WO2016084791A1 - 封止フィルム、機能素子及び封止フィルムの製造方法 - Google Patents

封止フィルム、機能素子及び封止フィルムの製造方法 Download PDF

Info

Publication number
WO2016084791A1
WO2016084791A1 PCT/JP2015/082913 JP2015082913W WO2016084791A1 WO 2016084791 A1 WO2016084791 A1 WO 2016084791A1 JP 2015082913 W JP2015082913 W JP 2015082913W WO 2016084791 A1 WO2016084791 A1 WO 2016084791A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
gas barrier
sealing film
resin
Prior art date
Application number
PCT/JP2015/082913
Other languages
English (en)
French (fr)
Inventor
保彦 高向
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016561890A priority Critical patent/JPWO2016084791A1/ja
Publication of WO2016084791A1 publication Critical patent/WO2016084791A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a sealing film, a functional element, and a method for manufacturing a sealing film. More specifically, the present invention relates to a sealing film that is excellent in bending resistance and enables sufficient sealing performance, a functional element sealed with the sealing film, and a method for manufacturing the sealing film.
  • Functional elements made of organic materials such as organic EL (Electroluminescence) elements and organic thin-film solar cells are extremely vulnerable to oxygen and moisture.
  • organic EL Electrode
  • organic thin-film solar cells are extremely vulnerable to oxygen and moisture.
  • the organic material itself is deteriorated by oxygen or moisture, resulting in a decrease in luminance or eventually no light emission. Barrier properties are necessary.
  • organic EL elements are expected to be elements that can be folded or formed into a scroll shape and have a bendability that can be applied to new applications.
  • barrier films having a barrier layer have been used (see Patent Document 1 and Patent Document 2).
  • the present invention has been made in view of the above-described problems and situations, and a solution to that problem is to provide a sealing film that has excellent bending resistance and enables sufficient sealing performance. Moreover, it is providing the functional element sealed with the sealing film, and the manufacturing method of the sealing film.
  • the present inventor specified the Poisson's ratio of the sealing film having the base material, the gas barrier layer and the adhesive layer within a specific range.
  • the present inventors have found that even when a thin base material is used, damage to the barrier layer that occurs during repeated folding and winding can be suppressed, and the present invention has been achieved.
  • the adhesive layer contains an epoxy resin and a homopolymer resin or copolymer resin having a functional group capable of reacting with an epoxy group and containing at least one of isoprene, isobutene or butadiene as a polymerization component.
  • a method for producing a sealing film having a gas barrier layer and an adhesive layer in this order on one side of a base material wherein (A) a coating liquid containing polysilazane is applied, and the dried layer is subjected to a modification treatment to provide a gas barrier.
  • the Poisson's ratio of the sealing film is almost determined by the Poisson's ratio of the base material because the base material is thick.
  • the thickness of the base material it is determined by the balance of not only the base material but also the gas barrier layer and the adhesive layer.
  • the strain applied to the gas barrier layer is reduced when the organic EL element part is bonded or when the bonded organic EL element part is bent. It is estimated that the tolerance for distortion due to subsequent repeated bending and winding for a long period of time is increased.
  • Sectional drawing of the sealing film of this invention The schematic diagram which shows an example of the vacuum plasma CVD apparatus used for formation of the gas barrier layer based on this invention
  • Sectional drawing which shows schematic structure of organic EL element
  • the figure which shows the position of the functional element on the resin base material typically
  • the sealing film of the present invention is a sealing film having a gas barrier layer and an adhesive layer in this order on one side of a base material, wherein the base material has a thickness in the range of 5 to 50 ⁇ m, and The Poisson's ratio of the sealing film at 25 ° C. is in the range of 0.30 to 0.39.
  • This feature is a technical feature common to the inventions according to claims 1 to 6.
  • the gas barrier layer is a layer containing silicon oxide or silicon oxynitride from the viewpoint of manifesting the effects of the present invention.
  • the adhesive layer includes an epoxy resin, a homopolymer resin or a copolymer resin having a functional group capable of reacting with an epoxy group and containing at least one of isoprene, isobutene, or butadiene as a polymerization component; It is preferable to contain. Thereby, moisture permeability resistance can be improved.
  • the functional element is sealed with the sealing film of the present invention.
  • a manufacturing method of the sealing film which manufactures the sealing film of this invention is a manufacturing method of the sealing film which has a gas barrier layer and an adhesive bond layer in this order on the single side
  • reformation process is a vacuum ultraviolet light irradiation process from a viewpoint of obtaining high gas barrier property.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the sealing film of the present invention is a sealing film having a gas barrier layer and an adhesive layer in this order on one side of a base material, wherein the base material has a thickness in the range of 5 to 50 ⁇ m, and The Poisson's ratio at 25 ° C. of the sealing film is in the range of 0.30 to 0.39. With such a configuration, a sealing film having excellent bending resistance and sufficient sealing performance is provided. To do.
  • FIG. 1 is a sectional view showing an example of the sealing film of the present invention.
  • the sealing film 1 of the present invention has a gas barrier property against oxygen and moisture, and can be bonded to a functional element through an adhesive layer to suppress these influences.
  • the sealing film 1 has a gas barrier layer 1b and an adhesive layer 1c in this order on at least a base material 1a.
  • Layers can also be formed.
  • a smoothing layer can be provided between the base material 1a and the gas barrier layer 1b to smooth the unevenness on the surface of the base material.
  • functional layers such as an intermediate layer, a bleed-out prevention layer, and an antistatic layer can be used.
  • gas barrier layer 1b and the adhesive layer 1c according to the present invention may be composed of a plurality of layers, and the gas barrier layer is preferably formed by laminating a plurality of gas barrier layers.
  • the gas barrier property means that the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2% RH) measured by a method according to JIS-K-7129-1992 is 1 ⁇ 10.
  • the gas barrier property is ⁇ 1 g / (m 2 ⁇ 24 hours) or less.
  • the oxygen permeability measured by a method according to JIS-K-7126-1987 is 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 hours ⁇ atm) or less, and the water vapor permeability is 1 ⁇ 10 ⁇ 5 g / It is more preferable that the gas barrier property be (m 2 ⁇ 24 hours) or less.
  • a peelable separator film may be provided on the adhesive layer 1c as a protective film.
  • the Poisson's ratio at 25 ° C. of the sealing film of the present invention is in the range of 0.30 to 0.39.
  • the Poisson's ratio of the sealing film is almost determined by the Poisson's ratio of the substrate because the substrate is thick.
  • the Poisson's ratio can be adjusted by reducing the thickness of the base material and adjusting the composition of the gas barrier layer and the adhesive layer.
  • the Poisson's ratio of the sealing film within the range of 0.30 to 0.39, a sealing film having excellent bending resistance can be obtained at the time of bonding with the organic EL element part or bonding. It is presumed that the strain applied to the gas barrier layer when the organic EL element portion is bent is relaxed and reduced, and the tolerance for strain due to repeated repeated bending and winding is increased.
  • Poisson's ratio refers to the elongation (strain%) in the load direction and the shrinkage (strain%) in the direction perpendicular to the load when a tensile force is applied to the object (sealing film) within the elastic limit.
  • a ratio For example, when a film having a length p is stretched in the longitudinal direction by a length ⁇ p, and the width of the length r is reduced by the length ⁇ r by stretching, the Poisson's ratio is obtained by the following equation (a).
  • Poisson's ratio ( ⁇ r / r) / ( ⁇ p / p) If the base material of the sealing film is a thin film of 50 ⁇ m or less and the bending angle is increased, if the Poisson's ratio is greater than 0.39, the shrinkage in the width direction increases when the functional element is bent, and thus the gas barrier layer is added. The strain is thought to increase, and in fact the bending durability does not increase. Further, when the Poisson's ratio is smaller than 0.30, the sealing film becomes more brittle and cracks and the like are liable to occur, so that the bending durability does not increase.
  • the Poisson's ratio of the sealing film at 25 ° C. is in the range of 0.32 to 0.35.
  • the adjustment of the Poisson's ratio of the thin sealing film can be adjusted by the type, thickness, presence or absence of other layers of the base material, the gas barrier layer and the adhesive layer. In this, the contribution rate with respect to the Poisson's ratio of a sealing film is large with the kind and thickness of a base material and a gas barrier layer.
  • the Poisson's ratio of the sealing film can be measured by a non-contact method using a “non-contact type stretch width meter” or the like. Specifically, the sealing film from which the protective film is peeled is used as a sample, and a tensile tester is used. For example, a sample with a distance between chucks of 100 mm is pulled at a constant speed, and longitudinal strain and lateral strain in the direction perpendicular to the tensile direction are measured. It can be calculated from the slope of the straight line portion in each stress-strain curve.
  • the Poisson's ratio can be calculated by measuring the magnitude of longitudinal strain and lateral strain with a video camera. In order to measure a film-like sample, it is preferable to use such a non-contact type stretch width meter.
  • a video non-contact stretch width meter TRViewX55S: manufactured by Shimadzu Corporation
  • TRViewX55S manufactured by Shimadzu Corporation
  • the repeated bending test method defined in the mechanical stress test (IEC62715-6-1 Ed.1) of the flexible display element can be mentioned.
  • This is a test method in which a functional element is bent in a U-shape so as to have a constant radius of curvature, and repeatedly bent by sliding both ends of the element back and forth repeatedly.
  • An example of the apparatus is a U-shaped folding tester manufactured by Yuasa System Equipment Co., Ltd.
  • Other test conditions include bending speed, but in the present invention, the test is performed at a repetition rate of 60 times per minute in consideration of the test period and the actual use site.
  • the bending resistance can be evaluated by performing the above test with a radius of curvature of 4.0 mm and then leaving it in an environment of, for example, 85 ° C. and 85% RH for 24 hours and then performing a light emission test.
  • the adhesive layer which concerns on this invention is located in the uppermost layer of a sealing film, and has the function to adhere
  • a known adhesive such as a UV curable resin or a thermosetting resin can be used.
  • the adhesive layer according to the present invention contains a homopolymer resin or a copolymer resin containing at least one of isoprene, isobutene, or butadiene having a functional group capable of reacting with an epoxy group as a polymerization component. It is preferable for improving the wettability. Furthermore, it is preferable to contain at least a thermosetting resin.
  • the adhesive layer may contain a hygroscopic metal oxide, an ionic liquid, an inorganic filler, a curing accelerator, and the like from the viewpoint of moisture permeability.
  • homopolymer resin or copolymer resin containing at least one of isoprene, isobutene, or butadiene having a functional group capable of reacting with an epoxy group as a polymerization component The homopolymer resin or copolymer resin containing at least one of isoprene, isobutene, or butadiene having a functional group capable of reacting with an epoxy group, preferably used in the present invention, is isoprene, isobutene, or A functional group capable of reacting with an epoxy group is modified on a part of a polymer mainly composed of at least one butadiene.
  • Polymers mainly composed of at least one of isoprene, isobutene, or butadiene include polyisoprene resin (IR), polyisobutene resin, and polybutadiene resin (BR), which are homopolymers thereof, and copolymers thereof (for example, Polyisobutene-isoprene copolymer (IIR)).
  • IR polyisoprene resin
  • BR polybutadiene resin
  • IIR Polyisobutene-isoprene copolymer
  • the copolymer which consists of at least 1 sort (s) of isoprene, isobutene, or butadiene, and other monomer components may be sufficient, and as monomer components other than isoprene, isobutene, or butadiene, styrene, ethylene, propylene, acrylonitrile, Examples thereof include vinyl chloride, vinyl bromide, hydrogenated styrene, pentadiene, cyclopentadiene, dicyclopentadiene and the like, and these can be used alone or in combination of, for example, polystyrene-butadiene copolymer (SBR), There is a polybutadiene-acrylonitrile copolymer (NBR).
  • SBR polystyrene-butadiene copolymer
  • NBR polybutadiene-acrylonitrile copolymer
  • the proportion of at least one of isoprene, isobutene and butadiene in the copolymer is preferably 50% by mass or more, more preferably 60% by mass or more, further preferably 80% by mass or more, and particularly preferably 90% by mass of the whole polymer. % Or more.
  • the polymer mainly composed of at least one of isoprene, isobutene or butadiene is preferably a polymer mainly composed of isobutene.
  • the functional group capable of reacting with the epoxy group is preferably one having a polar group, such as an acid anhydride group [—C (O) —O—C (O) —], a carboxy group, an epoxy group, an amino group. Hydroxy group, mercapto group, sulfide group, isocyanate group, blocked isocyanate group, oxazoline group, oxetane group, cyanate group, phenol group [-Ph-OH], hydrazide group, amide group, imidazole group, etc. Any one type or two or more types may be used. An acid anhydride group is preferred as the functional group capable of reacting with the epoxy group.
  • the homopolymer resin or copolymer resin containing at least one of isoprene, isobutene, or butadiene having a functional group capable of reacting with an epoxy group as a polymerization component include maleic anhydride-modified polyisobutene and phthalic anhydride modification.
  • maleic anhydride-modified polyisobutene, maleic anhydride-modified polyisoprene, and maleic anhydride-modified polybutadiene are preferred. These may be used alone or in combination of two or more.
  • the number average molecular weight of the homopolymer resin or copolymer resin having at least one of isoprene, isobutene, or butadiene having a functional group capable of reacting with an epoxy group as a polymerization component is suitable for exhibiting the effects of the present invention.
  • the upper limit is preferably 100,000 or less, more preferably 50,000 or less, and the lower limit is preferably 300 or more, more preferably 700 or more.
  • the number average molecular weight in this invention is measured by the gel permeation chromatography (GPC) method (polystyrene conversion).
  • GPC gel permeation chromatography
  • the number average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K-804L manufactured by Showa Denko KK as a column. Measured at a column temperature of 40 ° C. using chloroform or the like as a mobile phase, and can be calculated using a standard polystyrene calibration curve.
  • a commercially available product that can be used as a homopolymer resin or copolymer resin containing at least one of isoprene, isobutene, or butadiene having a functional group capable of reacting with an epoxy group as a polymerization component is maleic anhydride-modified polyisobutene: HV- 100M, HV-300M (above, Shin Nippon Oil Co., Ltd.), maleic anhydride modified polyisoprene: Claprene LIR-403, LIR-410 (above, Kuraray), hydroxy group modified polyisoprene: Claprene LIR-506 (Kuraray) Allyl-modified polyisoprene: Claprene UC-203, UC-102 (manufactured by Kuraray Co., Ltd.), Epoxy-modified isoprene copolymer polymer: Claprene KLP L-207 (Kuraray Co., Ltd.), maleic anhydride-modified butad
  • the content of a homopolymer resin or a copolymer resin containing at least one of isoprene, isobutene, or butadiene having a functional group capable of reacting with an epoxy group as a polymerization component is 100% by mass of the nonvolatile content in the adhesive layer.
  • the upper limit is preferably 50% by mass or less, more preferably 10% by mass or less, and the lower limit is preferably 0.1% by mass or more, more preferably 3% by mass or more.
  • thermosetting resin there are no particular restrictions on the thermosetting resin, and specific examples include various thermosetting resins such as epoxy resins, cyanate ester resins, phenol resins, bismaleimide-triazine resins, polyimide resins, acrylic resins, and vinylbenzyl resins. Can be mentioned. Among these, an epoxy resin is preferable from the viewpoint of low-temperature curability and adhesiveness.
  • epoxy resin those having an average of two or more epoxy groups per molecule may be used.
  • bisphenol A type epoxy resin biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, and naphthol type epoxy are used.
  • alicyclic epoxy resin aliphatic chain epoxy resin
  • phenol novolac epoxy resin cresol novolac epoxy resin
  • bisphenol A novolac epoxy resin Epoxy resin having a butadiene structure, phenol aralkyl type epoxy resin, epoxy resin having a dicyclopentadiene structure, diglycidyl ether
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, phenol novolac type epoxy resin, biphenyl aralkyl type epoxy resin, phenol aralkyl type epoxy from the viewpoint of maintaining high heat resistance and low moisture permeability of the resin composition.
  • a resin, an aromatic glycidylamine type epoxy resin, an epoxy resin having a dicyclopentadiene structure, and the like are preferable.
  • the epoxy resin may be liquid, solid, or both liquid and solid.
  • “liquid” and “solid” are states of the epoxy resin at 25 ° C. From the viewpoints of coatability, processability, adhesiveness, and the like, it is preferable that 10% by mass or more of the entire epoxy resin to be used is liquid.
  • the epoxy resin preferably has an epoxy equivalent in the range of 100 to 1000, more preferably in the range of 120 to 1000, from the viewpoint of reactivity.
  • the epoxy equivalent is the number of grams (g / eq) of a resin containing 1 gram equivalent of an epoxy group, and is measured according to the method defined in JIS K-7236.
  • the curing agent for the epoxy resin is not particularly limited as long as it has a function of curing the epoxy resin, but from the viewpoint of suppressing thermal deterioration of the element (particularly the organic EL element) during the curing treatment of the resin composition.
  • the curing treatment of the composition is preferably performed at 140 ° C. or lower, more preferably 120 ° C. or lower, and the curing agent preferably has an epoxy resin curing action in such a temperature range.
  • amine adduct-based compounds Amicure PN-23, Amicure MY-24, Amicure PN-D, Amicure MY-D, Amicure PN-H, Amicure MY-H, Amicure PN-31, Amicure PN-40, Amicure PN-40J, etc. (all Ajinomoto Fine Techno)
  • organic acid dihydrazide Amicure VDH-J, Amicure UDH, Amicure LDH, etc. (all manufactured by Ajinomoto Fine Techno Co.)
  • these may be used alone or in combination of two or more.
  • the adhesive layer contains the above epoxy resin and a homopolymer resin or copolymer resin having a functional group capable of reacting with the epoxy group and having at least one of isoprene, isobutene or butadiene as a polymerization component. It is preferable to do.
  • the adhesive layer according to the present invention preferably contains a hygroscopic metal oxide from the viewpoint of adjusting moisture permeability.
  • the “hygroscopic metal oxide” as used in the present invention is a metal oxide that has the ability to absorb moisture and chemically reacts with moisture that has been absorbed to become a hydroxide.
  • calcium oxide Magnesium oxide, strontium oxide, aluminum oxide and barium oxide, or a mixture or solid solution of two or more metal oxides selected from these.
  • a mixture or solid solution of two or more metal oxides specifically, calcined dolomite (a mixture containing calcium oxide and magnesium oxide), calcined hydrotalcite (solid solution of calcium oxide and aluminum oxide) ) And the like.
  • a hygroscopic metal oxide is known as a hygroscopic material in various technical fields, and a commercially available product can be used.
  • calcined dolomite such as “KT” manufactured by Yoshizawa Lime Co., Ltd.
  • calcium oxide such as “Moystop # 10” manufactured by Sankyo Flour Mills
  • magnesium oxide (“Kyowa Mag MF-150” manufactured by Kyowa Chemical Industry Co., Ltd.), “ Kyowa Mag MF-30 ”,“ Pure Mag FNMG ”manufactured by Tateho Chemical Industry Co., Ltd.), lightly burned magnesium oxide (“ # 500 ”,“ # 1000 ”,“ # 5000 ”etc. manufactured by Tateho Chemical Industry Co., Ltd.), and the like.
  • the average particle diameter of the hygroscopic metal oxide is not particularly limited, but is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 1 ⁇ m or less.
  • the hygroscopic metal oxide may be a surface treated with a higher fatty acid such as stearic acid, or a surface treatment agent such as a known alkylsilane or silane coupling agent. By performing such surface treatment, it is possible to prevent the moisture in the resin from reacting with the hygroscopic metal oxide.
  • the content of the hygroscopic metal oxide in the adhesive layer is preferably in the range of 1 to 40% by mass with respect to 100% by mass of the nonvolatile content in the resin composition.
  • the ionic liquid in the present invention is an additive having a function as a curing agent for a thermoplastic resin.
  • the ionic liquid is a salt that can be melted in a temperature range of 140 ° C. or lower (preferably 120 ° C. or lower).
  • a salt having a curing action of an epoxy resin which is a thermosetting resin described later, is particularly preferably used, which advantageously works to improve moisture resistance of a cured product of the adhesive layer.
  • the ionic liquid is preferably used in a state where the ionic liquid is uniformly dissolved in the epoxy resin.
  • Examples of cations constituting such an ionic liquid include imidazolium ions, pyrimidinium ions, pyridinium ions, pyrrolidinium ions, piperidinium ions, pyrazonium ions, guanidinium ions and other ammonium cations; tetraalkylphosphonium cations (for example, Phosphonium cations such as tetrabutylphosphonium ion and tributylhexylphosphonium ion; sulfonium cations such as triethylsulfonium ion and the like.
  • ammonium cation examples include, for example, 1,3-dimethylimidazolium cation, 1,3-diethylimidazolium cation, 1-ethyl-3-methylimidazolium cation, 1-propyl-3-methylimidazolium ion.
  • the cation is preferably an ammonium cation or a phosphonium cation, and more preferably an imidazolium ion or a phosphonium ion.
  • anion constituting the ionic liquid examples include halide anions such as fluoride ion, chloride ion, bromide ion and iodide ion; alkyl sulfate anions such as methanesulfonate ion; trifluoromethanesulfonate ion, Fluorine-containing compound anions such as hexafluorophosphonate ion, trifluorotris (pentafluoroethyl) phosphonate ion, bis (trifluoromethanesulfonyl) imide ion, trifluoroacetate ion, tetrafluoroborate ion; phenol ion, 2-methoxy Phenolic anions such as phenol ion and 2,6-di-tert-butylphenol ion; acidic amino acid ions such as aspartate ion and glutamate ion; glycine ion, alan
  • the anion is preferably an N-acylamino acid ion or a carboxylic acid anion represented by the following general formula (1).
  • R—CO— is an acyl group derived from a linear or branched fatty acid having 1 to 5 carbon atoms, or a substituted or unsubstituted benzoyl group
  • —NH—CHX—CO 2 — is an aspartic acid
  • Acidic amino acid ions such as glutamic acid, or neutral amino acid ions such as glycine, alanine, and phenylalanine.
  • Specific examples of the carboxylate anion include acetate ion, decanoate ion, 2-pyrrolidone-5-carboxylate ion, formate ion, ⁇ -lipoic acid ion, lactate ion, tartaric acid ion, hippuric acid ion, and N-methyl horse.
  • Uric acid ions and the like are mentioned. Among them, acetate ion, 2-pyrrolidone-5-carboxylate ion, formate ion, lactate ion, tartrate ion, hippurate ion, N-methyl hippurate ion are preferable, acetate ion, N-methyl Hippurate ion and formate ion are more preferable.
  • Specific examples of the N-acylamino acid ion represented by the general formula (1) include N-benzoylalanine ion, N-acetylphenylalanine ion, aspartate ion, glycine ion, N-acetylglycine ion, and the like.
  • N-benzoylalanine ion, N-acetylphenylalanine ion, and N-acetylglycine ion are preferable, and N-acetylglycine ion is more preferable.
  • Specific ionic liquids include, for example, 1-butyl-3-methylimidazolium lactate, tetrabutylphosphonium-2-pyrrolidone-5-carboxylate, tetrabutylphosphonium acetate, tetrabutylphosphonium decanoate, tetrabutylphosphonium tri Fluoroacetate, tetrabutylphosphonium ⁇ -lipoate, tetrabutylphosphonium formate, tetrabutylphosphonium lactate, bis (tetrabutylphosphonium) tartrate, tetrabutylphosphonium hippurate, tetrabutylphosphonium N-methylhippurate, benzoyl-DL -Alanine tetrabutylphosphonium salt, N-acetylphenylalanine tetrabutylphosphonium salt, 2,6-di-tert-butylphenoltetrabutylphospho Um salt,
  • a precursor composed of a cation moiety such as an alkylimidazolium, alkylpyridinium, alkylammonium and alkylsulfonium ions and an anion moiety containing a halogen is added to NaBF 4 , NaPF 6 , CF 3 SO 3
  • the content of the ionic liquid used in the present invention is preferably in the range of 0.1 to 50% by mass, more preferably in the range of 0.5 to 25% by mass with respect to the total amount (nonvolatile content) of the thermosetting resin. If it exists in this range, the storage stability of an adhesive bond layer will not be impaired.
  • the resin composition constituting the adhesive layer can further contain a flat inorganic filler in the form of particles such as talc, clay, mica, boehmite, etc., further improving the moisture resistance of the adhesive layer. Can do.
  • rubber particles can be contained. By containing the rubber particles, the mechanical strength of the adhesive layer can be improved and the stress can be relaxed.
  • core-shell type rubber particles are preferably used. Specific examples include staphyloid AC3832, AC3816N (manufactured by Aika Kogyo Co., Ltd.), methabrene KW-4426 (manufactured by Mitsubishi Rayon Co., Ltd.), F351 (Nippon Zeon Corporation) Manufactured) and the like.
  • Specific examples of acrylonitrile butadiene rubber (NBR) particles include XER-91 (manufactured by JSR).
  • SBR styrene butadiene rubber
  • acrylic rubber particles include Methbrene W300A and W450A (manufactured by Mitsubishi Rayon Co., Ltd.).
  • the resin composition constituting the adhesive layer according to the present invention may further contain a curing accelerator for adjusting the curing temperature, the curing time, and the like.
  • a curing accelerator for adjusting the curing temperature, the curing time, and the like.
  • the curing accelerator include quaternary ammonium salts such as tetramethylammonium bromide and tetrabutylammonium bromide, quaternary sulfonium salts such as tetraphenylphosphonium bromide and tetrabutylphosphonium bromide, DBU (1,8-diazabicyclo (5.4.0).
  • the content is in the range of 0.01 to 7% by mass with respect to the total amount of the thermosetting resin.
  • the adhesive layer according to the present invention is preferably formed by preparing a resin liquid in which the composition constituting the adhesive layer is dissolved, and applying and drying on a gas barrier layer described later.
  • a resin liquid in which the composition constituting the adhesive layer is dissolved is dissolved, and applying and drying on a gas barrier layer described later.
  • an epoxy resin on the gas barrier layer and a homopolymer resin or copolymer resin having at least one of isoprene, isobutene or butadiene having a functional group capable of reacting with at least an epoxy group as a polymerization component It is preferable to form the adhesive layer by applying and drying the resin solution contained therein.
  • the composition constituting the adhesive layer is dissolved on the peelable separator film.
  • An adhesive layer formed by applying and drying the prepared resin liquid may be bonded onto the gas barrier layer.
  • organic solvent used for preparing the resin liquid examples include acetone, methyl ethyl ketone (hereinafter also abbreviated as “MEK”), ketones such as cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether.
  • ketones such as cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether.
  • examples thereof include acetates such as acetate and carbitol acetate, carbitols such as cellosolve and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. These may be used alone or in combination of two or more.
  • any appropriate method can be adopted as a coating method.
  • a coating method includes a roller coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
  • the drying conditions are not particularly limited, but 3 to 15 minutes at 50 to 100 ° C. is preferable.
  • the thickness of the adhesive layer according to the present invention is not particularly limited, but is preferably in the range of 3 to 200 ⁇ m, more preferably in the range of 5 to 150 ⁇ m, from the viewpoint of blocking moisture by reducing the contact area with the outside air.
  • the range of 10 to 100 ⁇ m is more preferable.
  • a separator film that can be peeled off from the adhesive layer as a protective film on the sealing film of the present invention so that the adhesive layer does not unnecessarily contact other parts.
  • a known film such as a PET (polyethylene terephthalate) film can be used.
  • the gas barrier layer refers to a layer having low moisture permeability.
  • the gas barrier layer can be attached to the functional element to prevent the functional element from being damaged by moisture.
  • the gas barrier layer has a water vapor permeability (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2% RH) measured by a method according to JIS-K-7129-1992, 1 ⁇ 10 ⁇ 2 g / (m
  • the gas barrier property is preferably 2 ⁇ 24 hours or less, and the oxygen permeability measured by a method according to JIS-K-7126-1987 is 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 hours. It is more preferable that it has a high gas barrier property of atm) or less and a water vapor permeability of 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 hours) or less.
  • the material for the gas barrier layer used in the present invention is not particularly limited, and various inorganic barrier materials can be used.
  • inorganic barrier materials include, for example, silicon (Si), aluminum (Al), indium (In), tin (Sn), zinc (Zn), titanium (Ti), copper (Cu), cerium (Ce) and Examples include simple substances of at least one metal selected from the group consisting of tantalum (Ta), and metal compounds such as oxides, nitrides, carbides, oxynitrides, and oxycarbides of the above metals.
  • the metal compound include silicon oxide, aluminum oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), tantalum oxide, zirconium oxide, niobium oxide, aluminum silicate (SiAlO x ), Boron carbide, tungsten carbide, silicon carbide, oxygen-containing silicon carbide, aluminum nitride, silicon nitride, boron nitride, aluminum oxynitride, silicon oxynitride, boron oxynitride, zirconium boride, titanium boride, and composites thereof
  • inorganic barrier materials such as metal oxides such as metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, diamond-like carbon (DLC), and combinations thereof.
  • ITO Indium tin oxide
  • silicon oxide aluminum oxide
  • silicon nitride silicon oxynitride and combinations thereof are particularly preferred inorganic barrier materials.
  • ITO is an example of a special member of ceramic material that can be made conductive by appropriately selecting the respective elemental components.
  • the method for forming the gas barrier layer is not particularly limited, and includes, for example, a sputtering method (for example, magnetron cathode sputtering, flat-plate magnetron sputtering, 2-pole AC flat-plate magnetron sputtering, 2-pole AC rotary magnetron sputtering), a vapor deposition method (for example, resistance Heat deposition, electron beam deposition, ion beam deposition, plasma assisted deposition, etc.), thermal CVD (Chemical Vapor Deposition) method, catalytic chemical vapor deposition (Cat-CVD), capacitively coupled plasma CVD method (CCP-CVD), light Examples thereof include chemical vapor deposition such as CVD, plasma CVD (PE-CVD), epitaxial growth, atomic layer growth, and reactive sputtering.
  • a sputtering method for example, magnetron cathode sputtering, flat-plate magnetron sputtering, 2-pole AC flat-plate magnetron
  • the gas barrier layer may include an organic layer containing an organic polymer. That is, the gas barrier layer may be a laminate of an inorganic barrier layer containing the inorganic barrier material and an organic layer.
  • the organic layer can be polymerized and required using, for example, an electron beam device, UV light source, discharge device, or other suitable device, for example, by applying an organic monomer or organic oligomer to the substrate to form a layer It can be formed by crosslinking according to the above.
  • the organic layer can also be formed, for example, by depositing an organic monomer or organic oligomer capable of flash evaporation and radiation crosslinking and then forming a polymer from the organic monomer or organic oligomer. Coating efficiency can be improved by cooling the substrate.
  • Examples of the method for applying the organic monomer or organic oligomer include roll coating (for example, gravure roll coating) and spray coating (for example, electrostatic spray coating).
  • the laminated body of an inorganic barrier layer and an organic layer the laminated body of the international publication 2012/003198, international publication 2011/013341, etc. are mentioned, for example.
  • the thickness of each layer may be the same or different.
  • the thickness of the inorganic barrier layer is preferably in the range of 3 to 1000 nm, more preferably 10 to 300 nm.
  • the thickness of the organic layer is preferably in the range of 100 nm to 100 ⁇ m, more preferably 1 to 50 ⁇ m.
  • a coating solution containing an inorganic precursor such as polysilazane, tetraethyl orthosilicate (TEOS), etc. is wet-coated on a substrate and then subjected to a modification treatment by irradiation with vacuum ultraviolet light, etc., and a gas barrier layer is formed,
  • the gas barrier layer can also be formed by metal plating on the resin substrate, film metallization technology such as bonding the metal foil and the resin substrate.
  • the gas barrier layer is formed by modifying a layer containing polysilazane or contains SiOC (carbon-containing silicon oxide). Or a laminate of an inorganic barrier layer and an organic layer.
  • a gas barrier layer contains SiOC.
  • a gas barrier layer containing SiOC generated by a plasma CVD method or a sputtering method is preferable. Such a configuration is preferable from the viewpoint of achieving both gas barrier properties and bending resistance.
  • SiOC is strictly a SiO x C y, deposition method, Si of various compositions by deposition conditions, O, the gas barrier layer having a C can be formed, referred to as SiOC they are collectively in the following description .
  • the gas barrier layer may be a single layer or a laminated structure of two or more layers.
  • the material of each layer may be the same or different.
  • the gas barrier layer according to the present invention is preferably a layer obtained by applying a coating treatment containing at least polysilazane and subjecting the dried layer to a modification treatment.
  • a coating treatment containing at least polysilazane When there are a plurality of gas barrier layers, it is preferably the layer on the outermost surface and adjacent to the adhesive layer according to the present invention.
  • the adjacent layer is not limited to the form in which the gas barrier layer is in direct contact with the adhesive layer, but other thin film layers may intervene within a range in which the effect of the adhesive layer according to the present invention is manifested. Means that.
  • Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
  • polysilazane preferably has a structure represented by the following general formula (I).
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. .
  • R 1 , R 2 and R 3 may be the same or different.
  • examples of the alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms.
  • the aryl group include aryl groups having 6 to 30 carbon atoms.
  • non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group , Condensed polycyclic hydrocarbon groups such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc.
  • non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, nap
  • the (trialkoxysilyl) alkyl group includes an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group.
  • the substituent optionally present in R 1 to R 3 is not particularly limited, and examples thereof include an alkyl group, a halogen atom, a hydroxy group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (—SO 3 H), a carboxy group (—COOH), a nitro group (—NO 2 ) and the like. Note that the optionally present substituent is not the same as R 1 to R 3 to be substituted. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group.
  • R 1 , R 2 and R 3 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a phenyl group, a vinyl group, 3 -(Triethoxysilyl) propyl group or 3- (trimethoxysilylpropyl) group.
  • n is an integer, and it is preferable that the polysilazane having the structure represented by the general formula (I) is determined to have a number average molecular weight in the range of 150 to 150,000. .
  • one of preferred embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
  • polysilazane has a structure represented by the following general formula (II).
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group.
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different.
  • the substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition of the general formula (I), and thus the description is omitted.
  • n ′ and p are integers, and the polysilazane having the structure represented by the general formula (II) is determined to have a number average molecular weight in the range of 150 to 150,000. It is preferable. Note that n ′ and p may be the same or different.
  • R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, and R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group;
  • R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, R 2 ′ and R 4 ′ each represent a methyl group, and R 5 ′ represents a vinyl group;
  • R 1 ′ , R 3 ′ and R 4 Preferred are compounds in which ' and R 6' each represent a hydrogen atom, and R 2 ' and R 5' each represent a methyl group.
  • polysilazane has a structure represented by the following general formula (III).
  • R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group.
  • R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′. , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ may be the same or different.
  • the substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition of the general formula (I), and thus the description is omitted.
  • n ′′, p ′′ and q are integers, and the polysilazane having the structure represented by the general formula (III) has a number average molecular weight in the range of 150 to 150,000. It is preferable that Note that n ′′, p ′′, and q may be the same or different.
  • R 1 ′′ , R 3 ′′ and R 6 ′′ each represent a hydrogen atom
  • R 2 ′′ , R 4 ′′ , R 5 ′′ and R 8 ′′ each represent a methyl group.
  • R 9 ′′ represents a (triethoxysilyl) propyl group
  • R 7 ′′ represents an alkyl group or a hydrogen atom.
  • the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard.
  • the ceramic film made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased. For this reason, perhydropolysilazane and organopolysilazane may be selected as appropriate according to the application, and may be used in combination.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is about 600 to 2000 in terms of number average molecular weight (Mn) (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
  • Mn number average molecular weight
  • Polysilazane is commercially available in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a coating solution for forming a gas barrier layer.
  • Examples of commercially available polysilazane solutions include AQUAMICA (registered trademark) NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, and NP110 manufactured by AZ Electronic Materials Co., Ltd. NP140, SP140 and the like.
  • polysilazane examples include, but are not limited to, for example, a silicon alkoxide-added polysilazane obtained by reacting the polysilazane with a silicon alkoxide (Japanese Patent Laid-Open No. 5-23827), and a glycidol reaction.
  • a silicon alkoxide-added polysilazane obtained by reacting the polysilazane with a silicon alkoxide
  • glycidol-added polysilazane Japanese Patent Laid-Open No. 6-122852
  • alcohol-added polysilazane obtained by reacting alcohol
  • metal carboxylate obtained by reacting metal carboxylate Addition polysilazane (JP-A-6-299118), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal obtained by adding metal fine particles Fine particle added policy Zhang such (JP-A-7-196986), and a polysilazane ceramic at low temperatures.
  • the content of polysilazane in the gas barrier layer before the reforming treatment may be 100% by mass when the total mass of the gas barrier layer is 100% by mass.
  • the content of polysilazane in the layer is preferably in the range of 10 to 99% by mass, and more preferably in the range of 40 to 95% by mass. The range is particularly preferably from 70 to 95% by mass.
  • the solvent for preparing the coating solution for forming the gas barrier layer is not particularly limited as long as it can dissolve the silicon compound, but water and reactive groups that easily react with the silicon compound (for example, hydroxy groups, Or an amine group and the like, and an inert organic solvent with respect to the silicon compound is preferable, and an aprotic organic solvent is more preferable.
  • the solvent is an aprotic solvent; for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and turben.
  • Hydrogen solvents Halogen hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Alicyclic ethers and the like Ethers: Examples include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like.
  • the above solvent is selected according to the purpose such as the solubility of the silicon compound and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
  • the concentration of the silicon compound in the gas barrier layer forming coating solution is not particularly limited, and varies depending on the layer thickness and the pot life of the coating solution, but is preferably 1 to 80% by mass, more preferably 5 to 50% by mass, Particularly preferred is 10 to 40% by mass.
  • the coating solution for forming the gas barrier layer preferably contains an aluminum compound from the viewpoint of improving the heat resistance of the gas barrier layer.
  • the aluminum compound include aluminum trimethoxide, aluminum triethoxide, and aluminum trioxide. n-propoxide, aluminum triisopropoxide, aluminum tri-n-butoxide, aluminum tri-sec-butoxide, aluminum tri-tert-butoxide, aluminum acetylacetonate, acetoalkoxyaluminum diisopropylate, aluminum ethyl acetoacetate / diisopropylate, Aluminum ethyl acetoacetate di n-butyrate, aluminum diethyl acetoacetate mono n-butyrate, aluminum diisopropylate monos c-butyrate, aluminum trisacetylacetonate, aluminum trisethylacetoacetate, bis (ethylacetoacetate) (2,4-pentanedionato) aluminum, aluminum alkylacetoacetate diis
  • ком ⁇ онентs include, for example, AMD (aluminum diisopropylate monosec-butyrate), ASBD (aluminum secondary butyrate), ALCH (aluminum ethyl acetoacetate diisopropylate), ALCH-TR (aluminum tris).
  • Ethyl acetoacetate aluminum chelate M (aluminum alkyl acetoacetate / diisopropylate), aluminum chelate D (aluminum bisethylacetoacetate / monoacetylacetonate), aluminum chelate A (W) (aluminum trisacetylacetonate) , Manufactured by Kawaken Fine Chemical Co., Ltd.), Preneact (registered trademark) AL-M (acetoalkoxyaluminum diisopropylate, manufactured by Ajinomoto Fine Chemical Co., Ltd.), Ruga Chicks series (manufactured by Matsumoto Fine Chemical Co., Ltd.) and the like.
  • the content in the coating solution for forming the gas barrier layer is preferably 0.1 to 10% by mass, and more preferably 1 to 5% by mass.
  • the gas barrier layer forming coating solution preferably contains a catalyst in order to promote reforming.
  • a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, Amine catalysts such as N ', N'-tetramethyl-1,3-diaminopropane, N, N, N', N'-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propion Examples thereof include metal catalysts such as Pd compounds such as acid Pd, Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds.
  • the concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, based on the silicon compound. By setting the amount of the catalyst to be in this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, decrease in film density, increase in film defects, and the like.
  • the following additives may be used as necessary.
  • cellulose ethers, cellulose esters for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc.
  • natural resins for example, rubber, rosin resin, etc., synthetic resins
  • Aminoplasts especially urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.
  • the formation method by the coating method of the above gas barrier layers is not particularly limited, and a known method can be applied. Specific examples include spin coating, roller coating, flow coating, ink jet, spray coating, printing, dip coating, casting film formation, bar coating, and gravure printing.
  • a method of applying a coating solution for forming a gas barrier layer containing a silicon compound and, if necessary, a catalyst in an organic solvent by the above known coating method, evaporating and removing the solvent, and then performing a modification treatment is preferable. .
  • a gas barrier layer by applying a coating solution containing polysilazane and subjecting the dried layer to a modification treatment.
  • the coating thickness can be appropriately set according to the purpose.
  • the coating thickness per gas barrier layer is preferably about 10 nm to 10 ⁇ m after drying, more preferably 15 nm to 1 ⁇ m, and within the range of 20 to 500 nm. Further preferred. When the thickness is 10 nm or more, sufficient barrier properties can be obtained, and when the thickness is 10 ⁇ m or less, stable coating properties can be obtained at the time of layer formation, and high light transmittance can be realized.
  • the coating film After applying the coating solution, it is preferable to dry the coating film.
  • the organic solvent contained in the coating film can be removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable gas barrier layer can be obtained. The remaining solvent can be removed later.
  • the drying temperature of the coating film varies depending on the substrate to be applied, but is preferably in the range of 50 to 200 ° C.
  • the drying temperature is preferably set to 150 ° C. or less in consideration of deformation of the substrate due to heat.
  • the temperature can be set by using a hot plate, oven, furnace or the like.
  • the drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes.
  • the drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
  • the modification treatment of polysilazane in the present invention refers to a reaction for converting part or all of polysilazane into silicon oxide or silicon oxynitride.
  • Si—H bonds and N—H bonds in perhydropolysilazane are relatively easily cleaved by excitation with vacuum ultraviolet irradiation and the like. It is considered that they are recombined as N (a dangling bond of Si may be formed). That is, the cured as SiN y composition without oxidizing. In this case, the polymer main chain is not broken. The breaking of Si—H bonds and N—H bonds is promoted by the presence of a catalyst and heating. The cut H is released out of the membrane as H 2 .
  • Si—O—Si Bonds by Hydrolysis / Dehydration Condensation Si—N bonds in perhydropolysilazane are hydrolyzed by water, and the polymer main chain is cleaved to form Si—OH.
  • Two Si—OH are dehydrated and condensed to form a Si—O—Si bond and harden. This is a reaction that occurs even in the air, but during vacuum ultraviolet irradiation in an inert atmosphere, water vapor generated from the base material by the heat of irradiation is considered to be the main moisture source.
  • Si—OH that cannot be dehydrated and condensed remains, and a cured film having a low gas barrier property represented by a composition in the range of SiO 2.1 to SiO 2.3 is obtained.
  • Adjustment of the composition of silicon oxynitride in the layer obtained by subjecting the polysilazane-containing layer to vacuum ultraviolet irradiation can be performed by appropriately controlling the oxidation state by appropriately combining the oxidation mechanisms (1) to (4) described above. .
  • the modification of polysilazane is limited by the ultraviolet intensity of the lamp, irradiation time, temperature conditions during irradiation, etc. in normal production, and even if the reactions (1) to (4) above occur, the polysilazane in the layer Therefore, it is difficult to convert all of the polysilazane. Therefore, in the modification process of polysilazane on a production basis, unmodified polysilazane often remains within a range of several percent.
  • the remaining unmodified polysilazane is a homopolymer resin or copolymer resin having at least one of isoprene, isobutene, or butadiene having a functional group capable of reacting with an epoxy group as a polymerization component.
  • the moisture supplied from the contained adhesive layer is used as a trigger to modify to silicon oxide or silicon oxynitride by the above hydrolysis and dehydration condensation to further improve the gas barrier property.
  • a known method based on the conversion reaction of polysilazane can be selected.
  • the formation of a silicon oxide film or a silicon oxynitride film by a substitution reaction is performed at 450 ° C. or higher.
  • High temperature is required, and it is difficult to adapt to a flexible substrate using a resin film as a base material. Therefore, in producing the sealing film of the present invention, from the viewpoint of adapting to a resin substrate, a conversion reaction using ultraviolet light capable of a conversion reaction at a lower temperature is preferable.
  • vacuum ultraviolet light irradiation treatment In vacuum ultraviolet ray irradiation treatment in the present invention, it is preferable that the illuminance of the vacuum ultraviolet rays in the coating film surface for receiving the polysilazane coating film is in the range of 30 ⁇ 200mW / cm 2, in the range of 50 ⁇ 160mW / cm 2 It is more preferable. When it is 30 mW / cm 2 or more, there is no concern that the reforming efficiency is lowered, and when it is 200 mW / cm 2 or less, the coating film is not ablated and the substrate is not damaged.
  • Irradiation energy amount of the VUV in the polysilazane coating film surface is preferably in the range of 200 ⁇ 10000mJ / cm 2, and more preferably in the range of 500 ⁇ 5000mJ / cm 2. Within this range, there are no cracks or thermal deformation of the substrate.
  • a rare gas excimer lamp is preferably used as the vacuum ultraviolet light source.
  • Atoms of noble gases such as Xe, Kr, Ar, and Ne are called inert gases because they are not chemically bonded to form molecules.
  • excited atoms of rare gases that have gained energy by discharge or the like can form molecules by combining with other atoms.
  • the rare gas is xenon, e + Xe ⁇ Xe * Xe * + 2Xe ⁇ Xe 2 * + Xe Xe 2 * ⁇ Xe + Xe + h ⁇ (172 nm)
  • excimer light of 172 nm is emitted.
  • ⁇ Excimer lamps are characterized by high efficiency because radiation concentrates on one wavelength and almost no other light is emitted. Further, since no extra light is emitted, the temperature of the object can be kept low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
  • Dielectric barrier discharge is a gas space created by placing a gas space between both electrodes via a dielectric such as transparent quartz and applying a high frequency high voltage of several tens of kHz to the electrode. It is a discharge called a thin micro discharge, and when the streamer of the micro discharge reaches the tube wall (derivative), the electric charge accumulates on the dielectric surface, and the micro discharge disappears.
  • Electrodeless electric field discharge by capacitive coupling, also called RF discharge.
  • the lamp and electrodes and their arrangement may be basically the same as those of dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz. Since the electrodeless field discharge can provide a spatially and temporally uniform discharge in this way, a long-life lamp without flickering can be obtained.
  • an electrode in which fine metal wires are meshed is used. Since this electrode uses as thin a line as possible so as not to block light, it is easily damaged by ozone generated by vacuum ultraviolet light in an oxygen atmosphere. In order to prevent this, it is necessary to provide an atmosphere of an inert gas such as nitrogen around the lamp, that is, the inside of the irradiation apparatus, and provide a synthetic quartz window to extract the irradiation light. Synthetic quartz windows are not only expensive consumables, but also cause light loss.
  • the outer diameter of the double-cylindrical lamp is about 25 mm, the difference in distance to the irradiation surface cannot be ignored directly below the lamp axis and on the side of the lamp, resulting in a large difference in illumination. Therefore, even if the lamps are closely arranged, a uniform illuminance distribution cannot be obtained. If the irradiation device is provided with a synthetic quartz window, the distance in the oxygen atmosphere can be made uniform, and a uniform illuminance distribution can be obtained.
  • the biggest feature of the capillary excimer lamp is its simple structure.
  • the quartz tube is closed at both ends, and only gas for excimer light emission is sealed inside.
  • the outer diameter of the tube of the thin tube lamp is about 6 to 12 mm. If it is too thick, a high voltage is required for starting.
  • the electrode may have a flat surface in contact with the lamp, but if the shape is matched to the curved surface of the lamp, the lamp can be firmly fixed and the discharge is more stable when the electrode is in close contact with the lamp. Also, if the curved surface is made into a mirror surface with aluminum, it also becomes a light reflector.
  • the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
  • the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the polysilazane layer can be modified in a short time.
  • ⁇ Excimer lamps have high light generation efficiency and can be lit with low power.
  • light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the target object is suppressed.
  • it is suitable for flexible film materials such as PET that are easily affected by heat.
  • the oxygen concentration at the time of vacuum ultraviolet irradiation is preferably in the range of 10 to 10000 ppm, more preferably in the range of 50 to 5000 ppm, and still more preferably in the range of 1000 to 4500 ppm.
  • the gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays is preferably a dry inert gas, and particularly preferably dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the gas barrier layer according to the present invention may have a laminated structure of two or more layers as long as a layer obtained by applying a modification treatment to a layer obtained by applying a coating liquid containing polysilazane is dried.
  • a plurality of gas barrier layers having the same composition may be formed, or a plurality of layers having different compositions may be formed.
  • a chemical vapor deposition method such as a vacuum plasma CVD method (Chemical Vapor Deposition), a sputtering method, etc.
  • a combination with a layer formed by a physical vapor deposition method may be used.
  • the substrate is disposed on a pair of film forming rollers, which is an embodiment of the vacuum plasma CVD method, and is generated on the substrate by a plasma CVD method in which plasma is generated by discharging between the pair of film forming rollers.
  • a method for forming another gas barrier layer will be described below.
  • the sealing film of the present invention is also referred to as a gas barrier film.
  • the gas barrier layer preferably contains carbon, silicon, and oxygen as constituent elements.
  • a more preferable form is a layer that satisfies the following requirements (i) to (iii).
  • Formation method of other gas barrier layers by plasma CVD method As a method for forming another gas barrier layer on the surface of the substrate, it is preferable to employ a plasma CVD method from the viewpoint of gas barrier properties.
  • a plasma discharge in a space between a plurality of film forming rollers it is preferable to generate a plasma discharge in a space between a plurality of film forming rollers.
  • a pair of film forming rollers is used, and a substrate is provided for each of the pair of film forming rollers. It is more preferable that a plasma is generated by disposing and discharging between a pair of film forming rollers.
  • one film forming roller it is possible not only to produce a thin film efficiently because it is possible to form a film on the surface part of the base material existing in the film while simultaneously forming a film on the surface part of the base material present on the other film forming roller.
  • the film formation rate can be doubled compared with the plasma CVD method without using any roller, and since it is possible to form a film having a substantially identical structure, it is possible to at least double the extreme value in the carbon distribution curve, It is possible to efficiently form a layer that satisfies all of the above conditions (i) to (iii).
  • the film forming gas used in such a plasma CVD method preferably includes an organic silicon compound and oxygen, and the content of oxygen in the film forming gas is determined by the organosilicon compound in the film forming gas. It is preferable that the amount of oxygen be less than the theoretical oxygen amount necessary for complete oxidation.
  • the said gas barrier layer is a layer formed of the continuous film-forming process.
  • the sealing film of the present invention preferably forms the gas barrier layer on the surface of the substrate by a roll-to-roll method from the viewpoint of productivity.
  • an apparatus that can be used when producing a gas barrier layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film forming rollers and a plasma power source, and the pair of components. It is preferable that the apparatus has a configuration capable of discharging between the film rollers. For example, when the manufacturing apparatus shown in FIG. 2 is used, a roll-to-roll method is performed using the plasma CVD method. Can also be manufactured.
  • FIG. 2 is a schematic view showing an example of a vacuum plasma CVD apparatus used for forming the gas barrier layer according to the present invention.
  • the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
  • the manufacturing apparatus 31 shown in FIG. 2 includes a delivery roller 32, transport rollers 33, 34, 35, and 36, film formation rollers 39 and 40, a gas supply pipe 41, a plasma generation power source 42, and a film formation roller 39. And 40, and magnetic field generators 43 and 44 installed inside 40, and a take-up roller 45.
  • a delivery roller 32 transport rollers 33, 34, 35, and 36
  • film formation rollers 39 and 40 a gas supply pipe 41
  • a plasma generation power source 42 and a film formation roller 39.
  • And 40, and magnetic field generators 43 and 44 installed inside 40, and a take-up roller 45.
  • at least the film forming rollers 39 and 40, the gas supply pipe 41, the plasma generation power source 42, and the magnetic field generators 43 and 44 are arranged in a vacuum chamber (not shown). ing.
  • the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
  • each film-forming roller has a power source for plasma generation so that the pair of film-forming rollers (the film-forming roller 39 and the film-forming roller 40) can function as a pair of counter electrodes. 42. Therefore, in such a manufacturing apparatus 31, it is possible to discharge into the space between the film forming roller 39 and the film forming roller 40 by supplying electric power from the plasma generating power source 42. Plasma can be generated in the space between the film roller 39 and the film formation roller 40. In this way, when the film forming roller 39 and the film forming roller 40 are also used as electrodes, the material and design thereof may be appropriately changed so that they can also be used as electrodes.
  • a pair of film-forming roller film-forming rollers 39 and 40
  • position a pair of film-forming roller film-forming rollers 39 and 40
  • the film forming rate can be doubled and a film having the same structure can be formed. Can be at least doubled.
  • the gas barrier layer 1b on the surface of the base material 1a by CVD method, and the gas barrier layer on the surface of the base material 1a on the film-forming roller 39 While depositing the components, the gas barrier layer component can be deposited on the surface of the substrate 1a also on the film forming roller 40, so that the gas barrier layer can be efficiently formed on the surface of the substrate 1a. it can.
  • magnetic field generators 43 and 44 fixed so as not to rotate even when the film forming roller rotates are provided, respectively.
  • the magnetic field generators 43 and 44 provided in the film forming roller 39 and the film forming roller 40 are respectively a magnetic field generator 43 provided in one film forming roller 39 and a magnetic field generator provided in the other film forming roller 40. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between them and the magnetic field generators 43 and 44 form a substantially closed magnetic circuit. By providing such magnetic field generators 43 and 44, it is possible to promote the formation of a magnetic field in which magnetic lines of force swell near the opposing surface of each film forming roller 39 and 40, and the plasma is converged on the bulging portion. Since it becomes easy, it is excellent at the point which can improve the film-forming efficiency.
  • the magnetic field generators 43 and 44 provided in the film forming roller 39 and the film forming roller 40 respectively have racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generator 43 and the other magnetic field generator. It is preferable to arrange the magnetic poles so that the magnetic poles facing to 44 have the same polarity.
  • By providing such magnetic field generators 43 and 44 the opposing space along the length direction of the roller shaft without straddling the magnetic field generator on the roller side where the magnetic lines of force of each of the magnetic field generators 43 and 44 are opposed.
  • a racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained.
  • the material 1a is excellent in that the gas barrier layer 1b which is a vapor deposition film can be efficiently formed.
  • the film forming roller 39 and the film forming roller 40 known rollers can be appropriately used. As such film forming rollers 39 and 40, it is preferable to use ones having the same diameter from the viewpoint of forming a thin film more efficiently. Further, the diameter of the film forming rollers 39 and 40 is preferably in the range of 300 to 1000 mm ⁇ , particularly in the range of 300 to 700 mm ⁇ , from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mm ⁇ or more, the plasma discharge space will not be reduced, so that the productivity is not deteriorated, and it is possible to avoid applying the total amount of plasma discharge to the substrate 1a in a short time. It is preferable because damage to the material 1a can be reduced. On the other hand, if the diameter of the film forming roller is 1000 mm ⁇ or less, it is preferable because practicality can be maintained in terms of apparatus design including uniformity of plasma discharge space.
  • the base material 1a is disposed on a pair of film forming rollers (the film forming roller 39 and the film forming roller 40) so that the surfaces of the base material 1a face each other.
  • the base material 1a By disposing the base material 1a in this way, when the plasma is generated by performing discharge in the facing space between the film forming roller 39 and the film forming roller 40, the base existing between the pair of film forming rollers is present.
  • Each surface of the material 1a can be formed simultaneously. That is, according to such a manufacturing apparatus, the first gas barrier layer component is deposited on the surface of the substrate 1a on the film forming roller 39 by the plasma CVD method, and further the gas is formed on the film forming roller 40. Since the barrier layer component can be deposited, the gas barrier layer can be efficiently formed on the surface of the substrate 1a.
  • the winding roller 45 is not particularly limited as long as it can roll up the laminate of the gas barrier layer 1b and the gas barrier layer 1b formed on the substrate 1a.
  • a known roller can be used as appropriate.
  • gas supply pipe 41 and the vacuum pump those capable of supplying or discharging the raw material gas at a predetermined speed can be appropriately used.
  • the gas supply pipe 41 as a gas supply means is preferably provided in one of the facing spaces (discharge region; film formation zone) between the film formation roller 39 and the film formation roller 40, and is a vacuum as a vacuum exhaust means.
  • a pump (not shown) is preferably provided on the other side of the facing space.
  • the plasma generating power source 42 a known power source of a plasma generating apparatus can be used as appropriate.
  • a plasma generating power supply 42 supplies power to the film forming roller 39 and the film forming roller 40 connected thereto, and makes it possible to use these as counter electrodes for discharge.
  • Such a plasma generating power source 42 can perform plasma CVD more efficiently, and can alternately reverse the polarity of the pair of film forming rollers (AC power source or the like). Is preferably used.
  • the plasma generating power source 42 can perform plasma CVD more efficiently, the applied power can be set to 100 W to 10 kW, and the AC frequency can be set to 50 Hz to 500 kHz. More preferably, it is possible to do this.
  • the magnetic field generators 43 and 44 known magnetic field generators can be used as appropriate.
  • the base material 1a in addition to the base material used in the present invention, a material in which the gas barrier layer 1b is previously formed can be used. As described above, the thickness of the gas barrier layer 1b can be increased by using the substrate 1a in which the gas barrier layer 1b is previously formed.
  • the gas barrier layer according to the present invention can be produced by appropriately adjusting the speed. That is, using the manufacturing apparatus 31 shown in FIG. 2, a discharge is generated between the pair of film forming rollers (film forming rollers 39 and 40) while supplying a film forming gas (raw material gas, etc.) into the vacuum chamber.
  • the film-forming gas (raw material gas or the like) is decomposed by plasma, and the gas barrier layer 1b is plasma on the surface of the base material 1a on the film-forming roller 39 and the surface of the base material 1a on the film-forming roller 40. It is formed by the CVD method. At this time, a racetrack-shaped magnetic field is formed in the vicinity of the roller surface facing the facing space (discharge region) along the length direction of the roller axes of the film forming rollers 39 and 40, and the plasma is converged on the magnetic field. For this reason, when the base material 1a passes through the point A of the film forming roller 39 and the point B of the film forming roller 40 in FIG. 2, the maximum value of the carbon distribution curve is formed in the gas barrier layer.
  • the minimum value of the carbon distribution curve in the gas barrier layer. Is formed. For this reason, five extreme values are usually generated for the two film forming rollers. Further, the distance between the extreme values of the gas barrier layer (the distance from the surface of the gas barrier layer in the thickness direction of the first gas barrier layer at one extreme value of the carbon distribution curve and the extreme value adjacent to the extreme value)
  • the absolute value of the difference in (L) can be adjusted by the rotation speed of the film forming rollers 39 and 40 (base material conveyance speed).
  • the substrate 1a is conveyed by the delivery roller 32, the film formation roller 39, and the like, respectively, so that the substrate 1a is formed by a continuous roll-to-roll film formation process.
  • a gas barrier layer 1b is formed on the surface.
  • a raw material gas, a reactive gas, a carrier gas, or a discharge gas can be used alone or in combination of two or more.
  • the source gas in the film forming gas used for forming the gas barrier layer 1b can be appropriately selected and used according to the material of the gas barrier layer 1b to be formed.
  • a source gas for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used.
  • organosilicon compounds examples include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane.
  • HMDSO hexamethyldisiloxane
  • HMDS hexamethyldisilane
  • 1,1,3,3-tetramethyldisiloxane vinyltrimethylsilane
  • methyltrimethylsilane hexamethyldisilane.
  • Methylsilane dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • Examples include silane and octamethylcyclotetrasiloxane.
  • organosilicon compounds hexamethyldisiloxane and 11,3,3-tetramethyldisiloxane are preferable from the viewpoints of properties such as the handleability of the compound and the gas barrier property of the obtained first gas barrier layer.
  • organosilicon compounds can be used alone or in combination of two or more.
  • the organic compound gas containing carbon include methane, ethane, ethylene, and acetylene.
  • an appropriate source gas is selected according to the type of the gas barrier layer 1b.
  • a reactive gas may be used in addition to the raw material gas.
  • a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used.
  • a reaction gas for forming an oxide for example, oxygen or ozone can be used.
  • a reactive gas for forming nitride nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a nitride are formed. It can be used in combination with a reaction gas.
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, for example, rare gases such as helium, argon, neon, xenon, etc .; hydrogen can be used.
  • the ratio of the source gas and the reactive gas is the reaction gas that is theoretically necessary for completely reacting the source gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive rather than the ratio of the amount. It is excellent in that excellent barrier properties and flex resistance can be obtained by forming the gas barrier layer 1b by not excessively increasing the ratio of the reaction gas. Further, when the film forming gas contains the organosilicon compound and oxygen, the amount is less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
  • hexamethyldisiloxane organosilicon compound, HMDSO, (CH 3 ) 6 Si 2 O
  • oxygen (O 2 ) oxygen
  • the preferred ratio of the raw material gas to the reactive gas in the film forming gas will be described in more detail.
  • a film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reactive gas is reacted by plasma CVD to form a silicon-oxygen-based system
  • HMDSO, (CH 3 ) 6 Si 2 O hexamethyldisiloxane
  • O 2 oxygen
  • the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, a uniform silicon dioxide film is formed when oxygen is contained in the film forming gas in an amount of 12 moles or more per mole of hexamethyldisiloxane and a uniform silicon dioxide film is formed (a carbon distribution curve exists). Therefore, it becomes impossible to form a gas barrier layer that satisfies all of the above conditions (i) to (iii). Therefore, in the present invention, when the gas barrier layer is formed, the oxygen amount is set to a stoichiometric ratio with respect to 1 mol of hexamethyldisiloxane so that the reaction of the above reaction formula 1 does not proceed completely.
  • the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region to form a film, so the molar amount of oxygen in the reaction gas Even if the (flow rate) is 12 times the molar amount (flow rate) of the raw material hexamethyldisiloxane (flow rate), the reaction cannot actually proceed completely, and the oxygen content is reduced.
  • the reaction is completed only when a large excess is supplied compared to the stoichiometric ratio (for example, in order to obtain silicon oxide by complete oxidation by CVD, the molar amount (flow rate) of oxygen is changed to the hexamethyldioxide raw material.
  • the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably an amount of 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio. .
  • the molar amount of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the deposition gas is preferably greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane, more preferably greater than 0.5 times.
  • the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 to 50 Pa.
  • an electrode drum connected to the plasma generating power source 42 (in this embodiment, the film forming roller 39) is used.
  • the power applied to the power source can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, and the like. It is preferable to be in the range. If such an applied power is 100 W or more, the generation of particles can be sufficiently suppressed, and if it is 10 kW or less, the amount of heat generated during film formation can be suppressed, and the substrate during film formation can be suppressed. An increase in surface temperature can be suppressed. Therefore, it is excellent in that wrinkles can be prevented during film formation without causing the substrate to lose heat.
  • the conveyance speed (line speed) of the substrate 1a can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, it is in the range of 5 to 20 m / min. If the line speed is 0.25 m / min or more, generation of wrinkles due to heat in the substrate can be effectively suppressed. On the other hand, if it is 100 m / min or less, it is excellent at the point which can ensure sufficient thickness as a gas barrier layer, without impairing productivity.
  • the barrier layer according to the present invention is formed by a plasma CVD method using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode shown in FIG. It is characterized by forming a film.
  • This is excellent in flexibility (flexibility) and mechanical strength, especially in roll-to-roll transport, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode. This is because it is possible to efficiently produce a gas barrier layer having both durability at the time and barrier performance.
  • Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce a gas barrier film that is required for durability against temperature changes used in solar cells and electronic components.
  • the Poisson's ratio of the gas barrier layer described above can be adjusted by the type of material used, the layer thickness, the manufacturing method, the presence or absence of an organic layer, and the like.
  • examples of the layer exhibiting excellent gas barrier properties include silicon oxide and silicon nitride. These inorganic materials have a Poisson's ratio of approximately 0.3 or less.
  • the Poisson ratio of the resin used for the resin film or resin sheet preferably used as the substrate is often less than 0.4, and this difference in Poisson ratio causes a difference in lateral strain during stretching and bending. And is considered to be related to bending resistance. Therefore, the Poisson's ratio of the gas barrier layer is preferably higher from the viewpoint of bending resistance.
  • the gas barrier layer is a composite layer with the organic layer (SiOC) described above, and the adjustment method formed by the vacuum plasma CVD method that enables the production thereof is also preferable for increasing the Poisson's ratio and the bending resistance. .
  • a resin film or a resin sheet is preferably used as a substrate, and a film or sheet made of a colorless and transparent resin is more preferably used.
  • the resin film to be used is not particularly limited in material, thickness and the like as long as it can hold the gas barrier layer and the adhesive layer, and can be appropriately selected according to the purpose of use.
  • Specific examples of the resin film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide.
  • Resin cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, alicyclic modification
  • thermoplastic resins such as polycarbonate resin, fluorene ring-modified polyester resin, and acryloyl compound.
  • the substrate is preferably made of a heat-resistant material.
  • a base material having a linear expansion coefficient of 15 ppm / K or more and 100 ppm / K or less and a glass transition temperature (Tg) of 100 ° C. or more and 300 ° C. or less is used.
  • the base material satisfies the requirements for use as a laminated film for electronic parts and displays. That is, when using the sealing film of this invention for these uses, a sealing film may be exposed to the process of 150 degreeC or more.
  • the linear expansion coefficient of the base material in the sealing film is within 100 ppm / K, the substrate dimensions are stabilized when the sealing film is passed through the temperature step as described above, and with thermal expansion and contraction, There is no inconvenience that the shut-off performance is deteriorated, or there is no problem that it cannot withstand the heat process. In the case of 15 ppm / K or more, the film is not broken like glass and the bendability is not deteriorated.
  • Polyolefin for example, ZEONOR (registered trademark) 1600: 160 ° C, manufactured by Nippon Zeon Co., Ltd.
  • polyarylate PAr: 210 ° C
  • polyethersulfone PES: 220 ° C
  • polysulfone PSF: 190 ° C
  • cycloolefin copolymer COC: Compound described in JP-A No. 2001-150584: 162 ° C.
  • polyimide for example, Neoprim (registered trademark): 260 ° C.
  • the sealing film of the present invention is used in combination with, for example, a polarizing plate, it is preferable to arrange the sealing film so that the gas barrier layer faces the inside of the cell. More preferably, the gas barrier layer of the sealing film is disposed on the innermost side of the cell (adjacent to the element). At this time, since the sealing film is disposed inside the cell from the polarizing plate, the retardation value of the sealing film is important.
  • the usage form of the sealing film in such an embodiment is a sealing film using a base film having a retardation value of 10 nm or less and a circularly polarizing plate ( ⁇ / 4 retardation film + ( ⁇ / 2 retardation film) + Linear polarizing plate) or a linear polarizing plate combined with a sealing film using a base film having a retardation value of 100 to 180 nm, which can be used as a ⁇ / 4 retardation film. It is preferable to use it.
  • Examples of the base material having a retardation value of 10 nm or less include triacetyl cellulose (manufactured by FUJIFILM Corporation: Fujitac (registered trademark)), polycarbonate (manufactured by Teijin Limited: Pure Ace (registered trademark), WR-S5, Kaneka Corporation: Elmec (registered trademark), etc., cycloolefin polymer (JSR Corporation: Arton (registered trademark), Nippon Zeon Corporation: Zeonore (registered trademark), etc.), cycloolefin copolymer (Mitsui Chemicals, Inc.) Manufactured by: Apel (registered trademark) (pellet), manufactured by Polyplastics Co., Ltd .: Topas (registered trademark) (pellet), etc.), polyarylate (manufactured by Unitika Co., Ltd .: U100 (pellet), etc.), transparent polyimide film (Mitsubishi Gas Chemical) Inc .: Neo
  • ⁇ / 4 retardation film a film adjusted to a desired retardation value by appropriately stretching the above film can be used.
  • the substrate is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more.
  • the light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JISK105: 1981, that is, using an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. be able to.
  • an opaque material can be used as the base material.
  • the opaque material include polyimide, polyacrylonitrile, and known liquid crystal polymers.
  • the base material used for the sealing film of the present invention has bendability, and the thickness thereof is in the range of 5 to 50 ⁇ m.
  • the thickness is preferably 20 to 40 ⁇ m.
  • These resin films may have functional layers such as a transparent conductive layer, a primer layer, and a clear hard coat layer.
  • As the functional layer in addition to those described above, those described in paragraph numbers “0036” to “0038” of JP-A-2006-289627 can be preferably used.
  • a resin film or a resin sheet is preferably used as described above.
  • a known resin can be applied.
  • the Poisson's ratio of the resin can be adjusted with the type of resin, degree of polymerization, additives such as plasticizers, etc., but the strength can be maintained even when it is thin, the gas barrier property of the resin, cost, and easy availability Therefore, as the resin used for the substrate, PET and polycarbonate are preferable. More preferably, it is PET.
  • These resins are PET (0.40), polycarbonate (0.39), and the Poisson's ratio shown in parentheses is relatively high. Therefore, the Poisson's ratio of the sealing film can be determined by combining the thickness of the substrate and the gas barrier layer. Is preferably adjusted.
  • the substrate preferably has a high surface smoothness.
  • the surface smoothness those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, both surfaces of the substrate, at least the side on which the gas barrier layer is provided, may be polished to improve smoothness.
  • the above-mentioned base material may be an unstretched film or a stretched film.
  • the base material used in the present invention can be produced by a conventionally known general method.
  • an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, etc.
  • a stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis).
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably in the range of 2 to 10 times in the vertical axis direction and the horizontal axis direction.
  • the functional element specifically refers to a flexible electronic device such as an organic EL element or a solar cell element.
  • a sealing film for organic EL elements since it is suitably used as a sealing film for organic EL elements, the sealing of organic EL elements will be described as an example.
  • the organic EL element according to the present invention can take various configurations, and an example is shown in FIG.
  • FIG. 3 illustrates the case where a resin substrate is used as the substrate used for the organic EL element, but a substrate such as glass may be used.
  • An organic EL element 100 is provided on a resin substrate 113, and an organic functional layer (light emission) configured using a first electrode (transparent electrode) 101, an organic material, and the like in order from the resin substrate 113 side.
  • the functional layer 103 and the second electrode (counter electrode) 105a are stacked in this order.
  • An extraction electrode 116 is provided at the end of the first electrode 101 (electrode layer 101b).
  • the first electrode 101 and an external power source (not shown) are electrically connected via the extraction electrode 116.
  • the organic EL element 100 is configured to extract the generated light (emitted light h) from at least the resin substrate 113 side.
  • the layer structure of the organic EL element 100 is not limited and may be a general layer structure.
  • the first electrode 101 functions as an anode (that is, an anode)
  • the second electrode 105a functions as a cathode (that is, a cathode).
  • the organic functional layer 103 has a configuration in which a hole injection layer 103a / a hole transport layer 103b / a light emitting layer 103c / an electron transport layer 103d / an electron injection layer 103e are stacked in this order from the first electrode 101 side that is an anode.
  • the hole injection layer 103a and the hole transport layer 103b may be provided as a hole transport injection layer.
  • the electron transport layer 103d and the electron injection layer 103e may be provided as an electron transport injection layer.
  • the electron injection layer 103e may be made of an inorganic material.
  • the organic functional layer 103 may have a hole blocking layer, an electron blocking layer, and the like laminated in necessary places in addition to these layers.
  • the light-emitting layer 103c may have a structure in which each color light-emitting layer that generates light emitted in each wavelength region is stacked, and each color light-emitting layer is stacked via a non-light emitting intermediate layer.
  • the intermediate layer may function as a hole blocking layer and an electron blocking layer.
  • the second electrode 105a as the cathode may also have a laminated structure as necessary. In such a configuration, only a portion where the organic functional layer 103 is sandwiched between the first electrode 101 and the second electrode 105 a becomes a light emitting region in the organic EL element 100.
  • the auxiliary electrode 115 may be provided in contact with the electrode layer 101b of the first electrode 101 for the purpose of reducing the resistance of the first electrode 101.
  • the organic EL element 100 configured as described above is sealed with the sealing film 107 of the present invention on the resin substrate 113 for the purpose of preventing the deterioration of the organic functional layer 103 formed using an organic material or the like.
  • the sealing film 107 is fixed to the resin substrate 113 side via an adhesive layer 109 according to the present invention that functions as an adhesive.
  • the terminal portions of the first electrode 101 (extraction electrode 116) and the second electrode 105a are provided on the resin substrate 113 in a state where they are exposed from the sealing film 107 while being insulated from each other by the organic functional layer 103. It is assumed that
  • the method for producing an organic EL device according to the present invention is characterized by including a laminating step of laminating and forming a first electrode, an organic functional layer, and a second electrode on a resin substrate.
  • a resin substrate 113 is prepared, and an underlayer 101a made of, for example, a nitrogen-containing compound containing nitrogen atoms is formed on the resin substrate 113 so as to have a layer thickness of 1 ⁇ m or less, preferably 10 to 100 nm. It forms by appropriate methods, such as a vapor deposition method.
  • the electrode layer 101b made of silver (or an alloy containing silver as a main component) is formed on the base layer 101a by an appropriate method such as vapor deposition so that the layer thickness is 12 nm or less, preferably 4 to 9 nm.
  • the first electrode 101 is formed to be an anode.
  • an extraction electrode 116 connected to an external power source is formed at the end of the first electrode 101 by an appropriate method such as vapor deposition.
  • a hole injection layer 103a, a hole transport layer 103b, a light-emitting layer 103c, an electron transport layer 103d, and an electron injection layer 103e are stacked in this order to form the organic functional layer 103.
  • each of these layers includes spin coating, casting, inkjet, vapor deposition, and printing, but vacuum vapor deposition is easy because a homogeneous layer is easily obtained and pinholes are difficult to generate.
  • the method or spin coating method is particularly preferred.
  • different formation methods may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 Pa. It is desirable to appropriately select the respective conditions within the range of a deposition rate of 0.01 to 50 nm / second, a substrate temperature of ⁇ 50 to 300 ° C., and a layer thickness of 0.1 to 5 ⁇ m.
  • the second electrode 105a serving as a cathode is formed on the upper portion by an appropriate forming method such as a vapor deposition method or a sputtering method. At this time, the second electrode 105 a is patterned in a shape in which a terminal portion is drawn from the upper side of the organic functional layer 103 to the periphery of the resin substrate 113 while being insulated from the first electrode 101 by the organic functional layer 103. .
  • the resin substrate 113 is basically preferably composed of a resin base material as a support and one or more gas barrier layers having a refractive index in the range of 1.4 to 1.7.
  • Resin substrate As the resin substrate, a conventionally known resin film substrate can be used without particular limitation.
  • the resin substrate preferably used in the present invention preferably has gas barrier properties such as moisture resistance / gas permeability resistance required for the organic EL element.
  • the resin substrate 113 side of the organic EL element 100 is a light emitting surface
  • a material having translucency for visible light is used for the resin base material.
  • the light transmittance is preferably 70% or more, more preferably 75% or more, and further preferably 80% or more.
  • the resin base material has bendability.
  • “Bendability” as used herein refers to a base material that is wound around a roll having a ⁇ (diameter) of 4.0 mm and is not cracked before and after winding with a constant tension, and more preferably a roll of ⁇ 3.0 mm A base material that can be wound around.
  • the resin base material is a conventionally known base material, for example, an acrylic resin such as acrylic ester, methacrylic ester, PMMA, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), Polycarbonate (PC), polyarylate, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), nylon (Ny), aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfonate,
  • the resin film include polyimide, polyetherimide, polyolefin, and epoxy resin, and cycloolefin-based and cellulose ester-based films can also be used.
  • a heat-resistant transparent film (product name Sila-DEC, manufactured by Chisso Corporation) having silsesquioxane having an organic-inorganic hybrid structure as a basic skeleton, and a resin film formed by laminating two or more layers of the resin material, etc. Can be mentioned.
  • PET PET, PEN, PC, acrylic resin and the like are preferably used.
  • a biaxially stretched polyethylene terephthalate film and a biaxially stretched polyethylene naphthalate film are preferable in terms of transparency, heat resistance, ease of handling, strength, and cost.
  • a low heat recovery treatment product that has been subjected to treatment such as thermal annealing is most preferable.
  • the thickness of the resin base material is preferably within a range of 10 to 100 ⁇ m, more preferably 20 to 75 ⁇ m, and further preferably within a range of 30 to 50 ⁇ m.
  • a stable gas barrier property can be obtained, and it is suitable for roll-to-roll system conveyance.
  • the resin base material of the resin substrate 113 includes one or more gas barrier layers having a refractive index in the range of 1.4 to 1.7. (Low refractive index layer) is preferably provided.
  • a gas barrier layer a known material can be used without particular limitation, and a film made of an inorganic material or an organic material or a hybrid film combining these films may be used.
  • the gas barrier layer has a water vapor permeability (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2% RH) measured by a method according to JIS-K-7129-1992, 1 ⁇ 10 ⁇ 2 g / (m (2 ⁇ 24 hours) or less gas barrier film (also referred to as a gas barrier film or the like) is preferable, and the oxygen permeability measured by a method according to JIS-K-7126-1987 is 1 ⁇ 10 ⁇ . It is more preferably a high gas barrier film having a water vapor permeability of 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 hours) or less and 3 ml / (m 2 ⁇ 24 hours ⁇ atm) or less.
  • any material may be used as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like is used. Can do.
  • a layer made of an organic material (organic layer) as a stress relaxation layer may be laminated on these inorganic layers.
  • the method for forming the gas barrier layer is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method and the like can be used, but an atmospheric pressure plasma polymerization method described in JP-A-2004-68143 is preferable.
  • a gas barrier layer may be formed by apply
  • any appropriate method can be adopted as a coating method.
  • a coating method includes a roller coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
  • the coating thickness can be appropriately set according to the purpose.
  • the coating thickness is set so that the layer thickness after drying is preferably in the range of about 0.001 to 10 ⁇ m, more preferably about 0.01 to 10 ⁇ m, and most preferably about 0.03 to 1 ⁇ m. obtain.
  • the inorganic precursor compound used in the present invention is not particularly limited as long as it is a compound capable of forming a metal oxide, a metal nitride, or a metal oxynitride by vacuum ultraviolet irradiation under a specific atmosphere.
  • a compound suitable for the method for producing a stop film a compound that can be modified at a relatively low temperature as described in JP-A-8-112879 is preferable.
  • polysiloxane having Si—O—Si bond including polysilsesquioxane
  • polysilazane having Si—N—Si bond both Si—O—Si bond and Si—N—Si bond
  • Polysiloxazan containing can be raised. These can be used in combination of two or more. Moreover, it can be used even if different compounds are sequentially laminated or simultaneously laminated.
  • First electrode transparent electrode
  • the first electrode it is possible to use all the electrodes that can be normally used for organic EL elements. Specifically, aluminum, silver, magnesium, lithium, magnesium / same mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 , An oxide semiconductor such as SnO 2 can be given.
  • the first electrode is preferably a transparent electrode, and more preferably a transparent metal electrode.
  • the first electrode 101 has a two-layer structure in which a base layer 101a and an electrode layer 101b formed thereon are sequentially laminated from the resin substrate 113 side.
  • the electrode layer 101b is a layer formed using, for example, silver or an alloy containing silver as a main component
  • the base layer 101a is a layer formed using, for example, a compound containing nitrogen atoms. Preferably there is.
  • the transparency of the first electrode 101 means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • the main component in the electrode layer 101b means that the content in the electrode layer 101b is 98% by mass or more.
  • the underlayer 101a is a layer provided on the resin substrate 113 side of the electrode layer 101b.
  • the material constituting the base layer 101a is not particularly limited as long as it can suppress the aggregation of silver when forming the electrode layer 101b made of silver or an alloy containing silver as a main component. And nitrogen-containing compounds containing a nitrogen atom.
  • the upper limit of the layer thickness needs to be less than 50 nm, preferably less than 30 nm, and preferably less than 10 nm. Is more preferable, and it is especially preferable that it is less than 5 nm.
  • the lower limit of the layer thickness is required to be 0.05 nm or more, preferably 0.1 nm or more, and particularly preferably 0.3 nm or more.
  • the upper limit of the layer thickness is not particularly limited, and the lower limit of the layer thickness is the same as that of the low refractive index material. is there.
  • the base layer 101a is formed with a necessary thickness so that uniform film formation can be obtained.
  • a wet process such as a coating method, an inkjet method, a coating method, or a dip method, or a dry process such as a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, or the like is used. And the like. Among these, the vapor deposition method is preferably applied.
  • the compound containing a nitrogen atom constituting the base layer 101a is not particularly limited as long as it is a compound containing a nitrogen atom in the molecule, but is preferably a compound having a heterocycle having a nitrogen atom as a heteroatom. .
  • heterocycle having a nitrogen atom as a hetero atom examples include aziridine, azirine, azetidine, azeto, azolidine, azole, azinane, pyridine, azepan, azepine, imidazole, pyrazole, oxazole, thiazole, imidazoline, pyrazine, morpholine, thiazine, indole, Examples include isoindole, benzimidazole, purine, quinoline, isoquinoline, quinoxaline, cinnoline, pteridine, acridine, carbazole, benzo-C-cinnoline, porphyrin, chlorin, choline and the like.
  • Electrode layer 101b is preferably a layer formed using silver or an alloy containing silver as a main component, and is a layer formed on the base layer 101a.
  • a wet process such as a coating method, an inkjet method, a coating method, or a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, or the like is used. And a method using the dry process. Among these, the vapor deposition method is preferably applied.
  • the electrode layer 101b is formed on the base layer 101a, so that the electrode layer 101b has sufficient conductivity even without high-temperature annealing after the electrode layer 101b is formed.
  • high temperature annealing treatment or the like after film formation may be performed.
  • Examples of the alloy mainly composed of silver (Ag) constituting the electrode layer 101b include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), and silver indium (AgIn). ) And the like.
  • the electrode layer 101b as described above may have a structure in which silver or an alloy layer mainly composed of silver is divided into a plurality of layers as necessary.
  • the electrode layer 101b preferably has a layer thickness in the range of 4 to 9 nm.
  • the layer thickness is less than 9 nm, the absorption component or reflection component of the layer is small, and the transmittance of the first electrode 101 is increased. Further, when the layer thickness is thicker than 4 nm, the conductivity of the layer can be sufficiently secured.
  • the first electrode 101 having a laminated structure composed of the base layer 101a and the electrode layer 101b formed thereon is covered with a protective film on the upper part of the electrode layer 101b or another electrode layer. May be laminated.
  • the protective film and the other electrode layer have light transmittance so as not to impair the light transmittance of the first electrode 101.
  • the first electrode 101 having the above-described configuration includes, for example, silver or silver as a main component on a base layer 101a configured using a compound containing nitrogen atoms.
  • a configuration provided with an electrode layer 101b made of an alloy is exemplified.
  • the silver atoms constituting the electrode layer 101b interact with the compound containing nitrogen atoms constituting the base layer 101a.
  • the diffusion distance on the surface of the formation 101a is reduced, and silver aggregation is suppressed.
  • the electrode layer 101b containing silver as a main component a thin film is grown in a nucleus growth type (Volume-Weber: VW type), and therefore, silver particles are easily isolated in an island shape, and the layer thickness is increased.
  • a nucleus growth type Volume-Weber: VW type
  • the layer thickness is increased.
  • the sheet resistance value becomes high. Therefore, in order to ensure conductivity, it is necessary to increase the layer thickness.
  • the layer thickness is increased, the light transmittance is lowered, so that it is not suitable as the first electrode.
  • the first electrode 101 since aggregation of silver is suppressed on the base layer 101a as described above, in the film formation of the electrode layer 101b made of silver or an alloy containing silver as a main component, single layer growth is performed. A thin film grows with a type (Frank-van der Merwe: FM type).
  • the transparency of the first electrode 101 means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • each of the materials used as the base layer 101a is mainly composed of silver or silver.
  • the film is sufficiently light-transmissive.
  • the conductivity of the first electrode 101 is mainly ensured by the electrode layer 101b. Therefore, as described above, the conductivity of the first electrode 101 is preferably ensured by the electrode layer 101b made of silver or an alloy containing silver as a main component, so that the conductivity is ensured with a thinner layer thickness. It is possible to achieve both improvement and improvement in light transmittance.
  • Organic functional layer (light emitting functional layer) (1) Light emitting layer
  • the organic functional layer 103 includes at least a light emitting layer 103c.
  • the phosphor layer 103c used in the present invention contains a phosphorescent compound as a light emitting material.
  • a fluorescent material may be used as the light emitting material, or a phosphorescent light emitting compound and a fluorescent material may be used in combination.
  • the light emitting layer 103c is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer 103d and holes injected from the hole transport layer 103b, and the light emitting portion is the light emitting layer 103c. Even within the layer, it may be the interface between the light emitting layer 103c and the adjacent layer.
  • the structure of the light emitting layer 103c is not particularly limited as long as the included light emitting material satisfies the light emission requirements. There may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, a non-light emitting intermediate layer (not shown) is preferably provided between the light emitting layers 103c.
  • the total thickness of the light emitting layer 103c is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained.
  • the sum of the layer thicknesses of the light emitting layer 103c is a layer thickness including the intermediate layer when a non-light emitting intermediate layer exists between the light emitting layers 103c.
  • the thickness of each light emitting layer is preferably adjusted within a range of 1 to 50 nm, and more preferably adjusted within a range of 1 to 20 nm. preferable.
  • the plurality of stacked light emitting layers correspond to the respective emission colors of blue, green, and red, there is no particular limitation on the relationship between the thicknesses of the blue, green, and red light emitting layers.
  • the light emitting layer 103c as described above is formed by forming a known light emitting material or host compound by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. be able to.
  • a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method.
  • the light emitting layer 103c may be a mixture of a plurality of light emitting materials.
  • the structure of the light-emitting layer 103c preferably includes a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant), and emits light from the light-emitting material.
  • a host compound also referred to as a light-emitting host
  • a light-emitting material also referred to as a light-emitting dopant
  • injection layer (hole injection layer, electron injection layer)
  • the injection layer is a layer provided between the electrode and the light-emitting layer 103c in order to lower the drive voltage and improve the light emission luminance.
  • the injection layer can be provided as necessary.
  • the hole injection layer 103a may exist between the anode and the light emitting layer 103c or the hole transport layer 103b, and the electron injection layer 103e may exist between the cathode and the light emitting layer 103c or the electron transport layer 103d.
  • hole injection layer 103a Details of the hole injection layer 103a are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, and the like.
  • Specific examples include phthalocyanine represented by copper phthalocyanine.
  • examples thereof include a layer, an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • the details of the electron injection layer 103e are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like, and specifically represented by strontium, aluminum and the like. Examples thereof include a metal layer, an alkali metal halide layer typified by potassium fluoride, an alkaline earth metal compound layer typified by magnesium fluoride, and an oxide layer typified by molybdenum oxide.
  • the electron injection layer 103e used in the present invention is desirably a very thin film, and the layer thickness is preferably in the range of 1 nm to 10 ⁇ m although it depends on the material.
  • the hole transport layer 103b is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer 103a and the electron blocking layer are also included in the hole transport layer 103b. .
  • the hole-transport layer 103b can be provided as a single layer or a plurality of layers.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • hole transport material those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • a so-called p-type hole transport material as described in 139 can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
  • the hole transport layer 103b is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, or an LB method. be able to.
  • the layer thickness of the hole transport layer 103b is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer 103b may have a single layer structure composed of one or more of the above materials.
  • Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer 103d is made of a material having a function of transporting electrons. In a broad sense, the electron injection layer 103e and a hole blocking layer (not shown) are also included in the electron transport layer 103d.
  • the electron transport layer 103d can be provided as a single-layer structure or a stacked structure of a plurality of layers.
  • an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer 103c was injected from the cathode. What is necessary is just to have the function to transmit an electron to the light emitting layer 103c.
  • any one of conventionally known compounds can be selected and used.
  • Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group are also used as the material for the electron transport layer 103d.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the material for the electron transport layer 103d.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer 103d.
  • a distyrylpyrazine derivative exemplified also as a material of the light-emitting layer 103c can be used as a material of the electron-transport layer 103d, and n-type Si, n-type similarly to the hole-injection layer 103a and the hole-transport layer 103b.
  • An inorganic semiconductor such as type-SiC can also be used as the material of the electron transport layer 103d.
  • the electron transport layer 103d can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the layer thickness of the electron transport layer 103d is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer 103d may have a single-layer structure made of one or more of the above materials.
  • the electron transport layer 103d can be doped with an impurity to increase the n property.
  • examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer 103d contains potassium, a potassium compound, or the like.
  • the potassium compound for example, potassium fluoride can be used.
  • the material (electron transporting compound) of the electron transport layer 103d the same material as that of the base layer 101a described above may be used. This is the same for the electron transport layer 103d that also serves as the electron injection layer 103e, and the same material as that for the base layer 101a described above may be used.
  • Blocking layer (hole blocking layer, electron blocking layer)
  • the blocking layer may be further provided as the organic functional layer 103 in addition to the above functional layers. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of the electron transport layer 103d in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of the electron carrying layer 103d mentioned later can be used as a hole-blocking layer used for this invention as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer 103c.
  • the electron blocking layer has the function of the hole transport layer 103b in a broad sense.
  • the electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons, and improves the probability of recombination of electrons and holes by blocking electrons while transporting holes. be able to.
  • the structure of the positive hole transport layer 103b mentioned later can be used as an electron blocking layer as needed.
  • the layer thickness of the hole blocking layer used in the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
  • the second electrode 105a is an electrode film that functions as a cathode for supplying electrons to the organic functional layer 103, and a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof are used. Specifically, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 , An oxide semiconductor such as SnO 2 can be given.
  • the second electrode 105a can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the second electrode 105a is preferably several hundred ⁇ / ⁇ or less, and the thickness is usually selected within the range of 5 nm to 5 ⁇ m, preferably within the range of 5 to 200 nm.
  • the organic EL element 100 is one that takes out the emitted light h from the second electrode 105a side, a conductive material having good light transmittance is selected from the conductive materials described above. What is necessary is just to comprise the two electrodes 105a.
  • the extraction electrode 116 electrically connects the first electrode 101 and an external power source, and the material thereof is not particularly limited, and a known material can be preferably used. For example, a three-layer structure can be used. A metal film such as a MAM electrode (Mo / Al ⁇ Nd alloy / Mo) made of can be used.
  • the auxiliary electrode 115 is provided for the purpose of reducing the resistance of the first electrode 101, and is provided in contact with the electrode layer 101 b of the first electrode 101.
  • the material for forming the auxiliary electrode 115 is preferably a metal having low resistance such as gold, platinum, silver, copper, or aluminum. Since these metals have low light transmittance, a pattern is formed within a range not affected by extraction of the emitted light h from the light extraction surface 113a.
  • Examples of the method for forming the auxiliary electrode 115 include a vapor deposition method, a sputtering method, a printing method, an ink jet method, an aerosol jet method, and the like.
  • the line width of the auxiliary electrode 115 is preferably 50 ⁇ m or less from the viewpoint of the aperture ratio for extracting light, and the thickness of the auxiliary electrode 115 is preferably 1 ⁇ m or more from the viewpoint of conductivity.
  • a sealing film 107 of the present invention having a laminate 108 having a base material and a gas barrier layer and an adhesive layer 109 is for laminating the organic EL element 100, and functions as an adhesive as shown in the illustrated example. It is fixed to the resin substrate 113 side by the adhesive layer 109 according to the present invention.
  • Such a sealing film 107 is provided in a state in which the terminal portions of the first electrode 101 and the second electrode 105 a in the organic EL element 100 are exposed and at least the organic functional layer 103 is covered. Further, an electrode may be provided on the sealing film 107 so that the terminal portions of the first electrode 101 and the second electrode 105a of the organic EL element 100 are electrically connected to this electrode.
  • Sealing with the sealing film 107 is performed by placing the organic EL element 100 in an environment in which oxygen and moisture concentrations are constant (for example, in a glove box having an oxygen concentration of 10 ppm or less and a moisture concentration of 10 ppm or less) and under reduced pressure (1 ⁇ 10 ⁇ 3 MPa or less) and applying pressure while applying pressure, laminating the organic EL element 100 with the adhesive layer 109 of the sealing film, and then hot air circulation oven, infrared heater, heat gun, high frequency induction This is performed by thermosetting the adhesive layer 109 by a heating device, heating by pressure bonding of a heat tool, or the like.
  • the sealing film of the present invention has very good low-temperature curability, and the upper limit of the curing temperature is preferably 140 ° C. or lower, more preferably 120 ° C. or lower, and even more preferably 110 ° C. or lower.
  • the lower limit of the curing temperature is preferably 50 ° C. or higher, and more preferably 55 ° C. or higher.
  • 120 minutes or less is preferable, as for the upper limit of hardening time, 90 minutes or less are more preferable, and 60 minutes or less are still more preferable.
  • the lower limit of the curing time is preferably 20 minutes or more, and more preferably 30 minutes or more. Thereby, the thermal deterioration of the organic EL element can be extremely reduced.
  • a protective film or a protective plate may be provided between the resin substrate 113 and the organic EL element 100 and the sealing film 107.
  • This protective film or protective plate is for mechanically protecting the organic EL element 100, and in particular, when the sealing film 107 is a sealing film, sufficient mechanical protection is provided for the organic EL element 100. Therefore, it is preferable to provide such a protective film or protective plate.
  • a glass plate, a polymer plate, a thinner polymer film, a metal plate, a thinner metal film, a polymer material film or a metal material film is applied.
  • a polymer film from the viewpoint of light weight and thinning of the element.
  • Example 1 The effects of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. Moreover, although the display of "part” or “%” is used in an Example, unless otherwise indicated, “part by mass” or “mass%” is represented.
  • sealing film 1 Using a 75 ⁇ m thick PET film with a clear hard coat made by Kimoto Co., Ltd. as a base material, this is set in the vacuum chamber of a sputtering apparatus made by ULVAC, Inc., and evacuated to the 10 ⁇ 4 Pa level. Argon was introduced as a gas at a partial pressure of 0.5 Pa. When the atmospheric pressure was stabilized, discharge was started, plasma was generated on the silicon oxide (SiOx) target, and a sputtering process was started. When the process was stabilized, the shutter was opened and formation of a silicon oxide film (SiOx) on the film was started. When a 300 nm film was deposited, the shutter was closed to complete the film formation, and a gas barrier layer was produced on the substrate.
  • SiOx silicon oxide film
  • Adhesive layer 1 Polyisobutene (Opanol B100: viscosity average molecular weight 1100000, manufactured by BASF) dissolved in an aromatic mixed solvent (Ipsol 150: manufactured by Idemitsu Kosan Co., Ltd.) to give a 30% by mass solution, 50 parts of hydrogenated alicyclic ring Type petroleum resin (Escorez 5340: Exxon 20 parts of Mobile Chemical), 5 parts of liquid polyisobutene (Tetrax 3T: Shin Nippon Oil Co., Ltd.), and 10 parts of liquid polyisoprene (Kuraprene LIR-50: Kuraray Co., Ltd.) are mixed and mixed with a high-speed rotating mixer. The resin liquid was obtained by uniformly dispersing.
  • adhesive layer 1 “adhesive layer containing a resin having no functional group capable of reacting with an epoxy group” is abbreviated as adhesive layer 1.
  • This resin liquid is uniformly applied on the gas barrier layer 1 obtained above with an applicator so that the thickness of the adhesive layer after drying becomes 20 ⁇ m, and dried at 80 ° C. for 30 minutes to form the adhesive layer 1. And the sealing film 1 of the comparative example was obtained.
  • sealing film 4 of the present invention with a protective layer was prepared in the same manner as in the manufacturing of the sealing film 3 except that the thickness of the PET substrate was changed to 40 ⁇ m and the gas barrier layer 1 was changed to the following gas barrier layer 2. Obtained.
  • the coating solution obtained above is formed on a PET substrate having a thickness of 40 ⁇ m so that the thickness after drying becomes 300 nm, left for 2 minutes, and then heat-treated for 1 minute on an 80 ° C. hot plate.
  • a polysilazane coating film was formed.
  • a gas barrier layer 2 was formed by performing irradiation treatment of 6000 mJ / cm 2 with a Xe excimer lamp.
  • the gas barrier layer 2 is abbreviated as “polysilazane modification” in the column of the material of the gas barrier layer.
  • a PET substrate having a thickness of 20 ⁇ m was set in a plasma CVD apparatus 31 as shown in FIG. Next, a magnetic field is applied between the film forming roller 39 and the film forming roller 40, and electric power is supplied to the film forming roller 39 and the film forming roller 40, respectively. Was discharged to generate plasma. Next, a film forming gas (mixed gas of hexamethyldisiloxane (HMDSO) as a source gas and oxygen gas (also functioning as a discharge gas) as a source gas) is supplied to the formed discharge region, and on the substrate, A gas barrier SiOxCy film layer having a thickness of 450 nm was formed by plasma CVD.
  • HMDSO hexamethyldisiloxane
  • oxygen gas also functioning as a discharge gas
  • the film formation conditions were as follows.
  • the coating solution obtained above is formed on the SiOxCy film layer prepared above with a spin coater so that the thickness after drying becomes 300 nm, left for 2 minutes, and then on a hot plate at 80 ° C. for 1 minute. Heat treatment was performed to form a polysilazane coating film.
  • a gas barrier layer 3 was formed by applying an irradiation treatment of 6000 mJ / cm 2 with a Xe excimer lamp.
  • the gas barrier layer 3 is abbreviated as “SiOC + polysilazane modification” in the material column.
  • sealing film 7 Except changing the adhesive layer 1 to the following adhesive layer 2, the sealing film 7 of the present invention with a protective layer was obtained in the same manner as the production of the sealing film 6.
  • the adhesive layer 2 was formed as a homopolymer resin or a copolymer resin having at least one of isoprene, isobutene, or butadiene having a functional group capable of reacting with an epoxy group as a polymerization component.
  • Polyisobutene (Opanol B100: viscosity average molecular weight 1100000, manufactured by BASF) dissolved in an aromatic mixed solvent (Ipsol 150: manufactured by Idemitsu Kosan Co., Ltd.) to give a 30% by mass solution, 50 parts of hydrogenated alicyclic ring Type petroleum resin (Escorez 5340: manufactured by Exxon Mobile Chemical), 5 parts of liquid polyisobutene (Tetrax3T: manufactured by Nippon Oil Corporation), and 10 parts of hydroxy-modified liquid polyisoprene (Kuraprene LIR-506: manufactured by Kuraray Co., Ltd.) And 5 parts of an epoxy resin (HP7200H: manufactured by DIC) as a thermosetting resin dissolved in an aromatic mixed solvent (Ipsol 150: manufactured by Idemitsu Kosan Co., Ltd.) to give a 50% by mass solution, and anionic polymerization Mold curing agent (TAP: 2,4,6-tris (diaminomethy ) Phen
  • This resin solution was uniformly applied on the gas barrier layer 3 obtained above with an applicator so that the thickness of the resin layer after drying was 20 ⁇ m, dried at 80 ° C. for 30 minutes, and then 30 ° C. at 120 ° C.
  • the adhesive layer 2 was formed by heat-curing for a minute to obtain the sealing film 7 of the present invention.
  • adhesive layer containing a resin having a functional group capable of reacting with an epoxy group and an epoxy resin is abbreviated as an adhesive layer 2.
  • sealing film 8 Comparison with a protective layer in the same manner as in the production of the sealing film 2 except that a gas barrier layer (gas barrier layer 4) in which the thickness of the silicon oxide film (SiOx) of the gas barrier layer 1 is changed from 300 nm to 600 nm is used. An example sealing film 8 was obtained.
  • the cleaning surface modification treatment of the resin substrate on which the first electrode is formed is performed using a low-pressure mercury lamp having a wavelength of 184.9 nm and an irradiation intensity of 15 mW / cm 2. The distance was 10 mm.
  • the charge removal treatment was performed using a static eliminator with weak X-rays.
  • the following hole transport layer forming coating solution is applied with a spin coater in an environment of 25 ° C. and 50% RH, and then the following:
  • the hole transport layer was formed by performing drying and heat treatment under the conditions of The coating solution for forming the hole transport layer was applied so that the thickness after drying was 50 nm.
  • ⁇ Drying and heat treatment conditions After applying the hole transport layer forming coating solution, the solvent is removed at a height of 100 mm toward the film formation surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 100 ° C., followed by heat treatment.
  • the back surface heat transfer type heat treatment was performed at a temperature of 150 ° C. using an apparatus to form a hole transport layer.
  • the following coating solution for forming a white light emitting layer was applied with a spin coater under the following conditions, followed by drying and heat treatment under the following conditions to form a light emitting layer. .
  • the white light emitting layer forming coating solution was applied so that the thickness after drying was 40 nm.
  • ⁇ White luminescent layer forming coating solution 1.0 g of a compound represented by the following chemical formula HA as a host material, 100 mg of a compound represented by the following chemical formula DA as a luminescent dopant, and 0. 2 mg of a compound represented by the following chemical formula DC as a light-emitting dopant was dissolved in 0.2 mg and 100 g of toluene to prepare a coating solution for forming a white light-emitting layer.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more and the coating temperature was 25 ° C.
  • ⁇ Drying and heat treatment conditions After applying the white light emitting layer forming coating solution, the solvent was removed at a height of 100 mm toward the film formation surface, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 60 ° C., and then a temperature of 130 ° C. A heat treatment was performed to form a light emitting layer.
  • the following coating liquid for forming an electron transport layer was applied with a spin coater under the following conditions, and then dried and heated under the following conditions to form an electron transport layer.
  • the coating solution for forming an electron transport layer was applied so that the thickness after drying was 30 nm.
  • the coating process was performed in an atmosphere with a nitrogen gas concentration of 99% or more, and the coating temperature of the electron transport layer forming coating solution was 25 ° C.
  • the electron transport layer was prepared by dissolving a compound represented by the following chemical formula EA in 2,2,3,3-tetrafluoro-1-propanol to obtain a 0.5 mass% solution as a coating solution for forming an electron transport layer.
  • An electron injection layer was formed on the electron transport layer formed above. First, the substrate was put into a vacuum chamber and the pressure was reduced to 5 ⁇ 10 ⁇ 4 Pa. In advance, cesium fluoride prepared in a tantalum vapor deposition boat was heated in a vacuum chamber to form an electron injection layer having a thickness of 3 nm.
  • Formation of second electrode Using the aluminum as the second electrode forming material under the vacuum of 5 ⁇ 10 ⁇ 4 Pa on the portion of the electron injection layer formed above except for the portion that becomes the extraction electrode of the first electrode, the extraction is performed A mask pattern was formed by a vapor deposition method so as to have an electrode so as to form a rectangle with a light emission area of 40 mm ⁇ 30 mm, and a second electrode having a thickness of 100 nm was laminated to produce an electronic element 202.
  • the produced sealing film 1 was cut into 50 mm ⁇ 100 mm and used.
  • the sealing film is closely attached and arranged so as to cover the joint between the take-out electrode and the electrode lead, and pressure bonding conditions using a pressure roller, pressure roller temperature 120 ° C., pressure 0.5 MPa, apparatus speed 0.3 m / min. And sealed tightly.
  • the comparative organic EL element 1 was produced.
  • organic EL elements 2 to 8 were performed in the same manner as the production of the organic EL element 1 by changing the sealing film 1 to the sealing films 2 to 8.
  • the bending resistance of the organic EL devices 1 to 8 produced as described above was evaluated according to the mechanical stress test (IEC62715-6-1 Ed.1) of the flexible display device. Specifically, using a U-shaped folding tester manufactured by Yuasa System Equipment Co., Ltd. under an environment of 23 ° C. and 50% RH, the curvature radius is set to 4.0 mm and the sealing film side is on the outside, and the bending speed is set. Bending was repeated 300,000 times at 60 times / minute.
  • the durability was determined by determining that the bendability was lost when the light emission intensity at a constant voltage (10 V) before the stress test was less than 50% after the test, and using the number of bends as a measure.
  • the emission intensity was measured every 10,000 times.
  • the sealing film of the present invention is a sealing film that has excellent bending resistance and enables sufficient sealing properties, and is suitably provided for flexible functional elements such as organic EL elements and solar cells.

Abstract

 本発明の課題は、折り曲げ耐性に優れ、十分な封止性を可能とする封止フィルムを提供することである。また、その封止フィルムで封止された機能素子及びその封止フィルムの製造方法を提供することである。 本発明の封止フィルムは、基材の片面にガスバリアー層及び接着剤層をこの順に有する封止フィルムであって、前記基材の厚さが5~50μmの範囲内であり、かつ、前記封止フィルムの25℃におけるポアソン比が0.30~0.39の範囲内であることを特徴とする。

Description

封止フィルム、機能素子及び封止フィルムの製造方法
 本発明は封止フィルム、機能素子及び封止フィルムの製造方法に関する。より詳しくは、折り曲げ耐性に優れ、十分な封止性を可能とする封止フィルムとその封止フィルムで封止された機能素子及びその封止フィルムの製造方法に関する。
 有機EL(Electroluminescence)素子や有機薄膜太陽電池等の有機材料からなる機能素子は酸素や水分に極めて弱い。例えば有機EL素子を用いてディスプレイや照明装置を構成する場合に、有機材料自体が酸素や水分によって変質して、輝度が低下したり、ひいては、発光しなくなるといった欠点があり、酸素や水分に対する高いバリアー性が必要となっている。
 一方で有機EL素子は、折り曲げたり巻物形状にすることのできる、新たな用途に適用可能な折り曲げ性を有する素子であることが期待されており、そのためガラス基材ではなく変形可能なプラスチック基材とバリアー層を有するバリアーフィルムが使用されるようになってきている(特許文献1及び特許文献2参照。)。
 しかしながら、上記用途を満たすためには、さらにより薄い基材を用いる必要があるが、基材を単に薄くするだけでは、折り曲げる際にバリアー層がダメージを受けやすくなり、ガスバリアー性を維持しつつ折り曲げ性や折り曲げ耐性を上げるという観点からは十分ではないことが分かってきた。
国際公開第2011/016408号 国際公開第2011/102465号
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、折り曲げ耐性に優れ、十分な封止性を可能とする封止フィルムを提供することである。また、その封止フィルムで封止された機能素子及びその封止フィルムの製造方法を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、基材、ガスバリアー層及び接着剤層を有する封止フィルムのポアソン比を特定の範囲内に規定することにより、薄い基材を用いても、繰り返し折り曲げや巻き付けをする際に生じるバリアー層に対するダメージを抑制できることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.基材の片面にガスバリアー層及び接着剤層をこの順に有する封止フィルムであって、前記基材の厚さが5~50μmの範囲内であり、かつ、前記封止フィルムの25℃におけるポアソン比が0.30~0.39の範囲内であることを特徴とする封止フィルム。
 2.前記ガスバリアー層が、酸化ケイ素又は酸化窒化ケイ素を含有する層であることを特徴とする第1項に記載の封止フィルム。
 3.前記接着剤層が、エポキシ樹脂と、エポキシ基と反応し得る官能基を持つ、イソプレン、イソブテン又はブタジエンの少なくとも1種を重合成分とする単独重合樹脂又は共重合樹脂と、を含有することを特徴とする第1項又は第2項に記載の封止フィルム。
 4.第1項から第3項までのいずれか一項に記載の封止フィルムで封止されていることを特徴とする機能素子。
 5.基材の片面にガスバリアー層及び接着剤層をこの順に有する封止フィルムの製造方法であって、(A)ポリシラザンを含有する塗布液を塗布、乾燥した層に改質処理を施してガスバリアー層を形成する工程と、(B)当該ガスバリアー層上にエポキシ樹脂と、少なくともエポキシ基と反応し得る官能基を持つ、イソプレン、イソブテン又はブタジエンの少なくとも1種を重合成分とする単独重合樹脂又は共重合樹脂と、を含有する樹脂液を塗布、乾燥して接着剤層を形成する工程と、を有することを特徴とする封止フィルムの製造方法。
 6.前記改質処理が、真空紫外光照射処理であることを特徴とする第5項に記載の封止フィルムの製造方法。
 本発明の上記手段により、折り曲げ耐性に優れ、十分な封止性を可能とする封止フィルムを提供することができる。また、その封止フィルムで封止された機能素子及びその封止フィルムの製造方法を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 従来、封止フィルムのポアソン比は、基材が厚いため基材のポアソン比でほぼ決まっていた。しかし、基材の厚さを薄くすることで基材だけでなくガスバリアー層、接着剤層の3者のバランスで決まってくるようになる。封止フィルムのポアソン比を特定の範囲内に規定することで、有機EL素子部との貼合時や貼合された有機EL素子部を折り曲げるときにガスバリアー層に加わるひずみを緩和させて小さくし、その後の長期間繰り返し折り曲げや巻き付けによるひずみに対する許容度を増加させるためと推定される。
本発明の封止フィルムの断面図 本発明に係るガスバリアー層の形成に用いられる真空プラズマCVD装置の一例を示す模式図 有機EL素子の概略構成を示す断面図 樹脂基材上の機能素子の位置を模式的に示す図
 本発明の封止フィルムは、基材の片面にガスバリアー層及び接着剤層をこの順に有する封止フィルムであって、前記基材の厚さが5~50μmの範囲内であり、かつ、前記封止フィルムの25℃におけるポアソン比が0.30~0.39の範囲内であることを特徴とする。この特徴は、請求項1から請求項6までの請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、前記ガスバリアー層が、酸化ケイ素又は酸化窒化ケイ素を含有する層であることが好ましい。
 さらに、本発明においては、前記接着剤層が、エポキシ樹脂と、エポキシ基と反応し得る官能基を持つ、イソプレン、イソブテン又はブタジエンの少なくとも1種を重合成分とする単独重合樹脂又は共重合樹脂と、を含有することが好ましい。これにより、耐透湿性を高めることができる。
 また、機能素子が本発明の封止フィルムで封止されていることが好ましい。
 さらに、本発明の封止フィルムを製造する封止フィルムの製造方法としては、基材の片面にガスバリアー層及び接着剤層をこの順に有する封止フィルムの製造方法であって、(A)ポリシラザンを含有する塗布液を塗布、乾燥した層に改質処理を施してガスバリアー層を形成する工程と、(B)当該ガスバリアー層上にエポキシ樹脂と、少なくともエポキシ基と反応し得る官能基を持つ、イソプレン、イソブテン又はブタジエンの少なくとも1種を重合成分とする単独重合樹脂又は共重合樹脂と、を含有する樹脂液を塗布、乾燥して接着剤層を形成する工程と、を有する態様の製造方法であることが、封止フィルムを貼合する際に本発明の効果を発揮させる点の容易さから好ましい。また、前記改質処理が真空紫外光照射処理であることが、高いガスバリアー性を得る観点から、好ましい。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 <本発明の封止フィルムの概要>
 本発明の封止フィルムは、基材の片面にガスバリアー層及び接着剤層をこの順に有する封止フィルムであって、前記基材の厚さが5~50μmの範囲内であり、かつ、前記封止フィルムの25℃におけるポアソン比が0.30~0.39の範囲内であることを特徴とし、かかる構成によって、折り曲げ耐性に優れ、十分な封止性を可能とする封止フィルムを提供するものである。
 図1に本発明の封止フィルムの一例を示す断面図を示す。
 本発明の封止フィルム1は、酸素や水分に対してガスバリアー性を有し、接着剤層を介して機能素子に貼合して、これらの影響を抑制することのできるものである。封止フィルム1は、少なくとも基材1aにガスバリアー層1bと接着剤層1cとをこの順に有する。
 基材1aのガスバリアー層とは反対側の面、基材1aとガスバリアー層1bの間、ガスバリアー層1bと接着剤層1cの間に、本発明の効果を損なわない範囲で、他の層を形成することもできる。例えば、基材1aとガスバリアー層1bの間に平滑化層を設け基材表面の凹凸を平滑化したりすることができる。他の層として。例えば中間層、ブリードアウト防止層、及び帯電防止層等の機能層なども挙げることができる。
 また、本発明に係るガスバリアー層1bと接着剤層1cは、複数の層からなってもよく、特にガスバリアー層は複数のガスバリアー層を積層した形態からなることが好ましい。
 なお、本発明ではガスバリアー性とは、JIS-K-7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が1×10-1g/(m・24時間)以下のガスバリアー性であることをいう。また、JIS-K-7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24時間・atm)以下、水蒸気透過度が1×10-5g/(m・24時間)以下の高ガスバリアー性であることがより好ましい。
 さらに、本発明の封止フィルムの接着剤層1cを保護するため、接着剤層1c上に、保護フィルムとして剥離可能なセパレーターフィルムを設けてもよい。
 〔ポアソン比〕
 本発明の封止フィルムの25℃におけるポアソン比は、0.30~0.39の範囲内である。従来は封止フィルムのポアソン比は、基材が厚いため基材のポアソン比でほぼ決まっていた。しかし、基材の厚さを薄くすることで基材だけでなくガスバリアー層、接着剤層の3者のバランスで決まってくるようになる。本発明では基材厚を薄くし、さらに、ガスバリアー層、接着剤層の組成を調整することでポアソン比を調整することができるようになった。
 封止フィルムのポアソン比を0.30~0.39の範囲内に規定することで、折り曲げ耐性に優れる封止フィルムを得ることができるのは、有機EL素子部との貼合時や貼合された有機EL素子部を折り曲げるときにガスバリアー層に加わるひずみを緩和させて小さくし、その後の長期間繰り返し折り曲げや巻き付けによるひずみに対する許容度を増加させるためであると推定される。
 ここで、ポアソン比とは、対象物(封止フィルム)を弾性限界内で引張力を加えた時に、荷重方向の伸び(ひずみ%)と、荷重に直角方向の寸法の縮み(ひずみ%)の比をいう。例えば、長さpのフィルムを縦方向に長さΔpだけ延伸したときに、延伸によって長さrの幅が長さΔrだけ縮んだ場合、ポアソン比は以下の式(a)により求められる。
  式(a): ポアソン比=(Δr/r)/(Δp/p)
 封止フィルムの基材を50μm以下の薄膜とし、折り曲げる角度が大きくなると、ポアソン比が0.39より大きい場合、機能素子を折り曲げたときに幅方向の収縮が大きくなるため、ガスバリアー層に加わるひずみが大きくなると考えられ、実際、折り曲げの耐久性は大きくならない。また、ポアソン比が0.30より小さい場合は、封止フィルムがより脆くなり、クラック等が生じやすくなるため、折り曲げの耐久性は大きくならない。
 好ましくは、封止フィルムの25℃におけるポアソン比は、0.32~0.35の範囲内である。
 薄膜の封止フィルムのポアソン比の調整は、基材、ガスバリアー層及び接着剤層の種類、厚さ並びに他の層の有無等で調整可能である。この中では、基材とガスバリアー層の種類と厚さが、封止フィルムのポアソン比に対する寄与率が大きい。
 (ポアソン比の測定)
 封止フィルムのポアソン比の測定は、「非接触式の伸び幅計」等を用いて、非接触法で測定することができる。具体的には、保護フィルムを剥離した封止フィルムをサンプルとして、引っ張り試験機を用い、例えば、チャック間距離100mmのサンプルを一定の速度で引っ張り、縦ひずみ及び引張方向と垂直方向の横ひずみを算出し、それぞれの応力-ひずみ曲線における直線部の傾きから算出することができる。
 「非接触式の伸び幅計」では、縦ひずみと横ひずみの大きさをビデオカメラで計測しポアソン比を算出することができる。フィルム状のサンプルを測定するには、このような非接触方式の伸び幅計を用いることが好ましい。このような、ひずみを計測しポアソン比を測定するための装置としては、例えば、ビデオ式非接触伸び幅計(TRViewX55S:島津製作所社製)等を用いることができる。
 〔折り曲げ試験〕
 本発明では折り曲げ耐性の評価方法として曲率半径を固定して繰り返し折り曲げすることに対する耐久性を評価する方法を採用する。具体的にはフレキシブルディスプレイ素子の機械的ストレステスト(IEC62715-6-1 Ed.1)に規定されている繰り返し屈曲テスト法が挙げられる。これは機能素子を一定の曲率半径になるようにU字型に折り曲げたところで素子の両端を前後に繰り返しスライドすることによって繰り返し折り曲げするテスト法である。装置例としてはユアサシステム機器株式会社製のU字折り返し試験機等が挙げられる。その他の試験条件としては屈曲速度が挙げられるが、本発明においては、試験期間や実際の使用現場を考慮して1分間に60回の繰り返し速度で行う。
 例えば、折り曲げ耐性は、曲率半径4.0mmで上記試験を行ったあとに、例えば85℃・85%RHの環境に24時間放置したのち発光試験を行うことにより、評価することができる。
 次に本発明の封止フィルムを構成する各層について詳細に説明する。
 ≪接着剤層≫
 本発明に係る接着剤層は、封止フィルムの最上層に位置し、封止フィルムと機能素子とを接着させる機能を有している。また寄与率は小さいが封止フィルムのポアソン比を調整することもできる。
 使用できる接着剤は、UV硬化型樹脂や熱硬化型樹脂等、公知の接着剤を使用することができる。
 本発明に係る接着剤層は、エポキシ基と反応し得る官能基を持つイソプレン、イソブテン、又はブタジエンの少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂を含有することが耐透湿性を向上させる上で好ましい。さらに、少なくとも熱硬化性樹脂を含有することが好ましい。
 また、前記接着剤層は当該熱硬化性樹脂以外に、耐透湿性の観点から、吸湿性金属酸化物、イオン液体、無機充填剤及び硬化促進剤等を含有してもよい。
 〔エポキシ基と反応し得る官能基を持つイソプレン、イソブテン、又はブタジエンの少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂〕
 本発明において好ましく使用される、エポキシ基と反応し得る官能基を持つイソプレン、イソブテン、又はブタジエンの少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂とは、イソプレン、イソブテン、又はブタジエンの少なくとも1種を主体とするポリマーの一部にエポキシ基と反応し得る官能基を修飾したものである。
 イソプレン、イソブテン、又はブタジエンの少なくとも1種を主体とするポリマーには、それぞれの単独重合体であるポリイソプレン樹脂(IR)、ポリイソブテン樹脂、ポリブタジエン樹脂(BR)があり、これらの共重合体(例えばポリイソブテン-イソプレン共重合体(IIR))がある。
 またイソプレン、イソブテン、又はブタジエンの少なくとも1種とそれ以外の単量体成分からなる共重合体でもよく、イソプレン、イソブテン、又はブタジエン以外の単量体成分としては、スチレン、エチレン、プロピレン、アクリロニトリル、塩化ビニル、臭化ビニル、水添スチレン、ペンタジエン、シクロペンタジエン、ジシクロペンタジエン等が例示でき、これらは1種又は2種以上を使用することができ、例えばポリスチレン-ブタジエン共重合体(SBR)やポリブタジエン-アクリロニトリル共重合体(NBR)がある。
 上記共重合体においてイソプレン、イソブテン、ブタジエンの少なくとも1種の占める割合は、ポリマー全体の50質量%以上が好ましく、より好ましくは60質量%以上、さらに好ましくは80質量%以上、とりわけ好ましくは90質量%以上である。
 上記イソプレン、イソブテン、又はブタジエンの少なくとも1種を主体とするポリマーはイソブテンを主体とする重合体が好ましい。
 上記のエポキシ基と反応し得る官能基としては極性基を有するものが好ましく、例えば、酸無水物基[-C(O)-O-C(O)-]、カルボキシ基、エポキシ基、アミノ基、ヒドロキシ基、メルカプト基、スルフィド基、イソシアネート基、ブロックイソシアネート基、オキサゾリン基、オキセタン基、シアネート基、フェノール基[-Ph-OH]、ヒドラジド基、アミド基、イミダゾール基等が挙げられ、これらはいずれか1種であっても、2種以上であってもよい。上記のエポキシ基と反応し得る官能基としては酸無水物基が好ましい。
 エポキシ基と反応し得る官能基を持つイソプレン、イソブテン、又はブタジエンの少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂の具体例としては、無水マレイン酸変性ポリイソブテン、無水フタル酸変性ポリイソブテン、メルカプト基変性ポリイソブテン、無水マレイン酸変性ポリイソプレン、エポキシ変性ポリイソプレン、ヒドロキシ基変性ポリイソプレン、アリル変性ポリイソプレン、無水マレイン酸変性ポリブタジエン、エポキシ変性ポリブタジエン、ヒドロキシ基変性ポリブタジエン等が挙げられ、なかでも、無水マレイン酸変性ポリイソブテン、無水マレイン酸変性ポリイソプレン、無水マレイン酸変性ポリブタジエンが好ましい。これらは1種又は2種以上組み合わせて使用してもよい。
 エポキシ基と反応し得る官能基を持つイソプレン、イソブテン、又はブタジエンの少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂の数平均分子量は、本発明の効果を発現させるために適する範囲があり、上限は100000以下が好ましく、50000以下が更に好ましく、下限は300以上が好ましく、700以上が更に好ましい。
 なお、本発明における数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレン換算)で測定される。GPC法による数平均分子量は、具体的には、測定装置として(株)島津製作所製LC-9A/RID-6Aを、カラムとして昭和電工社製Shodex K-800P/K-804L/K-804Lを、移動相としてクロロホルム等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。
 エポキシ基と反応し得る官能基を持つイソプレン、イソブテン、又はブタジエンの少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂として使用できる市販品としては、無水マレイン酸変性ポリイソブテン:HV-100M、HV-300M(以上、新日本石油社製)、無水マレイン酸変性ポリイソプレン:クラプレンLIR-403、LIR-410(以上、クラレ社製)、ヒドロキシ基変性ポリイソプレン:クラプレンLIR-506(クラレ社製)、アリル変性ポリイソプレン:クラプレンUC-203、UC-102(以上、クラレ社製)、エポキシ変性イソプレン共重合ポリマー:クラプレンKLP L-207(クラレ社製)、無水マレイン酸変性ブタジエン:Ricon130MA8、Ricon131MA5(以上、クレイバレー社製)、無水マレイン酸変性ブタジエン-スチレン共重合ポリマー:Ricon184MA6(クレイバレー社製)、エポキシ変性ポリブタジエン:Ricon657(クレイバレー社製)などが挙げられる。
 エポキシ基と反応し得る官能基を持つイソプレン、イソブテン、又はブタジエンの少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂の含有量は、接着剤層中の不揮発分100質量%に対し、上限としては50質量%以下が好ましく、10質量%以下がさらに好ましく、下限としては0.1質量%以上が好ましく、3質量%以上が更に好ましい。
 〔熱硬化性樹脂〕
 熱硬化性樹脂は、特に制限はなく、具体的には、エポキシ樹脂、シアネートエステル樹脂、フェノール樹脂、ビスマレイミド-トリアジン樹脂、ポリイミド樹脂、アクリル樹脂、ビニルベンジル樹脂等の種々の熱硬化性樹脂が挙げられる。中でも、低温硬化性や接着性等の観点から、エポキシ樹脂が好ましい。
 エポキシ樹脂としては、平均して1分子当り2個以上のエポキシ基を有するものであればよく、具体的には、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、リン含有エポキシ樹脂、ビスフェノールS型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂(具体的には、テトラグリシジルジアミノジフェニルメタン、トリグリシジル-p-アミノフェノール、ジグリシジルトルイジン、ジグリシジルアニリン等)、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ジシクロペンタジエン構造を有するエポキシ樹脂、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のグリシジルエーテル化物、及びアルコール類のジグリシジルエーテル化物、並びにこれらのエポキシ樹脂のアルキル置換体、ハロゲン化物及び水素添加物等が挙げられる。これらは1種又は2種以上を組み合わせて使用してもよい。
 これらの中でも、樹脂組成物の高い耐熱性及び低い透湿性を保つ等の観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂、ジシクロペンタジエン構造を有するエポキシ樹脂等が好ましい。
 また、エポキシ樹脂は、液状であっても、固形状であっても、液状と固形状の両方を用いてもよい。ここで、「液状」及び「固形状」とは、25℃でのエポキシ樹脂の状態である。塗工性、加工性、接着性等の観点から、使用するエポキシ樹脂全体の10質量%以上が液状であるのが好ましい。
 また、エポキシ樹脂は反応性の観点から、エポキシ当量が100~1000の範囲のものが好ましく、より好ましくは120~1000の範囲のものである。ここでエポキシ当量とは1グラム当量のエポキシ基を含む樹脂のグラム数(g/eq)であり、JIS K-7236に規定された方法に従って測定されるものである。
 エポキシ樹脂の硬化剤としては、エポキシ樹脂を硬化する機能を有するものであれば特に限定されないが、樹脂組成物の硬化処理時における素子(特に有機EL素子)の熱劣化を抑制する観点から、樹脂組成物の硬化処理は好ましくは140℃以下、より好ましくは120℃以下で行うのが好ましく、硬化剤はかかる温度領域にてエポキシ樹脂の硬化作用を有するものが好ましい。
 具体的には、一級アミン、二級アミン、三級アミン系硬化剤、ポリアミノアミド系硬化剤、ジシアンジアミド、有機酸ジヒドラジド等が挙げられるが、中でも、速硬化性の観点から、アミンアダクト系化合物(アミキュアPN-23、アミキュアMY-24、アミキュアPN-D、アミキュアMY-D、アミキュアPN-H、アミキュアMY-H、アミキュアPN-31、アミキュアPN-40、アミキュアPN-40J等(いずれも味の素ファインテクノ社製))、有機酸ジヒドラジド(アミキュアVDH-J、アミキュアUDH、アミキュアLDH等(いずれも味の素ファインテクノ社製))等が好ましい。これらは1種又は2種以上組み合わせて使用してもよい。
 また、接着剤層が、上記エポキシ樹脂と、前記したエポキシ基と反応し得る官能基を持つ、イソプレン、イソブテン又はブタジエンの少なくとも1種を重合成分とする単独重合樹脂又は共重合樹脂と、を含有することが好ましい。接着剤層をこのような構成とすることで、封止フィルムの耐透湿性を上げるとともに、封止フィルムのポアソン比を上げる効果も見られ、折り曲げ耐性を向上させることができる。
 〔吸湿性金属酸化物〕
 本発明に係る接着剤層は、透湿性を調整する観点から吸湿性の金属酸化物を含有することも好ましい。
 本発明でいう「吸湿性金属酸化物」とは、水分を吸収する能力をもち、吸湿した水分と化学反応して水酸化物になる金属酸化物のことであり、具体的には、酸化カルシウム、酸化マグネシウム、酸化ストロンチウム、酸化アルミニウム及び酸化バリウムから選ばれる1種か、又は、これらから選ばれる2種以上の金属酸化物の混合物若しくは固溶物である。2種以上の金属酸化物の混合物若しくは固溶物の例としては、具体的には、焼成ドロマイト(酸化カルシウム及び酸化マグネシウムを含む混合物)、焼成ハイドロタルサイト(酸化カルシウムと酸化アルミニウムの固溶物)等が挙げられる。このような吸湿性金属酸化物は、種々の技術分野において吸湿材として公知であり、市販品を使用することができる。具体的には、焼成ドロマイト(吉澤石灰社製「KT」等)、酸化カルシウム(三共製粉社製「モイストップ#10」等)、酸化マグネシウム(協和化学工業社製「キョーワマグMF-150」、「キョーワマグMF-30」、タテホ化学工業社製「ピュアマグFNMG」等)、軽焼酸化マグネシウム(タテホ化学工業社製の「#500」、「#1000」、「#5000」等)等が挙げられる。
 吸湿性金属酸化物の平均粒径は特に限定はされないが、10μm以下が好ましく、5μm以下がより好ましく、1μm以下が更に好ましい。
 また、吸湿性金属酸化物は、ステアリン酸等の高級脂肪酸、公知のアルキルシラン類やシランカップリング剤等の表面処理剤で表面処理したものを用いることができる。このような表面処理を行うことで、樹脂中の水分と吸湿性金属酸化物が反応してしまうことを防止できる。
 接着剤層中の吸湿性金属酸化物の含有量は、樹脂組成物中の不揮発分100質量%に対して1~40質量%の範囲が好ましい。
 〔イオン液体〕
 本発明におけるイオン液体は、熱可塑性樹脂の硬化剤としての機能を有する添加剤である。
 当該イオン液体は、140℃以下(好ましくは120℃以下)の温度領域で融解しうる塩である。イオン液体は、例えば後述する熱硬化性樹脂であるエポキシ樹脂の硬化作用を有する塩が特に好適に使用され、接着剤層の硬化物の耐透湿性向上に有利に作用する。なお、イオン液体は上記エポキシ樹脂に当該イオン液体を均一に溶解している状態で使用されるのが望ましい。
 かかるイオン液体を構成するカチオンとしては、イミダゾリウムイオン、ピリミジニウムイオン、ピリジニウムイオン、ピロリジニウムイオン、ピペリジニウムイオン、ピラゾニウムイオン、グアニジニウムイオン等のアンモニウム系カチオン;テトラアルキルホスホニウムカチオン(例えば、テトラブチルホスホニウムイオン、トリブチルヘキシルホスホニウムイオン等)等のホスホニウム系カチオン;トリエチルスルホニウムイオン等のスルホニウム系カチオン等が挙げられる。
 アンモニウム系カチオンの具体例としては、例えば、1,3-ジメチルイミダゾリウムカチオン、1,3-ジエチルイミダゾリウムカチオン、1-エチル-3-メチルイミダゾリウムカチオン、1-プロピル-3-メチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムカチオン、1-ヘキシル-3-メチルイミダゾリウムカチオン、1-オクチル-3-メチルイミダゾリウムカチオン、1-デシル-3-メチルイミダゾリウムカチオン、1-ドデシル-3-メチルイミダゾリウムカチオン、1-テトラデシル-3-メチルイミダゾリウムカチオン、1,2-ジメチル-3-プロピルイミダゾリウムカチオン、1-エチル-2,3-ジメチルイミダゾリウムカチオン、1-ブチル-2,3-ジメチルイミダゾリウムカチオン、1-ヘキシル-2,3-ジメチルイミダゾリウムカチオン、1,3-ジメチル-1,4,5,6-テトラヒドロピリミジニウムカチオン、1,2,3-トリメチル-1,4,5,6-テトラヒドロピリミジニウムカチオン、1,2,3,4-テトラメチル-1,4,5,6-テトラヒドロピリミジニウムカチオン、1,2,3,5-テトラメチル-1,4,5,6-テトラヒドロピリミジニウムカチオン、1,3-ジメチル-1,4-ジヒドロピリミジニウムカチオン、1,3-ジメチル-1,6-ジヒドロピリミジニウムカチオン、1,2,3-トリメチル-1,4-ジヒドロピリミジニウムカチオン、1,2,3-トリメチル-1,6-ジヒドロピリミジニウムカチオン、1,2,3,4-テトラメチル-1,4-ジヒドロピリミジニウムカチオン、1,2,3,4-テトラメチル-1,6-ジヒドロピリミジニウムカチオン、1-エチルピリジニウムカチオン、1-ブチルピリジニウムカチオン、1-ヘキシルピリジニウムカチオン、1-ブチル-3-メチルピリジニウムカチオン、1-ブチル-4-メチルピリジニウムカチオン、1-ヘキシル-3-メチルピリジニウムカチオン、1-ブチル-3,4-ジメチルピリジニウムカチオン、1,1-ジメチルピロリジニウムカチオン、1-エチル-1-メチルピロリジニウムカチオン、1-メチル-1-プロピルピロリジニウムカチオン、1-メチル-1-ブチルピロリジニウムカチオン、1-メチル-1-ペンチルピロリジニウムカチオン、1-メチル-1-ヘキシルピロリジニウムカチオン、1-メチル-1-ヘプチルピロリジニウムカチオン、1-エチル-1-プロピルピロリジニウムカチオン、1-エチル-1-ブチルピロリジニウムカチオン、1-エチル-1-ペンチルピロリジニウムカチオン、1-エチル-1-ヘキシルピロリジニウムカチオン、1-エチル-1-ヘプチルピロリジニウムカチオン、1,1-ジプロピルピロリジニウムカチオン、1-プロピル-1-ブチルピロリジニウムカチオン、1,1-ジブチルピロリジニウムカチオン、1-プロピルピペリジニウムカチオン、1-ペンチルピペリジニウムカチオン、1,1-ジメチルピペリジニウムカチオン、1-メチル-1-エチルピペリジニウムカチオン、1-メチル-1-プロピルピペリジニウムカチオン、1-メチル-1-ブチルピペリジニウムカチオン、1-メチル-1-ペンチルピペリジニウムカチオン、1-メチル-1-ヘキシルピペリジニウムカチオン、1-メチル-1-ヘプチルピペリジニウムカチオン、1-エチル-1-プロピルピペリジニウムカチオン、1-エチル-1-ブチルピペリジニウムカチオン、1-エチル-1-ペンチルピペリジニウムカチオン、1-エチル-1-ヘキシルピペリジニウムカチオン、1-エチル-1-ヘプチルピペリジニウムカチオン、1,1-ジプロピルピペリジニウムカチオン、1-プロピル-1-ブチルピペリジニウムカチオン、1,1-ジブチルピペリジニウムカチオン、1-メチルピラゾリウムカチオン、3-メチルピラゾリウムカチオン、1-エチル-2-メチルピラゾリニウムカチオン、1-エチル-2,3,5-トリメチルピラゾリウムカチオン、1-プロピル-2,3,5-トリメチルピラゾリウムカチオン、1-ブチル-2,3,5-トリメチルピラゾリウムカチオン、1-エチル-2,3,5-トリメチルピラゾリニウムカチオン、1-プロピル-2,3,5-トリメチルピラゾリニウムカチオン、1-ブチル-2,3,5-トリメチルピラゾリニウムカチオンなどが挙げられる。
 上述の中でも、カチオンは、アンモニウム系カチオン、ホスホニウム系カチオンが好ましく、イミダゾリウムイオン、ホスホニウムイオンがより好ましい。
 また、かかるイオン液体を構成するアニオンとしては、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等のハロゲン化物系アニオン;メタンスルホン酸イオン等のアルキル硫酸系アニオン;トリフルオロメタンスルホン酸イオン、ヘキサフルオロホスホン酸イオン、トリフルオロトリス(ペンタフルオロエチル)ホスホン酸イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、トリフルオロ酢酸イオン、テトラフルオロホウ酸イオン等の含フッ素化合物系アニオン;フェノールイオン、2-メトキシフェノールイオン、2,6-ジ-tert-ブチルフェノールイオン等のフェノール系アニオン;アスパラギン酸イオン、グルタミン酸イオン等の酸性アミノ酸イオン;グリシンイオン、アラニンイオン、フェニルアラニンイオン等の中性アミノ酸イオン;N-ベンゾイルアラニンイオン、N-アセチルフェニルアラニンイオン、N-アセチルグリシンイオン等の下記一般式(1)で示されるN-アシルアミノ酸イオン;ギ酸イオン、酢酸イオン、デカン酸イオン、2-ピロリドン-5-カルボン酸イオン、α-リポ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N-メチル馬尿酸イオン、安息香酸イオン等のカルボン酸系アニオンが挙げられる。
 また、アニオンは、下記一般式(1)で示されるN-アシルアミノ酸イオン又はカルボン酸系アニオンが好ましい。
Figure JPOXMLDOC01-appb-C000001
 (ただし、R-CO-は炭素数1~5の直鎖又は分岐鎖の脂肪酸より誘導されるアシル基、又は置換又は無置換ベンゾイル基であり、-NH-CHX-CO はアスパラギン酸、グルタミン酸等の酸性アミノ酸イオン、又はグリシン、アラニン、フェニルアラニン等の中性アミノ酸イオンである。)
 カルボン酸系アニオンの具体例としては、酢酸イオン、デカン酸イオン、2-ピロリドン-5-カルボン酸イオン、ギ酸イオン、α-リポ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N-メチル馬尿酸イオン等が挙げられ、中でも、酢酸イオン、2-ピロリドン-5-カルボン酸イオン、ギ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N-メチル馬尿酸イオンが好ましく、酢酸イオン、N-メチル馬尿酸イオン、ギ酸イオンがより好ましい。また、一般式(1)で示されるN-アシルアミノ酸イオンの具体例としては、N-ベンゾイルアラニンイオン、N-アセチルフェニルアラニンイオン、アスパラギン酸イオン、グリシンイオン、N-アセチルグリシンイオン等が挙げられ、中でも、N-ベンゾイルアラニンイオン、N-アセチルフェニルアラニンイオン、N-アセチルグリシンイオンが好ましく、N-アセチルグリシンイオンがより好ましい。
 具体的なイオン液体としては、例えば、1-ブチル-3-メチルイミダゾリウムラクテート、テトラブチルホスホニウム-2-ピロリドン-5-カルボキシレート、テトラブチルホスホニウムアセテート、テトラブチルホスホニウムデカノエート、テトラブチルホスホニウムトリフルオロアセテート、テトラブチルホスホニウムα-リポエート、ギ酸テトラブチルホスホニウム塩、テトラブチルホスホニウムラクテート、酒石酸ビス(テトラブチルホスホニウム)塩、馬尿酸テトラブチルホスホニウム塩、N-メチル馬尿酸テトラブチルホスホニウム塩、ベンゾイル-DL-アラニンテトラブチルホスホニウム塩、N-アセチルフェニルアラニンテトラブチルホスホニウム塩、2,6-ジ-tert-ブチルフェノールテトラブチルホスホニウム塩、L-アスパラギン酸モノテトラブチルホスホニウム塩、グリシンテトラブチルホスホニウム塩、N-アセチルグリシンテトラブチルホスホニウム塩、1-エチル-3-メチルイミダゾリウムラクテート、1-エチル-3-メチルイミダゾリウムアセテート、ギ酸1-エチル-3-メチルイミダゾリウム塩、馬尿酸1-エチル-3-メチルイミダゾリウム塩、N-メチル馬尿酸1-エチル-3-メチルイミダゾリウム塩、酒石酸ビス(1-エチル-3-メチルイミダゾリウム)塩、N-アセチルグリシン1-エチル-3-メチルイミダゾリウム塩が好ましく、N-アセチルグリシンテトラブチルホスホニウム塩、1-エチル-3-メチルイミダゾリウムアセテート、ギ酸1-エチル-3-メチルイミダゾリウム塩、馬尿酸1-エチル-3-メチルイミダゾリウム塩、N-メチル馬尿酸1-エチル-3-メチルイミダゾリウム塩がより好ましい。
 上記イオン液体の合成法としては、アルキルイミダゾリウム、アルキルピリジニウム、アルキルアンモニウム及びアルキルスルホニウムイオン等のカチオン部位と、ハロゲンを含むアニオン部位から構成される前駆体に、NaBF、NaPF、CFSONaやLiN(SOCF等を反応させるアニオン交換法、アミン系物質と酸エステルとを反応させてアルキル基を導入しつつ、有機酸残基が対アニオンになるような酸エステル法、及びアミン類を有機酸で中和して塩を得る中和法等があるがこれらに限定されない。アニオンとカチオンと溶媒による中和法では、アニオンとカチオンとを等量使用し、得られた反応液中の溶媒を留去して、そのまま用いることも可能であるし、更に有機溶媒(メタノール、トルエン、酢酸エチル、アセトン等)を差し液濃縮しても構わない。
 本発明に用いられるイオン液体の含有量は、熱硬化性樹脂の総量(不揮発分)に対し0.1~50質量%の範囲が好ましく、0.5~25質量%の範囲がより好ましい。この範囲内であれば、接着剤層の保存安定性が損なわれない。
 〔充填剤〕
 接着剤層を構成する樹脂組成物には、更にタルク、クレー、マイカ、ベーマイト等の粒子形態が平板状の無機充填剤を含有させることができ、接着剤層の耐透湿性をより一層高めることができる。
 さらにゴム粒子を含有させることができ、ゴム粒子を含有させることにより、接着剤層の機械強度の向上や応力緩和等を図ることができる。当該ゴム粒子は、コアシェル型ゴム粒子を用いることが好ましく、具体例としては、スタフィロイドAC3832、AC3816N(以上、アイカ工業社製)、メタブレンKW-4426(三菱レイヨン社製)、F351(日本ゼオン社製)等が挙げられる。アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER-91(JSR社製)などが挙げられる。スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK-500(JSR社製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A、W450A(以上、三菱レイヨン社製)を挙げることができる。
 〔硬化促進剤〕
 本発明に係る接着剤層を構成する樹脂組成物においては、硬化温度、硬化時間等の調整のため、さらに硬化促進剤を含んでいても良い。硬化促進剤としてはテトラメチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩、テトラフェニルホスホニウムブロマイド、テトラブチルホスホニウムブロマイド等の4級スルホニウム塩、DBU(1,8-ジアザビシクロ(5.4.0)ウンデセン-7)、DBN(1,5-ジアザビシクロ(4.3.0)ノネン-5)、DBU-フェノール塩、DBU-オクチル酸塩、DBU-p-トルエンスルホン酸塩、DBU-ギ酸塩、DBU-フェノールノボラック樹脂塩等のジアザビシクロ化合物、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール化合物、トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン等の3級アミン、芳香族ジメチルウレア、脂肪族ジメチルウレア、芳香族ジメチルウレア等のジメチルウレア化合物等が挙げられる。
 硬化促進剤を使用する場合の含有量は、熱硬化性樹脂の総量に対し、0.01~7質量%の範囲である。
 〔接着剤層の形成方法〕
 本発明に係る接着剤層は、当該接着剤層を構成する組成物を溶解した樹脂液を調製して、後述するガスバリアー層上に塗布、乾燥して形成することが好ましい。具体的には、ガスバリアー層上にエポキシ樹脂と、少なくともエポキシ基と反応し得る官能基を持つ、イソプレン、イソブテン又はブタジエンの少なくとも1種を重合成分とする単独重合樹脂又は共重合樹脂と、を含有する樹脂液を塗布、乾燥して接着剤層を形成することが好ましい。
 また、接着剤層のガスバリアー層とは反対側の面に剥離可能なセパレーターフィルムのような層を設ける場合には、該剥離可能なセパレーターフィルム上に当該接着剤層を構成する組成物を溶解した樹脂液を塗布、乾燥して形成した接着剤層をガスバリアー層上に貼り合わせて形成してもよい。
 樹脂液の調製に使用する有機溶媒としては、具体的には、アセトン、メチルエチルケトン(以下、「MEK」とも略称する)、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を挙げることができる。これらは1種又は2種以上組み合わせて使用してもよい。
 塗布方法としては、任意の適切な方法が採用され得る。具体例としては、ローラーコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
 乾燥条件は特に制限はないが、50~100℃で3~15分が好適である。
 本発明に係る接着剤層の厚さは特に限定されないが、外気との接触面積を小さくすることで、水分を遮断するという観点から、3~200μmの範囲が好ましく、5~150μmの範囲がより好ましく、10~100μmの範囲が更に好ましい。
 また、接着剤層が不必要に他の部分に接触しないように、接着剤層から剥離可能なセパレーターフィルムを保護フィルムとして本発明の封止フィルム上に用いることが好ましい。セパレーターフィルムは、PET(ポリエチレンテレフタレート)フィルムなど公知のものを使用することができる。
 ≪ガスバリアー層≫
 ガスバリアー層は、水分透過性の低い層をいい、例えば、機能素子に貼りつけて機能素子の水分によるダメージを防止することができる。
 ガスバリアー層は、JIS-K-7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が1×10-2g/(m・24時間)以下のガスバリアー性であることが好ましく、また、JIS-K-7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24時間・atm)以下、水蒸気透過度が1×10-5g/(m・24時間)以下の高ガスバリアー性であることがより好ましい。
 本発明で用いられるガスバリアー層の材料としては、特に制限されず、様々な無機バリアー材料を使用することができる。無機バリアー材料の例としては、例えば、ケイ素(Si)、アルミニウム(Al)、インジウム(In)、スズ(Sn)、亜鉛(Zn)、チタン(Ti)、銅(Cu)、セリウム(Ce)及びタンタル(Ta)からなる群より選択される少なくとも1種の金属の単体、上記金属の酸化物、窒化物、炭化物、酸窒化物又は酸化炭化物等の金属化合物が挙げられる。
 前記金属化合物のさらに具体的な例としては、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化インジウム、酸化スズ、酸化インジウムスズ(ITO)、酸化タンタル、酸化ジルコニウム、酸化ニオビウム、アルミニウムシリケート(SiAlO)、炭化ホウ素、炭化タングステン、炭化ケイ素、酸素含有炭化ケイ素、窒化アルミニウム、窒化ケイ素、窒化ホウ素、酸窒化アルミニウム、酸窒化ケイ素、酸窒化ホウ素、酸化ホウ化ジルコニウム、酸化ホウ化チタン、及びこれらの複合体等の金属酸化物、金属窒化物、金属炭化物、金属酸窒化物、金属酸化ホウ化物、ダイヤモンドライクカーボン(DLC)、並びにこれらの組み合わせ等の無機バリアー材料が挙げられる。酸化インジウムスズ(ITO)、酸化ケイ素、酸化アルミニウム、アルミニウムシリケート(SiAlO)、窒化ケイ素、酸窒化ケイ素及びこれらの組み合わせは、特に好ましい無機バリアー材料である。ITOは、それぞれの元素成分を適切に選択することによって導電性になり得るセラミック材料の特殊部材の一例である。
 ガスバリアー層の形成方法は、特に制限されず、例えば、スパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、2極AC平板マグネトロンスパッタリング、2極AC回転マグネトロンスパッタリングなど)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着など)、熱CVD(Chemical Vapor Deposition)法、触媒化学気相成長法(Cat-CVD)、容量結合プラズマCVD法(CCP-CVD)、光CVD法、プラズマCVD法(PE-CVD)、エピタキシャル成長法、原子層成長法、反応性スパッタ法等の化学蒸着法等が挙げられる。
 また、前記ガスバリアー層は、有機ポリマーを含む有機層を含んでいてもよい。すなわち、前記ガスバリアー層は、上記無機バリアー材料を含む無機バリアー層と有機層との積層体であってもよい。
 有機層は、例えば、有機モノマー又は有機オリゴマーを基材に塗布し、層を形成し、続いて例えば、電子ビーム装置、UV光源、放電装置、又はその他の好適な装置を使用して重合及び必要に応じて架橋することにより形成することができる。また、例えば、フラッシュ蒸発及び放射線架橋可能な有機モノマー又は有機オリゴマーを蒸着した後、前記有機モノマー又は前記有機オリゴマーからポリマーを形成することによっても、有機層は形成されうる。コーティング効率は、基材を冷却することにより改善され得る。有機モノマー又は有機オリゴマーの塗布方法としては、例えば、ロールコーティング(例えば、グラビアロールコーティング)、スプレーコーティング(例えば、静電スプレーコーティング)等が挙げられる。また、無機バリアー層と有機層との積層体の例としては、例えば、国際公開第2012/003198号、国際公開第2011/013341号に記載の積層体などが挙げられる。
 無機バリアー層と有機層との積層体である場合、各層の厚さは同じでもよいし異なっていてもよい。無機バリアー層の厚さは、好ましくは3~1000nm、より好ましくは10~300nmの範囲である。有機層の厚さは、好ましくは100nm~100μm、より好ましくは1~50μmの範囲である。
 さらに、ポリシラザン、オルトケイ酸テトラエチル(TEOS)などの無機前駆体を含む塗布液を基材上にウェットコーティングした後真空紫外光の照射などにより改質処理を行い、ガスバリアー層を形成する方法や、樹脂基材への金属めっき、金属箔と樹脂基材とを接着させる等のフィルム金属化技術などによっても、ガスバリアー層は形成される。
 高いガスバリアー性と本発明の効果をより効果的に得るという観点から、前記ガスバリアー層は、ポリシラザンを含む層を改質処理して形成されるか、SiOC(炭素含有の酸化ケイ素)を含有するか又は無機バリアー層と有機層との積層体であることが好ましい。
 この中では、ガスバリアー層は、SiOCを含有することが好ましい。具体的には、例えば、プラズマCVD法又はスパッタリング法により生成するSiOCを含有するガスバリアー層であることが好ましい。このような構成は、ガスバリアー性と折り曲げ耐性を両立する観点から好ましい。SiOCは厳密にはSiOであり、堆積方法、堆積条件によって様々な組成のSi、O、Cを有するガスバリアー層が形成できるが、以下の説明ではこれらを総称してSiOCと表記する。
 前記ガスバリアー層は、単層でもよいし2層以上の積層構造であってもよい。2層以上の積層構造である場合、各層の材料は同じものであってもよいし、異なるものであってもよい。
 本発明に係るガスバリアー層は、少なくともポリシラザンを含有する塗布液を塗布して乾燥した層に改質処理を施してなる層であることが好ましい。ガスバリアー層が複数ある場合は、その最表面にあって、前記本発明に係る接着剤層に隣接する層であることが好ましい。隣接する層とは、直接ガスバリアー層が接着剤層に接している形態のみではなく、本発明に係る接着剤層の効果が発現する範囲内で他の薄膜層が間に介在してもよいことを意味する。
 〔ポリシラザン〕
 ポリシラザンとは、ケイ素-窒素結合を有するポリマーであり、Si-N、Si-H、N-H等の結合を有するSiO、Si、及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。
 具体的には、ポリシラザンは、好ましくは下記一般式(I)の構造を有する。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(I)において、R、R及びRは、それぞれ独立して、水素原子、置換又は非置換の、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基である。この際、R、R及びRは、それぞれ、同じであってもあるいは異なるものであってもよい。ここで、アルキル基としては、炭素原子数1~8の直鎖、分岐鎖又は環状のアルキル基が挙げられる。より具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などがある。また、アリール基としては、炭素原子数6~30のアリール基が挙げられる。より具体的には、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。(トリアルコキシシリル)アルキル基としては、炭素原子数1~8のアルコキシ基で置換されたシリル基を有する炭素原子数1~8のアルキル基が挙げられる。より具体的には、3-(トリエトキシシリル)プロピル基、3-(トリメトキシシリル)プロピル基などが挙げられる。上記R~Rに場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、ハロゲン原子、ヒドロキシ基(-OH)、メルカプト基(-SH)、シアノ基(-CN)、スルホ基(-SOH)、カルボキシ基(-COOH)、ニトロ基(-NO)などがある。なお、場合によって存在する置換基は、置換するR~Rと同じとなることはない。例えば、R~Rがアルキル基の場合には、さらにアルキル基で置換されることはない。これらのうち、好ましくは、R、R及びRは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、フェニル基、ビニル基、3-(トリエトキシシリル)プロピル基又は3-(トリメトキシシリルプロピル)基である。
 また、上記一般式(I)において、nは、整数であり、一般式(I)で表される構造を有するポリシラザンが150~150000の範囲内の数平均分子量を有するように定められることが好ましい。
 上記一般式(I)で表される構造を有する化合物において、好ましい態様の一つは、R、R及びRの全てが水素原子であるパーヒドロポリシラザンである。
 又は、ポリシラザンとしては、下記一般式(II)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(II)において、R1′、R2′、R3′、R4′、R5′及びR6′は、それぞれ独立して、水素原子、置換又は非置換の、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基である。この際、R1′、R2′、R3′、R4′、R5′及びR6′は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換又は非置換の、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。
 また、上記一般式(II)において、n′及びpは、整数であり、一般式(II)で表される構造を有するポリシラザンが150~150000の範囲内の数平均分子量を有するように定められることが好ましい。なお、n′及びpは、同じであってもあるいは異なるものであってもよい。
 上記一般式(II)のポリシラザンのうち、R1′、R3′及びR6′が各々水素原子を表し、R2′、R4′及びR5′が各々メチル基を表す化合物;R1′、R3′及びR6′が各々水素原子を表し、R2′、R4′が各々メチル基を表し、R5′がビニル基を表す化合物;R1′、R3′、R4′及びR6′が各々水素原子を表し、R2′及びR5′が各々メチル基を表す化合物が好ましい。
 又は、ポリシラザンとしては、下記一般式(III)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(III)において、R1″、R2″、R3″、R4″、R5″、R6″、R7″、R8″及びR9″は、それぞれ独立して、水素原子、置換又は非置換の、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基である。この際、R1″、R2″、R3″、R4″、R5″、R6″、R7″、R8″及びR9″は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換又は非置換の、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。
 また、上記一般式(III)において、n″、p″及びqは、整数であり、一般式(III)で表される構造を有するポリシラザンが150~150000の範囲内の数平均分子量を有するように定められることが好ましい。なお、n″、p″及びqは、同じであってもあるいは異なるものであってもよい。
 上記一般式(III)のポリシラザンのうち、R1″、R3″及びR6″が各々水素原子を表し、R2″、R4″、R5″及びR8″が各々メチル基を表し、R9″が(トリエトキシシリル)プロピル基を表し、R7″がアルキル基又は水素原子を表す化合物が好ましい。
 一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。このため、用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。
 パーヒドロポリシラザンは、直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000の範囲内程度(ポリスチレン換算)で、液体又は固体の物質があり、その状態は分子量により異なる。
 ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままガスバリアー層形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のアクアミカ(登録商標)NN120-10、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL120-20、NL150A、NP110、NP140、SP140等が挙げられる。
 本発明で使用できるポリシラザンの別の例としては、以下に制限されないが、例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)等の、低温でセラミック化するポリシラザンが挙げられる。
 ポリシラザンを用いる場合、改質処理前のガスバリアー層中におけるポリシラザンの含有率としては、ガスバリアー層の全質量を100質量%としたとき、100質量%でありうる。また、ガスバリアー層がポリシラザン以外のものを含む場合には、層中におけるポリシラザンの含有率は、10~99質量%の範囲であることが好ましく、40~95質量%の範囲であることがより好ましく、特に好ましくは70~95質量%の範囲である。
 〔ガスバリアー層形成用塗布液〕
 ガスバリアー層形成用塗布液を調製するための溶媒としては、ケイ素化合物を溶解できるものであれば特に制限されないが、ケイ素化合物と容易に反応してしまう水及び反応性基(例えば、ヒドロキシ基、又はアミン基等)を含まず、ケイ素化合物に対して不活性の有機溶媒が好ましく、非プロトン性の有機溶媒がより好ましい。具体的には、溶媒としては、非プロトン性溶媒;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ-及びポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。
 上記溶媒は、ケイ素化合物の溶解度や溶媒の蒸発速度等の目的にあわせて選択され、単独で使用されても又は2種以上の混合物の形態で使用されてもよい。
 ガスバリアー層形成用塗布液におけるケイ素化合物の濃度は、特に制限されず、層の厚さや塗布液のポットライフによっても異なるが、好ましくは1~80質量%、より好ましくは5~50質量%、特に好ましくは10~40質量%である。
 また、ガスバリアー層形成用塗布液には、ガスバリアー層の耐熱性を向上する観点から、アルミニウム化合物を含有することが好ましく、アルミニウム化合物としては、アルミニウムトリメトキシド、アルミニウムトリエトキシド、アルミニウムトリn-プロポキシド、アルミニウムトリイソプロポキシド、アルミニウムトリn-ブトキシド、アルミニウムトリsec-ブトキシド、アルミニウムトリtert-ブトキシド、アルミニウムアセチルアセトナート、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アルミニウムエチルアセトアセテートジn-ブチレート、アルミニウムジエチルアセトアセテートモノn-ブチレート、アルミニウムジイソプロピレートモノsec-ブチレート、アルミニウムトリスアセチルアセトネート、アルミニウムトリスエチルアセトアセテート、ビス(エチルアセトアセテート)(2,4-ペンタンジオナト)アルミニウム、アルミニウムアルキルアセトアセテートジイソプロピレート、アルミニウムオキサイドイソプロポキサイドトリマー、アルミニウムオキサイドオクチレートトリマー等が挙げられる。
 市販品の具体的な例としては、例えば、AMD(アルミニウムジイソプロピレートモノsec-ブチレート)、ASBD(アルミニウムセカンダリーブチレート)、ALCH(アルミニウムエチルアセトアセテート・ジイソプロピレート)、ALCH-TR(アルミニウムトリスエチルアセトアセテート)、アルミキレートM(アルミニウムアルキルアセトアセテート・ジイソプロピレート)、アルミキレートD(アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート)、アルミキレートA(W)(アルミニウムトリスアセチルアセトネート)(以上、川研ファインケミカル株式会社製)、プレンアクト(登録商標)AL-M(アセトアルコキシアルミニウムジイソプロピレート、味の素ファインケミカル株式会社製)、オルガチックスシリーズ(マツモトファインケミカル株式会社製)等が挙げられる。ガスバリアー層形成用塗布液中の含有量としては0.1~10質量%であることが好ましく、1~5質量%であることがより好ましい。
 ガスバリアー層形成用塗布液は、改質を促進するために、触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N′,N′-テトラメチル-1,3-ジアミノプロパン、N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ケイ素化合物を基準としたとき、好ましくは0.1~10質量%、より好ましくは0.5~7質量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行よる過剰なシラノール形成、及び膜密度の低下、膜欠陥の増大などを避けることができる。
 ガスバリアー層形成用塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステル若しくは変性ポリエステル、エポキシド、ポリイソシアネート若しくはブロック化ポリイソシアネート、ポリシロキサン等である。
 〔ガスバリアー層の形成方法〕
 上記のようなガスバリアー層の塗布法による形成方法は、特に制限されず、公知の方法が適用できる。具体例としては、スピンコート法、ローラーコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
 有機溶媒中にケイ素化合物及び必要に応じて触媒を含むガスバリアー層形成用塗布液を上記公知の塗布方法により塗布し、この溶媒を蒸発させて除去し、次いで、改質処理を行う方法が好ましい。
 特に、ポリシラザンを含有する塗布液を塗布、乾燥した層に改質処理を施してガスバリアー層を形成することが好ましい。
 塗布厚さは、目的に応じて適切に設定され得る。例えば、ガスバリアー層1層当たりの塗布厚さは、乾燥後の厚さが10nm~10μm程度であることが好ましく、15nm~1μmであることがより好ましく、20~500nmの範囲内であることがさらに好ましい。厚さが10nm以上であれば十分なバリアー性を得ることができ、10μm以下であれば、層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。
 塗布液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜中に含有される有機溶媒を除去することができる。この際、塗膜に含有される有機溶媒は、全てを乾燥させてもよいが、一部残存させていてもよい。一部の有機溶媒を残存させる場合であっても、好適なガスバリアー層が得られる。なお、残存する溶媒は後に除去されうる。
 塗膜の乾燥温度は、適用する基材によっても異なるが、50~200℃の範囲であることが好ましい。例えば、ガラス転位温度(Tg)が70℃のポリエチレンテレフタレート基材を基材として用いる場合には、乾燥温度は、熱による基材の変形等を考慮して150℃以下に設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定されうる。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が150℃である場合には30分以内に設定することが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。
 <ガスバリアー層の改質処理>
 本発明におけるポリシラザンの改質処理とは、ポリシラザンの一部又は全部を、酸化ケイ素又は酸化窒化ケイ素へ転化させる反応をいう。
 真空紫外線照射工程でパーヒドロポリシラザンから酸窒化ケイ素、さらには酸化ケイ素が生じると推定される反応機構について、以下に説明する。
 (1)脱水素、それに伴うSi-N結合の形成
 パーヒドロポリシラザン中のSi-H結合やN-H結合は真空紫外線照射による励起等で比較的容易に切断され、不活性雰囲気下ではSi-Nとして再結合すると考えられる(Siの未結合手が形成される場合もある)。すなわち、酸化することなくSiN組成として硬化する。この場合はポリマー主鎖の切断は生じない。Si-H結合やN-H結合の切断は触媒の存在や、加熱によって促進される。切断されたHはHとして膜外に放出される。
 (2)加水分解・脱水縮合によるSi-O-Si結合の形成
 パーヒドロポリシラザン中のSi-N結合は水により加水分解され、ポリマー主鎖が切断されてSi-OHを形成する。二つのSi-OHが脱水縮合してSi-O-Si結合を形成して硬化する。これは大気中でも生じる反応であるが、不活性雰囲気下での真空紫外線照射中では、照射の熱によって基材から生じる水蒸気が主な水分源となると考えられる。水分が過剰となると脱水縮合しきれないSi-OHが残存し、SiO2.1~SiO2.3の範囲の組成で示されるガスバリアー性の低い硬化膜となる。
 (3)一重項酸素による直接酸化、Si-O-Si結合の形成
 真空紫外線照射中、雰囲気下に適当量の酸素が存在すると、酸化力の非常に強い一重項酸素が形成される。パーヒドロポリシラザン中のHやNはOと置き換わってSi-O-Si結合を形成して硬化する。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。
 (4)真空紫外線照射・励起によるSi-N結合切断を伴う酸化
 真空紫外線のエネルギーはパーヒドロポリシラザン中のSi-Nの結合エネルギーよりも高いため、Si-N結合は切断され、周囲に酸素、オゾン、水等の酸素源が存在すると酸化されてSi-O-Si結合やSi-O-N結合が生じると考えられる。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。
 ポリシラザンを含有する層に真空紫外線照射を施した層の酸窒化ケイ素の組成の調整は、上述の(1)~(4)の酸化機構を適宜組み合わせて酸化状態を制御することで行うことができる。
 ポリシラザンの改質は、通常の製造においてはランプの紫外線強度や照射時間、また照射時の温度条件等の制約があり、上記(1)~(4)の反応が起こっても、層内のポリシラザンの全部を転化することは困難であり、したがって、生産ベースでのポリシラザンの改質処理では、多くの場合、未改質のポリシラザンが数%の範囲内で残存することになる。本発明では、この残存する未改質のポリシラザンを、少なくともエポキシ基と反応し得る官能基を持つイソプレン、イソブテン、又はブタジエンの少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂を含有する接着剤層から供給される水分をトリガーとして、上記加水分解及び脱水縮合によって酸化ケイ素又は酸化窒化ケイ素へ改質し、ガスバリアー性をより高めるものである。
 改質処理は、ポリシラザンの転化反応に基づく公知の方法を選ぶことができるが、ポリシラザン化合物の加熱による改質の場合、置換反応による酸化ケイ素膜又は酸化窒化ケイ素膜の形成には450℃以上の高温が必要であり、樹脂フィルムを基材に用いたフレキシブル基板においては、適応が難しい。したがって、本発明の封止フィルムを作製するに際しては、樹脂基板への適応という観点から、より低温で、転化反応が可能な紫外光を使う転化反応が好ましい。
 (真空紫外光照射処理)
 本発明における真空紫外線照射処理において、ポリシラザン層塗膜が受ける塗膜面での該真空紫外線の照度は30~200mW/cmの範囲であることが好ましく、50~160mW/cmの範囲であることがより好ましい。30mW/cm以上では、改質効率が低下する懸念がなく、200mW/cm以下では、塗膜にアブレーションを生じず、基材にダメージを与えないため好ましい。
 ポリシラザン層塗膜面における真空紫外線の照射エネルギー量は、200~10000mJ/cmの範囲であることが好ましく、500~5000mJ/cmの範囲であることがより好ましい。この範囲であればクラック発生や、基材の熱変形がない。
 真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。Xe、Kr、Ar、Neなどの希ガスの原子は、化学的に結合して分子を作らないため、不活性ガスと呼ばれる。
 しかし、放電などによりエネルギーを得た希ガスの励起原子は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には、
  e+Xe→Xe
  Xe+2Xe→Xe +Xe
  Xe →Xe+Xe+hν(172nm)
 となり、励起されたエキシマ分子であるXe が基底状態に遷移するときに172nmのエキシマ光を発光する。
 エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を低く保つことができる。さらには始動及び再始動に時間を要さないので、瞬時の点灯点滅が可能である。
 エキシマ発光を得るには、誘電体バリアー放電を用いる方法が知られている。誘電体バリアー放電とは、両電極間に透明石英などの誘電体を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じ、雷に似た非常に細いマイクロディスチャージ(micro discharge)と呼ばれる放電であり、マイクロディスチャージ(micro discharge)のストリーマが管壁(誘導体)に達すると誘電体表面に電荷が溜まるため、マイクロディスチャージ(micro discharge)は消滅する。
 このマイクロディスチャージ(micro discharge)が管壁全体に広がり、生成・消滅を繰り返している放電である。このため、肉眼でも確認できる光のチラツキを生じる。また、非常に温度の高いストリーマが局所的に直接管壁に達するため、管壁の劣化を早める可能性もある。
 効率よくエキシマ発光を得る方法としては、誘電体バリアー放電以外に、無電極電界放電でも可能である。容量性結合による無電極電界放電で、別名RF放電とも呼ばれる。ランプと電極及びその配置は基本的には誘電体バリアー放電と同じで良いが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的にまた時間的に一様な放電が得られるため、チラツキがない長寿命のランプが得られる。
 誘電体バリアー放電の場合は、マイクロディスチャージ(micro discharge)が電極間のみで生じるため、放電空間全体で放電を行わせるには外側の電極は外表面全体を覆い、かつ外部に光を取り出すために光を透過するものでなければならない。
 このため、細い金属線を網状にした電極が用いられる。この電極は、光を遮らないようにできるだけ細い線が用いられるため、酸素雰囲気中では真空紫外光により発生するオゾンなどにより損傷しやすい。これを防ぐためには、ランプの周囲、すなわち照射装置内を窒素などの不活性ガスの雰囲気にし、合成石英の窓を設けて照射光を取り出す必要が生じる。合成石英の窓は高価な消耗品であるばかりでなく、光の損失も生じる。
 二重円筒型ランプは外径が25mm程度であるため、ランプ軸の直下とランプ側面では照射面までの距離の差が無視できず、照度に大きな差を生じる。したがって、仮にランプを密着して並べても、一様な照度分布が得られない。合成石英の窓を設けた照射装置にすれば、酸素雰囲気中の距離を一様にでき、一様な照度分布が得られる。
 無電極電界放電を用いた場合には、外部電極を網状にする必要はない。ランプ外面の一部に外部電極を設けるだけでグロー放電は放電空間全体に広がる。外部電極には通常アルミのブロックで作られた光の反射板を兼ねた電極がランプ背面に使用される。しかし、ランプの外径は誘電体バリアー放電の場合と同様に大きいため一様な照度分布にするためには合成石英が必要となる。
 細管エキシマランプの最大の特徴は、構造がシンプルなことである。石英管の両端を閉じ、内部にエキシマ発光を行うためのガスを封入しているだけである。
 細管ランプの管の外径は6~12mm程度で、余り太いと始動に高い電圧が必要になる。
 放電の形態は、誘電体バリアー放電及び無電極電界放電のいずれも使用できる。電極の形状はランプに接する面が平面であっても良いが、ランプの曲面に合わせた形状にすればランプをしっかり固定できるとともに、電極がランプに密着することにより放電がより安定する。また、アルミで曲面を鏡面にすれば光の反射板にもなる。
 Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。
 また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン層の改質を実現できる。
 したがって、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料や樹脂基板などへの照射を可能としている。
 エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で、すなわち短い波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。
 紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、10~10000ppmの範囲とすることが好ましく、より好ましくは50~5000ppmの範囲、更に好ましく1000~4500ppmの範囲である。
 真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
 〔他のガスバリアー層〕
 本発明に係るガスバリアー層は、ポリシラザンを含有する塗布液を塗布して乾燥した層に改質処理を施してなる層が最表面にあれば、2層以上の積層構造であってもよい。同じ組成のガスバリアー層を複数層形成しても、異なる組成の層を複数形成してもよい。
 また、2層以上の積層構造である場合、本発明に係るポリシラザンを改質処理して含有する層以外に、真空プラズマCVD法等の化学気相成長法(Chemical Vapor Deposition)やスパッタ法等の物理気相成長法(Physical Vapor Deposition、PVD法)によって形成した層との組み合わせであってもよい。
 好ましい例として、真空プラズマCVD法の一態様である、基材を一対の成膜ローラー上に配置し、前記一対の成膜ローラー間に放電してプラズマを発生させるプラズマCVD法により、基材上に他のガスバリアー層を形成する方法を説明する。以下、説明にあたって、本発明の封止フィルムをガスバリアー性フィルムともいう。
 本発明に用いられるCVD法により形成される他のガスバリアー層の好適な一実施形態として、ガスバリアー層は構成元素に炭素、ケイ素、及び酸素を含むことが好ましい。より好適な形態は、以下の(i)~(iii)の要件を満たす層である。
 (i)ガスバリアー層の、厚さ方向における前記ガスバリアー層表面からの距離(L)と、ケイ素原子、酸素原子、及び炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lとケイ素原子、酸素原子、及び炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、並びに前記Lとケイ素原子、酸素原子、及び炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、前記ガスバリアー層の厚さの90%以上(上限:100%)の領域で、(酸素の原子比)、(ケイ素の原子比)、(炭素の原子比)の順で多い(原子比がO>Si>C);
 (ii)前記炭素分布曲線が少なくとも二つの極値を有する;
 (iii)前記炭素分布曲線における炭素の原子比の最大値及び最小値の差の絶対値
(以下、単に「Cmax-Cmin差」とも称する)が3at%以上である。
 (プラズマCVD法による他のガスバリアー層の形成方法)
 他のガスバリアー層を基材の表面上に形成させる方法としては、ガスバリアー性の観点から、プラズマCVD法を採用することが好ましい。
 プラズマCVD法においてプラズマを発生させる際には、複数の成膜ローラーの間の空間にプラズマ放電を発生させることが好ましく、一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれに基材を配置して、一対の成膜ローラー間に放電してプラズマを発生させることがより好ましい。このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上に基材を配置して、かかる一対の成膜ローラー間に放電することにより、成膜時に一方の成膜ローラー上に存在する基材の表面部分を成膜しつつ、もう一方の成膜ローラー上に存在する基材の表面部分も同時に成膜することが可能となって効率よく薄膜を製造できるばかりか、通常のローラーを使用しないプラズマCVD法と比較して成膜レートを倍にでき、なおかつ、ほぼ同一である構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となり、効率よく上記条件(i)~(iii)を全て満たす層を形成することが可能となる。
 また、このようにして一対の成膜ローラー間に放電する際には、前記一対の成膜ローラーの極性を交互に反転させることが好ましい。さらに、このようなプラズマCVD法に用いる成膜ガスとしては、有機ケイ素化合物と酸素とを含むものが好ましく、その成膜ガス中の酸素の含有量は、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量未満であることが好ましい。また、本発明の封止フィルムにおいては、前記ガスバリアー層が連続的な成膜プロセスにより形成された層であることが好ましい。
 また、本発明の封止フィルムは、生産性の観点から、ロール・to・ロール方式で前記基材の表面上に前記ガスバリアー層を形成させることが好ましい。また、このようなプラズマCVD法によりガスバリアー層を製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ前記一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図2に示す製造装置を用いた場合には、プラズマCVD法を利用しながらロール・ツー・ロール方式で製造することも可能となる。
 以下、図2を参照しながら、基材を一対の成膜ローラー上に配置し、前記一対の成膜ローラー間に放電してプラズマを発生させるプラズマCVD法によるガスバリアー層の形成方法について、より詳細に説明する。なお、図2は、本発明に係るガスバリアー層の形成に用いられる真空プラズマCVD装置の一例を示す模式図である。また、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。
 図2に示す製造装置31は、送り出しローラー32と、搬送ローラー33、34、35、36と、成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、成膜ローラー39及び40の内部に設置された磁場発生装置43、44と、巻取りローラー45とを備えている。また、このような製造装置においては、少なくとも成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、磁場発生装置43、44とが図示を省略した真空チャンバー内に配置されている。さらに、このような製造装置31において前記真空チャンバーは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバー内の圧力を適宜調整することが可能となっている。
 このような製造装置においては、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源42に接続されている。そのため、このような製造装置31においては、プラズマ発生用電源42により電力を供給することにより、成膜ローラー39と成膜ローラー40との間の空間に放電することが可能であり、これにより成膜ローラー39と成膜ローラー40との間の空間にプラズマを発生させることができる。なお、このように、成膜ローラー39と成膜ローラー40とを電極としても利用する場合には、電極としても利用可能なようにその材質や設計を適宜変更すればよい。また、このような製造装置においては、一対の成膜ローラー(成膜ローラー39及び40)は、その中心軸が同一平面上においてほぼ平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラー39及び40)を配置することにより、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となる。そして、このような製造装置によれば、CVD法により基材1aの表面上にガスバリアー層1bを形成することが可能であり、成膜ローラー39上において基材1aの表面上にガスバリアー層成分を堆積させつつ、さらに成膜ローラー40上においても基材1aの表面上にガスバリアー層成分を堆積させることもできるため、基材1aの表面上にガスバリアー層を効率よく形成することができる。
 成膜ローラー39及び成膜ローラー40の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生装置43及び44がそれぞれ設けられている。
 成膜ローラー39及び成膜ローラー40にそれぞれ設けられた磁場発生装置43及び44は、一方の成膜ローラー39に設けられた磁場発生装置43と他方の成膜ローラー40に設けられた磁場発生装置44との間で磁力線がまたがらず、それぞれの磁場発生装置43、44がほぼ閉じた磁気回路を形成するように磁極を配置することが好ましい。このような磁場発生装置43、44を設けることにより、各成膜ローラー39、40の対向側表面付近に磁力線が膨らんだ磁場の形成を促進することができ、その膨出部にプラズマが収束されやすくなるため、成膜効率を向上させることができる点で優れている。
 また、成膜ローラー39及び成膜ローラー40にそれぞれ設けられた磁場発生装置43、44は、それぞれローラー軸方向に長いレーストラック状の磁極を備え、一方の磁場発生装置43と他方の磁場発生装置44とは向かい合う磁極が同一極性となるように磁極を配置することが好ましい。このような磁場発生装置43、44を設けることにより、それぞれの磁場発生装置43、44について、磁力線が対向するローラー側の磁場発生装置にまたがることなく、ローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場を容易に形成することができ、その磁場にプラズマを収束させることができため、ローラー幅方向に沿って巻き掛けられた幅広の基材1aを用いて効率的に蒸着膜であるガスバリアー層1bを形成することができる点で優れている。
 成膜ローラー39及び成膜ローラー40としては適宜公知のローラーを用いることができる。このような成膜ローラー39及び40としては、より効率よく薄膜を形成せしめるという観点から、直径が同一のものを使うことが好ましい。また、このような成膜ローラー39及び40の直径としては、放電条件、チャンバーのスペース等の観点から、直径が300~1000mmφの範囲、特に300~700mmφの範囲が好ましい。成膜ローラーの直径が300mmφ以上であれば、プラズマ放電空間が小さくなることがないため生産性の劣化もなく、短時間でプラズマ放電の全熱量が基材1aにかかることを回避できることから、基材1aへのダメージを軽減でき好ましい。一方、成膜ローラーの直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。
 このような製造装置31においては、基材1aの表面がそれぞれ対向するように、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)上に、基材1aが配置されている。このようにして基材1aを配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に放電を行ってプラズマを発生させる際に、一対の成膜ローラー間に存在する基材1aのそれぞれの表面を同時に成膜することが可能となる。すなわち、このような製造装置によれば、プラズマCVD法により、成膜ローラー39上にて基材1aの表面上に第1のガスバリアー層成分を堆積させ、さらに成膜ローラー40上にてガスバリアー層成分堆積させることができるため、基材1aの表面上にガスバリアー層を効率よく形成することが可能となる。
 このような製造装置に用いる送り出しローラー32及び搬送ローラー33、34、35、36としては適宜公知のローラーを用いることができる。また、巻取りローラー45としても、基材1a上にガスバリアー層1bを形成した基材1aとガスバリアー層1bの積層体を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。
 また、ガス供給管41及び真空ポンプとしては、原料ガス等を所定の速度で供給又は排出することが可能なものを適宜用いることができる。
 また、ガス供給手段であるガス供給管41は、成膜ローラー39と成膜ローラー40との間の対向空間(放電領域;成膜ゾーン)の一方に設けることが好ましく、真空排気手段である真空ポンプ(図示せず)は、前記対向空間の他方に設けることが好ましい。このようにガス供給手段であるガス供給管41と、真空排気手段である真空ポンプを配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に効率よく成膜ガスを供給することができ、成膜効率を向上させることができる点で優れている。
 さらに、プラズマ発生用電源42としては、適宜公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源42は、これに接続された成膜ローラー39と成膜ローラー40とに電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、前記一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、印加電力を100W~10kWとすることができ、かつ交流の周波数を50Hz~500kHzとすることが可能なものであることがより好ましい。また、磁場発生装置43、44としては適宜公知の磁場発生装置を用いることができる。さらに、基材1aとしては、本発明で用いられる基材の他に、ガスバリアー層1bをあらかじめ形成させたものを用いることができる。このように、基材1aとしてガスバリアー層1bをあらかじめ形成させたものを用いることにより、ガスバリアー層1bの層厚を厚くすることも可能である。
 このような図2に示す製造装置31を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバー内の圧力、成膜ローラーの直径、並びにフィルム(基材)の搬送速度を適宜調整することにより、本発明に係るガスバリアー層を製造することができる。すなわち、図2に示す製造装置31を用いて、成膜ガス(原料ガス等)を真空チャンバー内に供給しつつ、一対の成膜ローラー(成膜ローラー39及び40)間に放電を発生させることにより、前記成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー39上の基材1aの表面上及び成膜ローラー40上の基材1aの表面上に、ガスバリアー層1bがプラズマCVD法により形成される。この際、成膜ローラー39、40のローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場が形成して、磁場にプラズマを収束させる。このため、基材1aが、図2中の成膜ローラー39のA地点及び成膜ローラー40のB地点を通過する際に、ガスバリアー層で炭素分布曲線の極大値が形成される。これに対して、基材1aが、図2中の成膜ローラー39のC1及びC2地点、並びに成膜ローラー40のC3及びC4地点を通過する際に、ガスバリアー層で炭素分布曲線の極小値が形成される。このため、二つの成膜ローラーに対して、通常、五つの極値が生成する。また、ガスバリアー層の極値間の距離(炭素分布曲線の有する一つの極値及び該極値に隣接する極値における第1のガスバリアー層の厚さ方向におけるガスバリアー層の表面からの距離(L)の差の絶対値)は、成膜ローラー39、40の回転速度(基材の搬送速度)によって調節できる。なお、このような成膜に際しては、基材1aが送り出しローラー32や成膜ローラー39等により、それぞれ搬送されることにより、ロール・to・ロール方式の連続的な成膜プロセスにより基材1aの表面上にガスバリアー層1bが形成される。
 前記ガス供給管41から対向空間に供給される成膜ガス(原料ガス等)としては、原料ガス、反応ガス、キャリアガス、放電ガスが単独又は2種以上を混合して用いることができる。ガスバリアー層1bの形成に用いる前記成膜ガス中の原料ガスとしては、形成するガスバリアー層1bの材質に応じて適宜選択して使用することができる。このような原料ガスとしては、例えば、ケイ素を含有する有機ケイ素化合物や炭素を含有する有機化合物ガスを用いることができる。このような有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラン(HMDS)、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンが挙げられる。これらの有機ケイ素化合物の中でも、化合物の取り扱い性及び得られる第1のガスバリアー層のガスバリアー性等の特性の観点から、ヘキサメチルジシロキサン、11,3,3-テトラメチルジシロキサンが好ましい。これらの有機ケイ素化合物は、単独でも又は2種以上を組み合わせても使用することができる。また、炭素を含有する有機化合物ガスとしては、例えば、メタン、エタン、エチレン、アセチレンを例示することができる。これら有機ケイ素化合物ガスや有機化合物ガスは、ガスバリアー層1bの種類に応じて適切な原料ガスが選択される。
 また、前記成膜ガスとしては、前記原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、前記原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、単独でも又は2種以上を組み合わせても使用することができ、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。
 前記成膜ガスとしては、前記原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガス及び放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス;水素を用いることができる。
 このような成膜ガスが原料ガスと反応ガスを含有する場合には、原料ガスと反応ガスの比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎないことで、形成されるガスバリアー層1bによって、優れたバリアー性や耐屈曲性を得ることができる点で優れている。また、前記成膜ガスが前記有機ケイ素化合物と酸素とを含有するものである場合には、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。
 以下、前記成膜ガスとして、原料ガスとしてのヘキサメチルジシロキサン(有機ケイ素化合物、HMDSO、(CHSiO)と、反応ガスとしての酸素(O)を含有するものとを用い、ケイ素-酸素系の薄膜を製造する場合を例に挙げて、成膜ガス中の原料ガスと反応ガスとの好適な比率等について、より詳細に説明する。
 原料ガスとしてのヘキサメチルジシロキサン(HMDSO、(CHSiO)と、反応ガスとしての酸素(O)と、を含有する成膜ガスをプラズマCVDにより反応させてケイ素-酸素系の薄膜を作製する場合、その成膜ガスにより下記反応式1で表されるような反応が起こり、二酸化ケイ素が生成する。
Figure JPOXMLDOC01-appb-C000005
 このような反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまう(炭素分布曲線が存在しない)ため、上記条件(i)~(iii)を全て満たすガスバリアー層を形成することができなくなってしまう。そのため、本発明において、ガスバリアー層を形成する際には、上記反応式1の反応が完全に進行してしまわないように、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少なくすることが好ましい。なお、実際のプラズマCVDチャンバー内の反応では、原料のヘキサメチルジシロキサンと反応ガスの酸素とは、ガス供給部から成膜領域へ供給されて成膜されるので、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる(例えば、CVDにより完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)を原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とする場合もある)。そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)の量であることが好ましい。このような比でヘキサメチルジシロキサン及び酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子がガスバリアー層中に取り込まれ、上記条件(i)~(iii)を全て満たすガスバリアー層を形成することが可能となって、得られるガスバリアー性フィルムにおいて優れたガスバリアー性及び耐屈曲性を発揮させることが可能となる。なお、有機EL素子や太陽電池などのような透明性を必要とするデバイス用のフレキシブル基板への利用の観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。
 また、真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5~50Paの範囲とすることが好ましい。
 また、このようなプラズマCVD法において、成膜ローラー39と成膜ローラー40との間に放電するために、プラズマ発生用電源42に接続された電極ドラム(本実施形態においては、成膜ローラー39及び40に設置されている)に印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるものであり一概に言えるものでないが、0.1~10kWの範囲とすることが好ましい。このような印加電力が100W以上であれば、パーティクルが発生を十分に抑制することができ、他方、10kW以下であれば、成膜時に発生する熱量を抑えることができ、成膜時の基材表面の温度が上昇するのを抑制できる。そのため基材が熱負けすることなく、成膜時に皺が発生するのを防止できる点で優れている。
 基材1aの搬送速度(ライン速度)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲とすることが好ましく、0.5~20m/minの範囲とすることがより好ましい。ライン速度が0.25m/min以上であれば、基材に熱に起因する皺の発生を効果的に抑制することができる。他方、100m/min以下であれば、生産性を損なうことなく、ガスバリアー層として十分な厚さを確保することができる点で優れている。
 上記したように、本実施形態のより好ましい態様としては、本発明に係るバリアー層を、図2に示す対向ロール電極を有するプラズマCVD装置(ロール・to・ロール方式)を用いたプラズマCVD法によって成膜することを特徴とするものである。これは、対向ロール電極を有するプラズマCVD装置(ロール・to・ロール方式)を用いて量産する場合に、可撓性(屈曲性)に優れ、機械的強度、特にロール・to・ロールでの搬送時の耐久性と、バリアー性能とが両立するガスバリアー層を効率よく製造することができるためである。このような製造装置は、太陽電池や電子部品などに使用される温度変化に対する耐久性が求められるガスバリアー性フィルムを、安価でかつ容易に量産することができる点でも優れている。
 上述したガスバリアー層のポアソン比は、用いる材料の種類、層の厚さ、製造方法、有機層の有無などで調整することができる。一般に優れたガスバリアー性を示す層として酸化ケイ素、窒化ケイ素等が挙げられる。これらの無機材料は、ポアソン比が概ね0.3以下である。基材として好ましく用いられる樹脂フィルム又は樹脂シートに用いられる樹脂のポアソン比は、0.4弱のものが多く、このポアソン比の差が、延伸や折り曲げ時に横方向のひずみの差の要因となっており、折り曲げ耐性と関連していると考えられる。したがって、ガスバリアー層のポアソン比は、折り曲げ耐性の観点からは高いほうが好ましい。一方、無機層を、有機層の方向に近づけるとガスバリアー性は一般に劣化しやすいので、このバランスを重視してガスバリアー層を設計することが好ましい。また、ポリシラザンを塗布、乾燥した層に改質処理を施し酸化ケイ素又は酸窒化ケイ素に改質する際の酸窒化ケイ素の割合等でもポアソン比を調整することができる。さらに、ガスバリアー層を前述した有機層(SiOC)との複合層とすることや、その製造を可能とする真空プラズマCVD法で形成する調整法も、ポアソン比を高め折り曲げ耐性を高める上で好ましい。
 ≪基材≫
 本発明の封止フィルムは、基材として、樹脂フィルム又は樹脂シートが好ましく用いられ、無色透明な樹脂からなるフィルム又はシートがより好ましく用いられる。用いられる樹脂フィルムは、ガスバリアー層及び接着剤層を保持できるフィルムであれば材質、厚さ等に特に制限はなく、使用目的等に応じて適宜選択することができる。前記樹脂フィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。
 本発明の封止フィルムを使用する場合は、前記基材は耐熱性を有する素材からなることが好ましい。具体的には、線膨張係数が15ppm/K以上100ppm/K以下で、かつガラス転移温度(Tg)が100℃以上300℃以下の基材が使用される。該基材は、電子部品用途、ディスプレイ用積層フィルムとしての必要条件を満たしている。即ち、これらの用途に本発明の封止フィルムを用いる場合、封止フィルムは、150℃以上の工程に曝されることがある。この場合、封止フィルムにおける基材の線膨張係数が100ppm/K以内であれば、封止フィルムを前記のような温度の工程に流す際に基板寸法が安定し、熱膨張及び収縮に伴い、遮断性性能が劣化する不都合や、あるいは、熱工程に耐えられないという不具合が生じることがない。15ppm/K以上の場合、フィルムがガラスのように割れてしまい折り曲げ性が劣化することがない。
 基材のTgや線膨張係数は、添加剤などによって調整することができる。基材として用いることができる熱可塑性樹脂のより好ましい具体例としては、例えば、ポリエチレンテレフタレート(PET:70℃)、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン株式会社製、ゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001-150584号公報に記載の化合物:162℃)、ポリイミド(例えば三菱ガス化学株式会社製、ネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF-PC:特開2000-227603号公報に記載の化合物:225℃)、脂環変性ポリカーボネート(IP-PC:特開2000-227603号公報に記載の化合物:205℃)、アクリロイル化合物(特開2002-80616号公報に記載の化合物:300℃以上)等が挙げられる(括弧内はTgを示す)。
 本発明の封止フィルムを例えば偏光板と組み合わせて使用する場合、封止フィルムのガスバリアー層がセルの内側に向くように配置することが好ましい。より好ましくは、封止フィルムのガスバリアー層がセルの最も内側に(素子に隣接して)配置する。このとき、偏光板よりセルの内側に封止フィルムが配置されることになるため、封止フィルムのリターデーション値が重要になる。このような態様での封止フィルムの使用形態は、リターデーション値が10nm以下の基材フィルムを用いた封止フィルムと円偏光板(λ/4位相差フィルム+(λ/2位相差フィルム)+直線偏光板)とを積層して使用するか、又はλ/4位相差フィルムとして使用可能な、リターデーション値が100~180nmの基材フィルムを用いた封止フィルムに直線偏光板を組み合わせて用いるのが好ましい。
 リターデーション値が10nm以下の基材としては、例えば、トリアセチルセルロース(富士フイルム株式会社製:フジタック(登録商標)など)、ポリカーボネート(帝人株式会社製:ピュアエース(登録商標)、WR-S5、株式会社カネカ製:エルメック(登録商標)など)、シクロオレフィンポリマー(JSR株式会社製:アートン(登録商標)、日本ゼオン株式会社製:ゼオノア(登録商標)など)、シクロオレフィンコポリマー(三井化学株式会社製:アペル(登録商標)(ペレット)、ポリプラスチック株式会社製:トパス(登録商標)(ペレット)など)、ポリアリレート(ユニチカ株式会社製:U100(ペレット)など)、透明ポリイミドフィルム(三菱ガス化学株式会社製:ネオプリム(登録商標)など)等を挙げることができる。ディスプレイ用途を勘案した場合、ポリカーボネート、シクロオレフィンポリマー、シクロオレフィンコポリマーが好ましい。
 また、λ/4位相差フィルムとしては、上記のフィルムを適宜延伸することで所望のリターデーション値に調整したフィルムを用いることができる。
 本発明の封止フィルムは、有機EL素子等の電子デバイスとして利用されることから、基材は透明であることが好ましい。すなわち、光線透過率が通常80%以上、好ましくは85%以上、さらに好ましくは90%以上である。光線透過率は、JISK105:1981に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率及び散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。
 ただし、本発明の封止フィルムをディスプレイ用途に用いる場合であっても、観察側に設置しない場合などは必ずしも透明性が要求されない。したがって、このような場合は、基材として不透明な材料を用いることもできる。不透明な材料としては、例えば、ポリイミド、ポリアクリロニトリル、公知の液晶ポリマーなどが挙げられる。
 本発明の封止フィルムに用いられる基材は折り曲げ性を有しており、その厚さは、5~50μmの範囲内である。好ましくは20~40μmである。これらの樹脂フィルムは、透明導電層、プライマー層、クリアハードコート層等の機能層を有していても良い。機能層については、上述したもののほか、特開2006-289627号公報の段落番号「0036」~「0038」に記載されているものを好ましく採用できる。
 基材としては上述のように樹脂フィルム又は樹脂シートが好ましく用いられる。基材に用いられる樹脂としては、公知の樹脂を適用することができる。樹脂のポアソン比の調整は、樹脂の種類、重合度、可塑剤等の添加剤などで調整することができるが、薄くても強度を保てる点、樹脂のガスバリアー性、コスト面及び入手の容易さなどから、基材に用いられる樹脂としては、PET、ポリカーボネートが好ましい。より好ましくはPETである。これらの樹脂はPET(0.40)、ポリカーボネート(0.39)と、括弧内に示したポアソン比が較的高いので、基材の厚さやガスバリアー層との組み合わせで封止フィルムのポアソン比を調整することが好ましい。
 基材は、表面の平滑性が高いものが好ましい。表面の平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特にないが、実用上、0.01nm以上である。必要に応じて、基材の両面、少なくともガスバリアー層を設ける側を研摩し、平滑性を向上させておいてもよい。
 また、上記に挙げた基材は、未延伸フィルムでもよく、延伸処理されたフィルムでもよい。
 本発明で用いられる基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押出機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の流れ(縦軸)方向、又は基材の流れ方向と直角(横軸)方向に延伸することにより延伸された基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2~10倍の範囲内が好ましい。
 《機能素子の封止》
 本発明の封止フィルムを用いて封止する機能素子について説明する。
 機能素子とは、具体的には有機EL素子や太陽電池素子等のフレキシブル電子デバイスをいう。特に有機EL素子の封止フィルムとして好適に用いられるため、有機EL素子の封止を例にとって説明する。
 〔有機EL素子の構成〕
 本発明に係る有機EL素子は、種々の構成を採り得るが、一例を図3に示す。
 図3では有機EL素子に用いる基板として、樹脂基板を用いる場合について説明しているが、ガラス等の基板であってもよい。
 本発明に係る有機EL素子100は、樹脂基板113上に設けられており、樹脂基板113側から順に、第一電極(透明電極)101、有機材料等を用いて構成された有機機能層(発光機能層)103、及び第二電極(対向電極)105aをこの順に積層して構成されている。第一電極101(電極層101b)の端部には、取り出し電極116が設けられている。第一電極101と外部電源(図示略)とは、取り出し電極116を介して、電気的に接続される。有機EL素子100は、発生させた光(発光光h)を、少なくとも樹脂基板113側から取り出すように構成されている。
 また、有機EL素子100の層構造が限定されることはなく、一般的な層構造であって良い。ここでは、第一電極101がアノード(すなわち陽極)として機能し、第二電極105aがカソード(すなわち陰極)として機能することとする。この場合、例えば、有機機能層103は、アノードである第一電極101側から順に正孔注入層103a/正孔輸送層103b/発光層103c/電子輸送層103d/電子注入層103eを積層した構成が例示されるが、このうち、少なくとも有機材料を用いて構成された発光層103cを有することが必須である。正孔注入層103a及び正孔輸送層103bは、正孔輸送注入層として設けられても良い。電子輸送層103d及び電子注入層103eは、電子輸送注入層として設けられても良い。また、これらの有機機能層103のうち、例えば、電子注入層103eは無機材料で構成されている場合もある。
 また、有機機能層103は、これらの層の他にも正孔阻止層や電子阻止層等が必要に応じて必要箇所に積層されていても良い。さらに、発光層103cは、各波長領域の発光光を発生させる各色発光層を有し、これらの各色発光層を、非発光性の中間層を介して積層させた構造としても良い。中間層は、正孔阻止層、電子阻止層として機能しても良い。さらに、カソードである第二電極105aも、必要に応じた積層構造であっても良い。このような構成において、第一電極101と第二電極105aとで有機機能層103が挟持された部分のみが、有機EL素子100における発光領域となる。
 また、以上のような層構成においては、第一電極101の低抵抗化を図ることを目的とし、第一電極101の電極層101bに接して補助電極115が設けられていても良い。
 以上のような構成の有機EL素子100は、有機材料等を用いて構成された有機機能層103の劣化を防止することを目的として、樹脂基板113上において本発明の封止フィルム107で封止されている。この封止フィルム107は接着剤として機能する本発明に係る接着剤層109を介して樹脂基板113側に固定されている。ただし、第一電極101(取り出し電極116)及び第二電極105aの端子部分は、樹脂基板113上において有機機能層103によって互いに絶縁性を保った状態で封止フィルム107から露出させた状態で設けられていることとする。
 〔有機EL素子の製造方法〕
 本発明に係る有機EL素子の製造方法は、樹脂基板上に第一電極、有機機能層及び第二電極を積層して形成する積層工程を有することを特徴とする。
 ここでは、一例として、図3に示す有機EL素子100の製造方法を説明する。
 (積層工程)
 本発明に係る有機EL素子の製造方法では、樹脂基板113上に、第一電極101、有機機能層103及び第二電極105aを積層して形成する工程(積層工程)を行う。
 まず、樹脂基板113を準備し、樹脂基板113上に、例えば、窒素原子を含んだ含窒素化合物からなる下地層101aを、1μm以下、好ましくは10~100nmの範囲内の層厚になるように蒸着法等の適宜の方法により形成する。
 次に、銀(又は銀を主成分とする合金)からなる電極層101bを、12nm以下、好ましくは4~9nmの層厚になるように、蒸着法等の適宜の方法により下地層101a上に形成し、アノードとなる第一電極101を作製する。同時に、第一電極101端部に、外部電源と接続される取り出し電極116を蒸着法等の適宜の方法に形成する。
 次に、この上に、正孔注入層103a、正孔輸送層103b、発光層103c、電子輸送層103d、電子注入層103eの順に積層し、有機機能層103を形成する。
 これらの各層の形成は、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な層が得られやすく、かつ、ピンホールが生成しにくい等の点から、真空蒸着法又はスピンコート法が特に好ましい。更に、層ごとに異なる形成法を適用しても良い。これらの各層の形成に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度1×10-6~1×10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層厚0.1~5μmの範囲内で、各条件を適宜選択することが望ましい。
 以上のようにして有機機能層103を形成した後、この上部にカソードとなる第二電極105aを、蒸着法やスパッタ法などの適宜の形成法によって形成する。この際、第二電極105aは、有機機能層103によって第一電極101に対して絶縁状態を保ちつつ、有機機能層103の上方から樹脂基板113の周縁に端子部分を引き出した形状にパターン形成する。
 以下、上述した有機EL素子100を構成するための主要各層の詳細とその製造方法について説明する。
 (樹脂基板)
 樹脂基板113は基本的に、支持体としての樹脂基材と、屈折率が1.4~1.7の範囲内の1層以上のガスバリアー層とで、構成されていることが好ましい。
 (1)樹脂基材
 樹脂基材は、従来公知の樹脂フィルム基材を特に制限なく使用できる。本発明で好ましく用いられる樹脂基材は、有機EL素子に必要な耐湿性/耐気体透過性等のガスバリアー性能を有することが好ましい。
 本発明において、有機EL素子100の樹脂基板113側が発光面となる場合には、樹脂基材には可視光に対して透光性を有する材料が用いられる。この場合、その光透過率は、70%以上であることが好ましく、75%以上であることがより好ましく、80%以上であることが更に好ましい。
 また、樹脂基材は折り曲げ性を有するのが好ましい。ここでいう「折り曲げ性」とは、φ(直径)4.0mmのロールに巻き付け、一定の張力で巻取る前後で割れ等が生じることのない基材をいい、より好ましくはφ3.0mmのロールに巻き付け可能な基材をいう。
 本発明において、樹脂基材は、従来公知の基材であり、例えば、アクリル酸エステル、メタクリル酸エステル、PMMA等のアクリル樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホネート、ポリイミド、ポリエーテルイミド、ポリオレフィン、エポキシ樹脂等の各樹脂フィルムが挙げられ、更に、シクロオレフィン系やセルロースエステル系のものも用いることができる。また、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila-DEC、チッソ株式会社製)、更には前記樹脂材料を2層以上積層して成る樹脂フィルム等を挙げることができる。
 コストや入手容易性の観点から、PET、PEN、PC、アクリル樹脂等が好ましく用いられる。
 中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムが好ましい。
 更に熱膨張時の収縮を最大限抑えるため、熱アニール等の処理を行った低熱収処理品が最も好ましい。
 樹脂基材の厚さは10~100μmの範囲内が好ましく、より好ましくは20~75μmであり、さらに好ましくは30~50μmの範囲内である。樹脂基材の厚さが10~100μmの範囲にあることで、安定したガスバリアー性を得られ、また、ロール・to・ロール方式の搬送に適したものになる。
 (2)ガスバリアー層
 (2.1)特性及び形成方法
 本発明において、樹脂基板113の樹脂基材には、屈折率が1.4~1.7の範囲内の1層以上のガスバリアー層(低屈折率層)が設けられていることが好ましい。このようなガスバリアー層としては、公知の素材を特に制限なく使用でき、無機物又は有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜であっても良い。ガスバリアー層は、JIS-K-7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が1×10-2g/(m・24時間)以下のガスバリアー性フィルム(ガスバリアー膜等ともいう)であることが好ましく、また、JIS-K-7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24時間・atm)以下、水蒸気透過度が1×10-5g/(m・24時間)以下の高ガスバリアー性フィルムであることがより好ましい。
 このようなガスバリアー層を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であれば良く、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に、当該ガスバリアー層の脆弱性を改良するため、これら無機層に、応力緩和層として有機材料からなる層(有機層)を積層する構造としても良い。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 ガスバリアー層の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載の大気圧プラズマ重合法によるものが好ましい。
 (2.2)無機前駆体化合物
 また、ガスバリアー層は、樹脂基材上に、少なくとも1層の無機前駆体化合物を含有する塗布液が塗布されることにより形成されるものであっても良い。
 塗布方法としては、任意の適切な方法が採用され得る。具体例としては、ローラーコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
 塗布厚さは、目的に応じて適切に設定され得る。例えば、塗布厚さは、乾燥後の層厚が好ましくは0.001~10μm程度、さらに好ましくは0.01~10μm程度、最も好ましくは0.03~1μm程度の範囲内となるように設定され得る。
 本発明に用いられる無機前駆体化合物とは、特定の雰囲気下で真空紫外線照射によって金属酸化物や金属窒化物や金属酸化窒化物を形成しうる化合物であれば特に限定されないが、本発明の封止フィルムの製造方法に適する化合物としては、特開平8-112879号公報に記載されているように比較的低温で改質処理され得る化合物が好ましい。
 具体的には、Si-O-Si結合を有するポリシロキサン(ポリシルセスキオキサンを含む)、Si-N-Si結合を有するポリシラザン、Si-O-Si結合とSi-N-Si結合の両方を含むポリシロキサザン等を上げることができる。これらは2種以上を混合して使用することができる。また、異なる化合物を逐次積層したり、同時積層したりしても使用可能である。
 (第一電極(透明電極))
 第一電極は、通常有機EL素子に使用可能な全ての電極を使用することができる。具体的には、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/同混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO、SnO等の酸化物半導体等が挙げられる。
 本発明においては、第一電極が透明電極であることが好ましく、更には透明金属電極であることが好ましい。
 例えば、図3に示すとおり、第一電極101は、樹脂基板113側から、下地層101aと、この上部に成膜された電極層101bとを順に積層した2層構造である。このうち、電極層101bは、例えば、銀又は銀を主成分とする合金を用いて構成された層であり、下地層101aは、例えば、窒素原子を含んだ化合物を用いて構成された層であることが好ましい。
 なお、第一電極101の透明とは、波長550nmでの光透過率が50%以上であることをいう。また、電極層101bにおいて主成分とは、電極層101b中の含有量が98質量%以上であることをいう。
 (1)下地層
 下地層101aは、電極層101bの樹脂基板113側に設けられる層である。下地層101aを構成する材料としては、特に限定されるものではなく、銀又は銀を主成分とする合金からなる電極層101bの成膜に際し、銀の凝集を抑制できるものであれば良く、例えば、窒素原子を含んだ含窒素化合物等が挙げられる。
 下地層101aが、低屈折率材料(屈折率1.7未満)からなる場合、その層厚の上限としては、50nm未満である必要があり、30nm未満であることが好ましく、10nm未満であることがさらに好ましく、5nm未満であることが特に好ましい。層厚を50nm未満とすることにより、光学的ロスを最小限に抑えられる。一方、層厚の下限としては、0.05nm以上が必要であり、0.1nm以上であることが好ましく、0.3nm以上であることが特に好ましい。層厚を0.05nm以上とすることにより、下地層101aの成膜を均一とし、その効果(銀の凝集抑制)を均一とすることができる。
 下地層101aが、高屈折率材料(屈折率1.7以上)からなる場合、その層厚の上限としては特に制限はなく、層厚の下限としては上記低屈折率材料からなる場合と同様である。
 ただし、単なる下地層101aの機能としては、均一な成膜が得られる必要な厚さで形成されれば十分である。
 下地層101aの成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法等のドライプロセスを用いる方法等が挙げられる。中でも、蒸着法が好ましく適用される。
 下地層101aを構成する窒素原子を含んだ化合物としては、分子内に窒素原子を含んでいる化合物であれば特に限定されないが、窒素原子をヘテロ原子とした複素環を有する化合物であることが好ましい。窒素原子をヘテロ原子とした複素環としては、アジリジン、アジリン、アゼチジン、アゼト、アゾリジン、アゾール、アジナン、ピリジン、アゼパン、アゼピン、イミダゾール、ピラゾール、オキサゾール、チアゾール、イミダゾリン、ピラジン、モルホリン、チアジン、インドール、イソインドール、ベンゾイミダゾール、プリン、キノリン、イソキノリン、キノキサリン、シンノリン、プテリジン、アクリジン、カルバゾール、ベンゾ-C-シンノリン、ポルフィリン、クロリン、コリン等が挙げられる。
 (2)電極層
 電極層101bは、銀又は銀を主成分とした合金を用いて構成された層であることが好ましく、下地層101a上に成膜された層である。
 このような電極層101bの成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法等のウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法等のドライプロセスを用いる方法等が挙げられる。中でも、蒸着法が好ましく適用される。
 また、電極層101bは、下地層101a上に成膜されることにより、電極層101b成膜後の高温アニール処理等がなくても十分に導電性を有することを特徴とするが、必要に応じて、成膜後に高温アニール処理等を行ったものであっても良い。
 電極層101bを構成する銀(Ag)を主成分とする合金としては、例えば、銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)等が挙げられる。
 以上のような電極層101bは、銀又は銀を主成分とした合金の層が、必要に応じて複数の層に分けて積層された構成であっても良い。
 さらに、この電極層101bは、層厚が4~9nmの範囲内にあることが好ましい。層厚が9nmより薄い場合には、層の吸収成分又は反射成分が少なく、第一電極101の透過率が大きくなる。また、層厚が4nmより厚い場合には、層の導電性を十分に確保することができる。
 なお、以上のような下地層101aとこの上部に成膜された電極層101bとからなる積層構造の第一電極101は、電極層101bの上部が保護膜で覆われていたり、別の電極層が積層されていたりしても良い。この場合、第一電極101の光透過性を損なうことのないように、保護膜及び別の電極層が光透過性を有することが好ましい。
 (3)第一電極(透明電極)の効果
 以上のような構成の第一電極101は、例えば、窒素原子を含んだ化合物を用いて構成された下地層101a上に、銀又は銀を主成分とする合金からなる電極層101bを設けた構成が例示される。これにより、下地層101aの上部に電極層101bを成膜する際には、電極層101bを構成する銀原子が下地層101aを構成する窒素原子を含んだ化合物と相互作用し、銀原子の下地層101a表面においての拡散距離が減少し、銀の凝集が抑えられる。
 ここで、一般的に銀を主成分とした電極層101bの成膜においては、核成長型(Volumer-Weber:VW型)で薄膜成長するため、銀粒子が島状に孤立しやすく、層厚が薄いときは導電性を得ることが困難であり、シート抵抗値が高くなる。したがって、導電性を確保するには層厚を厚くする必要があるが、層厚を厚くすると光透過率が下がるため、第一電極としては不適であった。
 しかしながら、第一電極101によれば、上述したように下地層101a上において銀の凝集が抑えられるため、銀又は銀を主成分とする合金からなる電極層101bの成膜においては、単層成長型(Frank-van der Merwe:FM型)で薄膜成長するようになる。
 また、ここで、第一電極101の透明とは、波長550nmでの光透過率が50%以上であることをいうが、下地層101aとして用いられる上述した各材料は、銀又は銀を主成分とする合金からなる電極層101bと比較して十分に光透過性の良好な膜である。一方、第一電極101の導電性は、主に、電極層101bによって確保される。したがって、上述のように、好ましくは銀又は銀を主成分とする合金からなる電極層101bによって、より薄い層厚で導電性が確保されたものとなることにより、第一電極101の導電性の向上と光透過性の向上との両立を図ることが可能になる。
 (有機機能層(発光機能層))
 (1)発光層
 有機機能層103には少なくとも発光層103cが含まれる。
 本発明に用いられる発光層103cには、発光材料としてリン光発光化合物が含有されている。なお、発光材料として、蛍光材料が使用されても良いし、リン光発光化合物と蛍光材料とを併用しても良い。
 この発光層103cは、電極又は電子輸送層103dから注入された電子と、正孔輸送層103bから注入された正孔とが再結合して発光する層であり、発光する部分は発光層103cの層内であっても発光層103cと隣接する層との界面であっても良い。
 このような発光層103cとしては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あっても良い。この場合、各発光層103c間には、非発光性の中間層(図示略)を有していることが好ましい。
 発光層103cの層厚の総和は1~100nmの範囲内にあることが好ましく、より低い駆動電圧を得ることができることから1~30nmの範囲内であることがより好ましい。
 なお、発光層103cの層厚の総和とは、発光層103c間に非発光性の中間層が存在する場合には、当該中間層も含む層厚である。
 複数層を積層した構成の発光層103cの場合、個々の発光層の層厚としては、1~50nmの範囲内に調整することが好ましく、更に、1~20nmの範囲内に調整することがより好ましい。積層された複数の発光層が、青、緑、赤のそれぞれの発光色に対応する場合、青、緑、赤の各発光層の層厚の関係については、特に制限はない。
 以上のような発光層103cは、公知の発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜形成方法により成膜して形成することができる。
 また、発光層103cは、複数の発光材料を混合しても良い。
 発光層103cの構成として、ホスト化合物(発光ホスト等ともいう)、発光材料(発光ドーパントともいう)を含有し、発光材料より発光させることが好ましい。
 (2)注入層(正孔注入層、電子注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために電極と発光層103cの間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層103aと電子注入層103eとがある。
 注入層は、必要に応じて設けることができる。正孔注入層103aであれば、アノードと発光層103c又は正孔輸送層103bの間、電子注入層103eであればカソードと発光層103c又は電子輸送層103dとの間に存在させても良い。
 正孔注入層103aは、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニン層、酸化バナジウムに代表される酸化物層、アモルファスカーボン層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子層等が挙げられる。
 電子注入層103eは、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属層、フッ化カリウムに代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデンに代表される酸化物層等が挙げられる。本発明に用いられる電子注入層103eはごく薄い膜であることが望ましく、素材にもよるがその層厚は1nm~10μmの範囲が好ましい。
 (3)正孔輸送層
 正孔輸送層103bは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層103a、電子阻止層も正孔輸送層103bに含まれる。正孔輸送層103bは単層又は複数層設けることができる。
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであっても良い。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
 正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、さらには米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが三つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
 さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
 また、特開平11-251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているようないわゆる、p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。
 正孔輸送層103bは、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層103bの層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層103bは、上記材料の1種又は2種以上からなる1層構造であっても良い。
 また、正孔輸送層103bの材料に不純物をドープしてp性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 このように、正孔輸送層103bのp性を高くすると、より低消費電力の素子を作製することができるため好ましい。
 (4)電子輸送層
 電子輸送層103dは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層103e、正孔阻止層(図示略)も電子輸送層103dに含まれる。電子輸送層103dは単層構造又は複数層の積層構造として設けることができる。
 単層構造の電子輸送層103d、及び、積層構造の電子輸送層103dにおいて、発光層103cに隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層103cに伝達する機能を有していれば良い。このような材料としては従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層103dの材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層103dの材料として用いることができる。
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送層103dの材料として好ましく用いることができる。また、発光層103cの材料としても例示されるジスチリルピラジン誘導体も電子輸送層103dの材料として用いることができるし、正孔注入層103a、正孔輸送層103bと同様にn型-Si、n型-SiC等の無機半導体も電子輸送層103dの材料として用いることができる。
 電子輸送層103dは、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層103dの層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲内である。電子輸送層103dは上記材料の1種又は2種以上からなる1層構造であっても良い。
 また、電子輸送層103dに不純物をドープし、n性を高くすることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。さらに電子輸送層103dには、カリウムやカリウム化合物などを含有させることが好ましい。カリウム化合物としては、例えば、フッ化カリウム等を用いることができる。このように電子輸送層103dのn性を高くすると、より低消費電力の素子を作製することができる。
 また電子輸送層103dの材料(電子輸送性化合物)として、上述した下地層101aを構成する材料と同様のものを用いても良い。これは、電子注入層103eを兼ねた電子輸送層103dであっても同様であり、上述した下地層101aを構成する材料と同様のものを用いても良い。
 (5)阻止層(正孔阻止層、電子阻止層)
 阻止層は、有機機能層103として、上記各機能層の他に、更に設けられていても良い。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
 正孔阻止層とは、広い意味では、電子輸送層103dの機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層103dの構成を必要に応じて、本発明に用いられる正孔阻止層として用いることができる。正孔阻止層は、発光層103cに隣接して設けられていることが好ましい。
 一方、電子阻止層とは、広い意味では、正孔輸送層103bの機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層103bの構成を必要に応じて電子阻止層として用いることができる。本発明に用いられる正孔阻止層の層厚としては、好ましくは3~100nmであり、さらに好ましくは5~30nmである。
 (第二電極(対向電極))
 第二電極105aは、有機機能層103に電子を供給するカソードとして機能する電極膜であり、金属、合金、有機又は無機の導電性化合物、及びこれらの混合物が用いられる。具体的には、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO、SnO等の酸化物半導体等が挙げられる。
 第二電極105aは、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。また、第二電極105aとしてのシート抵抗は、数百Ω/□以下が好ましく、厚さは通常5nm~5μmの範囲内、好ましくは5~200nmの範囲内で選ばれる。
 なお、この有機EL素子100が、第二電極105a側からも発光光hを取り出すものである場合であれば、上述した導電性材料のうち光透過性の良好な導電性材料を選択して第二電極105aを構成すれば良い。
 (取り出し電極)
 取り出し電極116は、第一電極101と外部電源とを電気的に接続するものであって、その材料としては特に限定されるものではなく公知の素材を好適に使用できるが、例えば、3層構造からなるMAM電極(Mo/Al・Nd合金/Mo)等の金属膜を用いることができる。
 (補助電極)
 補助電極115は、第一電極101の抵抗を下げる目的で設けるものであって、第一電極101の電極層101bに接して設けられる。補助電極115を形成する材料は、金、白金、銀、銅、アルミニウム等の抵抗が低い金属が好ましい。これらの金属は光透過性が低いため、光取り出し面113aからの発光光hの取り出しの影響のない範囲でパターン形成される。
 このような補助電極115の形成方法としては、蒸着法、スパッタリング法、印刷法、インクジェット法、エアロゾルジェット法等が挙げられる。補助電極115の線幅は、光を取り出す開口率の観点から50μm以下であることが好ましく、補助電極115の厚さは、導電性の観点から1μm以上であることが好ましい。
 (封止フィルム)
 基材とガスバリアー層を有する積層体108、及び接着剤層109を有する本発明の封止フィルム107は、有機EL素子100をラミネートするものであって、図示例のように、接着剤として機能する本発明に係る接着剤層109によって樹脂基板113側に固定されるものである。このような封止フィルム107は、有機EL素子100における第一電極101及び第二電極105aの端子部分を露出させ、少なくとも有機機能層103を覆う状態で設けられている。また、封止フィルム107に電極を設け、有機EL素子100の第一電極101及び第二電極105aの端子部分と、この電極とを導通させるように構成されていても良い。
 封止フィルム107による封止は、上記有機EL素子100を酸素及び水分濃度が一定の環境下(例えば、酸素濃度10ppm以下、水分濃度10ppm以下のグローブボックス内等)に置き、減圧下(1×10-3MPa以下)で吸引しながら加重をかけてプレスして、封止フィルムの接着剤層109によって当該有機EL素子100をラミネートし、その後、熱風循環式オーブン、赤外線ヒーター、ヒートガン、高周波誘導加熱装置、ヒートツールの圧着による加熱等によって、接着剤層109を熱硬化することによって行われる。
 本発明の封止フィルムは極めて良好な低温硬化性を有しており、硬化温度の上限は140℃以下が好ましく、120℃以下がより好ましく、110℃以下が更に好ましい。一方、硬化物の接着性を確保するという観点から、硬化温度の下限は50℃以上が好ましく、55℃以上がより好ましい。また、硬化時間の上限は120分以下が好ましく、90分以下がより好ましく、60分以下が更に好ましい。一方、硬化物の硬化を確実に行うという観点から、硬化時間の下限は20分以上が好ましく、30分以上がより好ましい。これによって、有機EL素子の熱劣化を極めて小さくすることができる。
 (保護膜、保護板)
 なお、ここでの図示は省略したが、樹脂基板113との間に有機EL素子100及び封止フィルム107を挟んで保護膜又は保護板を設けても良い。この保護膜又は保護板は、有機EL素子100を機械的に保護するためのものであり、特に封止フィルム107が封止膜である場合には、有機EL素子100に対する機械的な保護が十分ではないため、このような保護膜又は保護板を設けることが好ましい。
 以上のような保護膜又は保護板は、ガラス板、ポリマー板、これよりも薄型のポリマーフィルム、金属板、これよりも薄型の金属フィルム、又はポリマー材料膜や金属材料膜が適用される。このうち、特に、軽量かつ素子の薄膜化という観点からポリマーフィルムを用いることが好ましい。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
 〔実施例1〕
 本発明の効果を、以下の実施例及び比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。また、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
 また、下記操作において、特記しない限り、操作及び物性等の測定は室温(25℃)、相対湿度50%の条件で行う。
 《封止フィルム1の製造》
 [ガスバリアー層1]
 株式会社きもと製のクリアハードコートを施した厚さ75μmのPETフィルムを基材として用い、これを株式会社アルバック製スパッタ装置の真空槽内にセットし、10-4Pa台まで真空引きし、放電ガスとしてアルゴンを分圧で0.5Pa導入した。雰囲気圧力が安定したところで放電を開始し酸化ケイ素(SiOx)ターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開きフィルムへの酸化ケイ素膜(SiOx)形成を開始した。300nmの膜が堆積したところでシャッターを閉じて成膜を終了して基材上にガスバリアー層を作製した。
 [接着剤層1]
 ポリイソブテン(オパノールB100:粘度平均分子量1100000、BASF社製)を芳香族系混合溶剤(イプゾール150:出光興産株式会社製)に溶解して30質量%の溶液としたもの50部に、水添脂環式石油樹脂(Escorez5340:Exxon
 Mobile Chemical社製)20部と、液状ポリイソブテン(Tetrax3T:新日本石油社製)5部と、液状ポリイソプレン(クラプレンLIR-50:株式会社 クラレ製)10部とを、混合し、高速回転ミキサーで均一に分散して、樹脂液を得た。
 なお、表1では「エポキシ基と反応し得る官能基を持たない樹脂を含有する接着剤層」を接着剤層1と略記した。
 この樹脂液を前記で得たガスバリアー層1上に、乾燥後の接着剤層の厚さが20μmになるようアプリケーターにて均一に塗布し、80℃で30分間乾燥させ接着剤層1を形成して比較例の封止フィルム1を得た。
 [保護層]
 東洋紡株式会社製の離形PETフィルム(TX001)をセパレーターフィルムとして前記で得た接着剤層上に貼り合わせた。
 《封止フィルム2の製造》
 PET基材の厚さを50μmに変更する以外は封止フィルム1の製造と同様にして保護層付きの本発明の封止フィルム2を得た。
 《封止フィルム3の製造》
 PET基材の厚さを20μmに変更する以外は封止フィルム1の製造と同様にして保護層付きの本発明の封止フィルム3を得た。
 《封止フィルム4の製造》
 PET基材の厚さを40μmに変更し、かつガスバリアー層1を下記ガスバリアー層2に変更する以外は封止フィルム3の製造と同様にして保護層付きの本発明の封止フィルム4を得た。
 [ガスバリアー層2]
 〈ポリシラザンを含有する塗布液の調製〉
 無触媒のパーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NN120-20)と、アミン触媒(N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン(TMDAH))5質量%を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NAX120-20)とを、4:1の割合で混合し、さらにジブチルエーテルと2,2,4-トリメチルペンタンとの質量比が65:35となるように混合した溶媒で、塗布液の固形分が5質量%になるように、塗布液を希釈調製した。
 上記で得られた塗布液を、厚さ40μmのPET基材上に乾燥後の厚さが300nmになるよう成膜し、2分間放置した後、80℃のホットプレートで1分間加熱処理を行い、ポリシラザン塗膜を形成した。ポリシラザン塗膜を形成した後、Xeエキシマランプにて6000mJ/cmの照射処理を施してガスバリアー層2を形成した。表1ではガスバリアー層の材料の欄にガスバリアー層2を「ポリシラザン改質」と略記した。
 《封止フィルム5の製造》
 PET基材の厚さを20μmに変更する以外は封止フィルム4の製造と同様にして保護層付きの本発明の封止フィルム5を得た。
 《封止フィルム6の製造》
 ガスバリアー層1を下記ガスバリアー層3に変更する以外は封止フィルム3の製造と同様にして保護層付きの本発明の封止フィルム6を得た。
 [ガスバリアー層3]
 厚さ20μmのPET基材を、図2に示されるようなプラズマCVD装置31にセットして、搬送させた。次いで、成膜ローラー39と成膜ローラー40との間に磁場を印加するとともに、成膜ローラー39と成膜ローラー40にそれぞれ電力を供給して、成膜ローラー39と成膜ローラー40との間に放電してプラズマを発生させた。次いで、形成された放電領域に、成膜ガス(原料ガスとしてヘキサメチルジシロキサン(HMDSO)と反応ガスとして酸素ガス(放電ガスとしても機能する)との混合ガスを供給し、基材上に、プラズマCVD法にて厚さ450nmのガスバリアー性のSiOxCy膜層を形成した。
 成膜条件は、以下のとおりとした。
 (成膜条件)
 原料ガスの供給量:50sccm(Standard Cubic Centimeter per Minute、0℃、1気圧基準)
 酸素ガスの供給量:500sccm(0℃、1気圧基準)
 真空チャンバー内の真空度:3Pa
 プラズマ発生用電源からの印加電力:0.8kW
 プラズマ発生用電源の周波数:70kHz
 フィルムの搬送速度:1.0m/min。
 〈ポリシラザンを含有する塗布液の調製〉
 無触媒のパーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NN120-20)と、アミン触媒(N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン(TMDAH))5質量%を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NAX120-20)とを、4:1の割合で混合し、さらにジブチルエーテルと2,2,4-トリメチルペンタンとの質量比が65:35となるように混合した溶媒で、塗布液の固形分が5質量%になるように、塗布液を希釈調製した。
 上記で得られた塗布液を、スピンコーターにて上記で作製したSiOxCy膜層上に乾燥後の厚さが300nmになるよう成膜し、2分間放置した後、80℃のホットプレートで1分間加熱処理を行い、ポリシラザン塗膜を形成した。ポリシラザン塗膜を形成した後、Xeエキシマランプにて6000mJ/cmの照射処理を施してガスバリアー層3を形成した。表1では材料の欄にガスバリアー層3を「SiOC+ポリシラザン改質」と略記した。
 《封止フィルム7の製造》
 接着剤層1を下記接着剤層2に変更する以外は封止フィルム6の製造と同様にして保護層付きの本発明の封止フィルム7を得た。
 [接着剤層2]
 エポキシ樹脂と、エポキシ基と反応し得る官能基を持つ、イソプレン、イソブテン、又はブタジエンの少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂、として接着剤層2を形成した。
 ポリイソブテン(オパノールB100:粘度平均分子量1100000、BASF社製)を芳香族系混合溶剤(イプゾール150:出光興産株式会社製)に溶解して30質量%の溶液としたもの50部に、水添脂環式石油樹脂(Escorez5340:Exxon Mobile Chemical社製)20部と、液状ポリイソブテン(Tetrax3T:新日本石油社製)5部と、ヒドロキシ基変性液状ポリイソプレン(クラプレンLIR-506:株式会社 クラレ製)10部と、熱硬化性樹脂としてエポキシ樹脂(HP7200H:DIC社製)を芳香族系混合溶剤(イプゾール150:出光興産株式会社製)に溶解して50質量%の溶液としたもの5部と、アニオン重合型硬化剤(TAP:2,4,6-トリス(ジアミノメチル)フェノール)0.5部とを、混合し、高速回転ミキサーで均一に分散して、樹脂液を得た。
 この樹脂液を前記で得たガスバリアー層3上に、乾燥後の樹脂層の厚さが20μmになるようアプリケーターにて均一に塗布し、80℃で30分間乾燥させたのち、120℃で30分間加熱硬化させることにより接着剤層2を形成して本発明の封止フィルム7を得た。
 なお、表1では「エポキシ基と反応し得る官能基を持つ樹脂とエポキシ樹脂を含有する接着剤層」を接着剤層2と略記した。
 [保護層]
 東洋紡株式会社製の離形PETフイルム(TX001)をセパレーターフィルムとして前記で得た接着剤層上に貼り合わせた。
 《封止フィルム8の製造》
 ガスバリアー層1の酸化ケイ素膜(SiOx)の厚さを300nmから600nmに変更したガスバリアー層(ガスバリアー層4)を用いた以外は封止フィルム2の製造と同様にして保護層付きの比較例の封止フィルム8を得た。
 《封止フィルムのポアソン比の測定》
 非接触式伸び幅計TRViewX55Sと1kN用箔用つかみ具を備えた卓上形精密万能試験機AG-Xplus(ともに島津製作所社製)を用いた。保護層を剥離した後、封止フィルムの引張試験を行い、縦ひずみと横ひずみを同時に測定することにより、前述した式(a)から封止フィルムのポアソン比を算出した。
 《機能素子の作製》
 機能素子の一例として有機EL素子を作製した。
 〔有機EL素子1の作製〕
 (第一電極の形成)
 30μmの厚さの薄膜ガラスと50μmの厚さのPETとを複合化させた樹脂基材201(50mm×100mm)上に、図4に示すように40mm×30mmの長方形の厚さ150nmのITOをスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第一電極を形成した。
 (正孔輸送層の形成)
 正孔輸送層形成用塗布液を塗布する前に、第一電極が形成された樹脂基材の洗浄表面改質処理を、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用して行った。
 第一電極が形成された樹脂基材の第一電極の上に、以下に示す正孔輸送層形成用塗布液を、25℃・50%RHの環境下で、スピンコーターで塗布した後、下記の条件で乾燥及び加熱処理を行い、正孔輸送層を形成した。正孔輸送層形成用塗布液は乾燥後の厚さが50nmになるように塗布した。
 〈正孔輸送層形成用塗布液の準備〉
 ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を純水65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。
 〈乾燥及び加熱処理条件〉
 正孔輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で溶媒を除去した後、引き続き、加熱処理装置を用い温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
 (発光層の形成)
 上記で形成した正孔輸送層上に、以下に示す白色発光層形成用塗布液を、下記の条件によりスピンコーターで塗布した後、下記の条件で乾燥及び加熱処理を行い、発光層を形成した。白色発光層形成用塗布液は乾燥後の厚さが40nmになるように塗布した。
 〈白色発光層形成用塗布液〉
 ホスト材として下記化学式H-Aで表される化合物1.0gと、発光ドーパントとして下記化学式D-Aで表される化合物を100mg、発光ドーパントとして下記化学式D-Bで表される化合物を0.2mg、発光ドーパントとして下記化学式D-Cで表される化合物を0.2mg、100gのトルエンに溶解し白色発光層形成用塗布液として準備した。
Figure JPOXMLDOC01-appb-C000006
 〈塗布条件〉
 塗布工程を窒素ガス濃度99%以上の雰囲気で、塗布温度を25℃とした。
 〈乾燥及び加熱処理条件〉
 白色発光層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、温度130℃で加熱処理を行い、発光層を形成した。
 (電子輸送層の形成)
 上記で形成した発光層の上に、以下に示す電子輸送層形成用塗布液を下記の条件によりスピンコーターで塗布した後、下記の条件で乾燥及び加熱処理し、電子輸送層を形成した。電子輸送層形成用塗布液は、乾燥後の厚さが30nmになるように塗布した。
 〈塗布条件〉
 塗布工程は窒素ガス濃度99%以上の雰囲気で、電子輸送層形成用塗布液の塗布温度を25℃とした。
 〈電子輸送層形成用塗布液〉
 電子輸送層は下記化学式E-Aで表される化合物を2,2,3,3-テトラフルオロ-1-プロパノール中に溶解し0.5質量%溶液とし電子輸送層形成用塗布液とした。
Figure JPOXMLDOC01-appb-C000007
 〈乾燥及び加熱処理条件〉
 電子輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、加熱処理部で、温度200℃で加熱処理を行い、電子輸送層を形成した。
 (電子注入層の形成)
 上記で形成した電子輸送層上に、電子注入層を形成した。まず、基板を減圧チャンバーに投入し、5×10-4Paまで減圧した。あらかじめ、真空チャンバーにタンタル製蒸着ボートに用意しておいたフッ化セシウムを加熱し、厚さ3nmの電子注入層を形成した。
 (第二電極の形成)
 上記で形成した電子注入層の上であって、第一電極の取り出し電極になる部分を除く部分に、5×10-4Paの真空下で、第二電極形成材料としてアルミニウムを使用し、取り出し電極を有するように蒸着法にて、発光面積が40mm×30mmの長方形になるようにマスクパターン成膜し、厚さ100nmの第二電極を積層し、電子素子202を作製した。
 (封止)
 封止フィルムとして、上記作製した封止フィルム1を50mm×100mmに切り出し使用した。封止フィルムを、取り出し電極及び電極リードの接合部を覆うようにして密着・配置して、圧着ローラーを用いて圧着条件、圧着ローラー温度120℃、圧力0.5MPa、装置速度0.3m/minで密着封止した。このようにして比較の有機EL素子1を作製した。
 〔有機EL素子2~8の作製〕
 有機EL素子2~8は、封止フィルム1を封止フィルム2~8に変更し、有機EL素子1の作製と同様にして行った。
 (折り曲げ耐性の評価)
 上記で作製した有機EL素子1~8の折り曲げ耐性をフレキシブルディスプレイ素子の機械的ストレステスト(IEC62715-6-1 Ed.1)に準じて評価した。具体的には、23℃・50%RHの環境下でユアサシステム機器株式会社製のU字折り返し試験機を用いて曲率半径4.0mm、封止フィルム側が外側になるようにセットし、屈曲速度60回/分で30万回繰り返し屈曲させた。
 その後85℃・85%RHの環境に24時間放置して最大屈曲回数を出した。なお、耐久性の判定は、ストレステスト前の、一定電圧(10V)における発光強度が、テスト後50%未満となったとき、折り曲げ性が失われたと判定し、その折り曲げ回数を尺度とした。
 また、1万回以上折り曲げ可能の場合は、1万回ごとに発光強度を測定した。
Figure JPOXMLDOC01-appb-T000008
 表1から、本発明の封止フィルムで封止された有機EL素子の折り曲げ回数が比較の有機EL素子に比べて多く、折り曲げ耐性に優れていることが分かる。
 本発明の封止フィルムは、折り曲げ耐性に優れ、十分な封止性を可能とする封止フィルムであって、有機EL素子、太陽電池等のフレキシブル機能素子に好適に具備される。
 1 封止フィルム
 1a 基材
 1b ガスバリアー層
 1c 接着剤層
 31 製造装置
 32 送り出しローラー
 33、34、35、36 搬送ローラー
 39、40 成膜ローラー
 41 ガス供給管
 42 プラズマ発生用電源
 43、44 磁場発生装置
 45 巻取りローラー
 100 有機EL素子
 101 第一電極
 101a 下地層
 101b 電極層
 103 有機機能層
 103a 正孔注入層
 103b 正孔輸送層
 103c 発光層
 103d 電子輸送層
 103e 電子注入層
 105a 第二電極
 107 封止フィルム
 109 接着剤層
 113 樹脂基板(透明基板)
 113a光取り出し面
 115 補助電極
 116 取り出し電極
 h 発光光
 201 樹脂基材
 202 電子素子

Claims (6)

  1.  基材の片面にガスバリアー層及び接着剤層をこの順に有する封止フィルムであって、前記基材の厚さが5~50μmの範囲内であり、かつ、前記封止フィルムの25℃におけるポアソン比が0.30~0.39の範囲内であることを特徴とする封止フィルム。
  2.  前記ガスバリアー層が、酸化ケイ素又は酸化窒化ケイ素を含有する層であることを特徴とする請求項1に記載の封止フィルム。
  3.  前記接着剤層が、エポキシ樹脂と、エポキシ基と反応し得る官能基を持つ、イソプレン、イソブテン又はブタジエンの少なくとも1種を重合成分とする単独重合樹脂又は共重合樹脂と、を含有することを特徴とする請求項1又は2に記載の封止フィルム。
  4.  請求項1から請求項3までのいずれか一項に記載の封止フィルムで封止されていることを特徴とする機能素子。
  5.  基材の片面にガスバリアー層及び接着剤層をこの順に有する封止フィルムの製造方法であって、(A)ポリシラザンを含有する塗布液を塗布、乾燥した層に改質処理を施してガスバリアー層を形成する工程と、(B)当該ガスバリアー層上にエポキシ樹脂と、少なくともエポキシ基と反応し得る官能基を持つ、イソプレン、イソブテン又はブタジエンの少なくとも1種を重合成分とする単独重合樹脂又は共重合樹脂と、を含有する樹脂液を塗布、乾燥して接着剤層を形成する工程と、を有することを特徴とする封止フィルムの製造方法。
  6.  前記改質処理が、真空紫外光照射処理であることを特徴とする請求項5に記載の封止フィルムの製造方法。
PCT/JP2015/082913 2014-11-25 2015-11-24 封止フィルム、機能素子及び封止フィルムの製造方法 WO2016084791A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016561890A JPWO2016084791A1 (ja) 2014-11-25 2015-11-24 封止フィルム、機能素子及び封止フィルムの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014237306 2014-11-25
JP2014-237306 2014-11-25

Publications (1)

Publication Number Publication Date
WO2016084791A1 true WO2016084791A1 (ja) 2016-06-02

Family

ID=56074351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082913 WO2016084791A1 (ja) 2014-11-25 2015-11-24 封止フィルム、機能素子及び封止フィルムの製造方法

Country Status (2)

Country Link
JP (1) JPWO2016084791A1 (ja)
WO (1) WO2016084791A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074506A1 (ja) * 2016-10-19 2018-04-26 積水化学工業株式会社 有機el表示素子用封止剤
WO2018174116A1 (ja) * 2017-03-23 2018-09-27 味の素株式会社 封止用シート

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057177A1 (ja) * 2004-11-26 2006-06-01 Kureha Corporation 防湿膜用積層フィルム及びその製造方法
JP2012076293A (ja) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd 耐湿熱性ガスバリアフィルム積層体、及び包装袋
WO2013077255A1 (ja) * 2011-11-24 2013-05-30 コニカミノルタ株式会社 ガスバリアーフィルム及び電子機器
WO2014084352A1 (ja) * 2012-11-30 2014-06-05 リンテック株式会社 接着剤組成物、接着シート、電子デバイス及びその製造方法
WO2014084349A1 (ja) * 2012-11-30 2014-06-05 リンテック株式会社 接着剤組成物、接着シートおよび電子デバイス
JP2015080855A (ja) * 2013-10-21 2015-04-27 コニカミノルタ株式会社 封止フィルム、その製造方法及び封止フィルムで封止された機能素子
JP2015103389A (ja) * 2013-11-25 2015-06-04 次世代化学材料評価技術研究組合 有機el素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057177A1 (ja) * 2004-11-26 2006-06-01 Kureha Corporation 防湿膜用積層フィルム及びその製造方法
JP2012076293A (ja) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd 耐湿熱性ガスバリアフィルム積層体、及び包装袋
WO2013077255A1 (ja) * 2011-11-24 2013-05-30 コニカミノルタ株式会社 ガスバリアーフィルム及び電子機器
WO2014084352A1 (ja) * 2012-11-30 2014-06-05 リンテック株式会社 接着剤組成物、接着シート、電子デバイス及びその製造方法
WO2014084349A1 (ja) * 2012-11-30 2014-06-05 リンテック株式会社 接着剤組成物、接着シートおよび電子デバイス
JP2015080855A (ja) * 2013-10-21 2015-04-27 コニカミノルタ株式会社 封止フィルム、その製造方法及び封止フィルムで封止された機能素子
JP2015103389A (ja) * 2013-11-25 2015-06-04 次世代化学材料評価技術研究組合 有機el素子

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074506A1 (ja) * 2016-10-19 2018-04-26 積水化学工業株式会社 有機el表示素子用封止剤
JPWO2018074506A1 (ja) * 2016-10-19 2018-10-18 積水化学工業株式会社 有機el表示素子用封止剤
CN109076660A (zh) * 2016-10-19 2018-12-21 积水化学工业株式会社 有机el显示元件用密封剂
CN109076660B (zh) * 2016-10-19 2021-10-29 积水化学工业株式会社 有机el显示元件用密封剂
TWI745457B (zh) * 2016-10-19 2021-11-11 日商積水化學工業股份有限公司 有機el顯示元件用密封劑
WO2018174116A1 (ja) * 2017-03-23 2018-09-27 味の素株式会社 封止用シート
JPWO2018174116A1 (ja) * 2017-03-23 2020-01-30 味の素株式会社 封止用シート
JP7099441B2 (ja) 2017-03-23 2022-07-12 味の素株式会社 封止用シート

Also Published As

Publication number Publication date
JPWO2016084791A1 (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
JP5007987B2 (ja) 接着促進剤、電気活性層及びそれを含む電気活性素子とその方法
JP4716773B2 (ja) ガスバリアフィルムとそれを用いた有機デバイス
JP4896729B2 (ja) 保護障壁積層を有する電子デバイス
WO2016039060A1 (ja) ガスバリア性フィルム、及び、有機エレクトロルミネッセンス素子
JP5532557B2 (ja) ガスバリア性シート、ガスバリア性シートの製造方法、封止体、及び有機elディスプレイ
US20150284844A1 (en) Electronic device and gas barrier film manufacturing method
JP2000323273A (ja) エレクトロルミネッセンス素子
JP2003017244A (ja) 有機電界発光素子およびその製造方法
KR20030079707A (ko) 기판 및 그 기판을 갖는 유기 전계 발광 소자
JP6332283B2 (ja) ガスバリア性フィルム
JP2007253590A (ja) ガスバリア性フィルム、基材フィルムおよび有機エレクトロルミネッセンス素子
JP2007015350A (ja) ガスバリア性フィルム、基材フィルムおよび有機エレクトロルミネッセンス素子
US20160056414A1 (en) Thin film permeation barrier system for substrates and devices and method of making the same
US20190221771A1 (en) Buffer layer for organic light emitting devices and method of making the same
US20130328025A1 (en) Organic el device
JP4508219B2 (ja) 有機エレクトロルミネッセンス表示装置及び有機エレクトロルミネッセンス表示素子の封止方法
JP2005235467A (ja) 有機el素子
JP4537093B2 (ja) 画像表示素子用基板および有機エレクトロルミネッセンス素子
US20180212184A1 (en) Organic electroluminescent element
JP2016051569A (ja) 有機エレクトロルミネッセンス素子
WO2016084791A1 (ja) 封止フィルム、機能素子及び封止フィルムの製造方法
WO2012046742A1 (ja) 有機el装置
JP2015080855A (ja) 封止フィルム、その製造方法及び封止フィルムで封止された機能素子
KR101218651B1 (ko) 유기 전계 발광 소자 및 그 제조 방법
JP2010013735A (ja) 樹脂フィルムの製造方法及び該樹脂フィルムを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561890

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863992

Country of ref document: EP

Kind code of ref document: A1