール及びジノニルフェノール)。
フェノール類の具体例には、スチレン化されたフェノール、ヒドロキシベンゾエートエステルが挙げられる。
(iii)アルコール類
アルコール類の例としては、C1−C30のアルキル基を有する(好ましくは一価の)アルコール(特にアルカノール)が挙げられる。
アルコール類の具体例としては、メタノール、エタノール、プロパノール、1−ブタノール、sec−ブタノール、2−エチル−1−ヘキサノール、2−メトキシエタノール、2−ブトキシエタノール、2−メトキシ−1−プロパノール及び3−メチル−2−ペンテン−4−イン−1−オール、乳酸メチル及び乳酸エチルが挙げられる。
(iv)メルカプタン類
メルカプタン類の具体例としては、n−ブチルメルカプタン、t−ブチルメルカプタン、ドデシルメルカプタン及びチオフェノール等が挙げられる。
(v)アミド類
アミド類(好ましくは酸性アミド)の具体例としては、アセトアニリド、酢酸アミド、β−プロピオラクタム、γ−ブチロラクタム、δ−バレロラクタム、ε−カプロラクタム、ラウロラクタム、ステアロラクタム、N−メチル−ε−カプロラクタム及びピロリジノンが挙げられる。
(vi)イミド類
イミド類の具体例としては、マレイン酸イミド及びコハク酸イミドのような酸イミドが挙げられる。
(vii)イミダゾール類
イミダゾール類の具体例としては、イミダゾール、2−メチルイミダゾール及び2−エチルイミダゾールが挙げられる。
(viii)尿素類
尿素類の具体例としては、尿素、チオ尿素及びエチレン尿素が挙げられる。
(ix)アミン類
アミン類の具体例としては、ブチルアミン、ジフェニルアミン、アニリン、カルバゾール、ジエチルアミン、ジプロピルアミン及びプロピルエチルアミンが挙げられる。
(x)イミン類
イミン類の具体例としては、エチレンイミン、プロピレンイミン及びポリエチレンイミンが挙げられる。
(xi)ピラゾール類
ピラゾール類の具体例としては、2−メチル−ピラゾール、3−メチル−ピラゾール、4−メチル−ピラゾール、2,3−ジメチルピラゾール、2,4−ジメチル−ピラゾール、2,5−ジメチル−ピラゾール、3,4−ジメチル−ピラゾール、3,5−ジメチル−ピラゾール、4−ニトロ−3,5−ジメチル−ピラゾール、4−ブロモ−3,5−ジメチル−ピラゾールが挙げられる。
(xii)活性メチレン化合物類
活性メチレン化合物類の例としては、マロン酸ジメチル、マロン酸ジエチルのようなマロネートエステル(例えば、C1−C30のアルキルのマロン酸エステル)、アセト酢酸メチルのようなアセト酢酸エステル(例えば、C1−C30のアルキルアセト酢酸エステル)及びアセチルアセトンが挙げられる。
ブロックイソシアネートは市販のものであっても使用可能であり、例えば、MF−K60B、SBN−70D、TPA−B80E、17B−60PX、E402−B80B、E402−B80T(以上、旭化成ケミカルズ社製、商品名)、スミジュールBL−3175、BL−4165、BL−1100、BL−1265、デスモジュールTPLS−2957、TPLS−2062、TPLS−2078、TPLS−2117、デスモサーム2170、デスモサーム2265(以上、住友バイエルウレタン社製、商品名)、コロネート2512、コロネート2513、コロネート2520(以上、日本ポリウレタン工業社製、商品名)、B−830、B−815、B−846、B−870、B−874、B−882(以上、三井武田ケミカル社製、商品名)、BI7986、BI7951、BI7982、BI7960(以上、バクセンデン社製、商品名)、カレンズMOI−BM、カレンズMOI−BP(以上、昭和電工社製、商品名)等が挙げられる。これらのブロックイソシアネートは単独で使用してもよく、2種以上混合して使用してもよい。
上記ブロック剤のうち、本発明に係る樹脂層に含有されるブロックイソシアネートが、イソシアネート化合物をイミダゾール類でブロックしたブロックイソシアネートであることが、水分を制御する観点から好ましい。
イミダゾール類としては特に制限されないが、前述したイミダゾール、2−メチルイミダゾール、2−メチルイミダゾール以外に、例えば、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾールなどの活性水素基を残したイミダゾール化合物が挙げられる。中でも、2−メチルチルイミダゾール、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾールが好ましく、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾールがより好ましい。
また、市場で調達可能なものとして、四国化成工業(株)製の2MZ、2E4MZ、2PHZ、1B2MZ、1BZ、2P4HZなどが挙げられる。
イミダゾール類の使用量は、イソシアネート化合物中のイソシアネート基1当量に対して0.1〜3当量が好ましく、0.2〜2当量がより好ましい。未反応のイソシアネート化合物及びイミダゾール類は、ブロック化反応終了後に濾別、再結晶などの方法により除去しておくことが好ましい。
また本発明に係るブロックイソシアネート化合物は、親水性基を有する化合物によって変性されていてもよい。
本発明に係るブロックイソシアネートの含有量は、エポキシ樹脂の総量(不揮発分)に対し0.1〜50質量%が好ましい。
〔熱硬化性樹脂〕
熱硬化性樹脂は、特に制限はなく、具体的には、エポキシ樹脂、シアネートエステル樹脂、フェノール樹脂、ビスマレイミド−トリアジン樹脂、ポリイミド樹脂、アクリル樹脂、ビニルベンジル樹脂等の種々の熱硬化性樹脂が挙げられる。中でも、低温硬化性や接着性等の観点から、エポキシ樹脂が好ましい。
エポキシ樹脂としては、平均して1分子当り2個以上のエポキシ基を有するものであればよく、具体的には、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、リン含有エポキシ樹脂、ビスフェノールS型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂(具体的には、テトラグリシジルジアミノジフェニルメタン、トリグリシジル−p−アミノフェノール、ジグリシジルトルイジン、ジグリシジルアニリン等)、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ジシクロペンタジエン構造を有するエポキシ樹脂、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のグリシジルエーテル化物、及びアルコール類のジグリシジルエーテル化物、並びにこれらのエポキシ樹脂のアルキル置換体、ハロゲン化物及び水素添加物等が挙げられる。これらは1種又は2種以上を組み合わせて使用してもよい。
これらの中でも、樹脂組成物の高い耐熱性及び低い透湿性を保つ等の観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂、ジシクロペンタジエン構造を有するエポキシ樹脂等が好ましい。
また、エポキシ樹脂は、液状であっても、固形状であっても、液状と固形状の両方を用いてもよい。ここで、「液状」及び「固形状」とは、25℃でのエポキシ樹脂の状態である。塗工性、加工性、接着性等の観点から、使用するエポキシ樹脂全体の10質量%以上が液状であるのが好ましい。
また、エポキシ樹脂は反応性の観点から、エポキシ当量が100〜1000の範囲のものが好ましく、より好ましくは120〜1000の範囲のものである。ここでエポキシ当量とは1グラム当量のエポキシ基を含む樹脂のグラム数(g/eq)であり、JIS K−7236に規定された方法に従って測定されるものである。
エポキシ樹脂の硬化剤としては、エポキシ樹脂を硬化する機能を有するものであれば特に限定されないが、樹脂組成物の硬化処理時における素子(特に有機EL素子)の熱劣化を抑制する観点から、樹脂組成物の硬化処理は好ましくは140℃以下、より好ましくは120℃以下で行うのが好ましく、硬化剤はかかる温度領域にてエポキシ樹脂の硬化作用を有するものが好ましい。
具体的には、一級アミン、二級アミン、三級アミン系硬化剤、ポリアミノアミド系硬化剤、ジシアンジアミド、有機酸ジヒドラジド等が挙げられるが、中でも、速硬化性の観点から、アミンアダクト系化合物(アミキュアPN−23、アミキュアMY−24、アミキュアPN−D、アミキュアMY−D、アミキュアPN−H、アミキュアMY−H、アミキュアPN−31、アミキュアPN−40、アミキュアPN−40J等(いずれも味の素ファインテクノ社製))、有機酸ジヒドラジド(アミキュアVDH−J、アミキュアUDH、アミキュアLDH等(いずれも味の素ファインテクノ社製))等が好ましい。これらは1種又は2種以上組み合わせて使用してもよい。
〔吸湿性金属酸化物〕
本発明に係る樹脂層は、透湿性を調整する観点から吸湿性の金属酸化物を含有することも好ましい。
本発明でいう「吸湿性金属酸化物」とは、水分を吸収する能力をもち、吸湿した水分と化学反応して水酸化物になる金属酸化物のことであり、本発明の目的を達成できれば特に制限はないが、具体的には、酸化カルシウム、酸化マグネシウム、酸化ストロンチウム、酸化アルミニウム及び酸化バリウムから選ばれる1種か、あるいは、これらから選ばれる2種以上の金属酸化物の混合物若しくは固溶物である。2種以上の金属酸化物の混合物若しくは固溶物の例としては、具体的には、焼成ドロマイト(酸化カルシウム及び酸化マグネシウムを含む混合物)、焼成ハイドロタルサイト(酸化カルシウムと酸化アルミニウムの固溶物)等が挙げられる。このような吸湿性金属酸化物は、種々の技術分野において吸湿材として公知であり、市販品を使用することができる。具体的には、焼成ドロマイト(吉澤石灰社製「KT」等)、酸化カルシウム(三共製粉社製「モイストップ#10」等)、酸化マグネシウム(協和化学工業社製「キョーワマグMF−150」、「キョーワマグMF−30」、タテホ化学工業社製「ピュアマグFNMG」等)、軽焼酸化マグネシウム(タテホ化学工業社製の「#500」、「#1000」、「#5000」等)等が挙げられる。
吸湿性金属酸化物の平均粒径は特に限定はされないが、10μm以下が好ましく、5μm以下がより好ましく、1μm以下が更に好ましい。
また、吸湿性金属酸化物は、ステアリン酸等の高級脂肪酸、公知のアルキルシラン類やシランカップリング剤等の表面処理剤で表面処理したものを用いることができる。このような表面処理を行うことで、樹脂中の水分と吸湿性金属酸化物が反応してしまうことを防止できる。
樹脂層中の吸湿性金属酸化物の含有量は、樹脂組成物中の不揮発分100質量%に対して1〜40質量%の範囲が好ましい。
〔イオン液体〕
本発明におけるイオン液体は、熱可塑性樹脂の硬化剤としての機能を有する添加剤である。
当該イオン液体は、140℃以下(好ましくは120℃以下)の温度領域で融解しうる塩である。イオン液体は、例えば後述する熱硬化性樹脂であるエポキシ樹脂の硬化作用を有する塩が特に好適に使用され、樹脂層の硬化物の耐透湿性向上に有利に作用する。なお、イオン液体は上記エポキシ樹脂に当該イオン液体を均一に溶解している状態で使用されるのが望ましい。
かかるイオン液体を構成するカチオンとしては、イミダゾリウムイオン、ピリミジニウムイオン、ピリジニウムイオン、ピロリジニウムイオン、ピペリジニウムイオン、ピラゾニウムイオン、グアニジニウムイオン等のアンモニウム系カチオン;テトラアルキルホスホニウムカチオン(例えば、テトラブチルホスホニウムイオン、トリブチルヘキシルホスホニウムイオン等)等のホスホニウム系カチオン;トリエチルスルホニウムイオン等のスルホニウム系カチオン等が挙げられる。
アンモニウム系カチオンの具体例としては、例えば、1,3−ジメチルイミダゾリウムカチオン、1,3−ジエチルイミダゾリウムカチオン、1−エチル−3−メチルイミダゾリウムカチオン、1−プロピル−3−メチルイミダゾリウムイオン、1−ブチル−3−メチルイミダゾリウムカチオン、1−ヘキシル−3−メチルイミダゾリウムカチオン、1−オクチル−3−メチルイミダゾリウムカチオン、1−デシル−3−メチルイミダゾリウムカチオン、1−ドデシル−3−メチルイミダゾリウムカチオン、1−テトラデシル−3−メチルイミダゾリウムカチオン、1,2−ジメチル−3−プロピルイミダゾリウムカチオン、1−エチル−2,3−ジメチルイミダゾリウムカチオン、1−ブチル−2,3−ジメチルイミダゾリウムカチオン、1−ヘキシル−2,3−ジメチルイミダゾリウムカチオン、1,3−ジメチル−1,4,5,6−テトラヒドロピリミジニウムカチオン、1,2,3−トリメチル−1,4,5,6−テトラヒドロピリミジニウムカチオン、1,2,3,4−テトラメチル−1,4,5,6−テトラヒドロピリミジニウムカチオン、1,2,3,5−テトラメチル−1,4,5,6−テトラヒドロピリミジニウムカチオン、1,3−ジメチル−1,4−ジヒドロピリミジニウムカチオン、1,3−ジメチル−1,6−ジヒドロピリミジニウムカチオン、1,2,3−トリメチル−1,4−ジヒドロピリミジニウムカチオン、1,2,3−トリメチル−1,6−ジヒドロピリミジニウムカチオン、1,2,3,4−テトラメチル−1,4−ジヒドロピリミジニウムカチオン、1,2,3,4−テトラメチル−1,6−ジヒドロピリミジニウムカチオン、1−エチルピリジニウムカチオン、1−ブチルピリジニウムカチオン、1−ヘキシルピリジニウムカチオン、1−ブチル−3−メチルピリジニウムカチオン、1−ブチル−4−メチルピリジニウムカチオン、1−ヘキシル−3−メチルピリジニウムカチオン、1−ブチル−3,4−ジメチルピリジニウムカチオン、1,1−ジメチルピロリジニウムカチオン、1−エチル−1−メチルピロリジニウムカチオン、1−メチル−1−プロピルピロリジニウムカチオン、1−メチル−1−ブチルピロリジニウムカチオン、1−メチル−1−ペンチルピロリジニウムカチオン、1−メチル−1−ヘキシルピロリジニウムカチオン、1−メチル−1−ヘプチルピロリジニウムカチオン、1−エチル−1−プロピルピロリジニウムカチオン、1−エチル−1−ブチルピロリジニウムカチオン、1−エチル−1−ペンチルピロリジニウムカチオン、1−エチル−1−ヘキシルピロリジニウムカチオン、1−エチル−1−ヘプチルピロリジニウムカチオン、1,1−ジプロピルピロリジニウムカチオン、1−プロピル−1−ブチルピロリジニウムカチオン、1,1−ジブチルピロリジニウムカチオン、1−プロピルピペリジニウムカチオン、1−ペンチルピペリジニウムカチオン、1,1−ジメチルピペリジニウムカチオン、1−メチル−1−エチルピペリジニウムカチオン、1−メチル−1−プロピルピペリジニウムカチオン、1−メチル−1−ブチルピペリジニウムカチオン、1−メチル−1−ペンチルピペリジニウムカチオン、1−メチル−1−ヘキシルピペリジニウムカチオン、1−メチル−1−ヘプチルピペリジニウムカチオン、1−エチル−1−プロピルピペリジニウムカチオン、1−エチル−1−ブチルピペリジニウムカチオン、1−エチル−1−ペンチルピペリジニウムカチオン、1−エチル−1−ヘキシルピペリジニウムカチオン、1−エチル−1−ヘプチルピペリジニウムカチオン、1,1−ジプロピルピペリジニウムカチオン、1−プロピル−1−ブチルピペリジニウムカチオン、1,1−ジブチルピペリジニウムカチオン、1−メチルピラゾリウムカチオン、3−メチルピラゾリウムカチオン、1−エチル−2−メチルピラゾリニウムカチオン、1−エチル−2,3,5−トリメチルピラゾリウムカチオン、1−プロピル−2,3,5−トリメチルピラゾリウムカチオン、1−ブチル−2,3,5−トリメチルピラゾリウムカチオン、1−エチル−2,3,5−トリメチルピラゾリニウムカチオン、1−プロピル−2,3,5−トリメチルピラゾリニウムカチオン、1−ブチル−2,3,5−トリメチルピラゾリニウムカチオンなどが挙げられる。
上述の中でも、カチオンは、アンモニウム系カチオン、ホスホニウム系カチオンが好ましく、イミダゾリウムイオン、ホスホニウムイオンがより好ましい。
また、かかるイオン液体を構成するアニオンとしては、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等のハロゲン化物系アニオン;メタンスルホン酸イオン等のアルキル硫酸系アニオン;トリフルオロメタンスルホン酸イオン、ヘキサフルオロホスホン酸イオン、トリフルオロトリス(ペンタフルオロエチル)ホスホン酸イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、トリフルオロ酢酸イオン、テトラフルオロホウ酸イオン等の含フッ素化合物系アニオン;フェノールイオン、2−メトキシフェノールイオン、2,6−ジ−tert−ブチルフェノールイオン等のフェノール系アニオン;アスパラギン酸イオン、グルタミン酸イオン等の酸性アミノ酸イオン;グリシンイオン、アラニンイオン、フェニルアラニンイオン等の中性アミノ酸イオン;N−ベンゾイルアラニンイオン、N−アセチルフェニルアラニンイオン、N−アセチルグリシンイオン等の下記一般式(1)で示されるN−アシルアミノ酸イオン;ギ酸イオン、酢酸イオン、デカン酸イオン、2−ピロリドン−5−カルボン酸イオン、α−リポ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N−メチル馬尿酸イオン、安息香酸イオン等のカルボン酸系アニオンが挙げられる。
Figure 2014218012
(ただし、R−CO−は炭素数1〜5の直鎖又は分岐鎖の脂肪酸より誘導されるアシル基、あるいは、置換又は無置換ベンゾイル基であり、−NH−CHX−CO はアスパラギン酸、グルタミン酸等の酸性アミノ酸イオン、あるいはグリシン、アラニン、フェニルアラニン等の中性アミノ酸イオンである。)
また、アニオンは、一般式(1)で示されるN−アシルアミノ酸イオン又はカルボン酸系アニオンが好ましい。
カルボン酸系アニオンの具体例としては、酢酸イオン、デカン酸イオン、2−ピロリドン−5−カルボン酸イオン、ギ酸イオン、α−リポ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N−メチル馬尿酸イオン等が挙げられ、中でも、酢酸イオン、2−ピロリドン−5−カルボン酸イオン、ギ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N−メチル馬尿酸イオンが好ましく、酢酸イオン、N−メチル馬尿酸イオン、ギ酸イオンがより好ましい。また、一般式(1)で示されるN−アシルアミノ酸イオンの具体例としては、N−ベンゾイルアラニンイオン、N−アセチルフェニルアラニンイオン、アスパラギン酸イオン、グリシンイオン、N−アセチルグリシンイオン等が挙げられ、中でも、N−ベンゾイルアラニンイオン、N−アセチルフェニルアラニンイオン、N−アセチルグリシンイオンが好ましく、N−アセチルグリシンイオンがより好ましい。
具体的なイオン液体としては、例えば、1−ブチル−3−メチルイミダゾリウムラクテート、テトラブチルホスホニウム−2−ピロリドン−5−カルボキシレート、テトラブチルホスホニウムアセテート、テトラブチルホスホニウムデカノエート、テトラブチルホスホニウムトリフルオロアセテート、テトラブチルホスホニウムα−リポエート、ギ酸テトラブチルホスホニウム塩、テトラブチルホスホニウムラクテート、酒石酸ビス(テトラブチルホスホニウム)塩、馬尿酸テトラブチルホスホニウム塩、N−メチル馬尿酸テトラブチルホスホニウム塩、ベンゾイル−DL−アラニンテトラブチルホスホニウム塩、N−アセチルフェニルアラニンテトラブチルホスホニウム塩、2,6−ジ−tert−ブチルフェノールテトラブチルホスホニウム塩、L−アスパラギン酸モノテトラブチルホスホニウム塩、グリシンテトラブチルホスホニウム塩、N−アセチルグリシンテトラブチルホスホニウム塩、1−エチル−3−メチルイミダゾリウムラクテート、1−エチル−3−メチルイミダゾリウムアセテート、ギ酸1−エチル−3−メチルイミダゾリウム塩、馬尿酸1−エチル−3−メチルイミダゾリウム塩、N−メチル馬尿酸1−エチル−3−メチルイミダゾリウム塩、酒石酸ビス(1−エチル−3−メチルイミダゾリウム)塩、N−アセチルグリシン1−エチル−3−メチルイミダゾリウム塩が好ましく、N−アセチルグリシンテトラブチルホスホニウム塩、1−エチル−3−メチルイミダゾリウムアセテート、ギ酸1−エチル−3−メチルイミダゾリウム塩、馬尿酸1−エチル−3−メチルイミダゾリウム塩、N−メチル馬尿酸1−エチル−3−メチルイミダゾリウム塩がより好ましい。
上記イオン液体の合成法としては、アルキルイミダゾリウム、アルキルピリジニウム、アルキルアンモニウム及びアルキルスルホニウムイオン等のカチオン部位と、ハロゲンを含むアニオン部位から構成される前駆体に、NaBF、NaPF、CFSONaやLiN(SOCF等を反応させるアニオン交換法、アミン系物質と酸エステルとを反応させてアルキル基を導入しつつ、有機酸残基が対アニオンになるような酸エステル法、及びアミン類を有機酸で中和して塩を得る中和法等があるがこれらに限定されない。アニオンとカチオンと溶媒による中和法では、アニオンとカチオンとを等量使用し、得られた反応液中の溶媒を留去して、そのまま用いることも可能であるし、更に有機溶媒(メタノール、トルエン、酢酸エチル、アセトン等)を差し液濃縮しても構わない。
本発明に用いられるイオン液体の含有量は、熱硬化性樹脂の総量(不揮発分)に対し0.1〜50質量%の範囲が好ましく、0.5〜25質量%の範囲がより好ましい。この範囲内であれば、樹脂層の保存安定性が損なわれない。
〔無機充填剤〕
樹脂層を構成する樹脂組成物には、更にタルク、クレー、マイカ、ベーマイト等の粒子形態が平板状の充填材を含有させることができ、樹脂層の耐透湿性をより一層高めることができる。
さらにゴム粒子を含有させることができ、ゴム粒子を含有させることにより、樹脂層の機械強度の向上や応力緩和等を図ることができる。当該ゴム粒子は、コアシェル型ゴム粒子を用いることが好ましく、具体例としては、スタフィロイドAC3832、AC3816N(以上、ガンツ化成社製)、メタブレンKW−4426(三菱レイヨン社製)、F351(日本ゼオン社製)等が挙げられる。アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER−91(JSR社製)などが挙げられる。スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK−500(JSR社製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A、W450A(以上、三菱レイヨン社製)を挙げることができる。
〔硬化促進剤〕
本発明に係る樹脂層を構成する樹脂組成物においては、硬化温度、硬化時間等の調整のため、さらに硬化促進剤を含んでいても良い。硬化促進剤としてはテトラメチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩、テトラフェニルホスホニウムブロマイド、テトラブチルホスホニウムブロマイド等の4級スルホニウム塩、DBU(1,8−ジアザビシクロ(5.4.0)ウンデセン−7)、DBN(1,5−ジアザビシクロ(4.3.0)ノネン−5)、DBU−フェノール塩、DBU−オクチル酸塩、DBU−p−トルエンスルホン酸塩、DBU−ギ酸塩、DBU−フェノールノボラック樹脂塩等のジアザビシクロ化合物、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾール化合物、トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン等の3級アミン、芳香族ジメチルウレア、脂肪族ジメチルウレア、芳香族ジメチルウレア等のジメチルウレア化合物等が挙げられる。
硬化促進剤を使用する場合の含有量は、熱硬化性樹脂の総量に対し、0.01〜7質量%の範囲である。
〔樹脂層の形成方法〕
本発明に係る樹脂層は、当該樹脂層を構成する組成物を溶解したワニスを調製して、後述するガスバリアー層上に塗布、乾燥して形成することが好ましい。また樹脂層のガスバリアー層とは反対側の面に剥離可能なセパレーターフィルムのような層を設ける場合には、該剥離可能なセパレーターフィルム上に当該樹脂層を構成する組成物を溶解したワニスを塗布、乾燥して形成した樹脂層をガスバリアー層上に貼り合わせて形成してもよい。
ワニスの調製に使用する有機溶媒としては、具体的には、アセトン、メチルエチルケトン(以下、「MEK」とも略称する)、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を挙げることができる。これらは1種又は2種以上組み合わせて使用してもよい。
塗布方法としては、任意の適切な方法が採用され得る。具体例としては、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
乾燥条件は特に制限はないが、50〜100℃で3〜15分が好適である。
本発明に係る樹脂層の厚さは特に限定されないが、外気との接触面積を小さくすることで、水分を遮断するという観点から、3〜200μmの範囲が好ましく、5〜150μmの範囲がより好ましく、10〜100μmの範囲が更に好ましい。
≪ガスバリアー層≫
本発明に係るガスバリアー層は、少なくともポリシラザンを含有する塗布液を塗布して乾燥した層に改質処理を施してなる層であり、ガスバリアー層が複数ある場合は、その最表面にあって、前記本発明に係る樹脂層に隣接する層である。隣接する層とは、直接ガスバリアー層が樹脂層に接している形態のみではなく、本発明に係るブロックイソシアネートの効果が発現する範囲内で他の薄膜層は間に介在してもよいことを意味する。
〔ポリシラザン〕
ポリシラザンとは、ケイ素−窒素結合を有するポリマーであり、Si−N、Si−H、N−H等の結合を有するSiO、Si、及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。
具体的には、ポリシラザンは、好ましくは下記一般式(I)の構造を有する。
Figure 2014218012
上記一般式(I)において、R、R及びRは、それぞれ独立して、水素原子、置換又は非置換の、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基である。この際、R、R及びRは、それぞれ、同じであってもあるいは異なるものであってもよい。ここで、アルキル基としては、炭素原子数1〜8の直鎖、分岐鎖又は環状のアルキル基が挙げられる。より具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、2−エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などがある。また、アリール基としては、炭素原子数6〜30のアリール基が挙げられる。より具体的には、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。(トリアルコキシシリル)アルキル基としては、炭素原子数1〜8のアルコキシ基で置換されたシリル基を有する炭素原子数1〜8のアルキル基が挙げられる。より具体的には、3−(トリエトキシシリル)プロピル基、3−(トリメトキシシリル)プロピル基などが挙げられる。上記R〜Rに場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、ハロゲン原子、ヒドロキシ基(−OH)、メルカプト基(−SH)、シアノ基(−CN)、スルホ基(−SOH)、カルボキシ基(−COOH)、ニトロ基(−NO)などがある。なお、場合によって存在する置換基は、置換するR〜Rと同じとなることはない。例えば、R〜Rがアルキル基の場合には、さらにアルキル基で置換されることはない。これらのうち、好ましくは、R、R及びRは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、フェニル基、ビニル基、3−(トリエトキシシリル)プロピル基又は3−(トリメトキシシリルプロピル)基である。
また、上記一般式(I)において、nは、整数であり、一般式(I)で表される構造を有するポリシラザンが150〜150000g/モルの数平均分子量を有するように定められることが好ましい。
上記一般式(I)で表される構造を有する化合物において、好ましい態様の一つは、R、R及びRの全てが水素原子であるパーヒドロポリシラザンである。
又は、ポリシラザンとしては、下記一般式(II)で表される構造を有する。
Figure 2014218012
上記一般式(II)において、R1′、R2′、R3′、R4′、R5′及びR6′は、それぞれ独立して、水素原子、置換又は非置換の、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基である。この際、R1′、R2′、R3′、R4′、R5′及びR6′は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換又は非置換の、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。
また、上記一般式(II)において、n′及びpは、整数であり、一般式(II)で表される構造を有するポリシラザンが150〜150000g/モルの数平均分子量を有するように定められることが好ましい。なお、n′及びpは、同じであってもあるいは異なるものであってもよい。
上記一般式(II)のポリシラザンのうち、R1′、R3′及びR6′が各々水素原子を表し、R2′、R4′及びR5′が各々メチル基を表す化合物;R1′、R3′及びR6′が各々水素原子を表し、R2′、R4′が各々メチル基を表し、R5′がビニル基を表す化合物;R1′、R3′、R4′及びR6′が各々水素原子を表し、R2′及びR5′が各々メチル基を表す化合物が好ましい。
又は、ポリシラザンとしては、下記一般式(III)で表される構造を有する。
Figure 2014218012
上記一般式(III)において、R1″、R2″、R3″、R4″、R5″、R6″、R7″、R8″及びR9″は、それぞれ独立して、水素原子、置換又は非置換の、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基である。この際、R1″、R2″、R3″、R4″、R5″、R6″、R7″、R8″及びR9″は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換又は非置換の、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。
また、上記一般式(III)において、n″、p″及びqは、整数であり、一般式(III)で表される構造を有するポリシラザンが150〜150000g/モルの数平均分子量を有するように定められることが好ましい。なお、n″、p″及びqは、同じであってもあるいは異なるものであってもよい。
上記一般式(III)のポリシラザンのうち、R1″、R3″及びR6″が各々水素原子を表し、R2″、R4″、R5″及びR8″が各々メチル基を表し、R9″が(トリエトキシシリル)プロピル基を表し、R7″がアルキル基又は水素原子を表す化合物が好ましい。
一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。このため、用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。
パーヒドロポリシラザンは、直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600〜2000程度(ポリスチレン換算)で、液体又は固体の物質があり、その状態は分子量により異なる。
ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままガスバリアー層形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のアクアミカ(登録商標)NN120−10、NN120−20、NAX120−20、NN110、NN310、NN320、NL110A、NL120A、NL120−20、NL150A、NP110、NP140、SP140等が挙げられる。
本発明で使用できるポリシラザンの別の例としては、以下に制限されないが、例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5−238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6−122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6−240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6−299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6−306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7−196986号公報)等の、低温でセラミック化するポリシラザンが挙げられる。
ポリシラザンを用いる場合、改質処理前のガスバリアー層中におけるポリシラザンの含有率としては、ガスバリアー層の全質量を100質量%としたとき、100質量%でありうる。また、ガスバリアー層がポリシラザン以外のものを含む場合には、層中におけるポリシラザンの含有率は、10〜99質量%の範囲であることが好ましく、40〜95質量%の範囲であることがより好ましく、特に好ましくは70〜95質量%の範囲である。
〔ガスバリアー層形成用塗布液〕
ガスバリアー層形成用塗布液を調製するための溶媒としては、ケイ素化合物を溶解できるものであれば特に制限されないが、ケイ素化合物と容易に反応してしまう水及び反応性基(例えば、ヒドロキシ基、あるいはアミン基等)を含まず、ケイ素化合物に対して不活性の有機溶媒が好ましく、非プロトン性の有機溶媒がより好ましい。具体的には、溶媒としては、非プロトン性溶媒;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ−及びポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。
上記溶媒は、ケイ素化合物の溶解度や溶媒の蒸発速度等の目的にあわせて選択され、単独で使用されても又は2種以上の混合物の形態で使用されてもよい。
ガスバリアー層形成用塗布液におけるケイ素化合物の濃度は、特に制限されず、層の膜厚や塗布液のポットライフによっても異なるが、好ましくは1〜80質量%、より好ましくは5〜50質量%、特に好ましくは10〜40質量%である。
また、ガスバリアー層形成用塗布液には、ガスバリアー層の耐熱性を向上する観点から、アルミニウム化合物を含有することが好ましく、アルミニウム化合物としては、アルミニウムトリメトキシド、アルミニウムトリエトキシド、アルミニウムトリn−プロポキシド、アルミニウムトリイソプロポキシド、アルミニウムトリn−ブトキシド、アルミニウムトリsec−ブトキシド、アルミニウムトリtert−ブトキシド、アルミニウムアセチルアセトナート、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アルミニウムエチルアセトアセテートジn−ブチレート、アルミニウムジエチルアセトアセテートモノn−ブチレート、アルミニウムジイソプロピレートモノsec−ブチレート、アルミニウムトリスアセチルアセトネート、アルミニウムトリスエチルアセトアセテート、ビス(エチルアセトアセテート)(2,4−ペンタンジオナト)アルミニウム、アルミニウムアルキルアセトアセテートジイソプロピレート、アルミニウムオキサイドイソプロポキサイドトリマー、アルミニウムオキサイドオクチレートトリマー等が挙げられる。
市販品の具体的な例としては、例えば、AMD(アルミニウムジイソプロピレートモノsec−ブチレート)、ASBD(アルミニウムセカンダリーブチレート)、ALCH(アルミニウムエチルアセトアセテート・ジイソプロピレート)、ALCH−TR(アルミニウムトリスエチルアセトアセテート)、アルミキレートM(アルミニウムアルキルアセトアセテート・ジイソプロピレート)、アルミキレートD(アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート)、アルミキレートA(W)(アルミニウムトリスアセチルアセトネート)(以上、川研ファインケミカル株式会社製)、プレンアクト(登録商標)AL−M(アセトアルコキシアルミニウムジイソプロピレート、味の素ファインケミカル株式会社製)、オルガチックスシリーズ(マツモトファインケミカル株式会社製)等が挙げられる。ガスバリアー層形成用塗布液中の含有量としては0.1〜10質量%であることが好ましく、1〜5質量%であることがより好ましい。
ガスバリアー層形成用塗布液は、改質を促進するために、触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N−ジエチルエタノールアミン、N,N−ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3−モルホリノプロピルアミン、N,N,N′,N′−テトラメチル−1,3−ジアミノプロパン、N,N,N′,N′−テトラメチル−1,6−ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N−複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ケイ素化合物を基準としたとき、好ましくは0.1〜10質量%、より好ましくは0.5〜7質量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行よる過剰なシラノール形成、及び膜密度の低下、膜欠陥の増大などを避けることができる。
ガスバリアー層形成用塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステル若しくは変性ポリエステル、エポキシド、ポリイソシアネート若しくはブロック化ポリイソシアネート、ポリシロキサン等である。
〔ガスバリアー層の形成方法〕
上記のようなガスバリアー層の塗布法による形成方法は、特に制限されず、公知の方法が適用できる。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
有機溶媒中にケイ素化合物及び必要に応じて触媒を含むガスバリアー層形成用塗布液を上記公知の塗布方法により塗布し、この溶媒を蒸発させて除去し、次いで、改質処理を行う方法が好ましい。
塗布厚さは、目的に応じて適切に設定され得る。例えば、ガスバリアー層1層当たりの塗布厚さは、乾燥後の厚さが10nm〜10μm程度であることが好ましく、15nm〜1μmであることがより好ましく、20〜500nmであることがさらに好ましい。膜厚が10nm以上であれば十分なバリアー性を得ることができ、10μm以下であれば、層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。
塗布液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜中に含有される有機溶媒を除去することができる。この際、塗膜に含有される有機溶媒は、全てを乾燥させてもよいが、一部残存させていてもよい。一部の有機溶媒を残存させる場合であっても、好適なガスバリアー層が得られる。なお、残存する溶媒は後に除去されうる。
塗膜の乾燥温度は、適用する基材によっても異なるが、50〜200℃の範囲であることが好ましい。例えば、ガラス転位温度(Tg)が70℃のポリエチレンテレフタレート基材を基材として用いる場合には、乾燥温度は、熱による基材の変形等を考慮して150℃以下に設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定されうる。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が150℃である場合には30分以内に設定することが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。
<ガスバリアー層の改質処理>
本発明におけるポリシラザンの改質処理とは、ポリシラザンの一部又は全部を、酸化ケイ素又は酸化窒化ケイ素へ転化させる反応をいう。
真空紫外線照射工程でパーヒドロポリシラザンから酸窒化ケイ素、さらには酸化ケイ素が生じると推定される反応機構について、以下に説明する。
(1)脱水素、それに伴うSi−N結合の形成
パーヒドロポリシラザン中のSi−H結合やN−H結合は真空紫外線照射による励起等で比較的容易に切断され、不活性雰囲気下ではSi−Nとして再結合すると考えられる(Siの未結合手が形成される場合もある)。すなわち、酸化することなくSiN組成として硬化する。この場合はポリマー主鎖の切断は生じない。Si−H結合やN−H結合の切断は触媒の存在や、加熱によって促進される。切断されたHはHとして膜外に放出される。
(2)加水分解・脱水縮合によるSi−O−Si結合の形成
パーヒドロポリシラザン中のSi−N結合は水により加水分解され、ポリマー主鎖が切断されてSi−OHを形成する。二つのSi−OHが脱水縮合してSi−O−Si結合を形成して硬化する。これは大気中でも生じる反応であるが、不活性雰囲気下での真空紫外線照射中では、照射の熱によって基材から生じる水蒸気が主な水分源となると考えられる。水分が過剰となると脱水縮合しきれないSi−OHが残存し、SiO2.1〜SiO2.3の範囲の組成で示されるガスバリアー性の低い硬化膜となる。
(3)一重項酸素による直接酸化、Si−O−Si結合の形成
真空紫外線照射中、雰囲気下に適当量の酸素が存在すると、酸化力の非常に強い一重項酸素が形成される。パーヒドロポリシラザン中のHやNはOと置き換わってSi−O−Si結合を形成して硬化する。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。
(4)真空紫外線照射・励起によるSi−N結合切断を伴う酸化
真空紫外線のエネルギーはパーヒドロポリシラザン中のSi−Nの結合エネルギーよりも高いため、Si−N結合は切断され、周囲に酸素、オゾン、水等の酸素源が存在すると酸化されてSi−O−Si結合やSi−O−N結合が生じると考えられる。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。
ポリシラザンを含有する層に真空紫外線照射を施した層の酸窒化ケイ素の組成の調整は、上述の(1)〜(4)の酸化機構を適宜組み合わせて酸化状態を制御することで行うことができる。
ポリシラザンの改質は、通常の製造においてはランプの紫外線強度や照射時間、また照射時の温度条件等の制約があり、上記(1)〜(4)の反応が起こっても、層内のポリシラザンの全部を転化することは困難であり、したがって、生産ベースでのポリシラザンの改質処理では、多くの場合、未改質のポリシラザンが数%の範囲内で残存することになる。本発明では、この残存する未改質のポリシラザンを、ブロックイソシアネートから供給される水分をトリガーとして、上記加水分解及び脱水縮合によって酸化ケイ素又は酸化窒化ケイ素へ改質し、ガスバリアー性をより高めるものである。
改質処理は、ポリシラザンの転化反応に基づく公知の方法を選ぶことができるが、ポリシラザン化合物の加熱による改質の場合、置換反応による酸化ケイ素膜又は酸化窒化ケイ素膜の形成には450℃以上の高温が必要であり、樹脂フィルムを基材に用いたフレキシブル基板においては、適応が難しい。したがって、本発明の封止フィルムを作製するに際しては、樹脂基板への適応という観点から、より低温で、転化反応が可能な紫外光を使う転化反応が好ましい。
(真空紫外光照射処理)
本発明における真空紫外線照射処理において、ポリシラザン層塗膜が受ける塗膜面での該真空紫外線の照度は30〜200mW/cmの範囲であることが好ましく、50〜160mW/cmの範囲であることがより好ましい。30mW/cm以上では、改質効率が低下する懸念がなく、200mW/cm以下では、塗膜にアブレーションを生じず、基材にダメージを与えないため好ましい。
ポリシラザン層塗膜面における真空紫外線の照射エネルギー量は、200〜10000mJ/cmの範囲であることが好ましく、500〜5000mJ/cmの範囲であることがより好ましい。この範囲であればクラック発生や、基材の熱変形がない。
真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。Xe、Kr、Ar、Neなどの希ガスの原子は、化学的に結合して分子を作らないため、不活性ガスと呼ばれる。
しかし、放電などによりエネルギーを得た希ガスの励起原子は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には、
e+Xe→Xe
Xe+2Xe→Xe +Xe
Xe →Xe+Xe+hν(172nm)
となり、励起されたエキシマ分子であるXe が基底状態に遷移するときに172nmのエキシマ光を発光する。
エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を低く保つことができる。さらには始動及び再始動に時間を要さないので、瞬時の点灯点滅が可能である。
エキシマ発光を得るには、誘電体バリアー放電を用いる方法が知られている。誘電体バリアー放電とは、両電極間に透明石英などの誘電体を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じ、雷に似た非常に細いマイクロディスチャージ(micro discharge)と呼ばれる放電であり、マイクロディスチャージ(micro discharge)のストリーマが管壁(誘導体)に達すると誘電体表面に電荷が溜まるため、マイクロディスチャージ(micro discharge)は消滅する。
このマイクロディスチャージ(micro discharge)が管壁全体に広がり、生成・消滅を繰り返している放電である。このため、肉眼でも確認できる光のチラツキを生じる。また、非常に温度の高いストリーマが局所的に直接管壁に達するため、管壁の劣化を早める可能性もある。
効率よくエキシマ発光を得る方法としては、誘電体バリアー放電以外に、無電極電界放電でも可能である。容量性結合による無電極電界放電で、別名RF放電とも呼ばれる。ランプと電極及びその配置は基本的には誘電体バリアー放電と同じで良いが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的にまた時間的に一様な放電が得られるため、チラツキがない長寿命のランプが得られる。
誘電体バリアー放電の場合は、マイクロディスチャージ(micro discharge)が電極間のみで生じるため、放電空間全体で放電を行わせるには外側の電極は外表面全体を覆い、かつ外部に光を取り出すために光を透過するものでなければならない。
このため、細い金属線を網状にした電極が用いられる。この電極は、光を遮らないようにできるだけ細い線が用いられるため、酸素雰囲気中では真空紫外光により発生するオゾンなどにより損傷しやすい。これを防ぐためには、ランプの周囲、すなわち照射装置内を窒素などの不活性ガスの雰囲気にし、合成石英の窓を設けて照射光を取り出す必要が生じる。合成石英の窓は高価な消耗品であるばかりでなく、光の損失も生じる。
二重円筒型ランプは外径が25mm程度であるため、ランプ軸の直下とランプ側面では照射面までの距離の差が無視できず、照度に大きな差を生じる。したがって、仮にランプを密着して並べても、一様な照度分布が得られない。合成石英の窓を設けた照射装置にすれば、酸素雰囲気中の距離を一様にでき、一様な照度分布が得られる。
無電極電界放電を用いた場合には、外部電極を網状にする必要はない。ランプ外面の一部に外部電極を設けるだけでグロー放電は放電空間全体に広がる。外部電極には通常アルミのブロックで作られた光の反射板を兼ねた電極がランプ背面に使用される。しかし、ランプの外径は誘電体バリアー放電の場合と同様に大きいため一様な照度分布にするためには合成石英が必要となる。
細管エキシマランプの最大の特徴は、構造がシンプルなことである。石英管の両端を閉じ、内部にエキシマ発光を行うためのガスを封入しているだけである。
細管ランプの管の外径は6〜12mm程度で、余り太いと始動に高い電圧が必要になる。
放電の形態は、誘電体バリアー放電及び無電極電界放電のいずれも使用できる。電極の形状はランプに接する面が平面であっても良いが、ランプの曲面に合わせた形状にすればランプをしっかり固定できるとともに、電極がランプに密着することにより放電がより安定する。また、アルミで曲面を鏡面にすれば光の反射板にもなる。
Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。
また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン層の改質を実現できる。
したがって、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料や樹脂基板などへの照射を可能としている。
エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で、すなわち短い波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。
紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、10〜10000ppmの範囲とすることが好ましく、より好ましくは50〜5000ppmの範囲、更に好ましく1000〜4500ppmの範囲である。
真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
〔他のガスバリアー層〕
本発明に係るガスバリアー層は、ポリシラザンを含有する塗布液を塗布して乾燥した層に改質処理を施してなる層が最表面にあれば、2層以上の積層構造であってもよい。同じ組成のガスバリアー層を複数層形成しても、異なる組成の層を複数形成してもよい。
また、2層以上の積層構造である場合、本発明に係るポリシラザンを改質処理して含有する層以外に、真空プラズマCVD法等の化学気相成長法(Chemical Vapor Deposition)やスパッタ法等の物理気相成長法(Physical Vapor Deposition、PVD法)によって形成した層との組み合わせであってもよい。
好ましい例として、真空プラズマCVD法の一態様である、基材を一対の成膜ローラー上に配置し、前記一対の成膜ローラー間に放電してプラズマを発生させるプラズマCVD法により、基材上に他のガスバリアー層を形成する方法を以下に説明する。説明にあたって、本発明の封止フィルムをガスバリアー性フィルムともいう。
本発明に用いられるCVD法により形成される他のガスバリアー層の好適な一実施形態として、ガスバリアー層は構成元素に炭素、ケイ素、及び酸素を含むことが好ましい。より好適な形態は、以下の(i)〜(iii)の要件を満たす層である。
(i)ガスバリアー層の膜厚方向における前記ガスバリアー層表面からの距離(L)と、ケイ素原子、酸素原子、及び炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lとケイ素原子、酸素原子、及び炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、並びに前記Lとケイ素原子、酸素原子、及び炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、前記ガスバリアー層の膜厚の90%以上(上限:100%)の領域で、(酸素の原子比)、(ケイ素の原子比)、(炭素の原子比)の順で多い(原子比がO>Si>C);
(ii)前記炭素分布曲線が少なくとも二つの極値を有する;
(iii)前記炭素分布曲線における炭素の原子比の最大値及び最小値の差の絶対値
(以下、単に「Cmax−Cmin差」とも称する)が3at%以上である。
以下、(i)〜(iii)の要件について説明する。
該ガスバリアー層は、(i)前記ガスバリアー層の膜厚方向における前記バリアー層表面からの距離(L)と、ケイ素原子、酸素原子、及び炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lとケイ素原子、酸素原子、及び炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、並びに前記Lとケイ素原子、酸素原子、及び炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、前記ガスバリアー層の膜厚の90%以上(上限:100%)の領域で、(酸素の原子比)、(ケイ素の原子比)、(炭素の原子比)の順で多い(原子比がO>Si>C)ことが好ましい。前記の条件(i)を満たさない場合、得られるガスバリアー性フィルムのガスバリアー性や屈曲性が不十分となる場合がある。ここで、上記炭素分布曲線において、上記(酸素の原子比)、(ケイ素の原子比)及び(炭素の原子比)の関係は、バリアー層の膜厚の、少なくとも90%以上(上限:100%)の領域で満たされることがより好ましく、少なくとも93%以上(上限:100%)の領域で満たされることがより好ましい。ここで、該ガスバリアー層の膜厚の少なくとも90%以上とは、ガスバリアー層中で連続していなくてもよく、単に90%以上の部分で上記した関係を満たしていればよい。
また、該ガスバリアー層は、(ii)前記炭素分布曲線が少なくとも二つの極値を有することが好ましい。該ガスバリアー層は、前記炭素分布曲線が少なくとも三つの極値を有することがより好ましく、少なくとも四つの極値を有することがさらに好ましいが、五つ以上有していてもよい。前記炭素分布曲線の極値が一つ以下である場合、得られるガスバリアー性フィルムを屈曲させた場合におけるガスバリアー性が不十分となる場合がある。なお、炭素分布曲線の極値の上限は、特に制限されないが、例えば、好ましくは30以下、より好ましくは25以下であるが、極値の数は、ガスバリアー層の膜厚にも起因するため、一概に規定することはできない。
ここで、少なくとも三つの極値を有する場合においては、前記炭素分布曲線の有する一つの極値及び該極値に隣接する極値における前記ガスバリアー層の膜厚方向における前記ガスバリアー層の表面からの距離(L)の差の絶対値(以下、単に「極値間の距離」とも称する)が、いずれも200nm以下であることが好ましく、100nm以下であることがより好ましく、75nm以下であることが特に好ましい。このような極値間の距離であれば、ガスバリアー層中に炭素原子比が多い部位(極大値)が適度な周期で存在するため、ガスバリアー層に適度な屈曲性を付与し、ガスバリアー性フィルムの屈曲時のクラックの発生をより有効に抑制・防止できる。なお、本明細書において「極値」とは、前記第1のガスバリアー層の膜厚方向における前記ガスバリアー層の表面からの距離(L)に対する元素の原子比の極大値又は極小値のことをいう。また、本明細書において「極大値」とは、ガスバリアー層の表面からの距離を変化させた場合に元素(酸素、ケイ素又は炭素)の原子比の値が増加から減少に変わる点であって、かつその点の元素の原子比の値よりも、該点からガスバリアー層の膜厚方向におけるガスバリアー層の表面からの距離をさらに4〜20nmの範囲で変化させた位置の元素の原子比の値が3at%以上減少する点のことをいう。すなわち、4〜20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が3at%以上減少していればよい。同様にして、本明細書において「極小値」とは、ガスバリアー層の表面からの距離を変化させた場合に元素(酸素、ケイ素又は炭素)の原子比の値が減少から増加に変わる点であり、かつその点の元素の原子比の値よりも、該点からガスバリアー層の膜厚方向におけるガスバリアー層の表面からの距離をさらに4〜20nmの範囲で変化させた位置の元素の原子比の値が3at%以上増加する点のことをいう。すなわち、4〜20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が3at%以上増加していればよい。ここで、少なくとも三つの極値を有する場合の、極値間の距離の下限は、極値間の距離が小さいほどガスバリアー性フィルムの屈曲時のクラック発生抑制/防止の向上効果が高いため、特に制限されないが、ガスバリアー層の屈曲性、クラックの抑制/防止効果、熱膨張性などを考慮すると、10nm以上であることが好ましく、30nm以上であることがより好ましい。
さらに、該ガスバリアー層は、(iii)前記炭素分布曲線における炭素の原子比の最大値及び最小値の差の絶対値(以下、単に「Cmax−Cmin差」とも称する)が3at%以上であることが好ましい。前記絶対値が3at%未満では、得られるガスバリアー性フィルムを屈曲させた場合に、ガスバリアー性が不十分となる場合がある。Cmax−Cmin差は5at%以上であることが好ましく、7at%以上であることがより好ましく、10at%以上であることが特に好ましい。上記Cmax−Cmin差とすることによって、ガスバリアー性をより向上することができる。なお、本明細書において、「最大値」とは、各元素の分布曲線において最大となる各元素の原子比であり、極大値の中で最も高い値である。同様にして、本明細書において、「最小値」とは、各元素の分布曲線において最小となる各元素の原子比であり、極小値の中で最も低い値である。ここで、Cmax−Cmin差の上限は、特に制限されないが、ガスバリアー性フィルムの屈曲時のクラック発生抑制/防止の向上効果などを考慮すると、50at%以下であることが好ましく、40at%以下であることがより好ましい。
本発明において、前記ガスバリアー層の前記酸素分布曲線が少なくとも一つの極値を有することが好ましく、少なくとも二つの極値を有することがより好ましく、少なくとも三つの極値を有することがさらに好ましい。前記酸素分布曲線が極値を少なくとも一つ有する場合、得られるガスバリアー性フィルムを屈曲させた場合におけるガスバリアー性が極値を有さないガスバリアー性フィルムと比較してより向上する。なお、酸素分布曲線の極値の上限は、特に制限されないが、例えば、好ましくは20以下、より好ましくは10以下である。酸素分布曲線の極値の数においても、ガスバリアー層の膜厚に起因する部分があり一概に規定できない。また、少なくとも三つの極値を有する場合においては、前記酸素分布曲線の有する一つの極値及び該極値に隣接する極値における前記ガスバリアー層の膜厚方向におけるガスバリアー層の表面からの距離の差の絶対値がいずれも200nm以下であることが好ましく、100nm以下であることがより好ましい。このような極値間の距離であれば、ガスバリアー性フィルムの屈曲時のクラックの発生をより有効に抑制・防止できる。ここで、少なくとも三つの極値を有する場合の、極値間の距離の下限は、特に制限されないが、ガスバリアー性フィルムの屈曲時のクラック発生抑制/防止の向上効果、熱膨張性などを考慮すると、10nm以上であることが好ましく、30nm以上であることがより好ましい。
加えて、前記ガスバリアー層の前記酸素分布曲線における酸素の原子比の最大値及び最小値の差の絶対値(以下、単に「Omax−Omin差」とも称する)が3at%以上であることが好ましく、6at%以上であることがより好ましく、7at%以上であることがさらに好ましい。前記絶対値が3at%以上であれば、得られるガスバリアー性フィルムを屈曲させた場合におけるガスバリアー性がより向上する。ここで、Omax−Omin差の上限は、特に制限されないが、ガスバリアー性フィルムの屈曲時のクラック発生抑制/防止の向上効果などを考慮すると、50at%以下であることが好ましく、40at%以下であることがより好ましい。
前記ガスバリアー層の前記ケイ素分布曲線におけるケイ素の原子比の最大値及び最小値の差の絶対値(以下、単に「Simax−Simin差」とも称する)が10at%以下であることが好ましく、7at%以下であることがより好ましく、3at%以下であることがさらに好ましい。前記絶対値が10at%以下である場合、得られるガスバリアー性フィルムのガスバリアー性がより向上する。ここで、Simax−Simin差の下限は、Simax−Simin差が小さいほどガスバリアー性フィルムの屈曲時のクラック発生抑制/防止の向上効果が高いため、特に制限されないが、ガスバリアー性などを考慮すると、1at%以上であることが好ましく、2at%以上であることがより好ましい。
ガスバリアー層の膜厚方向に対する炭素及び酸素原子の合計量はほぼ一定であることが好ましい。これにより、ガスバリアー層は適度な屈曲性を発揮し、ガスバリアー性フィルムの屈曲時のクラック発生がより有効に抑制・防止される。より具体的には、バリアー層の膜厚方向における該ガスバリアー層の表面からの距離(L)とケイ素原子、酸素原子、及び炭素原子の合計量に対する、酸素原子及び炭素原子の合計量の比率(酸素及び炭素の原子比)との関係を示す酸素炭素分布曲線において、前記酸素炭素分布曲線における酸素及び炭素の原子比の合計の最大値及び最小値の差の絶対値(以下、単に「OCmax−OCmin差」とも称する)が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることがさらに好ましい。前記絶対値が5at%未満であれば、得られるガスバリアー性フィルムのガスバリアー性がより向上する。なお、OCmax−OCmin差の下限は、OCmax−OCmin差が小さいほど好ましいため、0at%であるが、0.1at%以上であれば十分である。
前記ケイ素分布曲線、前記酸素分布曲線、前記炭素分布曲線、及び前記酸素炭素分布曲線は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は膜厚方向における前記ガスバリアー層の膜厚方向における前記ガスバリアー層の表面からの距離(L)におおむね相関することから、「ガスバリアー層の膜厚方向におけるガスバリアー層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるガスバリアー層の表面からの距離を採用することができる。なお、ケイ素分布曲線、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線は、下記測定条件にて作成することができる。
(測定条件)
エッチングイオン種:アルゴン(Ar
エッチング速度(SiO熱酸化膜換算値):0.05nm/sec
エッチング間隔(SiO換算値):10nm
X線光電子分光装置:Thermo Fisher Scientific社製、機種名"VG Theta Probe"
照射X線:単結晶分光AlKα
X線のスポット及びそのサイズ:800×400μmの楕円形。
上記のプラズマCVD法により形成されるガスバリアー層の膜厚(乾燥膜厚)は、上記(i)〜(iii)を満たす限り、特に制限されない。例えば、該ガスバリアー層の1層当たりの膜厚は、20〜3000nmであることが好ましく、50〜2500nmであることがより好ましく、100〜1000nmであることが特に好ましい。このような膜厚であれば、ガスバリアー性フィルムは、優れたガスバリアー性及び屈曲時のクラック発生抑制/防止効果を発揮できる。なお、上記のプラズマCVD法により形成されるバリアー層が2層以上から構成される場合には、各ガスバリアー層が上記したような膜厚を有することが好ましい。
本発明において、膜面全体において均一でかつ優れたガスバリアー性を有するバリアー層を形成するという観点から、前記ガスバリアー層が膜面方向(ガスバリアー層の表面に平行な方向)において実質的に一様であることが好ましい。ここで、ガスバリアー層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定によりバリアー層の膜面の任意の2か所の測定箇所について前記酸素分布曲線、前記炭素分布曲線及び前記酸素炭素分布曲線を作成した場合に、その任意の2か所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比の最大値及び最小値の差の絶対値が、互いに同じであるか若しくは5at%以内の差であることをいう。
さらに、本発明においては、前記炭素分布曲線は実質的に連続であることが好ましい。ここで、炭素分布曲線が実質的に連続とは、炭素分布曲線における炭素の原子比が不連続に変化する部分を含まないことを意味し、具体的には、エッチング速度とエッチング時間とから算出される前記ガスバリアー層のうちの少なくとも1層の膜厚方向における該第1のガスバリアー層の表面からの距離(x、単位:nm)と、炭素の原子比(C、単位:at%)との関係において、下記数式(1)で表される条件を満たすことをいう。
Figure 2014218012
本発明のガスバリアー性フィルムにおいて、上記条件(i)〜(iii)を全て満たすガスバリアー層は、1層のみを備えていてもよいし2層以上を備えていてもよい。さらに、このようなガスバリアー層を2層以上備える場合には、複数のガスバリアー層の材質は、同一であってもよいし異なっていてもよい。
前記ケイ素分布曲線、前記酸素分布曲線、及び前記炭素分布曲線において、ケイ素の原子比、酸素の原子比、及び炭素の原子比が、該ガスバリアー層の膜厚の90%以上の領域において前記(i)で表される条件を満たす場合には、前記ガスバリアー層中におけるケイ素原子、酸素原子、及び炭素原子の合計量に対するケイ素原子の含有量の原子比率は、20〜45at%であることが好ましく、25〜40at%であることがより好ましい。また、前記ガスバリアー層中におけるケイ素原子、酸素原子、及び炭素原子の合計量に対する酸素原子の含有量の原子比率は、45〜75at%であることが好ましく、50〜70at%であることがより好ましい。さらに、前記ガスバリアー層中におけるケイ素原子、酸素原子、及び炭素原子の合計量に対する炭素原子の含有量の原子比率は、0.5〜25at%であることが好ましく、1〜20at%であることがより好ましい。
(プラズマCVD法による他のガスバリアー層の形成方法)
他のガスバリアー層を基材の表面上に形成させる方法としては、ガスバリアー性の観点から、プラズマCVD法を採用することが好ましい。
プラズマCVD法においてプラズマを発生させる際には、複数の成膜ローラーの間の空間にプラズマ放電を発生させることが好ましく、一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれに基材を配置して、一対の成膜ローラー間に放電してプラズマを発生させることがより好ましい。このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上に基材を配置して、かかる一対の成膜ローラー間に放電することにより、成膜時に一方の成膜ローラー上に存在する基材の表面部分を成膜しつつ、もう一方の成膜ローラー上に存在する基材の表面部分も同時に成膜することが可能となって効率よく薄膜を製造できるばかりか、通常のローラーを使用しないプラズマCVD法と比較して成膜レートを倍にでき、なおかつ、ほぼ同一である構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となり、効率よく上記条件(i)〜(iii)を全て満たす層を形成することが可能となる。
また、このようにして一対の成膜ローラー間に放電する際には、前記一対の成膜ローラーの極性を交互に反転させることが好ましい。さらに、このようなプラズマCVD法に用いる成膜ガスとしては、有機ケイ素化合物と酸素とを含むものが好ましく、その成膜ガス中の酸素の含有量は、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量未満であることが好ましい。また、本発明のガスバリアー性フィルムにおいては、前記ガスバリアー層が連続的な成膜プロセスにより形成された層であることが好ましい。
また、本発明のガスバリアー性フィルムは、生産性の観点から、ロール・ツー・ロール方式で前記基材の表面上に前記ガスバリアー層を形成させることが好ましい。また、このようなプラズマCVD法によりガスバリアー層を製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ前記一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図2に示す製造装置を用いた場合には、プラズマCVD法を利用しながらロール・ツー・ロール方式で製造することも可能となる。
以下、図2を参照しながら、基材を一対の成膜ローラー上に配置し、前記一対の成膜ローラー間に放電してプラズマを発生させるプラズマCVD法によるガスバリアー層の形成方法について、より詳細に説明する。なお、図2は、本製造方法よりガスバリアー層を製造するために好適に利用することが可能な製造装置の一例を示す模式図である。また、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。
図2に示す製造装置31は、送り出しローラー32と、搬送ローラー33、34、35、36と、成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、成膜ローラー39及び40の内部に設置された磁場発生装置43、44と、巻取りローラー45とを備えている。また、このような製造装置においては、少なくとも成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、磁場発生装置43、44とが図示を省略した真空チャンバー内に配置されている。さらに、このような製造装置31において前記真空チャンバーは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバー内の圧力を適宜調整することが可能となっている。
このような製造装置においては、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源42に接続されている。そのため、このような製造装置31においては、プラズマ発生用電源42により電力を供給することにより、成膜ローラー39と成膜ローラー40との間の空間に放電することが可能であり、これにより成膜ローラー39と成膜ローラー40との間の空間にプラズマを発生させることができる。なお、このように、成膜ローラー39と成膜ローラー40とを電極としても利用する場合には、電極としても利用可能なようにその材質や設計を適宜変更すればよい。また、このような製造装置においては、一対の成膜ローラー(成膜ローラー39及び40)は、その中心軸が同一平面上においてほぼ平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラー39及び40)を配置することにより、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となる。そして、このような製造装置によれば、CVD法により基材1aの表面上にガスバリアー層1bを形成することが可能であり、成膜ローラー39上において基材1aの表面上にガスバリアー層成分を堆積させつつ、さらに成膜ローラー40上においても基材1aの表面上にガスバリアー層成分を堆積させることもできるため、基材1aの表面上にガスバリアー層を効率よく形成することができる。
成膜ローラー39及び成膜ローラー40の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生装置43及び44がそれぞれ設けられている。
成膜ローラー39及び成膜ローラー40にそれぞれ設けられた磁場発生装置43及び44は、一方の成膜ローラー39に設けられた磁場発生装置43と他方の成膜ローラー40に設けられた磁場発生装置44との間で磁力線がまたがらず、それぞれの磁場発生装置43、44がほぼ閉じた磁気回路を形成するように磁極を配置することが好ましい。このような磁場発生装置43、44を設けることにより、各成膜ローラー39、40の対向側表面付近に磁力線が膨らんだ磁場の形成を促進することができ、その膨出部にプラズマが収束されやすくなるため、成膜効率を向上させることができる点で優れている。
また、成膜ローラー39及び成膜ローラー40にそれぞれ設けられた磁場発生装置43、44は、それぞれローラー軸方向に長いレーストラック状の磁極を備え、一方の磁場発生装置43と他方の磁場発生装置44とは向かい合う磁極が同一極性となるように磁極を配置することが好ましい。このような磁場発生装置43、44を設けることにより、それぞれの磁場発生装置43、44について、磁力線が対向するローラー側の磁場発生装置にまたがることなく、ローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場を容易に形成することができ、その磁場にプラズマを収束させることができため、ローラー幅方向に沿って巻き掛けられた幅広の基材1aを用いて効率的に蒸着膜であるガスバリアー層1bを形成することができる点で優れている。
成膜ローラー39及び成膜ローラー40としては適宜公知のローラーを用いることができる。このような成膜ローラー39及び40としては、より効率よく薄膜を形成せしめるという観点から、直径が同一のものを使うことが好ましい。また、このような成膜ローラー39及び40の直径としては、放電条件、チャンバーのスペース等の観点から、直径が300〜1000mmφの範囲、特に300〜700mmφの範囲が好ましい。成膜ローラーの直径が300mmφ以上であれば、プラズマ放電空間が小さくなることがないため生産性の劣化もなく、短時間でプラズマ放電の全熱量が基材1aにかかることを回避できることから、基材1aへのダメージを軽減でき好ましい。一方、成膜ローラーの直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。
このような製造装置31においては、基材1aの表面がそれぞれ対向するように、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)上に、基材1aが配置されている。このようにして基材1aを配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に放電を行ってプラズマを発生させる際に、一対の成膜ローラー間に存在する基材1aのそれぞれの表面を同時に成膜することが可能となる。すなわち、このような製造装置によれば、プラズマCVD法により、成膜ローラー39上にて基材1aの表面上に第1のガスバリアー層成分を堆積させ、さらに成膜ローラー40上にてガスバリアー層成分堆積させることができるため、基材1aの表面上にガスバリアー層を効率よく形成することが可能となる。
このような製造装置に用いる送り出しローラー32及び搬送ローラー33、34、35、36としては適宜公知のローラーを用いることができる。また、巻取りローラー45としても、基材1a上にガスバリアー層1bを形成したガスバリアー性フィルム1を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。
また、ガス供給管41及び真空ポンプとしては、原料ガス等を所定の速度で供給又は排出することが可能なものを適宜用いることができる。
また、ガス供給手段であるガス供給管41は、成膜ローラー39と成膜ローラー40との間の対向空間(放電領域;成膜ゾーン)の一方に設けることが好ましく、真空排気手段である真空ポンプ(図示せず)は、前記対向空間の他方に設けることが好ましい。このようにガス供給手段であるガス供給管41と、真空排気手段である真空ポンプを配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に効率良く成膜ガスを供給することができ、成膜効率を向上させることができる点で優れている。
さらに、プラズマ発生用電源42としては、適宜公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源42は、これに接続された成膜ローラー39と成膜ローラー40とに電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、前記一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、印加電力を100W〜10kWとすることができ、かつ交流の周波数を50Hz〜500kHzとすることが可能なものであることがより好ましい。また、磁場発生装置43、44としては適宜公知の磁場発生装置を用いることができる。さらに、基材1aとしては、本発明で用いられる基材の他に、ガスバリアー層1bをあらかじめ形成させたものを用いることができる。このように、基材1aとしてガスバリアー層1bをあらかじめ形成させたものを用いることにより、ガスバリアー層1bの膜厚を厚くすることも可能である。
このような図2に示す製造装置31を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバー内の圧力、成膜ローラーの直径、並びにフィルム(基材)の搬送速度を適宜調整することにより、本発明に係るガスバリアー層を製造することができる。すなわち、図2に示す製造装置31を用いて、成膜ガス(原料ガス等)を真空チャンバー内に供給しつつ、一対の成膜ローラー(成膜ローラー39及び40)間に放電を発生させることにより、前記成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー39上の基材1aの表面上及び成膜ローラー40上の基材1aの表面上に、ガスバリアー層1bがプラズマCVD法により形成される。この際、成膜ローラー39、40のローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場が形成して、磁場にプラズマを収束させる。このため、基材1aが、図2中の成膜ローラー39のA地点及び成膜ローラー40のB地点を通過する際に、ガスバリアー層で炭素分布曲線の極大値が形成される。これに対して、基材1aが、図2中の成膜ローラー39のC1及びC2地点、並びに成膜ローラー40のC3及びC4地点を通過する際に、ガスバリアー層で炭素分布曲線の極小値が形成される。このため、二つの成膜ローラーに対して、通常、五つの極値が生成する。また、ガスバリアー層の極値間の距離(炭素分布曲線の有する一つの極値及び該極値に隣接する極値における第1のガスバリアー層の膜厚方向におけるガスバリアー層の表面からの距離(L)の差の絶対値)は、成膜ローラー39、40の回転速度(基材の搬送速度)によって調節できる。なお、このような成膜に際しては、基材1aが送り出しローラー32や成膜ローラー39等により、それぞれ搬送されることにより、ロール・ツー・ロール方式の連続的な成膜プロセスにより基材1aの表面上にガスバリアー層1bが形成される。
前記ガス供給管41から対向空間に供給される成膜ガス(原料ガス等)としては、原料ガス、反応ガス、キャリアガス、放電ガスが単独又は2種以上を混合して用いることができる。ガスバリアー層1bの形成に用いる前記成膜ガス中の原料ガスとしては、形成するガスバリアー層1bの材質に応じて適宜選択して使用することができる。このような原料ガスとしては、例えば、ケイ素を含有する有機ケイ素化合物や炭素を含有する有機化合物ガスを用いることができる。このような有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラン(HMDS)、1,1,3,3−テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンが挙げられる。これらの有機ケイ素化合物の中でも、化合物の取り扱い性及び得られる第1のガスバリアー層のガスバリアー性等の特性の観点から、ヘキサメチルジシロキサン、11,3,3−テトラメチルジシロキサンが好ましい。これらの有機ケイ素化合物は、単独でも又は2種以上を組み合わせても使用することができる。また、炭素を含有する有機化合物ガスとしては、例えば、メタン、エタン、エチレン、アセチレンを例示することができる。これら有機ケイ素化合物ガスや有機化合物ガスは、ガスバリアー層1bの種類に応じて適切な原料ガスが選択される。
また、前記成膜ガスとしては、前記原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、前記原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、単独でも又は2種以上を組み合わせても使用することができ、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。
前記成膜ガスとしては、前記原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガス及び放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス;水素を用いることができる。
このような成膜ガスが原料ガスと反応ガスを含有する場合には、原料ガスと反応ガスの比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎないことで、形成されるガスバリアー層1bによって、優れたバリアー性や耐屈曲性を得ることができる点で優れている。また、前記成膜ガスが前記有機ケイ素化合物と酸素とを含有するものである場合には、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。
以下、前記成膜ガスとして、原料ガスとしてのヘキサメチルジシロキサン(有機ケイ素化合物、HMDSO、(CHSiO)と、反応ガスとしての酸素(O)を含有するものとを用い、ケイ素−酸素系の薄膜を製造する場合を例に挙げて、成膜ガス中の原料ガスと反応ガスとの好適な比率等について、より詳細に説明する。
原料ガスとしてのヘキサメチルジシロキサン(HMDSO、(CHSiO)と、反応ガスとしての酸素(O)と、を含有する成膜ガスをプラズマCVDにより反応させてケイ素−酸素系の薄膜を作製する場合、その成膜ガスにより下記反応式1で表されるような反応が起こり、二酸化ケイ素が生成する。
Figure 2014218012
このような反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまう(炭素分布曲線が存在しない)ため、上記条件(i)〜(iii)を全て満たすガスバリアー層を形成することができなくなってしまう。そのため、本発明において、ガスバリアー層を形成する際には、上記反応式1の反応が完全に進行してしまわないように、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少なくすることが好ましい。なお、実際のプラズマCVDチャンバー内の反応では、原料のヘキサメチルジシロキサンと反応ガスの酸素とは、ガス供給部から成膜領域へ供給されて成膜されるので、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる(例えば、CVDにより完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)を原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とする場合もある)。そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)の量であることが好ましい。このような比でヘキサメチルジシロキサン及び酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子がガスバリアー層中に取り込まれ、上記条件(i)〜(iii)を全て満たすガスバリアー層を形成することが可能となって、得られるガスバリアー性フィルムにおいて優れたガスバリアー性及び耐屈曲性を発揮させることが可能となる。なお、有機EL素子や太陽電池などのような透明性を必要とするデバイス用のフレキシブル基板への利用の観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。
また、真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5〜50Paの範囲とすることが好ましい。
また、このようなプラズマCVD法において、成膜ローラー39と成膜ローラー40との間に放電するために、プラズマ発生用電源42に接続された電極ドラム(本実施形態においては、成膜ローラー39及び40に設置されている)に印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるものであり一概に言えるものでないが、0.1〜10kWの範囲とすることが好ましい。このような印加電力が100W以上であれば、パーティクルが発生を十分に抑制することができ、他方、10kW以下であれば、成膜時に発生する熱量を抑えることができ、成膜時の基材表面の温度が上昇するのを抑制できる。そのため基材が熱負けすることなく、成膜時に皺が発生するのを防止できる点で優れている。
基材1aの搬送速度(ライン速度)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.25〜100m/minの範囲とすることが好ましく、0.5〜20m/minの範囲とすることがより好ましい。ライン速度が0.25m/min以上であれば、基材に熱に起因する皺の発生を効果的に抑制することができる。他方、100m/min以下であれば、生産性を損なうことなく、ガスバリアー層として十分な膜厚を確保することができる点で優れている。
上記したように、本実施形態のより好ましい態様としては、本発明に係るバリアー層を、図2に示す対向ロール電極を有するプラズマCVD装置(ロール・ツー・ロール方式)を用いたプラズマCVD法によって成膜することを特徴とするものである。これは、対向ロール電極を有するプラズマCVD装置(ロール・ツー・ロール方式)を用いて量産する場合に、可撓性(屈曲性)に優れ、機械的強度、特にロール・ツー・ロールでの搬送時の耐久性と、バリアー性能とが両立するガスバリアー層を効率よく製造することができるためである。このような製造装置は、太陽電池や電子部品などに使用される温度変化に対する耐久性が求められるガスバリアー性フィルムを、安価でかつ容易に量産することができる点でも優れている。
≪基材≫
本発明の封止フィルムは、基材として、樹脂フィルム又は樹脂シートが好ましく用いられ、無色透明な樹脂からなるフィルム又はシートがより好ましく用いられる。用いられる樹脂フィルムは、ガスバリアー層及び樹脂層を保持できるフィルムであれば材質、厚さ等に特に制限はなく、使用目的等に応じて適宜選択することができる。前記樹脂フィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸−マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。
本発明の封止フィルムを有機EL素子等の電子デバイスの基板として使用する場合は、前記基材は耐熱性を有する素材からなることが好ましい。具体的には、線膨張係数が15ppm/K以上100ppm/K以下で、かつガラス転移温度(Tg)が100℃以上300℃以下の基材が使用される。該基材は、電子部品用途、ディスプレイ用積層フィルムとしての必要条件を満たしている。即ち、これらの用途に本発明の封止フィルムを用いる場合、封止フィルムは、150℃以上の工程に曝されることがある。この場合、封止フィルムにおける基材の線膨張係数が100ppm/Kを超えると、封止フィルムを前記のような温度の工程に流す際に基板寸法が安定せず、熱膨張及び収縮に伴い、遮断性性能が劣化する不都合や、あるいは、熱工程に耐えられないという不具合が生じやすくなる。15ppm/K未満では、フィルムがガラスのように割れてしまいフレキシビリティが劣化する場合がある。
基材のTgや線膨張係数は、添加剤などによって調整することができる。基材として用いることができる熱可塑性樹脂のより好ましい具体例としては、例えば、ポリエチレンテレフタレート(PET:70℃)、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン株式会社製、ゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001−150584号公報に記載の化合物:162℃)、ポリイミド(例えば三菱ガス化学株式会社製、ネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF−PC:特開2000−227603号公報に記載の化合物:225℃)、脂環変性ポリカーボネート(IP−PC:特開2000−227603号公報に記載の化合物:205℃)、アクリロイル化合物(特開2002−80616号公報に記載の化合物:300℃以上)等が挙げられる(括弧内はTgを示す)。
本発明の封止フィルムを例えば偏光板と組み合わせて使用する場合、封止フィルムのガスバリアー層がセルの内側に向くように配置することが好ましい。より好ましくは、封止フィルムのガスバリアー層がセルの最も内側に(素子に隣接して)配置する。このとき、偏光板よりセルの内側に封止フィルムが配置されることになるため、封止フィルムのリターデーション値が重要になる。このような態様での封止フィルムの使用形態は、リターデーション値が10nm以下の基材フィルムを用いた封止フィルムと円偏光板(1/4波長板+(1/2波長板)+直線偏光板)とを積層して使用するか、あるいは1/4波長板として使用可能な、リターデーション値が100nm〜180nmの基材フィルムを用いた封止フィルムに直線偏光板を組み合わせて用いるのが好ましい。
リターデーション値が10nm以下の基材フィルムとしては、例えば、トリアセチルセルロース(富士フイルム株式会社製:フジタック(登録商標)など)、ポリカーボネート(帝人化成株式会社製:ピュアエース(登録商標)、WR−S5、株式会社カネカ製:エルメック(登録商標)など)、シクロオレフィンポリマー(JSR株式会社製:アートン(登録商標)、日本ゼオン株式会社製:ゼオノア(登録商標)など)、シクロオレフィンコポリマー(三井化学株式会社製:アペル(登録商標)(ペレット)、ポリプラスチック株式会社製:トパス(登録商標)(ペレット)など)、ポリアリレート(ユニチカ株式会社製:U100(ペレット)など)、透明ポリイミドフィルム(三菱ガス化学株式会社製:ネオプリム(登録商標)など)等を挙げることができる。ディスプレイ用途を勘案した場合、ポリカーボネート、シクロオレフィンポリマー、シクロオレフィンコポリマーが好ましい。
また、1/4波長板としては、上記のフィルムを適宜延伸することで所望のリターデーション値に調整したフィルムを用いることができる。
本発明の封止フィルムは、有機EL素子等の電子デバイスとして利用されることから、基材は透明であることが好ましい。すなわち、光線透過率が通常80%以上、好ましくは85%以上、さらに好ましくは90%以上である。光線透過率は、JISK105:1981に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率及び散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。
ただし、本発明の封止フィルムをディスプレイ用途に用いる場合であっても、観察側に設置しない場合などは必ずしも透明性が要求されない。したがって、このような場合は、基材として不透明な材料を用いることもできる。不透明な材料としては、例えば、ポリイミド、ポリアクリロニトリル、公知の液晶ポリマーなどが挙げられる。
本発明の封止フィルムに用いられる基材の厚さは、用途によって適宜選択されるため特に制限がないが、典型的には1〜800μmであり、好ましくは10〜200μmである。これらの樹脂フィルムは、透明導電層、プライマー層、クリアハードコート層等の機能層を有していても良い。機能層については、上述したもののほか、特開2006−289627号公報の段落番号「0036」〜「0038」に記載されているものを好ましく採用できる。
基材は、表面の平滑性が高いものが好ましい。表面の平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特にないが、実用上、0.01nm以上である。必要に応じて、基材の両面、少なくともガスバリアー層を設ける側を研摩し、平滑性を向上させておいてもよい。
また、上記に挙げた基材は、未延伸フィルムでもよく、延伸処理されたフィルムでもよい。
本発明で用いられる基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押出機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の流れ(縦軸)方向、又は基材の流れ方向と直角(横軸)方向に延伸することにより延伸された基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2〜10倍が好ましい。
《機能素子の封止》
本発明の封止フィルムを用いて封止する機能素子について説明する。
機能素子とは、具体的には有機EL素子や太陽電池素子等のフレキシブル電子デバイスをいう。特に有機EL素子の封止フィルムとして好適に用いられるため、有機EL素子の封止を例にとって説明する。
〔有機EL素子の構成〕
本発明に係る有機EL素子は、種々の構成を採り得るが、一例を図3に示す。
図3では有機EL素子に用いる基板として、樹脂基板を用いる場合について説明しているが、ガラス等の基板であってもよい。
本発明に係る有機EL素子100は、樹脂基板113上に設けられており、樹脂基板113側から順に、第一電極(透明電極)101、有機材料等を用いて構成された有機機能層(発光機能層)103、及び第二電極(対向電極)105aをこの順に積層して構成されている。第一電極101(電極層101b)の端部には、取り出し電極116が設けられている。第一電極101と外部電源(図示略)とは、取り出し電極116を介して、電気的に接続される。有機EL素子100は、発生させた光(発光光h)を、少なくとも樹脂基板113側から取り出すように構成されている。
また、有機EL素子100の層構造が限定されることはなく、一般的な層構造であって良い。ここでは、第一電極101がアノード(すなわち陽極)として機能し、第二電極105aがカソード(すなわち陰極)として機能することとする。この場合、例えば、有機機能層103は、アノードである第一電極101側から順に正孔注入層103a/正孔輸送層103b/発光層103c/電子輸送層103d/電子注入層103eを積層した構成が例示されるが、このうち、少なくとも有機材料を用いて構成された発光層103cを有することが必須である。正孔注入層103a及び正孔輸送層103bは、正孔輸送注入層として設けられても良い。電子輸送層103d及び電子注入層103eは、電子輸送注入層として設けられても良い。また、これらの有機機能層103のうち、例えば、電子注入層103eは無機材料で構成されている場合もある。
また、有機機能層103は、これらの層の他にも正孔阻止層や電子阻止層等が必要に応じて必要箇所に積層されていても良い。さらに、発光層103cは、各波長領域の発光光を発生させる各色発光層を有し、これらの各色発光層を、非発光性の中間層を介して積層させた構造としても良い。中間層は、正孔阻止層、電子阻止層として機能しても良い。さらに、カソードである第二電極105aも、必要に応じた積層構造であっても良い。このような構成において、第一電極101と第二電極105aとで有機機能層103が挟持された部分のみが、有機EL素子100における発光領域となる。
また、以上のような層構成においては、第一電極101の低抵抗化を図ることを目的とし、第一電極101の電極層101bに接して補助電極115が設けられていても良い。
以上のような構成の有機EL素子100は、有機材料等を用いて構成された有機機能層103の劣化を防止することを目的として、樹脂基板113上において前述する封止フィルム107で封止されている。この封止フィルム107は接着剤として機能する本発明に係る樹脂層を介して樹脂基板113側に固定されている。ただし、第一電極101(取り出し電極116)及び第二電極105aの端子部分は、樹脂基板113上において有機機能層103によって互いに絶縁性を保った状態で封止フィルム107から露出させた状態で設けられていることとする。
〔有機EL素子の製造方法〕
本発明に用いられる有機EL素子の製造方法は、樹脂基板上に第一電極、有機機能層及び第二電極を積層して形成する積層工程を有することを特徴とする。
ここでは、一例として、図3に示す有機EL素子100の製造方法を説明する。
(積層工程)
本発明に用いられる有機EL素子の製造方法では、樹脂基板113上に、第一電極101、有機機能層103及び第二電極105aを積層して形成する工程(積層工程)を行う。
まず、樹脂基板113を準備し、樹脂基板113上に、例えば、窒素原子を含んだ含窒素化合物からなる下地層101aを、1μm以下、好ましくは10〜100nmの範囲内の層厚になるように蒸着法等の適宜の方法により形成する。
次に、銀(又は銀を主成分とする合金)からなる電極層101bを、12nm以下、好ましくは4〜9nmの層厚になるように、蒸着法等の適宜の方法により下地層101a上に形成し、アノードとなる第一電極101を作製する。同時に、第一電極101端部に、外部電源と接続される取り出し電極116を蒸着法等の適宜の方法に形成する。
次に、この上に、正孔注入層103a、正孔輸送層103b、発光層103c、電子輸送層103d、電子注入層103eの順に積層し、有機機能層103を形成する。
これらの各層の形成は、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な層が得られやすく、かつ、ピンホールが生成しにくい等の点から、真空蒸着法又はスピンコート法が特に好ましい。更に、層ごとに異なる形成法を適用しても良い。これらの各層の形成に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50〜450℃、真空度1×10−6〜1×10−2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、層厚0.1〜5μmの範囲内で、各条件を適宜選択することが望ましい。
以上のようにして有機機能層103を形成した後、この上部にカソードとなる第二電極105aを、蒸着法やスパッタ法などの適宜の形成法によって形成する。この際、第二電極105aは、有機機能層103によって第一電極101に対して絶縁状態を保ちつつ、有機機能層103の上方から樹脂基板113の周縁に端子部分を引き出した形状にパターン形成する。
以下、上述した有機EL素子100を構成するための主要各層の詳細とその製造方法について説明する。
(樹脂基板)
樹脂基板113は基本的に、支持体としての樹脂基材と、屈折率が1.4〜1.7の範囲内の1層以上のガスバリアー層とで、構成されていることが好ましい。
(1)樹脂基材
樹脂基材は、従来公知の樹脂フィルム基材を特に制限なく使用できる。本発明で好ましく用いられる樹脂基材は、有機EL素子に必要な耐湿性/耐気体透過性等のガスバリアー性能を有することが好ましい。
本発明において、有機EL素子100の樹脂基板113側が発光面となる場合には、樹脂基材には可視光に対して透光性を有する材料が用いられる。この場合、その光透過率は、70%以上であることが好ましく、75%以上であることがより好ましく、80%以上であることが更に好ましい。
また、樹脂基材は可撓性を有するのが好ましい。ここでいう「可撓性」とは、φ(直径)50mmロールに巻き付け、一定の張力で巻取る前後で割れ等が生じることのない基材をいい、より好ましくはφ30mmロールに巻き付け可能な基材をいう。
本発明において、樹脂基材は、従来公知の基材であり、例えば、アクリル酸エステル、メタクリル酸エステル、PMMA等のアクリル樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホネート、ポリイミド、ポリエーテルイミド、ポリオレフィン、エポキシ樹脂等の各樹脂フィルムが挙げられ、更に、シクロオレフィン系やセルロースエステル系のものも用いることができる。また、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila−DEC、チッソ株式会社製)、更には前記樹脂材料を2層以上積層して成る樹脂フィルム等を挙げることができる。
コストや入手容易性の観点から、PET、PEN、PC、アクリル樹脂等が好ましく用いられる。
中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムが好ましい。
更に熱膨張時の収縮を最大限抑えるため、熱アニール等の処理を行った低熱収処理品が最も好ましい。
樹脂基材の厚さは10〜500μmが好ましく、より好ましくは20〜250μmであり、さらに好ましくは30〜150μmである。樹脂基材の厚さが10〜500μmの範囲にあることで、安定したガスバリアー性を得られ、また、ロール・ツー・ロール方式の搬送に適したものになる。
(2)ガスバリアー層
(2.1)特性及び形成方法
本発明において、樹脂基板113の樹脂基材には、屈折率が1.4〜1.7の範囲内の1層以上のガスバリアー層(低屈折率層)が設けられていることが好ましい。このようなガスバリアー層としては、公知の素材を特に制限なく使用でき、無機物又は有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜であっても良い。ガスバリアー層は、JIS−K−7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が0.01g/(m・24時間)以下のガスバリアー性フィルム(ガスバリアー膜等ともいう)であることが好ましく、また、JIS−K−7126−1987に準拠した方法で測定された酸素透過度が1×10−3ml/(m・24時間・atm)以下、水蒸気透過度が1×10−5g/(m・24時間)以下の高ガスバリアー性フィルムであることがより好ましい。
このようなガスバリアー層を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であれば良く、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に、当該ガスバリアー層の脆弱性を改良するため、これら無機層に、応力緩和層として有機材料からなる層(有機層)を積層する構造としても良い。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
ガスバリアー層の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載の大気圧プラズマ重合法によるものが好ましい。
(2.2)無機前駆体化合物
また、ガスバリアー層は、樹脂基材上に、少なくとも1層の無機前駆体化合物を含有する塗布液が塗布されることにより形成されるものであっても良い。
塗布方法としては、任意の適切な方法が採用され得る。具体例としては、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
塗布厚さは、目的に応じて適切に設定され得る。例えば、塗布厚さは、乾燥後の層厚が好ましくは0.001〜10μm程度、さらに好ましくは0.01〜10μm程度、最も好ましくは0.03〜1μm程度となるように設定され得る。
本発明に用いられる無機前駆体化合物とは、特定の雰囲気下で真空紫外線照射によって金属酸化物や金属窒化物や金属酸化窒化物を形成しうる化合物であれば特に限定されないが、本発明の封止フィルムの製造方法に適する化合物としては、特開平8−112879号公報に記載されているように比較的低温で改質処理され得る化合物が好ましい。
具体的には、Si−O−Si結合を有するポリシロキサン(ポリシルセスキオキサンを含む)、Si−N−Si結合を有するポリシラザン、Si−O−Si結合とSi−N−Si結合の両方を含むポリシロキサザン等を上げることができる。これらは2種以上を混合して使用することができる。また、異なる化合物を逐次積層したり、同時積層したりしても使用可能である。
(第一電極(透明電極))
第一電極は、通常有機EL素子に使用可能な全ての電極を使用することができる。具体的には、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/同混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO、SnO等の酸化物半導体等が挙げられる。
本発明においては、第一電極が透明電極であることが好ましく、更には透明金属電極であることが好ましい。
例えば、図3に示すとおり、第一電極101は、樹脂基板113側から、下地層101aと、この上部に成膜された電極層101bとを順に積層した2層構造である。このうち、電極層101bは、例えば、銀又は銀を主成分とする合金を用いて構成された層であり、下地層101aは、例えば、窒素原子を含んだ化合物を用いて構成された層である。
なお、第一電極101の透明とは、波長550nmでの光透過率が50%以上であることをいう。また、電極層101bにおいて主成分とは、電極層101b中の含有量が98質量%以上であることをいう。
(1)下地層
下地層101aは、電極層101bの樹脂基板113側に設けられる層である。下地層101aを構成する材料としては、特に限定されるものではなく、銀又は銀を主成分とする合金からなる電極層101bの成膜に際し、銀の凝集を抑制できるものであれば良く、例えば、窒素原子を含んだ含窒素化合物等が挙げられる。
下地層101aが、低屈折率材料(屈折率1.7未満)からなる場合、その膜厚の上限としては、50nm未満である必要があり、30nm未満であることが好ましく、10nm未満であることがさらに好ましく、5nm未満であることが特に好ましい。膜厚を50nm未満とすることにより、光学的ロスを最小限に抑えられる。一方、膜厚の下限としては、0.05nm以上が必要であり、0.1nm以上であることが好ましく、0.3nm以上であることが特に好ましい。膜厚を0.05nm以上とすることにより、下地層101aの成膜を均一とし、その効果(銀の凝集抑制)を均一とすることができる。
下地層101aが、高屈折率材料(屈折率1.7以上)からなる場合、その膜厚の上限としては特に制限はなく、膜厚の下限としては上記低屈折率材料からなる場合と同様である。
ただし、単なる下地層101aの機能としては、均一な成膜が得られる必要膜厚で形成されれば十分である。
下地層101aの成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法等のドライプロセスを用いる方法等が挙げられる。中でも、蒸着法が好ましく適用される。
下地層101aを構成する窒素原子を含んだ化合物としては、分子内に窒素原子を含んでいる化合物であれば特に限定されないが、窒素原子をヘテロ原子とした複素環を有する化合物であることが好ましい。窒素原子をヘテロ原子とした複素環としては、アジリジン、アジリン、アゼチジン、アゼト、アゾリジン、アゾール、アジナン、ピリジン、アゼパン、アゼピン、イミダゾール、ピラゾール、オキサゾール、チアゾール、イミダゾリン、ピラジン、モルホリン、チアジン、インドール、イソインドール、ベンゾイミダゾール、プリン、キノリン、イソキノリン、キノキサリン、シンノリン、プテリジン、アクリジン、カルバゾール、ベンゾ−C−シンノリン、ポルフィリン、クロリン、コリン等が挙げられる。
(2)電極層
電極層101bは、銀又は銀を主成分とした合金を用いて構成された層であって、下地層101a上に成膜された層である。
このような電極層101bの成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法等のウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法等のドライプロセスを用いる方法等が挙げられる。中でも、蒸着法が好ましく適用される。
また、電極層101bは、下地層101a上に成膜されることにより、電極層101b成膜後の高温アニール処理等がなくても十分に導電性を有することを特徴とするが、必要に応じて、成膜後に高温アニール処理等を行ったものであっても良い。
電極層101bを構成する銀(Ag)を主成分とする合金としては、例えば、銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)等が挙げられる。
以上のような電極層101bは、銀又は銀を主成分とした合金の層が、必要に応じて複数の層に分けて積層された構成であっても良い。
さらに、この電極層101bは、膜厚が4〜9nmの範囲内にあることが好ましい。膜厚が9nmより薄い場合には、層の吸収成分又は反射成分が少なく、第一電極101の透過率が大きくなる。また、膜厚が4nmより厚い場合には、層の導電性を十分に確保することができる。
なお、以上のような下地層101aとこの上部に成膜された電極層101bとからなる積層構造の第一電極101は、電極層101bの上部が保護膜で覆われていたり、別の電極層が積層されていたりしても良い。この場合、第一電極101の光透過性を損なうことのないように、保護膜及び別の電極層が光透過性を有することが好ましい。
(3)第一電極(透明電極)の効果
以上のような構成の第一電極101は、例えば、窒素原子を含んだ化合物を用いて構成された下地層101a上に、銀又は銀を主成分とする合金からなる電極層101bを設けた構成である。これにより、下地層101aの上部に電極層101bを成膜する際には、電極層101bを構成する銀原子が下地層101aを構成する窒素原子を含んだ化合物と相互作用し、銀原子の下地層101a表面においての拡散距離が減少し、銀の凝集が抑えられる。
ここで、一般的に銀を主成分とした電極層101bの成膜においては、核成長型(Volumer−Weber:VW型)で薄膜成長するため、銀粒子が島状に孤立しやすく、膜厚が薄いときは導電性を得ることが困難であり、シート抵抗値が高くなる。したがって、導電性を確保するには膜厚を厚くする必要があるが、膜厚を厚くすると光透過率が下がるため、第一電極としては不適であった。
しかしながら、第一電極101によれば、上述したように下地層101a上において銀の凝集が抑えられるため、銀又は銀を主成分とする合金からなる電極層101bの成膜においては、単層成長型(Frank−van der Merwe:FM型)で薄膜成長するようになる。
また、ここで、第一電極101の透明とは、波長550nmでの光透過率が50%以上であることをいうが、下地層101aとして用いられる上述した各材料は、銀又は銀を主成分とする合金からなる電極層101bと比較して十分に光透過性の良好な膜である。一方、第一電極101の導電性は、主に、電極層101bによって確保される。したがって、上述のように、銀又は銀を主成分とする合金からなる電極層101bが、より薄い膜厚で導電性が確保されたものとなることにより、第一電極101の導電性の向上と光透過性の向上との両立を図ることが可能になるのである。
(有機機能層(発光機能層))
(1)発光層
有機機能層103には少なくとも発光層103cが含まれる。
本発明に用いられる発光層103cには、発光材料としてリン光発光化合物が含有されている。なお、発光材料として、蛍光材料が使用されても良いし、リン光発光化合物と蛍光材料とを併用しても良い。
この発光層103cは、電極又は電子輸送層103dから注入された電子と、正孔輸送層103bから注入された正孔とが再結合して発光する層であり、発光する部分は発光層103cの層内であっても発光層103cと隣接する層との界面であっても良い。
このような発光層103cとしては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あっても良い。この場合、各発光層103c間には、非発光性の中間層(図示略)を有していることが好ましい。
発光層103cの膜厚の総和は1〜100nmの範囲内にあることが好ましく、より低い駆動電圧を得ることができることから1〜30nmの範囲内であることがより好ましい。
なお、発光層103cの膜厚の総和とは、発光層103c間に非発光性の中間層が存在する場合には、当該中間層も含む膜厚である。
複数層を積層した構成の発光層103cの場合、個々の発光層の膜厚としては、1〜50nmの範囲内に調整することが好ましく、更に、1〜20nmの範囲内に調整することがより好ましい。積層された複数の発光層が、青、緑、赤のそれぞれの発光色に対応する場合、青、緑、赤の各発光層の膜厚の関係については、特に制限はない。
以上のような発光層103cは、公知の発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜形成方法により成膜して形成することができる。
また、発光層103cは、複数の発光材料を混合しても良い。
発光層103cの構成として、ホスト化合物(発光ホスト等ともいう)、発光材料(発光ドーパントともいう)を含有し、発光材料より発光させることが好ましい。
(2)注入層(正孔注入層、電子注入層)
注入層とは、駆動電圧低下や発光輝度向上のために電極と発光層103cの間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層103aと電子注入層103eとがある。
注入層は、必要に応じて設けることができる。正孔注入層103aであれば、アノードと発光層103c又は正孔輸送層103bの間、電子注入層103eであればカソードと発光層103c又は電子輸送層103dとの間に存在させても良い。
正孔注入層103aは、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニン層、酸化バナジウムに代表される酸化物層、アモルファスカーボン層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子層等が挙げられる。
電子注入層103eは、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属層、フッ化カリウムに代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデンに代表される酸化物層等が挙げられる。本発明に用いられる電子注入層103eはごく薄い膜であることが望ましく、素材にもよるがその膜厚は1nm〜10μmの範囲が好ましい。
(3)正孔輸送層
正孔輸送層103bは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層103a、電子阻止層も正孔輸送層103bに含まれる。正孔輸送層103bは単層又は複数層設けることができる。
正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであっても良い。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、さらには米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが三つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
また、特開平11−251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているようないわゆる、p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。
正孔輸送層103bは、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層103bの膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層103bは、上記材料の1種又は2種以上からなる1層構造であっても良い。
また、正孔輸送層103bの材料に不純物をドープしてp性を高くすることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
このように、正孔輸送層103bのp性を高くすると、より低消費電力の素子を作製することができるため好ましい。
(4)電子輸送層
電子輸送層103dは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層103e、正孔阻止層(図示略)も電子輸送層103dに含まれる。電子輸送層103dは単層構造又は複数層の積層構造として設けることができる。
単層構造の電子輸送層103d、及び、積層構造の電子輸送層103dにおいて、発光層103cに隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層103cに伝達する機能を有していれば良い。このような材料としては従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層103dの材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層103dの材料として用いることができる。
その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送層103dの材料として好ましく用いることができる。また、発光層103cの材料としても例示されるジスチリルピラジン誘導体も電子輸送層103dの材料として用いることができるし、正孔注入層103a、正孔輸送層103bと同様にn型−Si、n型−SiC等の無機半導体も電子輸送層103dの材料として用いることができる。
電子輸送層103dは、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層103dの膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層103dは上記材料の1種又は2種以上からなる1層構造であっても良い。
また、電子輸送層103dに不純物をドープし、n性を高くすることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。さらに電子輸送層103dには、カリウムやカリウム化合物などを含有させることが好ましい。カリウム化合物としては、例えば、フッ化カリウム等を用いることができる。このように電子輸送層103dのn性を高くすると、より低消費電力の素子を作製することができる。
また電子輸送層103dの材料(電子輸送性化合物)として、上述した下地層101aを構成する材料と同様のものを用いても良い。これは、電子注入層103eを兼ねた電子輸送層103dであっても同様であり、上述した下地層101aを構成する材料と同様のものを用いても良い。
(5)阻止層(正孔阻止層、電子阻止層)
阻止層は、有機機能層103として、上記各機能層の他に、更に設けられていても良い。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
正孔阻止層とは、広い意味では、電子輸送層103dの機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層103dの構成を必要に応じて、本発明に用いられる正孔阻止層として用いることができる。正孔阻止層は、発光層103cに隣接して設けられていることが好ましい。
一方、電子阻止層とは、広い意味では、正孔輸送層103bの機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層103bの構成を必要に応じて電子阻止層として用いることができる。本発明に用いられる正孔阻止層の膜厚としては、好ましくは3〜100nmであり、さらに好ましくは5〜30nmである。
(第二電極(対向電極))
第二電極105aは、有機機能層103に電子を供給するカソードとして機能する電極膜であり、金属、合金、有機又は無機の導電性化合物、及びこれらの混合物が用いられる。具体的には、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO、SnO等の酸化物半導体等が挙げられる。
第二電極105aは、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。また、第二電極105aとしてのシート抵抗は、数百Ω/□以下が好ましく、膜厚は通常5nm〜5μmの範囲内、好ましくは5〜200nmの範囲内で選ばれる。
なお、この有機EL素子100が、第二電極105a側からも発光光hを取り出すものである場合であれば、上述した導電性材料のうち光透過性の良好な導電性材料を選択して第二電極105aを構成すれば良い。
(取り出し電極)
取り出し電極116は、第一電極101と外部電源とを電気的に接続するものであって、その材料としては特に限定されるものではなく公知の素材を好適に使用できるが、例えば、3層構造からなるMAM電極(Mo/Al・Nd合金/Mo)等の金属膜を用いることができる。
(補助電極)
補助電極115は、第一電極101の抵抗を下げる目的で設けるものであって、第一電極101の電極層101bに接して設けられる。補助電極115を形成する材料は、金、白金、銀、銅、アルミニウム等の抵抗が低い金属が好ましい。これらの金属は光透過性が低いため、光取り出し面113aからの発光光hの取り出しの影響のない範囲でパターン形成される。
このような補助電極115の形成方法としては、蒸着法、スパッタリング法、印刷法、インクジェット法、エアロゾルジェット法等が挙げられる。補助電極115の線幅は、光を取り出す開口率の観点から50μm以下であることが好ましく、補助電極115の厚さは、導電性の観点から1μm以上であることが好ましい。
(封止フィルム)
本発明の封止フィルム107は、有機EL素子100をラミネートするものであって、図示例のように、接着剤として機能する樹脂層によって樹脂基板113側に固定されるものである。このような封止フィルム107は、有機EL素子100における第一電極101及び第二電極105aの端子部分を露出させ、少なくとも有機機能層103を覆う状態で設けられている。また、封止フィルム107に電極を設け、有機EL素子100の第一電極101及び第二電極105aの端子部分と、この電極とを導通させるように構成されていても良い。
封止フィルム107による封止は、上記有機EL素子100を酸素及び水分濃度が一定の環境下(例えば、酸素濃度10ppm以下、水分濃度10ppm以下のグローブボックス内等)に置き、減圧下(1×10−3MPa以下)で吸引しながら加重をかけてプレスして、封止フィルムの樹脂層109によって当該有機EL素子100をラミネートし、その後、熱風循環式オーブン、赤外線ヒーター、ヒートガン、高周波誘導加熱装置、ヒートツールの圧着による加熱等によって、樹脂層109を熱硬化することによって行われる。
本発明の封止フィルムは極めて良好な低温硬化性を有しており、硬化温度の上限は140℃以下が好ましく、120℃以下がより好ましく、110℃以下が更に好ましい。一方、硬化物の接着性を確保するという観点から、硬化温度の下限は50℃以上が好ましく、55℃以上がより好ましい。また、硬化時間の上限は120分以下が好ましく、90分以下がより好ましく、60分以下が更に好ましい。一方、硬化物の硬化を確実に行うという観点から、硬化時間の下限は20分以上が好ましく、30分以上がより好ましい。これによって、有機EL素子の熱劣化を極めて小さくすることができる。
(保護膜、保護板)
なお、ここでの図示は省略したが、樹脂基板113との間に有機EL素子100及び封止フィルム107を挟んで保護膜又は保護板を設けても良い。この保護膜又は保護板は、有機EL素子100を機械的に保護するためのものであり、特に封止フィルム107が封止膜である場合には、有機EL素子100に対する機械的な保護が十分ではないため、このような保護膜又は保護板を設けることが好ましい。
以上のような保護膜又は保護板は、ガラス板、ポリマー板、これよりも薄型のポリマーフィルム、金属板、これよりも薄型の金属フィルム、又はポリマー材料膜や金属材料膜が適用される。このうち、特に、軽量かつ素子の薄膜化という観点からポリマーフィルムを用いることが好ましい。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
また、下記操作において、特記しない限り、操作及び物性等の測定は室温(20〜25℃)/相対湿度40〜50%の条件で行う。
「封止フィルム1の製造」
〔ガスバリアー層A10の形成:以下、ガスバリアー層はバリアー層という。〕
(ポリシラザン含有塗布液の調製)
無触媒のパーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NN120−20)と、アミン触媒(N,N,N′,N′−テトラメチル−1,6−ジアミノヘキサン(TMDAH))5質量%を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NAX120−20)とを、4:1の割合で混合し、さらにジブチルエーテルと2,2,4−トリメチルペンタンとの質量比が65:35となるように混合した溶媒で、塗布液の固形分が5質量%になるように、塗布液を希釈調製した。
上記で得られた塗布液を、スピンコーターにて株式会社きもと製のクリアハードコートを施したPET基材(125μm厚)上に厚さが300nmになるよう成膜し、2分間放置した後、80℃のホットプレートで1分間加熱処理を行い、ポリシラザン塗膜を形成した。
ポリシラザン塗膜を形成した後、下記の方法に従って、6000mJ/cmの真空紫外線照射処理を施してバリアー層A10を形成した。
〈真空紫外線照射条件・照射エネルギーの測定〉
真空紫外線照射は、図4に模式図で示した装置を用いて行った。
図4において、201は装置チャンバーであり、図示しないガス供給口から内部に窒素と酸素とを適量供給し、図示しないガス排出口から排気することで、チャンバー内部から実質的に水蒸気を除去し、酸素濃度を所定の濃度に維持することができる。202は172nmの真空紫外線を照射する二重管構造を有するXeエキシマランプ、203は外部電極を兼ねるエキシマランプのホルダーである。204は試料ステージである。試料ステージ204は、図示しない移動手段により装置チャンバー201内を水平に所定の速度で往復移動することができる。また、試料ステージ204は図示しない加熱手段により、所定の温度に維持することができる。205はポリシラザン塗膜が形成された試料である。試料ステージが水平移動する際、試料の塗布層表面と、エキシマランプ管面との最短距離が3mmとなるように試料ステージの高さが調整されている。206は遮光板であり、Xeエキシマランプ202のエージング中に試料の塗布層に真空紫外光が照射されないようにしている。
真空紫外線照射工程で塗膜表面に照射されるエネルギーは、浜松ホトニクス株式会社製の紫外線積算光量計:C8026/H8025 UV POWER METERを用い、172nmのセンサーヘッドを用いて測定した。測定に際しては、Xeエキシマランプ管面とセンサーヘッドの測定面との最短距離が、3mmとなるようにセンサーヘッドを試料ステージ24中央に設置し、かつ、装置チャンバー21内の雰囲気が、真空紫外線照射工程と同一の酸素濃度となるように窒素と酸素とを供給し、試料ステージ24を0.5m/minの速度(図3のV)で移動させて測定を行った。測定に先立ち、Xeエキシマランプ12の照度を安定させるため、Xeエキシマランプ点灯後に10分間のエージング時間を設け、その後試料ステージを移動させて測定を開始した。
この測定で得られた照射エネルギーを元に、試料ステージの移動速度を調整することで6000mJ/cmの照射エネルギーとなるように調整した。なお、真空紫外線照射に際しては、照射エネルギー測定時と同様に、10分間のエージング後に行った。
[樹脂層の形成]
(ブロックイソシアネート1含有塗布液の調製)
液状ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「828EL」)30質量部、オルソトルイジンジグリシジルアミン(日本化薬社製「GOT」)20質量部、アクリル系コアシェル樹脂(日本ゼオン社製「F351」)8質量部、固体分散型硬化剤(味の素ファインテクノ社製「VDH−J」)18質量部、固体分散型硬化剤(味の素ファインテクノ社製「PN40−J」)2質量部、ビフェニルアラルキル型エポキシ樹脂(日本化薬社製「NC3000」)の70質量%固形分のメチルエチルケトン(MEKという。)溶液85質量部、フェノキシ樹脂(ジャパンエポキシレジン社製「YX6954」)の35質量%MEK溶液60質量部をアジホモミキサーロボミックス型混合撹拌機(プライミクス社製)にて混合した混合物に、ブロックイソシアネート1(1,6−ヘキサメチレンジイソシアネートをメチルエチルケトオキシムでブロックした化合物)3質量部と、溶媒(MEK)15質量部、溶媒(アセトン)20質量部とを混合し、高速回転ミキサーで均一に分散して、ワニス状のブロックイソシアネート1含有塗布液を得た。該ブロックイソシアネート1含有塗布液を前記で得たバリアー層A10上に、乾燥後の熱硬化性樹脂層の厚さが40μmになるよう、アプリケーターにて均一に塗布し、60〜80℃で6分間乾燥させることにより本発明の封止フィルム1を得た。
「封止フィルム2の製造」
ブロックイソシアネートをブロックイソシアネート2(1,6−ヘキサメチレンジイソシアネートをジメチルピラゾールでブロックした化合物)に変更する以外は「封止フィルム1の製造」と全く同様にして本発明の封止フィルム2を得た。
「封止フィルム3の製造」
ブロックイソシアネートをブロックイソシアネート3(1,4−シクロヘキサンジイソシアネートを2−フェニルイミダゾールでブロックした化合物)に変更する以外は「封止フィルム1の製造」と全く同様にして本発明の封止フィルム3を得た。
「封止フィルム4の製造」
〔バリアー層A11の形成〕
バリアー層の厚さを150nmに変更する以外は、〔バリアー層A10の形成〕と全く同様にして、バリアー層A11を形成した。
〔バリアー層A21の形成〕
パーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NN120−20)をジブチルエーテルで5質量%濃度まで希釈した後、アミン触媒としてN,N,N′,N′−テトラメチル−1,6−ジアミノヘキサン(TMDAH)をパーヒドロポリシラザンに対して1質量%となる量で加え、さらにALCH(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレート)をパーヒドロポリシラザンに対して1質量%となる量で加え、塗布液を調製した。該塗布液を用いて前記で得たバリアー層A11の上に厚さ150nmのポリシラザン塗膜を成膜し、その後、露点−30℃にて6000mJ/cmの照射量で、上記第バリアー層A10の形成(塗布法)と同様の方法で真空紫外線照射処理を施して、バリアー層A21を形成した。
前記バリアー層A21上に前記「封止フィルム1の製造」で得たブロックイソシアネート1含有塗布液を乾燥後の熱硬化性樹脂層の厚さが40μmになるよう、アプリケーターにて均一に塗布し、60〜80℃で6分間乾燥させることにより本発明の封止フィルム4を得た。
「封止フィルム5の製造」
ブロックイソシアネートをブロックイソシアネート3に変更する以外は「封止フィルム4の製造」と全く同様にして本発明の封止フィルム5を得た。
「封止フィルム6の製造」
〔バリアー層C11の形成(スパッタ法)〕
ハードコート層(中間層)付透明樹脂基材(きもと株式会社製、クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム)を、株式会社アルバック製スパッタ装置の真空槽内にセットし、1×10−4Pa台まで真空引きし、放電ガスとしてアルゴンを分圧で0.5Pa導入した。雰囲気圧力が安定したところで放電を開始し酸化ケイ素(SiO)ターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開きフィルムへの酸化ケイ素膜(SiO)形成を開始した。150nmの膜が堆積したところでシャッターを閉じて成膜を終了し、バリアー層C11を形成した。
〔バリアー層A11の形成〕
バリアー層の厚さを150nmに変更する以外は、〔バリアー層A10の形成〕と全く同様にして、バリアー層C11の上にバリアー層A11を形成した。
前記バリアー層A11上に前記「封止フィルム1の製造」で得たブロックイソシアネート1含有塗布液を乾燥後の熱硬化性樹脂層の厚さが40μmになるよう、アプリケーターにて均一に塗布し、60〜80℃で6分間乾燥させることにより本発明の封止フィルム6を得た。
「封止フィルム7の製造」
〔バリアー層のC21の形成(プラズマCVD法)〕
株式会社きもと製のクリアハードコートを施したPET基材(125μm厚)を、図2に示されるような製造装置31にセットして、搬送させた。次いで、成膜ローラー39と成膜ローラー40との間に磁場を印加するとともに、成膜ローラー39と成膜ローラー40にそれぞれ電力を供給して、成膜ローラー39と成膜ローラー40との間に放電してプラズマを発生させた。次いで、形成された放電領域に、成膜ガス(原料ガスとしてヘキサメチルジシロキサン(HMDSO)と反応ガスとして酸素ガス(放電ガスとしても機能する)との混合ガスを供給し、基材2上に、プラズマCVD法にて厚さ150nmのバリアー層C21を形成した。
成膜条件は、以下のとおりとした。
(成膜条件)
原料ガスの供給量:50sccm(Standard Cubic Centimeter per Minute、0℃、1気圧基準)
酸素ガスの供給量:500sccm(0℃、1気圧基準)
真空チャンバー内の真空度:3Pa
プラズマ発生用電源からの印加電力:0.8kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度:1.0m/min。
〔バリアー層A11の形成〕
前記で得られたバリアー層C21の上に、前記と同様にしてバリアー層A11を形成した。
前記バリアー層A11上に前記「封止フィルム1の製造」で得たブロックイソシアネート1含有塗布液を乾燥後の熱硬化性樹脂層の厚さが40μmになるよう、アプリケーターにて均一に塗布し、60〜80℃で6分間乾燥させることにより本発明の封止フィルム7を得た。
「封止フィルム8の製造」
バリアー層A11をバリアー層A21に変更する以外は「封止フィルム7の製造」と全く同様にして本発明の封止フィルム8を得た。
「封止フィルム9の製造」
〔バリアー層のC12の形成(スパッタ法)〕
バリアー層の厚さを100nmに変更する以外は、〔バリアー層C11の形成〕と全く同様にして、バリアー層C12を形成した。
〔バリアー層A12の形成〕
バリアー層の厚さを100nmに変更する以外は、〔バリアー層A11の形成〕と全く同様にして、バリアー層C12の上にバリアー層A12を形成した。
〔バリアー層A22の形成〕
バリアー層の厚さを100nmに変更する以外は、〔バリアー層A21の形成〕と全く同様にして、バリアー層A12の上にバリアー層A22を形成した。
前記バリアー層A22上に前記「封止フィルム1の製造」で得たブロックイソシアネート含有塗布液を乾燥後の熱硬化性樹脂層の厚さが40μmになるよう、アプリケーターにて均一に塗布し、60〜80℃で6分間乾燥させることにより本発明の封止フィルム9を得た。
「封止フィルム10の製造」
〔バリアー層のC22の形成(プラズマCVD法)〕
バリアー層の厚さを100nmに変更する以外は、〔バリアー層C21の形成〕と全く同様にして、バリアー層C22を形成した。
バリアー層C12を前記バリアー層C22に、かつ、ブロックイソシアネート1をブロックイソシアネート3に変更する以外は「封止フィルム9の製造」と全く同様にして本発明の封止フィルム10を得た。
「封止フィルム11の製造」
〔バリアー層C10の形成〕
バリアー層の厚さを300nmに変更する以外は、〔バリアー層C11の形成〕と全く同様にして、バリアー層C10を形成した。
バリアー層A10を前記バリアー層C10に変更する以外は「封止フィルム1の製造」と全く同様にして比較の封止フィルム11を得た。
「封止フィルム12の製造」
ブロックイソシアネートを用いない以外は「封止フィルム1の製造」と全く同様にして比較の封止フィルム12を得た。
《有機薄膜電子デバイスの作製》
本発明の封止フィルムを用いて、有機薄膜電子デバイスである有機EL素子を作製した。
〔有機EL素子の作製〕
(ガラス基板の洗浄)
ガラス基板の洗浄は、それぞれ、クラス10000のクリーンルーム内と、クラス100のクリーンブース内にて行った。洗浄溶媒は半導体洗浄用洗剤及び超純水(18MΩ以上、全有機炭素(TOC):10ppb未満)を用い、超音波洗浄機とUV洗浄機を用いた。
(第一電極の形成)
ガラス基板上に、厚さ150nmのITO(酸化インジウム・スズ(Indiumu Tin Oxide:ITO))をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第一電極を形成した。なお、パターンは発光面積が50mm平方になるようなパターンとした。
(正孔輸送層の形成)
正孔輸送層形成用塗布液を塗布する前に、第一電極が形成されたガラス基板の洗浄表面改質処理を、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用し行った。
第一電極が形成されたガラス基板の第一電極の上に、以下に示す正孔輸送層形成用塗布液を、25℃、相対湿度50%RHの環境下で、スピンコーターで塗布した後、下記の条件で乾燥及び加熱処理を行い、正孔輸送層を形成した。正孔輸送層形成用塗布液は乾燥後の厚さが50nmになるように塗布した。
〈正孔輸送層形成用塗布液の準備〉
ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を純水65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。
〈乾燥及び加熱処理条件〉
正孔輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で溶媒を除去した後、引き続き、加熱処理装置を用い温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
(発光層の形成)
上記で形成した正孔輸送層上に、以下に示す白色発光層形成用塗布液を、下記の条件によりスピンコーターで塗布した後、下記の条件で乾燥及び加熱処理を行い、発光層を形成した。白色発光層形成用塗布液は乾燥後の厚さが40nmになるように塗布した。
〈白色発光層形成用塗布液〉
ホスト材として下記化学式H−Aで表される化合物1.0gと、ドーパント材として下記化学式D−Aで表される化合物を100mg、ドーパント材として下記化学式D−Bで表される化合物を0.2mg、ドーパント材として下記化学式D−Cで表される化合物を0.2mg、100gのトルエンに溶解し白色発光層形成用塗布液として準備した。
Figure 2014218012
〈塗布条件〉
塗布工程を窒素ガス濃度99%以上の雰囲気で、塗布温度を25℃とした。
〈乾燥及び加熱処理条件〉
白色発光層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、温度130℃で加熱処理を行い、発光層を形成した。
(電子輸送層の形成)
上記で形成した発光層の上に、以下に示す電子輸送層形成用塗布液を下記の条件によりスピンコーターで塗布した後、下記の条件で乾燥及び加熱処理し、電子輸送層を形成した。電子輸送層形成用塗布液は、乾燥後の厚さが30nmになるように塗布した。
〈塗布条件〉
塗布工程は窒素ガス濃度99%以上の雰囲気で、電子輸送層形成用塗布液の塗布温度を25℃とした。
〈電子輸送層形成用塗布液〉
電子輸送層は下記化学式E−Aで表される化合物を2,2,3,3−テトラフルオロ−1−プロパノール中に溶解し0.5質量%溶液とし電子輸送層形成用塗布液とした。
Figure 2014218012
〈乾燥及び加熱処理条件〉
電子輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、加熱処理部で、温度200℃で加熱処理を行い、電子輸送層を形成した。
(電子注入層の形成)
上記で形成した電子輸送層上に、電子注入層を形成した。まず、基板を減圧チャンバーに投入し、5×10−4Paまで減圧した。あらかじめ、真空チャンバーにタンタル製蒸着ボートに用意しておいたフッ化セシウムを加熱し、厚さ3nmの電子注入層を形成した。
(第二電極の形成)
上記で形成した電子注入層の上であって、第一電極の取り出し電極になる部分を除く部分に、5×10−4Paの真空下で、第二電極形成材料としてアルミニウムを使用し、取り出し電極を有するように蒸着法にて、発光面積が50mm平方になるようにマスクパターン成膜し、厚さ100nmの第二電極を積層した。
(裁断)
以上のように、第二電極までが形成された各積層体を、再び窒素雰囲気に移動し、規定の大きさに、紫外線レーザーを用いて裁断し、有機EL素子を作製した。
(電極リード接続)
作製した有機EL素子に、ソニーケミカル&インフォメーションデバイス株式会社製の異方性導電フィルムDP3232S9を用いて、フレキシブルプリント基板(ベースフィルム:ポリイミド12.5μm、圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理NiAuメッキ)を接続した。
圧着条件:温度170℃(別途熱伝対を用いて測定したACF温度140℃)、圧力2MPa、10秒で圧着を行った。
(封止)
本発明の封止フィルムを保管代用条件として環境温湿度40℃80%RHで3日間保存したのちに、封止フィルムの樹脂層を、酸素濃度10ppm以下、水分濃度10ppm以下のグローブボックス内で、80℃、0.04MPa荷重下、減圧(1×10−3MPa以下)吸引20秒、プレス20秒の条件で、有機EL素子形成ガラス基板に向けて真空プレスした。
その後、グローブボックス内で、110℃のホットプレート上で30分間加熱して本発明の封止フィルムを熱硬化させた。
《有機EL素子の評価》
上記作製した有機EL素子について、下記の方法に従って、加速劣化処理を施した後のダークスポットの評価を行うことにより、耐久性の評価を行った。
〔耐久性の評価〕
(加速劣化処理)
上記作製した各有機EL素子を、85℃、85%RHの環境下で1000時間の加速劣化処理を施した後、下記のダークスポットに関する評価を行った。
(ダークスポット(DS、黒点)の評価)
加速劣化処理を施した有機EL素子に対し、1mA/cmの電流を印加し、24時間連続発光させた後、100倍のマイクロスコープ(株式会社モリテックス製MS−804、レンズMP−ZE25−200)でパネルの一部分を拡大し、撮影を行った。撮影画像を2mm四方スケール相当に切り抜き、ダークスポットの発生面積比率を求め、下記の基準に従って耐久性を評価した。評価ランクが、△であれば実用的な特性、○であればより実用的な特性、◎であれば全く問題のない好ましい特性であると判定した。
◎:ダークスポット発生率が、0.3%未満である
○:ダークスポット発生率が、0.3%以上1.0%未満である
△:ダークスポット発生率が、1.0%以上2.0%未満である
×:ダークスポット発生率が、2.0%以上5.0%未満である
××:ダークスポット発生率が、5.0%以上である。
ダークスポットの評価結果を、下記表1に示す。
Figure 2014218012
表1より、本発明の封止フィルムは、当該封止フィルムを保存した後に機能素子の封止に用いても、耐透湿性が劣化せず、有機EL素子のダークスポットの発生を効果的に抑制できることが分かる。
1 封止フィルム
1a 基材
1b ガスバリアー層
1c 樹脂層
31 製造装置
32 送り出しローラー
33、34、35、36 搬送ローラー
39、40 成膜ローラー
41 ガス供給管
42 プラズマ発生用電源
43、44 磁場発生装置
45 巻取りローラー
100 有機EL素子
101 第一電極
101a 下地層
101b 電極層
103 有機機能層
103a 正孔注入層
103b 正孔輸送層
103c 発光層
103d 電子輸送層
103e 電子注入層
105a 第二電極
107 封止フィルム(基材+ガスバリアー層)
109 樹脂層
113 樹脂基板(透明基板)
113a 光取り出し面
115 補助電極
116 取り出し電極
h 発光光
201 装置チャンバー
202 Xeエキシマランプ
203 ホルダー
204 試料ステージ
205 試料
206 遮光板

Claims (5)

  1. 基材と、前記基材の片方の表面上に形成されたガスバリアー層と樹脂層とをこの順に備える封止フィルムであって、前記ガスバリアー層は少なくともポリシラザンを含有する塗布液を塗布して乾燥した層に改質処理を施してなる層であり、かつ前記樹脂層は少なくともブロックイソシアネートを含有することを特徴とする封止フィルム。
  2. 前記ガスバリアー層が、さらにアルミニウム化合物を含有することを特徴とする請求項1に記載の封止フィルム。
  3. 前記樹脂層に含有されるブロックイソシアネートが、イソシアネート化合物をイミダゾール類でブロックしたブロックイソシアネートであることを特徴とする請求項1又は請求項2に記載の封止フィルム。
  4. 基材の片方の表面上に、ガスバリアー層と樹脂層とをこの順に形成する封止フィルムの製造方法であって、少なくともポリシラザンを含有する塗布液を塗布、乾燥した層に改質処理を施してガスバリアー層を形成する工程と、
    当該ガスバリアー層上に少なくともブロックイソシアネートを含有する樹脂層液を塗布、乾燥して樹脂層を形成する工程と、
    を有することを特徴とする封止フィルムの製造方法。
  5. 請求項1から請求項3までのいずれか一項に記載の封止フィルムで、封止されていることを特徴とする機能素子。
JP2013098533A 2013-05-08 2013-05-08 封止フィルム、その製造方法及び封止フィルムで封止された機能素子 Active JP6115297B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013098533A JP6115297B2 (ja) 2013-05-08 2013-05-08 封止フィルム、その製造方法及び封止フィルムで封止された機能素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013098533A JP6115297B2 (ja) 2013-05-08 2013-05-08 封止フィルム、その製造方法及び封止フィルムで封止された機能素子

Publications (2)

Publication Number Publication Date
JP2014218012A true JP2014218012A (ja) 2014-11-20
JP6115297B2 JP6115297B2 (ja) 2017-04-19

Family

ID=51936954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013098533A Active JP6115297B2 (ja) 2013-05-08 2013-05-08 封止フィルム、その製造方法及び封止フィルムで封止された機能素子

Country Status (1)

Country Link
JP (1) JP6115297B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026821A1 (ja) * 2017-08-04 2019-02-07 シャープ株式会社 表示装置
US11302838B2 (en) 2015-03-20 2022-04-12 Dupont Teijin Films U.S. Limited Partnership Photovoltaic cells

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11105185A (ja) * 1997-09-30 1999-04-20 Tonen Corp 低誘電率シリカ質膜
JP2011068042A (ja) * 2009-09-26 2011-04-07 Konica Minolta Holdings Inc バリアフィルム、その製造方法及び有機光電変換素子
JP2011084667A (ja) * 2009-10-16 2011-04-28 Ajinomoto Co Inc 樹脂組成物
JP2011143327A (ja) * 2010-01-12 2011-07-28 Konica Minolta Holdings Inc バリアフィルム、バリアフィルムの製造方法、バリアフィルムを有する有機光電変換素子及び該素子を有する太陽電池
JP2011213847A (ja) * 2010-03-31 2011-10-27 Mitsui Chemicals Inc シリコン含有封止膜、シリコン含有封止膜を用いた太陽電池素子並びに有機el素子及びシリコン含有封止膜の製造方法
JP2012143996A (ja) * 2011-01-14 2012-08-02 Mitsui Chemicals Inc 積層体およびその製造方法
JP2012148416A (ja) * 2011-01-17 2012-08-09 Mitsui Chemicals Inc 積層体およびその製造方法
JP2013022799A (ja) * 2011-07-20 2013-02-04 Konica Minolta Holdings Inc ガスバリア性フィルム及びガスバリア性フィルムの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11105185A (ja) * 1997-09-30 1999-04-20 Tonen Corp 低誘電率シリカ質膜
JP2011068042A (ja) * 2009-09-26 2011-04-07 Konica Minolta Holdings Inc バリアフィルム、その製造方法及び有機光電変換素子
JP2011084667A (ja) * 2009-10-16 2011-04-28 Ajinomoto Co Inc 樹脂組成物
JP2011143327A (ja) * 2010-01-12 2011-07-28 Konica Minolta Holdings Inc バリアフィルム、バリアフィルムの製造方法、バリアフィルムを有する有機光電変換素子及び該素子を有する太陽電池
JP2011213847A (ja) * 2010-03-31 2011-10-27 Mitsui Chemicals Inc シリコン含有封止膜、シリコン含有封止膜を用いた太陽電池素子並びに有機el素子及びシリコン含有封止膜の製造方法
JP2012143996A (ja) * 2011-01-14 2012-08-02 Mitsui Chemicals Inc 積層体およびその製造方法
JP2012148416A (ja) * 2011-01-17 2012-08-09 Mitsui Chemicals Inc 積層体およびその製造方法
JP2013022799A (ja) * 2011-07-20 2013-02-04 Konica Minolta Holdings Inc ガスバリア性フィルム及びガスバリア性フィルムの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11302838B2 (en) 2015-03-20 2022-04-12 Dupont Teijin Films U.S. Limited Partnership Photovoltaic cells
WO2019026821A1 (ja) * 2017-08-04 2019-02-07 シャープ株式会社 表示装置

Also Published As

Publication number Publication date
JP6115297B2 (ja) 2017-04-19

Similar Documents

Publication Publication Date Title
JP7261837B2 (ja) 積層フィルム及びその製造方法
US9540526B2 (en) Gas barrier film and method for manufacturing gas barrier film
US6781148B2 (en) Light emitting device
EP1839847B1 (en) Gas-barrier film, substrate film, and organic electroluminescent device
JP5007987B2 (ja) 接着促進剤、電気活性層及びそれを含む電気活性素子とその方法
US20150284844A1 (en) Electronic device and gas barrier film manufacturing method
JP2000323273A (ja) エレクトロルミネッセンス素子
US20170207415A1 (en) Gas barrier film and organic electroluminescent element
US20150247241A1 (en) Method for producing gas barrier film, gas barrier film, and electronic device
JP2009076232A (ja) 環境感受性デバイス、環境感受性素子の封止方法
JP4583277B2 (ja) ガスバリアフィルムおよびこれを用いた有機デバイス
KR20070007736A (ko) 가스 배리어성 필름, 기재 필름 및 유기일렉트로루미네선스 소자
JP2010006039A (ja) ガスバリアフィルムおよびガスバリアフィルムを用いて表示素子を封止する方法。
US20160056414A1 (en) Thin film permeation barrier system for substrates and devices and method of making the same
JP2003017244A (ja) 有機電界発光素子およびその製造方法
US20130328025A1 (en) Organic el device
WO2014178254A1 (ja) 封止フィルム、その製造方法及び封止フィルムで封止された機能素子
JP6646352B2 (ja) 有機エレクトロルミネッセンス素子
JP6115297B2 (ja) 封止フィルム、その製造方法及び封止フィルムで封止された機能素子
JP2007090702A (ja) 水蒸気バリアフィルムおよび有機エレクトロルミネッセンス素子
JP2015080855A (ja) 封止フィルム、その製造方法及び封止フィルムで封止された機能素子
WO2016084791A1 (ja) 封止フィルム、機能素子及び封止フィルムの製造方法
JP2014083690A (ja) ガスバリアーフィルムの製造方法及びガスバリアーフィルム
JP2014076590A (ja) ガスバリアーフィルム及び電子デバイス
JP7021498B2 (ja) 積層体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R150 Certificate of patent or registration of utility model

Ref document number: 6115297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150