JP2014217329A - 人工土壌粒子、及び人工土壌粒子の製造方法 - Google Patents

人工土壌粒子、及び人工土壌粒子の製造方法 Download PDF

Info

Publication number
JP2014217329A
JP2014217329A JP2013099366A JP2013099366A JP2014217329A JP 2014217329 A JP2014217329 A JP 2014217329A JP 2013099366 A JP2013099366 A JP 2013099366A JP 2013099366 A JP2013099366 A JP 2013099366A JP 2014217329 A JP2014217329 A JP 2014217329A
Authority
JP
Japan
Prior art keywords
artificial soil
filler
soil particles
fillers
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013099366A
Other languages
English (en)
Other versions
JP5755282B2 (ja
Inventor
石坂 信吉
Shinkichi Ishizaka
信吉 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2013099366A priority Critical patent/JP5755282B2/ja
Priority to CN201480015791.3A priority patent/CN105101780A/zh
Priority to PCT/JP2014/060508 priority patent/WO2014181635A1/ja
Priority to EP14795473.9A priority patent/EP2995193A1/en
Priority to KR1020157025239A priority patent/KR20150119311A/ko
Priority to US14/889,416 priority patent/US20160083555A1/en
Publication of JP2014217329A publication Critical patent/JP2014217329A/ja
Application granted granted Critical
Publication of JP5755282B2 publication Critical patent/JP5755282B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/40Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/10Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
    • A01G24/12Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material containing soil minerals
    • A01G24/13Zeolites
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/30Growth substrates; Culture media; Apparatus or methods therefor based on or containing synthetic organic compounds
    • A01G24/35Growth substrates; Culture media; Apparatus or methods therefor based on or containing synthetic organic compounds containing water-absorbing polymers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/40Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure
    • A01G24/42Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure of granular or aggregated structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • C08K2003/162Calcium, strontium or barium halides, e.g. calcium, strontium or barium chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Soil Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cultivation Of Plants (AREA)

Abstract

【課題】これまではあまり検討されていなかった人工土壌粒子の構造と特性との関係に着目し、様々な可能性を有する新規な人工土壌粒子、及びその製造技術を確立する。
【解決手段】細孔2を有する複数のフィラー1が結合材5で結合された人工土壌粒子10であって、フィラー1と結合材5との競合によって形成される自己組織化構造を有する。自己組織化構造には、複数のフィラー1が三次元的に結合した三次元ネットワーク構造や、複数のフィラー1が所定の方向に配列したラメラ構造がある。
【選択図】図2

Description

本発明は、細孔を有する複数のフィラーが結合材で結合された人工土壌粒子、及び人工土壌粒子の製造方法に関する。
近年、生育条件がコントロールされた環境下で野菜等の植物を栽培する植物工場が増加している。従来の植物工場は、レタス等の葉物野菜の水耕栽培が中心であったが、最近では水耕栽培には向かない根菜類についても植物工場での栽培を試みる動きがある。根菜類を植物工場で栽培するためには、土壌としての基本性能に優れ、品質が高く、且つ取り扱いが容易な人工土壌を開発する必要がある。
ここで、土壌の基本性能や品質は、その土壌を構成する土壌粒子の構造に大きく影響される。これは人工土壌についても同様であり、例えば、人工土壌を構成する人工土壌粒子の多孔質構造の形態に応じて、保水性や保肥性等の特性が変化する。つまり、人工土壌粒子の構造とその特性との間には密接な関係がある。従って、人工土壌粒子の構造を自在に制御することができれば、様々な特性を有する人工土壌を開発することが可能となる。
しかしながら、これまで開発されてきた人工土壌においては、人工土壌粒子の構造制御について殆ど検討されておらず、人工土壌粒子の構造と特性との関係についても十分に明らかとはなっていない。これまでに開発された従来の人工土壌として、例えば、特許文献1に示されるような、粉状のゼオライトを水溶性高分子からなる結合材で結合して団粒化した団粒構造ゼオライトがあるが、これは、乾燥時の熱でゼオライト表面に付着している水分を気化させることにより粒子を多孔質化したものである。特許文献1の人工土壌は、水分の気化速度に依存して粒子構造が決まるため、人工土壌粒子の構造を精密に制御することは容易ではない。
特開2000−336356号公報
人工土壌の開発にあたっては、天然土壌と同等の植物育成力を達成しながら、例えば、栽培対象の植物に対して水分や養分を適切に供給できるコントロール機能が求められる。すなわち、人工土壌には、土壌としての基本性能をバランスよく発揮することが求められる。このため、今後の人工土壌の開発にあたっては、人工土壌粒子の構造と特性との関係を解明し、さらに、そのような知見に基づいて、人工土壌粒子の構造制御を行うことが期待される。
本発明は、上記問題点に鑑みてなされたものであり、これまではあまり検討されていなかった人工土壌粒子の構造と特性との関係に着目し、様々な可能性を有する新規な人工土壌粒子、及びその製造技術を確立することを目的とする。
上記課題を解決するための本発明に係る人工土壌粒子の特徴構成は、
細孔を有する複数のフィラーが結合材で結合された人工土壌粒子であって、
前記フィラーと前記結合材との競合によって形成される自己組織化構造を有することにある。
人工土壌粒子の形成過程において、人工土壌粒子の主原料であるフィラーは、エントロピー増大の法則に従い、通常であれば時間の経過とともに無秩序な状態に向かうところ、本構成の人工土壌粒子は、結合材を用いてフィラーを粒子化する過程で、フィラーと結合材とが競合するため、一定の秩序を有する自己組織化構造が形成される。この自己組織化構造は、ある種の特異的な構造であり、人工土壌粒子の特性に影響を与えるものとなる。そして、人工土壌粒子の自己組織化構造は、フィラーを粒子化する際の条件によって制御可能である。
従って、本構成の人工土壌粒子は、従来の人工土壌の概念とは異なる新規な人工土壌として利用可能であり、様々な可能性を有する付加価値の高い人工土壌として期待されるものとなる。
本発明に係る人工土壌粒子において、
前記自己組織化構造は、複数のフィラーが三次元的に結合した三次元ネットワーク構造であることが好ましい。
本構成の人工土壌粒子によれば、自己組織化構造として形成される三次元ネットワーク構造は、その三次元骨格が高い強度を有するため、人工土壌粒子の構造を安定化させることに寄与し得る。また、三次元ネットワーク構造の三次元骨格の間に形成される隙間に様々な物質を担持できるため、担持物質の特性を最大限に生かした人工土壌を実現することができる。
本発明に係る人工土壌粒子において、
前記自己組織化構造は、複数のフィラーが所定の方向に配列したラメラ構造であることが好ましい。
本構成の人工土壌粒子によれば、自己組織化構造として形成されるラメラ構造は、特定の方向に異方性を有するため、特定の条件に対して際立った特性を発揮し得る人工土壌を実現することができる。
本発明に係る人工土壌粒子において、
前記フィラーの間に連通孔が形成されていることが好ましい。
本構成の人工土壌粒子によれば、フィラーの間に形成した連通孔にフィラーの細孔とは異なる機能を持たせることができるため、多機能な人工土壌を実現することができる。
本発明に係る人工土壌粒子において、
前記細孔はサブnmオーダー乃至サブμmオーダーのサイズを有し、前記連通孔はサブμmオーダー乃至サブmmオーダーのサイズを有することが好ましい。
本構成の人工土壌粒子によれば、フィラーの細孔のサイズがサブnmオーダー乃至サブμmオーダーであるため、当該細孔に植物の品質を向上させるために必要な養分を効果的に取り込むことができる。また、連通孔のサイズがサブμmオーダー乃至サブmmオーダーであるため、当該連通孔に植物の生育に不可欠な水分を効果的に吸収することができる。このように、細孔と連通孔とが異なるサイズに構成されているため、土壌としての基本性能のバランスに優れた多機能な人工土壌を実現することができる。
本発明に係る人工土壌粒子において、
前記細孔がイオン交換能を有することが好ましい。
本構成の人工土壌粒子によれば、イオン交換能により細孔に肥料成分を担持することができ、長期に亘って保肥力を発揮し得る人工土壌を実現することができる。
本発明に係る人工土壌粒子において、
0.2〜10mmの平均粒径を有することが好ましい。
本構成の人工土壌粒子によれば、平均粒径を0.2〜10mmとすることで、特に根菜類の栽培に適した取り扱いの容易な人工土壌を実現することができる。
上記課題を解決するための本発明に係る人工土壌粒子の製造方法の特徴構成は、
細孔を有する複数のフィラーが結合材で結合された人工土壌粒子の製造方法であって、
前記フィラーと前記結合材との競合によって前記フィラーを自己組織化させる形成工程を含むことにある。
本構成の人工土壌粒子の製造方法によれば、上述の人工土壌粒子と同様の優れた作用効果を奏する。すなわち、本構成の人工土壌粒子の製造方法では、結合材を用いてフィラーを粒子化する過程で、フィラーと結合材とが競合するため、一定の秩序を有する自己組織化構造が形成される。この自己組織化構造は、ある種の特異的な構造であり、人工土壌粒子の特性に影響を与えるものとなる。そして、人工土壌粒子の自己組織化構造は、フィラーを粒子化する際の条件によって制御可能である。
従って、本構成の人工土壌粒子の製造方法によって製造された人工土壌粒子は、従来の人工土壌の概念とは異なる新規な人工土壌として利用可能であり、様々な可能性を有する付加価値の高い人工土壌として期待されるものとなる。
図1は、本発明の人工土壌粒子を概念的に表した説明図である。 図2は、フィラーとバインダーとしてのアルギン酸塩との競合によって人工土壌粒子に形成される自己組織化構造を例示する模式図である。 図3は、人工土壌粒子の細孔と連通孔との位置関係を概念的に表したモデル図である。 図4は、人工土壌団粒体の模式図である。
以下、本発明に係る人工土壌粒子、及び人工土壌粒子の製造方法に関する実施形態を図1〜図4に基づいて説明する。なお、人工土壌粒子の製造方法については、人工土壌粒子の説明の中で言及する。ただし、本発明は、以下に説明する実施形態や図面に記載される構成に限定されることを意図しない。
<人工土壌粒子の構成>
図1は、本発明の人工土壌粒子10を概念的に表した説明図である。図1(a)は、フィラー1として、多孔質天然鉱物であるゼオライト1aを使用した人工土壌粒子10を例示したものである。図1(b)は、フィラー1として、層状天然鉱物であるハイドロタルサイト1bを使用した人工土壌粒子10を例示したものである。なお、図1中に示す記号x、y及びzは、後述する細孔2、連通孔3及び人工土壌粒子10のサイズを夫々表しているが、図面上でのx、y及びzの大きさは実際のサイズ関係を反映したものではない。
人工土壌粒子10は、複数のフィラー1がバインダー(結合材)で結合されたものである。図1では、フィラー1の構造を分かり易くするため、バインダーの図示は省略してある。人工土壌粒子10中の複数のフィラー1は、それらが互いに接触していることは必須ではなく、一粒子内でバインダーを介して一定範囲内の相対的な位置関係を維持していればよい。人工土壌粒子10を構成するフィラー1は、表面から内部にかけて多数の細孔2を有する。細孔2は、種々の形態を含む。例えば、フィラー1が、図1(a)に示すゼオライト1aの場合、当該ゼオライト1aの結晶構造中に存在する空隙2aが細孔2であり、図1(b)に示すハイドロタルサイト1bの場合、当該ハイドロタルサイト1bの層構造中に存在する層間2bが細孔2である。つまり、本発明において「細孔」とは、フィラー1の構造中に存在する空隙部、層間部、空間部等を意図し、これらは「孔状」の形態に限定されるものではない。
フィラー1の細孔2のサイズ(図1に示す空隙2a又は層間2bのサイズxの平均値)は、サブnmオーダー乃至サブμmオーダーとなる。例えば、フィラー1が、図1(a)に示すゼオライト1aの場合、当該ゼオライト1aの結晶構造中に存在する空隙2aのサイズ(径)は、0.3〜1.3nm程度である。フィラー1が、図1(b)に示すハイドロタルサイト1bの場合、当該ハイドロタルサイト1bの層構造中に存在する層間2bのサイズ(距離)は、0.3〜3.0nm程度である。この他に、フィラー1として、後述する有機多孔質材料を使用することもでき、その場合の細孔2のサイズxは、0.1〜0.8μm程度となる。フィラー1の細孔2のサイズは、測定対象の状態に応じて、ガス吸着法、水銀圧入法、小角X線散乱法、画像処理法等を用いて、又はこれらの方法を組み合わせて、最適な方法により測定される。
フィラー1は、人工土壌粒子10が十分な保肥力を有するように、細孔2がイオン交換能を有する材料を使用することが好ましい。イオン交換能を有する材料として、陽イオン交換能を有する材料、陰イオン交換能を有する材料、又は両者の混合物を使用することができる。また、イオン交換能を有さない多孔質材料(例えば、高分子発泡体、ガラス発泡体等)を別に用意し、当該多孔質材料の細孔に上記のイオン交換能を有する材料を圧入や含浸等によって導入し、これをフィラー1として使用することも可能である。陽イオン交換能を有する材料として、陽イオン交換性鉱物、腐植、及び陽イオン交換樹脂が挙げられる。陰イオン交換能を有する材料として、陰イオン交換性鉱物、及び陰イオン交換樹脂が挙げられる。
陽イオン交換性鉱物は、例えば、ゼオライト、モンモリロナイト、ベントナイト、バイデライト、ヘクトライト、サポナイト、スチブンサイト等のスメクタイト系鉱物、雲母系鉱物、バーミキュライトが挙げられる。陽イオン交換樹脂は、例えば、弱酸性陽イオン交換樹脂、強酸性陽イオン交換樹脂が挙げられる。これらのうち、ゼオライト又はベントナイトが好ましい。陽イオン交換性鉱物及び陽イオン交換樹脂は、二種以上を組み合わせて使用することも可能である。陽イオン交換性鉱物及び陽イオン交換樹脂における陽イオン交換容量は、10〜700meq/100gに設定され、好ましくは20〜700meq/100gに設定され、より好ましくは30〜700meq/100gに設定される。陽イオン交換容量が10meq/100g未満の場合、十分に養分を取り込むことができず、取り込まれた養分も灌水等により早期に流失する虞がある。一方、陽イオン交換容量が700meq/100gを超えるように保肥力を過剰に大きくしても、効果は大きく向上せず、経済的ではない。
陰イオン交換性鉱物は、例えば、ハイドロタルサイト、マナセアイト、パイロオーライト、シェーグレン石、緑青等の主骨格として複水酸化物を有する天然層状複水酸化物、合成ハイドロタルサイト及びハイドロタルサイト様物質、アロフェン、イモゴライト、カオリン等の粘土鉱物が挙げられる。陰イオン交換樹脂は、例えば、弱塩基性陰イオン交換樹脂、強塩基性陰イオン交換樹脂が挙げられる。これらのうち、ハイドロタルサイトが好ましい。陰イオン交換性鉱物及び陰イオン交換樹脂は、二種以上を組み合わせて使用することも可能である。陰イオン交換性鉱物及び陰イオン交換樹脂における陰イオン交換容量は、5〜500meq/100gに設定され、好ましくは20〜500meq/100gに設定され、より好ましくは30〜500meq/100gに設定される。陰イオン交換容量が5meq/100g未満の場合、十分に養分を取り込むことができず、取り込まれた養分も灌水等により早期に流失する虞がある。一方、陰イオン交換容量が500meq/100gを超えるように保肥力を過剰に大きくしても、効果は大きく向上せず、経済的ではない。
<フィラーの粒状化法>
人工土壌粒子10は、複数のフィラー1を集合して粒状化することにより形成される。フィラー1を粒状化するにあたっては、例えば、バインダーとして高分子ゲル化剤が使用される。高分子ゲル化剤は、ゲル化反応によってフィラー1どうしを結合する。高分子ゲル化剤のゲル化反応として、例えば、アルギン酸塩と多価金属イオンとのゲル化反応、カルボキシメチルセルロース(CMC)のゲル化反応、カラギーナンなどの多糖類の二重らせん構造化反応によるゲル化反応が挙げられる。このうち、アルギン酸塩と多価金属イオンとのゲル化反応は、後述する本発明の特徴である「自己組織化構造」を形成する手段として適している。アルギン酸塩の一つであるアルギン酸ナトリウムは、アルギン酸のカルボキシル基がNaイオンと結合した形態の中性塩である。アルギン酸は水に不溶であるが、アルギン酸ナトリウムは水溶性である。アルギン酸ナトリウム水溶液を多価金属イオン(例えば、Caイオン)の水溶液中に添加すると、アルギン酸ナトリウムの分子間でイオン架橋が起こりゲル化する。ゲル化反応は、例えば、以下の工程により行うことができる。初めに、アルギン酸塩を水に溶解させてアルギン酸塩水溶液を調製し、アルギン酸塩水溶液にフィラー1を添加し、これを十分攪拌して、アルギン酸塩水溶液中にフィラー1が分散した混合液を形成する。次に、混合液を多価金属イオン水溶液中に滴下し、混合液に含まれるアルギン酸塩を粒状にゲル化させる。
ここで、アルギン酸塩と多価金属イオンとのゲル化反応に着目すると、ゲル化反応の進行中に、アルギン酸塩の分子間でのイオン架橋と、アルギン酸塩水溶液中におけるフィラー1の分散力との間で相互作用が働き、両者は競合しながら組織化される。そうすると、エントロピー増大の法則に従い、通常であればフィラー1は時間の経過とともに無秩序な状態(すなわち、ランダムな状態)に向かうところ、本実施形態の人工土壌粒子10は、フィラー1と結合材であるアルギン酸塩とが競合しながら粒子が形成されるため、粒子中に一定の秩序を有する自己組織化構造が形成される。この自己組織化構造は、ある種の特異的な構造であり、最終的に形成した人工土壌粒子10の特性に影響を与えることになる。
図2は、フィラー1とバインダー5としてのアルギン酸塩との競合によって人工土壌粒子10に形成される自己組織化構造を例示する模式図である。点線円中に人工土壌粒子10の一部を拡大して示してある。図2(a)は、自己組織化により、複数のフィラー1がバインダー5を介して三次元的に結合した三次元ネットワーク構造を形成したものである。三次元ネットワーク構造は、フィラー1の結合による三次元骨格が高い強度を有するため、人工土壌粒子10の構造を安定化させることができる。また、三次元ネットワーク構造の三次元骨格の間に形成される隙間3(図1の連通孔3に相当)に様々な物質を担持できるため、担持物質の特性を最大限に生かした人工土壌を実現することができる。図2(b)は、自己組織化により、複数のフィラー1がバインダー5を介して所定の方向に配列したラメラ構造を形成したものである。ラメラ構造は、特定の方向に異方性を有するため、特定の条件に対して際立った特性を発揮し得る人工土壌を実現することができる。また、ラメラ構造の間に形成される隙間3(図1の連通孔3に相当)に様々な物質を担持することも可能である。
バインダー5として使用されるゲル化反応に使用可能なアルギン酸塩は、例えば、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸アンモニウムが挙げられる。これらのアルギン酸塩は、二種以上を組み合わせて使用することも可能である。アルギン酸塩水溶液の濃度は、0.1〜5重量%とし、好ましくは0.2〜5重量%とし、より好ましくは0.2〜3重量%とする。アルギン酸塩水溶液の濃度が0.1重量%未満の場合、ゲル化反応が起こり難くなり、5重量%を超えると、アルギン酸塩水溶液の粘度が大きくなり過ぎるため、フィラー1を添加した混合液の攪拌や、混合液を多価金属イオン水溶液中に滴下することが困難になる。
アルギン酸塩水溶液を滴下する多価金属イオン水溶液は、アルギン酸塩と反応してゲル化が起きる2価以上の金属イオン水溶液であればよい。そのような多価金属イオン水溶液の例として、塩化カルシウム、塩化バリウム、塩化ストロンチウム、塩化ニッケル、塩化アルミニウム、塩化鉄、塩化コバルト等の多価金属の塩化物水溶液、硝酸カルシウム、硝酸バリウム、硝酸アルミニウム、硝酸鉄、硝酸銅、硝酸コバルト等の多価金属の硝酸塩水溶液、乳酸カルシウム、乳酸バリウム、乳酸アルミニウム、乳酸亜鉛等の多価金属の乳酸塩水溶液、硫酸アルミニウム、硫酸亜鉛、硫酸コバルト等の多価金属の硫酸塩水溶液が挙げられる。これらの多価金属イオン水溶液は、二種以上を組み合わせて使用することも可能である。多価金属イオン水溶液の濃度は、1〜20重量%とし、好ましくは2〜15重量%とし、より好ましくは3〜10重量%とする。多価金属イオン水溶液の濃度が1重量%未満の場合、ゲル化反応が起こり難くなり、20重量%を超えると、金属塩の溶解に時間が掛かるとともに、過剰の材料を使用することになるため、経済的でない。
<自己組織化構造の制御>
フィラー1とバインダー5としてのアルギン酸塩との競合によりに発現する人工土壌粒子10の自己組織化構造は、フィラー1を粒子化(ゲル化)する際の条件によって制御することができると考えられる。人工土壌粒子10の自己組織化構造を制御するための条件として、例えば、以下の条件が考えられる。
図2(a)に示した三次元ネットワーク構造を形成するには、フィラー1を分散させたアルギン酸ナトリウム水溶液を塩化カルシウム水溶液に滴下する際、アルギン酸ナトリウムの分子間でのイオン架橋(ゲル化)速度がアルギン酸塩水溶液中におけるフィラー1の分散力に対して極端に大きくならないように、アルギン酸塩ナトリウム水溶液及び塩化カルシウム水溶液の濃度、並びにフィラー1の添加量を調整する。この場合、フィラー1とバインダー5としてのアルギン酸ナトリウムとの競合により、フィラー1どうしが接触した状態でタイミングよくアルギン酸ナトリウムのゲル化反応が起こり、骨格強度に優れた三次元ネットワーク構造が形成される。
図2(b)に示したラメラ構造を形成するには、フィラー1を分散させたアルギン酸ナトリウム水溶液を塩化カルシウム水溶液に滴下する際、塩化カルシウム水溶液に物理的又は化学的な勾配を発生させる。例えば、塩化カルシウム水溶液を一定方向に流動させ、この状態で、塩化カルシウム水溶液にフィラー1を分散させたアルギン酸ナトリウム水溶液を滴下する。この場合、フィラー1とアルギン酸ナトリウムとが剪断力を受けながら競合し、ゲル化するため、流動方向にフィラー1が配向したラメラ構造が形成される。また、塩化カルシウム水溶液に濃度勾配や温度勾配を設けた状態で、フィラー1を分散させたアルギン酸ナトリウム水溶液を滴下する。この場合、バインダー5としてのアルギン酸ナトリウムのゲル化反応は濃度勾配や温度勾配に沿って進行するため、濃度勾配や温度勾配に沿ってフィラー1が配向したラメラ構造が形成される。
<人工土壌粒子の多孔構造>
自己組織化構造を有する人工土壌粒子10は、細孔2を有するフィラー1の間に連通孔3が形成された多孔質粒子である。人工土壌粒子10の粒径(図1に示す人工土壌粒子10のサイズzの平均値)は、0.2〜10mmであり、好ましくは0.5〜5mmであり、より好ましくは1〜5mmである。人工土壌粒子10の粒径が0.2mm未満の場合、人工土壌粒子10間の間隙が小さくなって排水性が低下することにより、栽培する植物が根から酸素を吸収し難くなる虞がある。一方、人工土壌粒子10の粒径が10mmを超えると、人工土壌粒子10間の間隙が大きくなって排水性が過剰になり過ぎることにより、植物が水分を吸収し難くなったり、人工土壌粒子10が疎になって植物が横倒れする虞がある。人工土壌粒子10の粒径の調整は、例えば、篩による分級で行うことができる。連通孔3のサイズ(図1に示す隣接するフィラー1間の距離yの平均値)は、フィラー1やバインダーの種類、組成、造粒条件により変化し得るが、サブμmオーダー乃至サブmmオーダーとなる。例えば、フィラー1が、図1(a)に示すゼオライト1a、又は図2(b)に示すハイドロタルサイト1bであり、高分子ゲル化剤を使用した場合、連通孔3のサイズは、0.1〜20μmである。連通孔3のサイズは、測定対象の状態に応じて、ガス吸着法、水銀圧入法、小角X線散乱法、画像処理法等を用いて、又はこれらの方法を組み合わせて、最適な方法により測定することができる。人工土壌粒子10の粒径は、例えば、光学顕微鏡観察及び画像処理法を用いて測定することができる。本実施形態では、以下の測定法により、連通孔3のサイズ、及び人工土壌粒子10の粒径を測定した。先ず、測定対象の人工土壌粒子をスケールとともに顕微鏡で観察し、その顕微鏡画像を画像処理ソフト(二次元画像解析処理ソフトウェア「WinROOF」、三谷商事株式会社製)を使用して取得する。画像から100個の人工土壌粒子を選択し、連通孔又は人工土壌粒子の輪郭をトレースする。トレースした図形の周長から、相当円の直径を算出する。夫々の連通孔又は人工土壌粒子から求めた相当円の直径(100個)の平均を平均サイズ(単位:ピクセル)とする。そして、平均サイズを顕微鏡画像中のスケールと比較し、単位長さ(μmオーダー乃至mmオーダー)に変換して、連通孔のサイズ又は人工土壌粒子の粒径を算出する。
人工土壌粒子10に存在する細孔2及び連通孔3は、連通孔3が外部から水分及び養分を取り込むとともに、細孔2が連通孔3から養分を受け取り可能なように、細孔2が連通孔3の周囲に分散配置されている。
図3は、人工土壌粒子10の細孔2と連通孔3との位置関係を概念的に表したモデル図である。なお、図3は、図1及び図2に示した人工土壌粒子10の内部構造をモデル化したものであるが、実際の人工土壌粒子10の内部構造がそのまま反映されたものではない。本発明の人工土壌粒子10において、細孔2が連通孔3の周囲に分散配置されているとは、細孔2が連通孔3に接続しており、しかも連通孔3に接続する細孔2が実質的に連通孔3の周囲全体に存在していることを意味する。例えば、図3(a)を見ると、サイズxの多数の細孔2がサイズyの連通孔3に接続しており、しかも、多数の細孔2が連通孔3の長さ全体に沿って存在している状態が表されている。この細孔2と連通孔3との特定の位置関係は、細孔2及び連通孔3の概ね半数以上にあればよい。なお、図3(a)では、紙面の都合上、細孔2と連通孔3との特定の位置関係を二次元的に示してあるが、実際の人工土壌粒子10には三次元的な拡がりで上述の特定の位置関係が形成されている。細孔2と連通孔3との特定の位置関係を出現させるための条件は、現在のところまだ十分に明らかにはなっていないが、この特定の位置関係も人工土壌粒子10に形成される自己組織化構造の一種と考えられる。この自己組織化構造を形成するためには、例えば、フィラー1として結晶性が高い材料を選択したり、フィラー1として特異な結晶構造を有する材料を選択したり、フィラー1として複数種を特定の組合せで使用したり、フィラー1が有する結晶構造や層構造を制御したり、フィラー1に配向性を与える処理をしたり、フィラー1を粒状化する際に特定の添加剤を添加したり、フィラー1の造粒法(粒状化条件)を最適化したりする。これにより、自己組織化組織をより強く出現させることができると考えられる。
<人工土壌粒子の保水性及び保肥性のメカニズム>
本発明の人工土壌粒子10は、細孔2と連通孔3とが異なるサイズに構成されているため、土壌としての基本性能(保水性及び保肥性)のバランスに多機能な人工土壌を実現することができる。ここで、人工土壌粒子10が有する保水性及び保肥性のメカニズムを、図3を参照しながら詳細に説明する。図3では、人工土壌粒子10に外部から水分W、及び養分K、N、Pが取り込まれる様子を(a)、(b)、(c)の順に段階的に示してある。ここで、養分Kはカリウム分、養分Nは窒素分、養分Pはリン分を表している。
人工土壌粒子10に外部から未だ水分W、及び養分K、N、Pが取り込まれていない状態では、図3(a)に示すように、人工土壌粒子10の連通孔3及び当該連通孔3に接続する細孔2は空隙となっている。人工土壌粒子10が養分K、N、Pを含んだ水分Wに接触すると、図3(b)に示すように、先ず連通孔3に水分W、及び養分K、N、Pが取り込まれる。連通孔3が十分に湿潤状態になると、図3(c)に示すように、連通孔3に取り込まれた水分W、及び養分K、N、Pのうち、養分K、N、Pが連通孔3から細孔2に移動する。本発明の人工土壌粒子10では、主に細孔2に養分K、N、Pが取り込まれるとともに、連通孔3で水分Wが保持されることで、主に細孔2に保肥性を担わせ、連通孔3に保水性を担わせている。このように、細孔2と連通孔3とで異なる機能を分担させることで、保水性と保肥性とのバランスに優れた機能的な人工土壌粒子10とすることができる。また、このような人工土壌粒子10を用いた人工土壌は、栽培対象の植物に対して水分Wや養分K、N、Pを適切に供給できるので、メンテナンスに手間が掛からず、取り扱いが容易なものとなる。
<人工土壌粒子の物性>
人工土壌粒子10の細孔2及び連通孔3は、連通孔3の全容積が細孔2の全容積より大きくなるように構成されることが好ましい。これは、連通孔3の保水性を十分に確保するとともに、連通孔3から細孔2への養分の移動がスムーズに行われるようにするためである。また、連通孔3の全容積が細孔2の全容積より大きくなれば、人工土壌粒子10が軽量となるため、嵩密度が小さくなり、人工土壌としての取り扱いも容易となる。連通孔3の全容積を細孔2の全容積より大きくするためには、図2(a)に示した三次元ネットワーク構造とすることが有効である。三次元ネットワーク構造を有する人工土壌粒子10は、嵩密度が低く軽量でありながら構造的にも安定しているため、根菜類の栽培に必要な強度が確保された人工土壌として好適に利用できる。また、内部に有する多数の空隙のため、保水性、保肥性、排水性、通気性等の土壌としての基本性能が良好なものとなり、付加価値の高い人工土壌とすることができる。
人工土壌粒子10の強度は、繰り返し圧縮荷重の付加による容積変化率で評価することができる。本発明の人工土壌粒子10は、繰り返し圧縮荷重25KPaの付加後の容積変化率が20%以下になるように設計される。好ましい容積変化率は15%以下である。容積変化率が20%を超えると、プランター等に人工土壌を充填したり、苗を移植する際に、人工土壌粒子10が粉砕され易くなり、人工土壌粒子10の構造(フィラー1の細孔2が複数のフィラー1間の連通孔3の周囲に分散配置され、さらに、フィラー1が三次元ネットワーク状に結合した構造)が失われる虞がある。その結果、保水性と保肥性とのバランスが崩れる。また、人工土壌粒子10の構造が失われると、人工土壌の締め固めが起こり易くなるため、根菜類の栽培に悪影響を及ぼし得る。
本発明の人工土壌粒子10は根菜類の栽培に適したものであるが、人工土壌として優れた保水性を有しているため、これまで主に水耕栽培されていた葉物野菜の育成に適用することも可能である。ここで、人工土壌の保水性は、通水保水量によって評価することができる。通水保水量は、人工土壌粒子100mLあたりの保水量(%)として求められる。本発明の人工土壌粒子10は、フィラー1の細孔2が複数のフィラー1間の連通孔3の周囲に分散配置され、さらに、フィラー1が三次元ネットワーク状に結合した独特の構成を有するため、通水保水量を20〜70%に設定することができる。通水保水量が20%より低いと植物が成長するのに十分な水分を保持することが困難となり、70%を超えると人工土壌の通気性が悪化し、植物の生育に悪影響を及ぼす可能性がある。通気性に関しては、乾燥状態における人工土壌の気相率で表すことができる。本発明の人工土壌粒子10を使用した人工土壌の気相率は、20〜80%となるように設定することができる。好ましい気相率は40〜80%であり、より好ましい気相率は50〜80%である。気相率が20%未満の場合、植物の根への空気の供給量が不足し、80%を超えると、保水性を十分に確保できなくなる虞がある。
人工土壌粒子10を設計するに際し、連通孔3の保水性をさらに高めることも可能である。連通孔3の保水性を向上させる一つの方法として、人工土壌粒子10の連通孔3に保水性材料を導入することが挙げられる。保水性材料は、例えば、連通孔3の全体に保水性材料を充填したり、連通孔3の表面を保水性材料の膜でコーティングしたりすることで導入可能である。このとき、連通孔3の少なくとも一部に保水性材料が存在していればよい。保水性材料の導入は、例えば、保水性のある高分子材料を溶媒に溶解して高分子溶液を調製し、当該高分子溶液を人工土壌粒子10に含浸させることによって行われる。
保水性材料として使用可能な高分子材料は、例えば、ポリアクリル酸塩系ポリマー、ポリスルホン酸塩系ポリマー、ポリアクリルアミド系ポリマー、ポリビニルアルコール系ポリマー、ポリアルキレンオキサイド系ポリマー等の合成高分子系保水性材料、ポリアスパラギン酸塩系ポリマー、ポリグルタミン酸塩系ポリマー、ポリアルギン酸塩系ポリマー、セルロース系ポリマー、デンプン等の天然高分子系保水性材料が挙げられる。これらの保水性材料は、二種以上を組み合わせて使用することも可能である。
保水性材料である上記高分子材料を溶解させる溶媒は、使用する高分子材料に応じて溶解性の高いもの、すなわち、高分子材料と溶媒とで溶解度パラメータ(SP値)が近くなる組み合せが適切に選択される。例えば、高分子材料のSP値と溶媒のSP値との差が5以下となるような組み合わせ(例:SP値が約10のニトロセルロースと、SP値が約14.5のメタノールとの組み合わせ)が選択される。そのような溶媒の例として、メタノール、エタノール、イソプロパノール、ブタノール、酢酸エチル、アセトン、メチルエチルケトン、メチルイソブチルケトンが挙げられる。これらの溶媒は、二種以上を組み合わせて使用することも可能である。
連通孔3の保水性を向上させる他の方法として、人工土壌粒子10を調製するに際し、原料であるフィラー1の一部又は全部に保水性フィラーを使用することが挙げられる。この場合、生成した人工土壌粒子10は、それ自体が保水性を有することになるので、保水性を向上させるための特別な後処理は不要となる。保水性フィラーには親水性フィラーや多孔質粒状物を使用することができ、親水性フィラーの例としては、ゼオライト、スメクタイト系鉱物、雲母系鉱物、タルク、シリカ、複水酸化物等が挙げられ、多孔質粒状物の例としては、発泡ガラス、多孔質金属、多孔質セラミック、高分子多孔体、親水性繊維等が挙げられる。
<人工土壌団粒体>
本発明の人工土壌粒子10は、さらに団粒化して人工土壌団粒体の形態で人工土壌として利用することも可能である。図4は、人工土壌団粒体100の模式図である。ここでは、図1(a)に示すゼオライト1aを使用した人工土壌粒子10を団粒化した人工土壌団粒体100を例示する。
人工土壌団粒体100は、複数の人工土壌粒子10が連なったクラスター構造を有している。クラスター構造は、複数の人工土壌粒子10を二次バインダーで接着することにより得られる。団粒化に使用する二次バインダーは、人工土壌粒子10の形成で用いたバインダー(一次バインダー)と同じものを使用できるが、異なる種類のバインダーであっても構わない。人工土壌団粒体100のサイズ(図3に示す人工土壌団粒体100のサイズwの平均値)は、0.4〜20mmであり、好ましくは0.5〜18mmであり、より好ましくは1〜15mmである。人工土壌団粒体100のサイズが0.4mm未満の場合、人工土壌団粒体100を構成する人工土壌粒子10間の間隙が小さくなって排水性が低下することにより、栽培する植物が根から酸素を吸収し難くなる虞がある。一方、人工土壌粒子10のサイズが20mmを超えると、排水性が過剰になり過ぎることにより植物が水分を吸収し難くなったり、人工土壌団粒体100が疎になって植物が横倒れする虞がある。人工土壌団粒体100のサイズは、例えば、光学顕微鏡観察及び画像処理法を用いて測定される。本実施形態では、連通孔3のサイズ、及び人工土壌粒子10の粒径と同様に、前述の画像処理を用いた測定法により、人工土壌団粒体100のサイズを測定した。
本発明の人工土壌粒子10を団粒化して得られた人工土壌団粒体100は、保水性と保肥性とのバランスに優れており、栽培対象の植物に対して水分や養分を適切に供給することができる。従って、本発明の人工土壌団粒体100は、メンテナンスに手間が掛からず、取り扱いが容易な人工土壌として有用である。
以下、本発明の自己組織化構造を有する人工土壌粒子に関する実施例について説明する。実施例として、アルギン酸ナトリウム水溶液と塩化カルシウム水溶液とのゲル化反応を利用し、フィラーとアルギン酸ナトリウムとの競合によって形成された自己組織化構造を有する人工土壌粒子を調製した。また、実施例の人工土壌粒子を団粒化して人工土壌団粒体を調製した。人工土壌粒子、及び人工土壌団粒体の特性については、以下の(1)〜(7)に示す方法により評価した。
(1)粒径
人工土壌粒子又は人工土壌団粒体を篩によって予め所定の粒径に分級し、分級したものについて上記実施形態で説明した画像処理を用いた測定法で粒径を測定し、これを試料として使用した。
(2)孔径
人工土壌粒子を構成するフィラーの細孔の孔径をガス吸着法により測定した。複数のフィラーの間に形成される連通孔の孔径については、上記実施形態で説明した画像処理を用いた測定法により測定した。
(3)陽イオン交換容量
富士平工業株式会社製の汎用抽出・ろ過装置「CEC−10 Ver.2」を用いて人工土壌粒子の抽出液を作製し、これを陽イオン交換容量測定用試料とした。そして、富士平工業株式会社製の土壌・作物体総合分析装置「SFP−3」を用いて、人工土壌粒子の陽イオン交換容量(CEC)を測定した。
(4)陰イオン交換容量
人工土壌粒子2gに0.05M硝酸カルシウム溶液20mLを添加し、1時間攪拌した。溶液を室温で1分間遠心分離(10,000rpm)し、上清を測定用試料とした。測定用試料について、紫外可視分光光度計を用いて波長410nmの吸光度を測定し、硝酸カルシウム濃度を求めた。求めた硝酸カルシウム濃度とブランクの硝酸カルシウム濃度との差から、硝酸態窒素の重量あたりの吸着量を算出し、これを比重で換算し、容積あたりの陰イオン交換容量(AEC)とした。
(5)強度
人工土壌粒子の強度を、繰り返し圧縮荷重の付加による容積変化率によって評価した。容積変化率は、以下の方法で求めた。土壌評価用の試料円筒(内径:約5cm、高さ:約5cm、容積:100mL)にサンプルとして人工土壌100mLを充填し、試料円筒よりも径が僅かに小さい円筒状の錘(重量:5kg)をゆっくりとサンプルの上に載置した。その状態で60秒間放置し、錘を取り除いた。これらの操作を10回繰り返した(繰り返し圧縮荷重25KPa)。繰り返し圧縮荷重の付与が完了したら、サンプルをそのまま60秒間放置し、メスシリンダー等を用いてサンプルの容積Vを測定し、容積変化率ΔVを以下の式[1]から求めた。
ΔV(%) = (100−V)/100 × 100 ・・・ [1]
(6)保水量
解放したクロマトグラフ管に人工土壌粒子100mLを充填し、上部から200mLの水をゆっくりと注水したときの人工土壌の保水量を通水保水量とした。
(7)気相率
人工土壌粒子からなる人工土壌を水道水に24時間浸漬して飽和含水状態にした試料を作成し、この試料をさらに1時間静置した。試料の重量水を流下させた後、形状を出来るだけ維持しながら100mL試料用円筒に採取し、大起理化工業株式会社製のデジタル実容積測定装置「DIK−1150」にセットして気相率を測定した。
〔人工土壌粒子〕
アルギン酸ナトリウム0.5%水溶液100重量部に株式会社エコウエル製の人工ゼオライト「琉球ライト600」10重量部、及び和光純薬工業株式会社製の試薬ハイドロタルサイト10重量部を添加して混合した。混合液を5%塩化カルシウム水溶液中に1滴/秒の速度で滴下した。滴下した液滴が粒子状にゲル化した後、粒子状ゲルを回収して水洗し、55℃に設定した乾燥機で24時間乾燥させた。乾燥を終えた粒子状ゲルを篩にかけて分級し、2mmオーバー、4mmアンダーとした人工土壌粒子を得た。得られた人工土壌粒子は、三次元ネットワーク構造を有するものであった。この人工土壌粒子の陽イオン交換容量は14meq/100gであり、陰イオン交換容量は15meq/100gであった。さらに、この人工土壌粒子を使用した人工土壌の強度(容積変化率)は13%であり、保水量(通水保水量)は26%であり、気相率は33%であった。
〔人工土壌団粒体〕
三次元ネットワーク構造を有する人工土壌粒子100重量部と、二次バインダーとしてコニシ株式会社製の酢酸ビニル樹脂系接着剤「ボンド(登録商標)木工用」5重量部とを混合し、混合物を造粒機に導入して団粒化し、人工土壌団粒体を得た。得られた人工土壌団粒体は、粒径が3〜18mmであり、複数の人工土壌粒子が連なったクラスター構造を有するものであった。
本発明の人工土壌粒子、及び人工土壌粒子の製造方法は、植物工場等で使用される人工土壌に利用可能であるが、その他の用途として、施設園芸用土壌、緑化用土壌、成型土壌、土壌改良剤、インテリア用土壌等にも利用可能である。
1 フィラー
2 細孔
3 連通孔(隙間)
5 バインダー(結合材)
10 人工土壌粒子
100 人工土壌団粒体
上記課題を解決するための本発明に係る人工土壌粒子の特徴構成は、
細孔を有する複数のフィラーがゲル化剤である結合材で結合された人工土壌粒子であって、
前記フィラーの分散と前記結合材のゲル化反応との競合によって形成される自己組織化構造を有し、前記ゲル化剤のゲル化速度が前記フィラーの分散力に対して極端に大きくならないように設定されたことにある。
人工土壌粒子の形成過程において、人工土壌粒子の主原料であるフィラーは、エントロピー増大の法則に従い、通常であれば時間の経過とともに無秩序な状態に向かうところ、本構成の人工土壌粒子は、結合材を用いてフィラーを粒子化する過程で、フィラーの分散と結合材のゲル化反応とが競合するため、一定の秩序を有する自己組織化構造が形成される。この自己組織化構造は、ある種の特異的な構造であり、人工土壌粒子の特性に影響を与えるものとなる。そして、人工土壌粒子の自己組織化構造は、フィラーを粒子化する際の条件によって制御可能である。
従って、本構成の人工土壌粒子は、従来の人工土壌の概念とは異なる新規な人工土壌として利用可能であり、様々な可能性を有する付加価値の高い人工土壌として期待されるものとなる。
上記課題を解決するための本発明に係る人工土壌粒子の製造方法の特徴構成は、
細孔を有する複数のフィラーがゲル化剤である結合材で結合された人工土壌粒子の製造方法であって、
前記フィラーの分散と前記結合材のゲル化反応との競合によって前記フィラーを自己組織化させる形成工程を含み、
前記形成工程において、前記ゲル化剤のゲル化速度が前記フィラーの分散力に対して極端に大きくならないように設定されることにある。
本構成の人工土壌粒子の製造方法によれば、上述の人工土壌粒子と同様の優れた作用効果を奏する。すなわち、本構成の人工土壌粒子の製造方法では、結合材を用いてフィラーを粒子化する過程で、フィラーの分散と結合材のゲル化反応とが競合するため、一定の秩序を有する自己組織化構造が形成される。この自己組織化構造は、ある種の特異的な構造であり、人工土壌粒子の特性に影響を与えるものとなる。そして、人工土壌粒子の自己組織化構造は、フィラーを粒子化する際の条件によって制御可能である。
従って、本構成の人工土壌粒子の製造方法によって製造された人工土壌粒子は、従来の人工土壌の概念とは異なる新規な人工土壌として利用可能であり、様々な可能性を有する付加価値の高い人工土壌として期待されるものとなる。

Claims (8)

  1. 細孔を有する複数のフィラーが結合材で結合された人工土壌粒子であって、
    前記フィラーと前記結合材との競合によって形成される自己組織化構造を有する人工土壌粒子。
  2. 前記自己組織化構造は、複数のフィラーが三次元的に結合した三次元ネットワーク構造である請求項1に記載の人工土壌粒子。
  3. 前記自己組織化構造は、複数のフィラーが所定の方向に配列したラメラ構造である請求項1に記載の人工土壌粒子。
  4. 前記フィラーの間に連通孔が形成されている請求項1〜3の何れか一項に記載の人工土壌粒子。
  5. 前記細孔はサブnmオーダー乃至サブμmオーダーのサイズを有し、前記連通孔はサブμmオーダー乃至サブmmオーダーのサイズを有する請求項4に記載の人工土壌粒子。
  6. 前記細孔がイオン交換能を有する請求項1〜5の何れか一項に記載の人工土壌粒子。
  7. 0.2〜10mmの平均粒径を有する請求項1〜6の何れか一項に記載の人工土壌粒子。
  8. 細孔を有する複数のフィラーが結合材で結合された人工土壌粒子の製造方法であって、
    前記フィラーと前記結合材との競合によって前記フィラーを自己組織化させる形成工程を含む人工土壌粒子の製造方法。
JP2013099366A 2013-05-09 2013-05-09 人工土壌粒子、及び人工土壌粒子の製造方法 Expired - Fee Related JP5755282B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013099366A JP5755282B2 (ja) 2013-05-09 2013-05-09 人工土壌粒子、及び人工土壌粒子の製造方法
CN201480015791.3A CN105101780A (zh) 2013-05-09 2014-04-11 人工土壤粒子、及人工土壤粒子的制造方法
PCT/JP2014/060508 WO2014181635A1 (ja) 2013-05-09 2014-04-11 人工土壌粒子、及び人工土壌粒子の製造方法
EP14795473.9A EP2995193A1 (en) 2013-05-09 2014-04-11 Artificial soil particles, and process for producing artificial soil particles
KR1020157025239A KR20150119311A (ko) 2013-05-09 2014-04-11 인공 토양 입자, 및 인공 토양 입자의 제조 방법
US14/889,416 US20160083555A1 (en) 2013-05-09 2014-04-11 Artificial soil particle, and method for producing artificial soil particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013099366A JP5755282B2 (ja) 2013-05-09 2013-05-09 人工土壌粒子、及び人工土壌粒子の製造方法

Publications (2)

Publication Number Publication Date
JP2014217329A true JP2014217329A (ja) 2014-11-20
JP5755282B2 JP5755282B2 (ja) 2015-07-29

Family

ID=51867117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013099366A Expired - Fee Related JP5755282B2 (ja) 2013-05-09 2013-05-09 人工土壌粒子、及び人工土壌粒子の製造方法

Country Status (6)

Country Link
US (1) US20160083555A1 (ja)
EP (1) EP2995193A1 (ja)
JP (1) JP5755282B2 (ja)
KR (1) KR20150119311A (ja)
CN (1) CN105101780A (ja)
WO (1) WO2014181635A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110385A1 (ja) * 2015-12-25 2017-06-29 東洋ゴム工業株式会社 人工土壌培地

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209662A (ja) * 1993-01-14 1994-08-02 Iwaki Glass Kk 無菌植物用人工土壌
JP2773817B2 (ja) * 1995-06-21 1998-07-09 奥多摩工業株式会社 育苗培地及び育苗方法
JP2002080284A (ja) * 2000-09-06 2002-03-19 Aisin Takaoka Ltd 無機多孔質体
JP2002335747A (ja) * 2001-05-18 2002-11-26 Tetra Co Ltd 緑化用植生基盤材、植生ユニット、及び、これらを用いた特殊空間の緑化方法
JP2011057461A (ja) * 2009-09-07 2011-03-24 Shinto Co Ltd 粒状物およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573924B2 (ja) 1999-05-27 2010-11-04 奥多摩工業株式会社 団粒構造ゼオライト、その製造方法および育苗培土
CN101440003A (zh) * 2007-11-21 2009-05-27 中国科学院沈阳应用生态研究所 一种人工土壤及其配制方法和应用
CN101731130B (zh) * 2009-11-27 2011-10-05 抚顺矿业集团有限责任公司 一种人工土壤及其制备方法
JP2011241262A (ja) * 2010-05-14 2011-12-01 Kaneka Corp 生分解性多孔質体およびそれを用いた吸水材料
KR20150043477A (ko) * 2012-09-27 2015-04-22 도요 고무 고교 가부시키가이샤 인공 토양 입자, 인공 토양 단립체, 인공 토양 성형체, 및 상기 인공 토양 성형체를 사용한 녹화용 시트, 벽면 녹화 패널, 및 원예용 블록
CN104869805A (zh) * 2012-12-28 2015-08-26 东洋橡胶工业株式会社 人工土壤团粒体及人工土壤培养基

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209662A (ja) * 1993-01-14 1994-08-02 Iwaki Glass Kk 無菌植物用人工土壌
JP2773817B2 (ja) * 1995-06-21 1998-07-09 奥多摩工業株式会社 育苗培地及び育苗方法
JP2002080284A (ja) * 2000-09-06 2002-03-19 Aisin Takaoka Ltd 無機多孔質体
JP2002335747A (ja) * 2001-05-18 2002-11-26 Tetra Co Ltd 緑化用植生基盤材、植生ユニット、及び、これらを用いた特殊空間の緑化方法
JP2011057461A (ja) * 2009-09-07 2011-03-24 Shinto Co Ltd 粒状物およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110385A1 (ja) * 2015-12-25 2017-06-29 東洋ゴム工業株式会社 人工土壌培地

Also Published As

Publication number Publication date
KR20150119311A (ko) 2015-10-23
WO2014181635A1 (ja) 2014-11-13
US20160083555A1 (en) 2016-03-24
CN105101780A (zh) 2015-11-25
EP2995193A1 (en) 2016-03-16
JP5755282B2 (ja) 2015-07-29

Similar Documents

Publication Publication Date Title
WO2014050765A1 (ja) 人工土壌粒子、人工土壌団粒体、人工土壌成型体、並びに当該人工土壌成型体を使用した緑化用シート、壁面緑化パネル、及び園芸用ブロック
JP6034879B2 (ja) 人工土壌団粒体、及び人工土壌培地
JP5913452B2 (ja) 人工土壌培地
JP6043368B2 (ja) 人工土壌培地
JP6209053B2 (ja) 植物育成培地、及び植物育成キット
US20150128671A1 (en) Artificial soil and method of making the same
JP6117676B2 (ja) 植物育成培地、及び植物育成キット
JP5755282B2 (ja) 人工土壌粒子、及び人工土壌粒子の製造方法
JP5591389B2 (ja) 人工土壌粒子、及び人工土壌団粒体
WO2015072549A1 (ja) 人工土壌培地
JP2017018075A (ja) 人工土壌培地用固化剤、及び人工土壌培地の調製方法
JP6165259B2 (ja) 人工土壌粒子、及び人工土壌培地
JP6034634B2 (ja) 人工土壌成型体、緑化用シート、壁面緑化パネル、及び園芸用ブロック
JP5995674B2 (ja) 人工土壌培地
JP6254384B2 (ja) 人工土壌培地
JP6218375B2 (ja) 人工土壌粒子、及び人工土壌培地
JP6218374B2 (ja) 人工土壌粒子、及び人工土壌培地
WO2016056598A1 (ja) 人工土壌培地、及び人工土壌培地の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150526

R150 Certificate of patent or registration of utility model

Ref document number: 5755282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees