JP2014211293A - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
JP2014211293A
JP2014211293A JP2013088904A JP2013088904A JP2014211293A JP 2014211293 A JP2014211293 A JP 2014211293A JP 2013088904 A JP2013088904 A JP 2013088904A JP 2013088904 A JP2013088904 A JP 2013088904A JP 2014211293 A JP2014211293 A JP 2014211293A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
valve
pipe
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013088904A
Other languages
English (en)
Other versions
JP6179172B2 (ja
Inventor
国忠 楊
Kunitada Yo
国忠 楊
岡本 哲也
Tetsuya Okamoto
哲也 岡本
岩田 育弘
Yasuhiro Iwata
育弘 岩田
古庄和宏
Kazuhiro Kosho
和宏 古庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2013088904A priority Critical patent/JP6179172B2/ja
Publication of JP2014211293A publication Critical patent/JP2014211293A/ja
Application granted granted Critical
Publication of JP6179172B2 publication Critical patent/JP6179172B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • F25B41/04

Landscapes

  • Multiple-Way Valves (AREA)

Abstract

【課題】圧力差を用いて弁可動部を動かす場合において、切り換えの確実性を向上させることが可能な冷凍装置を提供する。
【解決手段】流路の切り換えを行うために圧力差によって移動させる第1弁可動部26mおよび切り換え対象の流路として低段の第1圧縮部21から吐出された冷媒が流れる流路を有している第1四路切換弁26と、流路の切り換えを行うために圧力差によって移動させる第4部可動部29mおよび切り換え対象の流路として第4圧縮部24から吐出された冷媒が流れる流路を有している第4四路切換弁29と、第1弁可動部26mおよび第4弁可動部29mの両方に対して、第4圧縮部24から吐出された冷媒と第1圧縮部21に吸入される冷媒との圧力差を作用させて、第1弁可動部26mおよび第4弁可動部29mの両方を動かして接続状態の切り換えを行うパイロット弁16と、を備えている。
【選択図】図2

Description

本発明は、冷凍装置、特に、複数の圧縮部を有する複数段圧縮機構を備えた冷凍装置に関する。
従来から、多段圧縮冷凍サイクルを行い、冷媒の流れ方を切り換えることが可能な冷凍装置のように、切換弁が複数設けられているものが存在する。
例えば、特許文献1(特開2010−112582号公報)に記載の冷凍装置では、冷房運転と暖房運転とで冷媒の流れ方を切り換えるために、高段側圧縮機の吐出側と低段側圧縮機の吐出側の両方に切換弁を設けた例が示されている。
このように、冷媒の流れ方を切り換える切換弁は、冷凍サイクルにおける異なる圧力を作用させて、その圧力差を利用して弁可動部を動かすことで接続状態を切り換えることが可能である。
ところが、切換弁に作用させる圧力差が小さい場合には、弁可動部を確実に動かすことが困難になり、切り換えの途中の位置で弁可動部が止まってしまう問題や、弁可動部が全く動かない等の問題が生じる。
このような切り換え時の問題は、特に、冷凍サイクルにおいて少なくとも3種以上の冷媒圧力が生じている場合において、例えば、最も低い圧力の冷媒と、最も低い圧力の次に低い圧力の冷媒と、の小さな圧力差を利用して切り換えを行う場合等に生じやすい。
本発明は、上述した点に鑑みてなされたものであり、本発明の課題は、圧力差を用いて弁可動部を動かす場合において、切り換えの確実性を向上させることが可能な冷凍装置を提供することにある。
第1観点に係る冷凍装置は、第1流路、第2流路、第3流路、第1切換弁、第2切換弁、および、電気的切換弁を備えている。第1流路は、第1の圧力の冷媒が流れている。第2流路は、第1の圧力よりも小さい第2の圧力の冷媒が流れている。第3流路は、第2の圧力より小さい第3の圧力の冷媒が流れている。第1切換弁は、第1弁可動部を有している。第1弁可動部は、圧力が異なる2つの冷媒の圧力を作用させることで動かすことが可能である。第1切換弁は、第1弁可動部が動くことで流路の接続状態の切り換えが行われる。第1切換弁は、切り換え対象の流路として第1流路を含んでいる。第2切換弁は、第2弁可動部を有している。第2弁可動部は、圧力が異なる2つの冷媒の圧力を作用させることで動かすことが可能である。第2切換弁は、第2弁可動部が動くことで流路の接続状態の切り換えが行われる。第2切換弁は、切り換え対象の流路として第2流路を含んでいる。電気的切換弁は、第1切換弁および第2切換弁の両方に対して、第1の圧力と第3の圧力との圧力差の作用のさせ方を切り換えることで、第1弁可動部および第2弁可動部の両方を動かして接続状態の切り換えを行う。
この冷凍装置では、第1の圧力の冷媒と、第1の圧力よりも小さい第2の圧力の冷媒と、第2の圧力よりも小さい第3の圧力の冷媒と、の少なくとも3種類の圧力の冷媒が存在する場合に、第1の圧力の冷媒と第2の圧力の冷媒との圧力差よりも大きく、第2の圧力の冷媒と第3の圧力の冷媒との圧力差よりも大きな、第1の圧力の冷媒と第3の圧力の冷媒との圧力差を用いて、第1切換弁において第1弁可動部を動かし、第2切換弁において第2弁可動部を動かして、第1切換弁と第2切換弁の接続状態を切り換えることができる。このため、切り換えに利用される圧力差としてより大きな圧力差を用いることができるため、切り換えの確実性を向上させることができる。
第2観点に係る冷凍装置は、第1観点に係る冷凍装置であって、高圧細流路、低圧細流路、第1細流路、および、第2細流路をさらに備えている。高圧細流路は、第1の圧力を電気的切換弁に導くための流路であって、高圧流路よりも細い流路である。低圧細流路は、第3の圧力を電気的切換弁に導くための流路であって、低圧流路よりも細い流路である。第1細流路は、電気的切換弁に導かれた第1の圧力および第3の圧力のうちの電気的切換弁による切り換え状態に応じて定まるいずれか一方を、第1切換弁および第2切換弁の両方に作用させるための流路であって、低圧流路よりも細い流路である。第2細流路は、電気的切換弁に導かれた第1の圧力および第3の圧力のうちの電気的切換弁による切り換え状態に応じて定まるいずれか他方を、第1切換弁および第2切換弁の両方に作用させるための流路であって、低圧流路よりも細い流路である。
この冷凍装置では、冷凍サイクルにおける圧力差を利用して冷媒流れの状態を切り換える場合において、切り換え動作を開始するには、電気的切換弁において第1切換弁および第2切換弁に対して第1の圧力と第3の圧力との圧力差の作用のさせ方を切り換えるために電気的エネルギが必要になる。そして、この冷凍装置では、第1切換弁および第2切換弁に各圧力を作用させるための流路として、高圧細流路、低圧細流路、第1細流路および第2細流路が用いられているが、いずれも細い流路で構成されている。このため、電気的切換弁における切り換えに必要な電気的エネルギを小さく抑えることが可能になっている。
第3観点に係る冷凍装置は、第1観点または第2観点に係る冷凍装置であって、第4流路を備えている。第4流路は、第1の圧力より小さく第2の圧力より大きな第4の圧力の冷媒が流れている。また、この冷凍装置は、第1切換弁および第2切換弁以外の圧力差で切り換えが行われる切換弁として、少なくとも1つの第3切換弁を備えている。第3切換弁は、圧力が異なる2つの冷媒の圧力を作用させることで動かすことが可能な第3弁可動部を有している。第3切換弁は、第3弁可動部が動くことで流路の接続状態の切り換えが行われる。この冷凍装置では、圧力差で切り換えが行われる切換弁の全ては、第2の圧力と第3の圧力との圧力差より大きな圧力差を用いて切り換えが行われている。
この冷凍装置では、第1の圧力、第2の圧力、第3の圧力および第4の圧力の4種以上の圧力の冷媒が存在している場合に、最低圧力と最低圧力よりも一つ上の低い圧力との2つの小さな圧力差では、切換弁の切り換えが行わない。このため、この冷凍装置では、いずれの切換弁においても、切り換えに用いられる圧力差を十分に確保しやすくなっている。したがって、冷凍装置において用いられている圧力差で切り換えが行われる切換弁の全てにおいて、切り換えの確実性を向上させることが可能になっている。
第1観点に係る冷凍装置では、圧力差を用いて弁可動部を動かす場合において、切り換えの確実性を向上させることが可能になる。
第2観点に係る冷凍装置では、電気的切換弁における切り換えに必要な電気的エネルギを小さく抑えることが可能になっている。
第3観点に係る冷凍装置では、冷凍装置において用いられている圧力差で切り換えが行われる切換弁の全てにおいて、切り換えの確実性を向上させることが可能になっている。
本発明の一実施形態に係る空気調和装置の概略構成図である。 冷房運転時の四路切換弁の切り換え構造を示す図である。 暖房運転時の四路切換弁の切り換え構造を示す図である。 空気調和装置の冷房運転時の概略構成図である。 図4の冷房運転時の冷凍サイクルの圧力−エンタルピ線図である。 空気調和装置の暖房運転時の概略構成図である。 図6の暖房運転時の冷凍サイクルの圧力−エンタルピ線図である。
本発明の一実施形態に係る冷凍装置である空気調和装置1について、以下、図面を参照しながら説明する。
(1)空気調和装置の構成
図1、図4および図6は、空気調和装置1の概略構成図である。このうち、図4は、冷房運転時において冷媒回路を循環する冷媒の流れを表しており、図6は、暖房運転時において冷媒回路を循環する冷媒の流れを表している。
空気調和装置1は、超臨界状態の二酸化炭素冷媒を使用して四段圧縮冷凍サイクルを行う冷凍装置である。空気調和装置1は、熱源ユニットである室外ユニット11と、利用ユニットである複数の室内ユニット12、13(第1室内ユニット12および第2室内ユニット13を含む)とが、液冷媒連絡配管14およびガス冷媒連絡配管15によって結ばれた装置であり、冷房運転サイクルと暖房運転サイクルとが切り換わる冷媒回路を有する。図4、図6において、冷媒回路の配管に沿って示す矢印が、冷媒の流れを表している。
空気調和装置1の冷媒回路は、主として、四段圧縮機20、四路切換弁群25(第1〜第4四路切換弁26〜29)、室外熱交換器40、第1室外膨張弁47、第2室外膨張弁48、ブリッジ回路49、エコノマイザ回路50、液ガス熱交回路60、膨張機構70、分離ガス配管80、レシーバ81、過冷却回路90、第1室内熱交換器12a、第2室内熱交換器13a、第1室内膨張弁12b、第2室内膨張弁13bおよび制御部7を備えている。なお、室外熱交換器40は、第1室外熱交換器41、第2室外熱交換器42、第3室外熱交換器43および第4室外熱交換器44から構成されている。
以下、冷媒回路の各構成要素を詳細に説明する。
(1−1)四段圧縮機
四段圧縮機20は、密閉容器内に、第1圧縮部21、第2圧縮部22、第3圧縮部23、第4圧縮部24および圧縮機駆動モータ(図示せず)が収容された、密閉式の圧縮機である。圧縮機駆動モータは、駆動軸を介して、4つの圧縮部21〜24を駆動する。すなわち、四段圧縮機20は、4つの圧縮部21〜24が単一の駆動軸に連結された一軸四段の圧縮構造を有している。四段圧縮機20では、第1圧縮部21、第2圧縮部22、第3圧縮部23および第4圧縮部24が、この順番で直列に配管接続される。第1圧縮部21は、第1吸入管21aから冷媒を吸い込み、第1吐出管21bへと冷媒を吐出する。なお、第1吸入管21aには、流れる冷媒の吸入圧力を検出するための吸入圧力センサ21pが設けられている。第2圧縮部22は、第2吸入管22aから冷媒を吸い込み、第2吐出管22bへと冷媒を吐出する。第3圧縮部23は、第3吸入管23aから冷媒を吸い込み、第3吐出管23bへと冷媒を吐出する。第4圧縮部24は、第4吸入管24aから冷媒を吸い込み、第4吐出管24bへと冷媒を吐出する。なお、第4吐出管24bには、流れる冷媒の吐出圧力を検出する吐出圧力センサ24pが設けられている。
第1圧縮部21は、最下段の圧縮機構であり、冷媒回路を流れる最も低圧の冷媒を圧縮する。第2圧縮部22は、第1圧縮部21によって圧縮された冷媒を吸い込んで圧縮する。第3圧縮部23は、第2圧縮部22によって圧縮された冷媒を吸い込んで圧縮する。第4圧縮部24は、最上段の圧縮機構であり、第3圧縮部23によって圧縮された冷媒を吸い込んで圧縮する。第4圧縮部24によって圧縮され第4吐出管24bへと吐出された冷媒は、冷媒回路を流れる最も高圧の冷媒となる。
なお、本実施形態において、各圧縮部21〜24は、ロータリー式やスクロール式などの容積式の圧縮機構である。また、圧縮機駆動モータは、制御部7によってインバータ制御される。
第1吐出管21b、第2吐出管22b、第3吐出管23bおよび第4吐出管24bの途中には、それぞれ第1油分離器31a、第2油分離器32a、第3油分離器33a、第4油分離器34aが設けられている。第1〜第4油分離器31a、32a、33a、34aは、冷媒回路を循環する冷媒に含まれる潤滑油を分離する小容器である。第1〜第4油分離器31a、32a、33a、34aの下部からは、それぞれ第1〜第4キャピラリーチューブ31c、32c、33c、34cを含む第1〜第4油戻し管31b、32b、33b、34bが伸びている。ここで、第1油戻し管31bは、第2吸入管22aの途中に接続されている。第2油戻し管32bは、第3吸入管23aの途中に接続されている。第3油戻し管33bは、第4吸入管24aの途中に接続されている。第4油戻し管34bは、第1吸入管21aの途中に接続されている。これにより、各第1〜第4油分離器31a、32a、33a、34aにおいて冷媒から分離された潤滑油は、四段圧縮機20へと戻される。
(1−2)四路切換弁群
四路切換弁群25は、第1四路切換弁26、第2四路切換弁27、第3四路切換弁28および第4四路切換弁29と、これらの接続状態を切り換えるためのパイロット弁16と、高圧引用管36、低圧引用管38、第1作用管37、第2作用管39を有している。四路切換弁群25は、冷媒回路内における冷媒の流れの方向を切り換えて、冷房運転サイクルと暖房運転サイクルとを切り換えるために設けられている。図2は、四路切換弁群25が冷房運転状態となるように接続切り換えされた状態を示している。図3は、四路切換弁群25が暖房運転状態となるように接続切り換えされた状態を示している。なお、図2および図3中において、「LP」は第1圧縮部21が吸入する冷媒圧力を示しており、「MP1」は、第1圧縮部21が吐出して第2圧縮部22に向かう冷媒圧力を示しており、「MP2」は、第2圧縮部22が吐出して第3圧縮部23に向かう冷媒圧力を示しており、「MP3」は、第3圧縮部23が吐出して第4圧縮部24に向かう冷媒圧力を示しており、「HP」とは第4圧縮部24が吐出した冷媒圧力を示している。
パイロット弁16は、高圧引用ポート16a、第1作用ポート16b、低圧引用ポート16c、および、第2作用ポート16dの4つのポートを有している。パイロット弁16は、制御部7によって接続状態が切り換えられることにより、高圧引用ポート16aで引用した圧力を第1作用ポート16bに作用させつつ、低圧引用ポート16cで引用した圧力を第2作用ポート16dに作用させる冷房運転状態と、高圧引用ポート16aで引用した圧力を第2作用ポート16dに作用させつつ、低圧引用ポート16cで引用した圧力を第1作用ポート16bに作用させる暖房運転状態と、を電気的エネルギによって切り換える。なお、高圧引用ポート16aには内部に冷媒が存在しているキャピラリーチューブである高圧引用管36が接続されており、第1作用ポート16bからは内部に冷媒が存在しているキャピラリーチューブである第1作用管37が延びだしており、低圧引用ポート16cには内部に冷媒が存在しているキャピラリーチューブである低圧引用管38が接続されており、第2作用ポート16dからは内部に冷媒が存在しているキャピラリーチューブである第2作用管39が延びだしている。ここで、高圧引用管36、第1作用管37、低圧引用管38、および、第2作用管39は、いずれも同様の内径を有する配管であり、第1四路切換弁26の第1ポート26a〜26dの内径や第2四路切換弁27の第1ポート27a〜27dの内径や第3四路切換弁28の第1ポート28a〜28dの内径や第4四路切換弁29の第1ポート29a〜29dの内径よりも小さく構成されている。特に限定されないが、例えば、高圧引用管36、第1作用管37、低圧引用管38、および、第2作用管39の内径の上限は、第4四路切換弁29の第1ポート29aの内径の5分の1以下であることが好ましく、10分の1以下であることがより好ましい。また、特に限定されないが、例えば、高圧引用管36、第1作用管37、低圧引用管38、および、第2作用管39の内径の下限は、第4四路切換弁29の第1ポート29aの内径の100分の1以上であってもよい。
第1四路切換弁26は、第1ポート26a、第2ポート26b、第3ポート26c、および、第4ポート26dの4つのポートを有している。これらの各ポートは、冷房運転時と暖房運転時とで接続の組合せ状態は異なるが、第1吐出管21b、第2吸入管22a、第1配管41a、および、四路接続配管30と接続されている。第1配管41aは、第1四路切換弁26と第1室外熱交換器41とを結ぶ配管である。四路接続配管30は、第1〜第4四路切換弁26〜29のそれぞれが有しているポートのうちの1つが接続されており、暖房運転時には低圧冷媒が流れる配管である。暖房運転時には、四路接続配管30を通過した冷媒は、低圧冷媒配管19に向けて流れる。低圧冷媒配管19は、室外ユニット11内の低圧のガス冷媒が流れる冷媒配管であり、液ガス熱交換器61を介して第1吸入管21aに冷媒を送る。
第1四路切換弁26は、圧力差が作用されることで可動する第1弁可動部26mを有している。第1弁可動部26mは、高圧が作用される側から離れて低圧が作用している側に移動することで弁接続状態を切り換えるように構成されている。ここで、第1弁可動部26mは、切り換え状態に応じて、第2ポート26bと第3ポート26cとを接続する状態と、第3ポート26cと第4ポート26dとを接続する状態に切り換えられる。第2ポート26bと第4ポート26dのうち第3ポート26cと接続されないポートは、第1ポート26aと接続される。第1四路切換弁26は、第1圧力作用部26xと第2圧力作用部26yを有している。第1圧力作用部26xは、第1作用管37の冷媒圧力を第1四路切換弁26の第1弁可動部26mに作用させることができるように、第1作用管37と接続されている。第2圧力作用部26yは、第2作用管39の冷媒圧力を第1四路切換弁26の第1弁可動部26mに作用させることができるように、第2作用管39と接続されている。
第2四路切換弁27は、第1ポート27a、第2ポート27b、第3ポート27c、および、第4ポート27dの4つのポートを有している。これらの各ポートは、冷房運転時と暖房運転時とで接続の組合せ状態は異なるが、第2吐出管22b、第3吸入管23a、第2配管42a、および、四路接続配管30と接続されている。第2配管42aは、第2四路切換弁27と第2室外熱交換器42とを結ぶ配管である。
第2四路切換弁27は、圧力差が作用されることで可動する第2弁可動部27mを有している。第2弁可動部27mは、高圧が作用される側から離れて低圧が作用している側に移動することで弁接続状態を切り換えるように構成されている。ここで、第2弁可動部27mは、切り換え状態に応じて、第2ポート27bと第3ポート27cとを接続する状態と、第3ポート27cと第4ポート27dとを接続する状態に切り換えられる。第2ポート27bと第4ポート27dのうち第3ポート27cと接続されないポートは、第1ポート27aと接続される。第2四路切換弁27は、第1圧力作用部27xと第2圧力作用部27yを有している。第1圧力作用部27xは、第1作用管37の冷媒圧力を第2四路切換弁27の第2弁可動部27mに作用させることができるように、第1作用管37と接続されている。第2圧力作用部27yは、第2作用管39の冷媒圧力を第2四路切換弁27の第2弁可動部27mに作用させることができるように、第2作用管39と接続されている。
第3四路切換弁28は、第1ポート28a、第2ポート28b、第3ポート28c、および、第4ポート28dの4つのポートを有している。これらの各ポートは、冷房運転時と暖房運転時とで接続の組合せ状態は異なるが、第3吐出管23b、第4吸入管24a、第3配管43a、および、四路接続配管30と接続されている。第3配管43aは、第3四路切換弁28と第3室外熱交換器43とを結ぶ配管である。
第3四路切換弁28は、圧力差が作用されることで可動する第3弁可動部28mを有している。第3弁可動部28mは、高圧が作用される側から離れて低圧が作用している側に移動することで弁接続状態を切り換えるように構成されている。ここで、第3弁可動部28mは、切り換え状態に応じて、第2ポート28bと第3ポート28cとを接続する状態と、第3ポート28cと第4ポート28dとを接続する状態に切り換えられる。第2ポート28bと第4ポート28dのうち第3ポート28cと接続されないポートは、第1ポート28aと接続される。第3四路切換弁28は、第1圧力作用部28xと第2圧力作用部28yを有している。第1圧力作用部28xは、第1作用管37の冷媒圧力を第3四路切換弁28の第3弁可動部28mに作用させることができるように、第1作用管37と接続されている。第2圧力作用部28yは、第2作用管39の冷媒圧力を第3四路切換弁28の第3弁可動部28mに作用させることができるように、第2作用管39と接続されている。
第4四路切換弁29は、第1ポート29a、第2ポート29b、第3ポート29c、および、第4ポート29dの4つのポートを有している。これらの各ポートは、冷房運転時と暖房運転時とで接続の組合せ状態は異なるが、第4吐出管24b、ガス冷媒連絡配管15、第4配管44a、および、低圧冷媒配管19と接続されている。第4配管44aは、第4四路切換弁29と第4室外熱交換器44とを結ぶ配管である。
第4四路切換弁29は、圧力差が作用されることで可動する第4弁可動部29mを有している。第4弁可動部29mは、高圧が作用される側から離れて低圧が作用している側に移動することで弁接続状態を切り換えるように構成されている。ここで、第4弁可動部29mは、切り換え状態に応じて、第2ポート29bと第3ポート29cとを接続する状態と、第3ポート29cと第4ポート29dとを接続する状態に切り換えられる。第2ポート29bと第4ポート29dのうち第3ポート29cと接続されないポートは、第1ポート29aと接続される。第4四路切換弁29は、第1圧力作用部29xと第2圧力作用部29yを有している。第1圧力作用部29xは、第1作用管37の冷媒圧力を第4四路切換弁29の第4弁可動部29mに作用させることができるように、第1作用管37と接続されている。第2圧力作用部29yは、第2作用管39の冷媒圧力を第4四路切換弁29の第4弁可動部29mに作用させることができるように、第2作用管39と接続されている。なお、第4四路切換弁29には、第1ポート29aを通過している高圧冷媒の圧力をパイロット弁16に導くための高圧引用部29hが設けられている。高圧引用部29hは、高圧引用管36を介してパイロット弁16の高圧引用ポート16aに接続されている。第4四路切換弁29には、第3ポート29cを通過している低圧冷媒の圧力をパイロット弁16に導くための低圧引用部29lが設けられている。低圧引用部29lは、低圧引用管38を介してパイロット弁16の低圧引用ポート16cに接続されている。
四路切換弁群25は、制御部7によって切換制御されることで、冷房運転時には、図2および図4に示すように、四段圧縮機20によって圧縮された冷媒の熱を放熱させる放熱器として第1〜第4室外熱交換器41〜44を機能させ、かつ、膨張機構70および第1室内膨張弁12b、第2室内膨張弁13bを通過して膨張した冷媒の蒸発器(加熱器)として第1室内熱交換器12a、第2室内熱交換器13aを機能させる切換状態となる。また、四路切換弁群25は、制御部7によって切換制御されることで、暖房運転時には、図3および図6に示すように、四段圧縮機20によって圧縮された冷媒の熱を放熱させる放熱器として第1室内熱交換器12a、第2室内熱交換器13aを機能させ、かつ、膨張機構70および第1室外膨張弁47、第2室外膨張弁48を通過して膨張した冷媒の蒸発器として室外熱交換器40を機能させる切換状態となる。
すなわち、四路切換弁群25は、冷媒回路の構成要素として四段圧縮機20、室外熱交換器40、膨張機構70および第1室内熱交換器12a、第2室内熱交換器13aのみに着目すると、四段圧縮機20、室外熱交換器40、膨張機構70、第1室内熱交換器12a、第2室内熱交換器13aの順に冷媒を循環させる冷房運転サイクルと、四段圧縮機20、第1室内熱交換器12a、第2室内熱交換器13a、膨張機構70、室外熱交換器40の順に冷媒を循環させる暖房運転サイクルとを切り換える役割を果たす。
(1−3)室外熱交換器およびインタークーラ管
室外熱交換器40は、上述のように、第1室外熱交換器41、第2室外熱交換器42、第3室外熱交換器43および第4室外熱交換器44から構成されている。冷房運転時には、第1〜第3室外熱交換器41〜43が、圧縮途中の冷媒(中間圧冷媒)を冷やすインタークーラとして機能し、第4室外熱交換器44が、最も高圧の冷媒を冷やすガスクーラ(冷媒の熱を放熱する放熱器)として機能する。第4室外熱交換器44は、第1〜第3室外熱交換器41〜43よりも容量が大きい。また、暖房運転時には、第1〜第4室外熱交換器41〜44の全てが、低圧の冷媒の蒸発器(加熱器)として機能する。
第1〜第4室外熱交換器41〜44は、並列に配置され、1つの室外熱交換器40として一体化されている。この室外熱交換器40には、内部を流れる冷媒と熱交換を行う冷却源あるいは加熱源として、水や空気が供給される。ここでは、室外熱交換器40に、図示しない送風ファンから空気(外気)が供給される。
また、第1室外熱交換器41の第1配管41aとは反対側には、第5配管41bが接続されている。第2室外熱交換器42の第2配管42aとは反対側には、第6配管42bが接続されている。第3室外熱交換器43の第3配管43aとは反対側には、第7配管43bが接続されている。これらの第5配管41b、第6配管42bおよび第7配管43bには、第1室外膨張弁47が途中に設けられている共通配管47aが接続されている。第5配管41bの途中からは、分岐して、第2吸入管22aに接続された第1インタークーラ管41cが延びている。第6配管42bの途中からは、分岐して、第3吸入管23aに接続された第2インタークーラ管42cが延びている。第7配管43bの途中からは、分岐して、第4吸入管24aに接続された第3インタークーラ管43cが延びている。
第1インタークーラ管41c、第2インタークーラ管42cおよび第3インタークーラ管43cには、図1に示すように、それぞれ、第1インタークーラ用逆止弁、第2インタークーラ用逆止弁および第3インタークーラ用逆止弁が設けられている(参照符号は省略)。
なお、第4室外熱交換器44の第4配管44aとは反対側には、第8配管44bが接続されている。第8配管44bは、後述するブリッジ回路49のうちの第2室外膨張弁48と第3逆止弁49cとの間に接続されている。
(1−4)第1室外膨張弁と第2室外膨張弁
第1室外膨張弁47は、第1〜第3室外熱交換器41〜43からそれぞれ延びる第5〜第7配管41b〜43bの全てと接続されている共通配管47aの途中に設けられている。共通配管47aは、後述する過冷却熱交換器91を流出した過冷却冷媒が流れる過冷却冷媒配管84と合流し、ブリッジ回路49の第2室外膨張弁48と第1逆止弁49aとの間に接続される。
冷房運転時は、制御部7の制御によって、第1室外膨張弁47、第2室外膨張弁48は閉じられる。暖房運転時は、制御部7の制御によって、第1室外膨張弁47、2室外膨張弁48は、ブリッジ回路49から第1〜第4室外熱交換器41〜44への冷媒の流れが偏流しないように開度調整が為され、それぞれ膨張機構としての役割も果たす。
(1−5)ブリッジ回路
ブリッジ回路49は、第1逆止弁49a、第2逆止弁49b、第3逆止弁49c、および、第2室外膨張弁48が順に接続され、第1逆止弁49aと第2室外膨張弁48とが接続された回路を構成している。第1逆止弁49aは、第2室外膨張弁48側とは反対側に向かう冷媒流れのみを許容する。第3逆止弁49cは、第2室外膨張弁48側とは反対側に向かう冷媒流れのみを許容する。第2逆止弁49bは、第1逆止弁49a側に向かう冷媒流れは許容せず、第3逆止弁49c側に向かう冷媒流れのみを許容する。
ブリッジ回路49の第1逆止弁49aと第2室外膨張弁48との間には、共通配管47aと、過冷却冷媒配管84と、が合流した配管が接続されている。ブリッジ回路49の第3逆止弁49cと第2室外膨張弁48との間には、第4室外熱交換器44から延びた第8配管44bが接続されている。ブリッジ回路49の第1逆止弁49aと第2逆止弁49bとの間には、第1、第2室内ユニット12、13から伸び出している液冷媒連絡配管14が接続されている。ブリッジ回路49の第2逆止弁49bと第3逆止弁49cとの間には、エコノマイザ回路50のエコノマイザ熱交換器51側に向けて延びる冷媒配管が接続されている。
(1−6)エコノマイザ回路
エコノマイザ回路50は、ブリッジ回路49の第2逆止弁49bと第3逆止弁49cとの間の部分と、液ガス熱交換器61もしくは膨張機構70と、の間に設けられている。エコノマイザ回路50は、エコノマイザ熱交換器51と、エコノマイザインジェクション配管53と、エコノマイザ膨張弁52を有している。
エコノマイザインジェクション配管53は、ブリッジ回路49の第2逆止弁49bと第3逆止弁49cとの間の部分とエコノマイザ熱交換器51の手前の部分との間から分岐して延びだしており、第2インタークーラ管42cの第2インタークーラ用逆止弁の下流側に接続されている。
エコノマイザ膨張弁52は、エコノマイザインジェクション配管53の途中であって、分岐後にエコノマイザ熱交換器51に流入する前の部分に設けられている。
エコノマイザ熱交換器51は、ブリッジ回路49から液ガス熱交換器61もしくは膨張機構70に向かう臨界圧力を超えた高圧の冷媒と、エコノマイザインジェクション配管53に分岐してエコノマイザ膨張弁52で膨張させた中間圧の冷媒と、の間で熱交換を行わせる。
このエコノマイザ膨張弁52において膨張し、エコノマイザ熱交換器51で蒸発した冷媒は、第2インタークーラ管42cを流れる冷媒と合流することで、第3吸入管23aから第3圧縮部23へ吸い込まれる冷媒を冷やす。
(1−7)液ガス熱交回路
液ガス熱交回路60は、エコノマイザ熱交換器51と膨張機構70の間に設けられており、液ガス熱交換器61と、第1液ガス開閉弁62および第2液ガス開閉弁63を有している。
液ガス熱交換器61は、ブリッジ回路49から膨張機構70にと向かう臨界圧力を超えた高圧の冷媒と、過冷却インジェクション配管93を流れる低圧冷媒と低圧冷媒配管19を流れる低圧冷媒とが合流点65で合流した低圧冷媒である合流冷媒と、の間で熱交換を行わせる。なお、液ガス熱交換器61は、内部熱交換器と称してもよい。
なお、過冷却インジェクション配管93を流れる低圧冷媒と低圧冷媒配管19を流れる低圧冷媒とが合流点65で合流した後に液ガス熱交換器61に向かって流れている合流冷媒の冷媒温度を検出する合流冷媒温度センサ64tが、液ガス熱交換器61の低圧冷媒入口側に設けられている。
第2液ガス開閉弁63は、液ガス熱交換器61の一端側と他端側とを接続する冷媒配管の途中に設けられた開閉弁である。
第1液ガス開閉弁62は、エコノマイザ熱交換器51と液ガス熱交換器61との間であって、液ガス熱交換器61の一端側と他端側とを接続する冷媒配管の接続位置よりも液ガス熱交換器61側に設けられた開閉弁である。
冷房運転時には、液ガス熱交換器61での熱交換を行わせるために、制御部7は、第1液ガス開閉弁62を開状態にしつつ第2液ガス開閉弁63を閉状態にして、エコノマイザ熱交換器51を通過してきた冷媒を液ガス熱交換器61に流す。他方、暖房運転時には、液ガス熱交換器61での熱交換を行わせないために、制御部7は、第1液ガス開閉弁62を閉状態にしつつ第2液ガス開閉弁63を開状態にして、エコノマイザ熱交換器51を通過してきた冷媒を、液ガス熱交換器61を通過させることなく、膨張機構70に送る。
(1−8)膨張機構
膨張機構70は、エコノマイザ熱交換器51もしくは液ガス熱交換器61から流れてきた高圧の冷媒を減圧・膨張させ、気液二相状態の中間圧の冷媒をレシーバ81へと流す。すなわち、冷房運転時には、膨張機構70は、高圧冷媒のガスクーラ(放熱器)として機能する室外の第4室外熱交換器44から、低圧冷媒の蒸発器として機能する第1、第2室内熱交換器12a、13aに送られる冷媒を減圧する。また、暖房運転時には、膨張機構70は、高圧冷媒の放熱器として機能する第1、第2室内熱交換器12a、13aから、低圧冷媒の蒸発器として機能する室外熱交換器40に送られる冷媒を減圧する。
膨張機構70は、膨張機71と第3室外膨張弁72とが並列に接続されることで構成されている。膨張機71は、冷媒の減圧過程の絞り損失を有効な仕事(エネルギー)として回収する役割を果たす。
なお、膨張機構70とレシーバ81との間には、冷媒の温度を中間温度センサ70tが設けられている。この中間温度センサ70tは、中間圧力の飽和温度を検知するため、制御部7は、当該中間温度センサ70tの検出温度から相当飽和圧力である中間圧力を把握することができる。
(1−9)レシーバ
レシーバ81は、膨張機構70を出た気液二相状態の中間圧の冷媒を、天井面から内部空間に流入させ、液冷媒とガス冷媒とに分離する。
レシーバ81において分離された液冷媒は、レシーバ81の下方から延び出している液冷媒出口管83を介して、過冷却回路90に送られる。
レシーバ81において分離されたガス冷媒は、レシーバ81の上方から延び出している分離ガス配管80を介して、後述する過冷却回路90の過冷却インジェクション配管93を流れる冷媒に合流させられる。この分離ガス配管80の途中には、分離ガス膨張弁82が設けられている。分離ガス配管80を流れる冷媒は、レシーバ81において液冷媒が分離されたガス冷媒であって、分離ガス膨張弁82によって減圧されることで低圧のガスリッチな冷媒となった後、過冷却インジェクション配管93に送られる。
(1−10)過冷却回路
過冷却回路90は、レシーバ81と、ブリッジ回路49の第1逆止弁49aと第2室外膨張弁48の間の部分と、の間に設けられている。過冷却回路90は、過冷却熱交換器91と、過冷却インジェクション配管93と、過冷却膨張弁92と、を有している。
レシーバ81から延びている液冷媒出口管83を流れた冷媒は、過冷却熱交換器91に向かう冷媒と、分流して過冷却インジェクション配管93を流れる冷媒とに分けられる。過冷却インジェクション配管93は、液冷媒出口管83の途中から分岐して、合流点65において低圧冷媒配管19と接続されている。過冷却インジェクション配管93の途中であって、液冷媒出口管83から分岐した部分と、分離ガス配管80が接続されている部分と、の間に過冷却膨張弁92が設けられている。
冷房運転時には、制御部7が過冷却膨張弁92および分離ガス膨張弁82の制御を行って、過冷却インジェクション配管93の過冷却膨張弁92で減圧されて気液二相状態となった冷媒と、分離ガス配管80の分離ガス膨張弁82において減圧された冷媒と、を合流させ、過冷却インジェクション配管93を流れて過冷却熱交換器91に流入させる。過冷却熱交換器91では、過冷却インジェクション配管93を流れる低圧のガス冷媒と、液冷媒出口管83から送られてきて過冷却冷媒配管84へと進んでいく中間圧の液冷媒と、の間で熱交換を行わせる。過冷却熱交換器91から過冷却冷媒配管84へと流れていく冷媒は、過冷却度が増した状態となっている。過冷却冷媒配管84には、通過する冷媒の温度を検出するための過冷却温度センサ90tが設けられている。過冷却インジェクション配管93を流れる冷媒であって、過冷却熱交換器91を通過した後の冷媒は、過熱が付いた状態となっており、低圧冷媒配管19の合流点65に向けて送られる。
暖房運転時には、制御部7は、過冷却膨張弁92を閉止状態とするため、過冷却インジェクション配管93のうち液冷媒出口管83と接続されている部分と分離ガス配管80と接続されている部分との間には冷媒が流れないが、レシーバ81の液冷媒出口管83を流れる中間圧の液冷媒と、分離ガス膨張弁82で減圧された低圧冷媒とが、過冷却熱交換器91において熱交換を行うことになる。
(1−11)室内熱交換器
第1室内熱交換器12aは、第1室内ユニット12に設けられている。第2室内熱交換器13aは、第2室内ユニット13に設けられている。
第1室内熱交換器12aおよび第2室内熱交換器13aは、冷房運転時には冷媒の蒸発器として機能し、暖房運転時には冷媒の冷却器として機能する。これらの第1室内熱交換器12aおよび第2室内熱交換器13aには、内部を流れる冷媒と熱交換を行う冷房対象あるいは暖房対象として、水や空気が流される。ここでは、第1室内熱交換器12aおよび第2室内熱交換器13aに、図示しない各室内送風ファンからの室内空気が流れ、冷却あるいは加熱された空調空気が室内へと供給される。なお、各室内送風ファンの風量は、空調対象空間で要求される負荷処理のために、個別に風量が制御される。
第1室内熱交換器12aの一端は第1室内膨張弁12bに接続されている。第2室内熱交換器13aの一端は第2室内膨張弁13bに接続されている。第1室内熱交換器12aの他端および第2室内熱交換器13aの他端は合流しており、当該合流した部分はガス冷媒連絡配管15に接続されている。
(1−12)室内膨張弁
第1室内膨張弁12bは、第1室内ユニット12に設けられている。この第1室内膨張弁12bは、第1室内熱交換器12aに流す冷媒の量を調整したり冷媒の減圧・膨張を行ったりする。第1室内膨張弁12bは、液冷媒連絡配管14と第1室内熱交換器12aとの間に配置されている。
第2室内膨張弁13bは、第2室内ユニット13に設けられている。この第2室内膨張弁13bは、第2室内熱交換器13aに流す冷媒の量を調整したり冷媒の減圧・膨張を行ったりする。第2室内膨張弁13bは、液冷媒連絡配管14と第2室内熱交換器13aとの間に配置されている。
(1−13)制御部
制御部7は、室外ユニット11および第1室内ユニット12、第2室内ユニット13の電子部品が実装された各制御基板が通信線で結ばれて構成されているもので、四段圧縮機20の圧縮機駆動モータや四路切換弁群25(より具体的には、パイロット弁16)、各膨張弁12b,13b,47,48,52,72,82,92等と接続される。この制御部7は、外部から入力された室内設定温度、図示しない温度センサや圧力センサの計測値などの情報に基づいて、圧縮機駆動モータの回転数制御や膨張弁開度の調節や室内送風ファンや室外送風ファンの風量調節などを行う。
制御部7は、冷房運転モード、暖房運転モードを有しており、いずれかの運転を選択的に行う。
(2)空気調和装置の動作
空気調和装置1の動作について、図2〜図7を参照しながら説明する。
図5および図7は、それぞれ、冷房運転、暖房運転における冷凍サイクルの圧力−エンタルピ線図(p−h線図)である。これらの各図において、上に凸の一点鎖線で示す曲線は、冷媒の飽和液線および乾き飽和蒸気線である。また、各図において、冷凍サイクル上の英文字が付された点は、それぞれ、図4および図6において同じ英文字で表される点における冷媒の圧力およびエンタルピを表している。例えば、図4の点Bにおける冷媒は、図5の点Bにおける圧力およびエンタルピの状態になっている。なお、空気調和装置1の冷房運転、暖房運転における各運転制御は、制御部7によって行われる。
(2−1)冷房運転モード時の動作
冷房運転時は、四路切換弁群25が図2で示す接続状態に切り換えられ、図4に示す冷媒配管に沿った矢印の方向に、冷媒が、四段圧縮機20、室外熱交換器40、膨張機構70、第1室内熱交換器12a、第2室内熱交換器13aの順に冷媒回路内を循環する。以下、冷房運転時における空気調和装置1の動作について、図4および図5を参照しながら説明する。
第1吸入管21aから四段圧縮機20に吸い込まれる低圧のガス冷媒(点A)は、第1圧縮部21で圧縮されて、第1吐出管21bへと吐出される(点B)。吐出された冷媒は、第1四路切換弁26を通過し、インタークーラ(中間冷却器)として機能する第1室外熱交換器41で冷却された後、第1インタークーラ管41cを介して第2吸入管22aに流れ込む(点C)。
第2吸入管22aから第2圧縮部22に吸い込まれた冷媒は、圧縮されて第2吐出管22bに吐出される(点D)。吐出された冷媒は、第2四路切換弁27を通過し、インタークーラとして機能する第2室外熱交換器42で冷却された後、第2インタークーラ管42cに流れる(点E)。第2インタークーラ管42cを流れる冷媒は、エコノマイザ熱交換器51において熱交換されてインジェクション配管53を流れてくる中間圧の冷媒(点L)と合流した後、第3吸入管23aに流れ込む(点F)。
第3吸入管23aから第3圧縮部23に吸い込まれた冷媒は、圧縮されて第3吐出管23bに吐出される(点G)。吐出された冷媒は、第3四路切換弁28を通過し、インタークーラとして機能する第3室外熱交換器43で冷却された後、第3インタークーラ管43cを介して第4吸入管24aに流れ込む(点H)。
第4吸入管24aから第4圧縮部24に吸い込まれた冷媒は、圧縮されて第4吐出管24bに吐出される(点I)。吐出された高圧の冷媒は、臨界圧力を超えた超臨界状態となっている。この超臨界状態の冷媒は、第4四路切換弁29を通過し、ガスクーラとして機能する第4室外熱交換器44で冷却され、ブリッジ回路49の第3逆止弁49cを通ってエコノマイザ熱交換器51へと流れていく(点J)。
ブリッジ回路49の第3逆止弁49cを通過した高圧冷媒は、その一部がエコノマイザインジェクション配管53に分岐して流れて、エコノマイザ膨張弁52において減圧される。エコノマイザ膨張弁52において超臨界状態から臨界圧力以下の圧力まで減圧されて気液二相状態となった中間圧冷媒(点K)は、エコノマイザ熱交換器51において、他の一部の冷媒(ブリッジ回路49から液ガス熱交換器61に向かう臨界圧力を超えている高圧冷媒(点J))と熱交換し、中間圧のガス冷媒(点L)となる。この中間圧のガス冷媒(点L)は、上述のようにインジェクション配管53から第2インタークーラ管42cへと流れ込む。
ここで、制御部7は、冷房運転時には液ガス熱交回路60に冷媒を流し、液ガス熱交換器61での熱交換を行わせるために、第1液ガス開閉弁62を開状態にし、第2液ガス開閉弁63を閉状態にしている。
エコノマイザ膨張弁52を出た中間圧冷媒と熱交換をし、更に温度が下がった状態でエコノマイザ熱交換器51を出た高圧冷媒(点M)は、開状態の第1液ガス開閉弁62を通過して、液ガス熱交換器61を流れ、膨張機構70へと流れていく(点N)。液ガス熱交換器61では、エコノマイザ熱交換器51を通過した臨界圧力を超えている高圧冷媒(点M)が、低圧冷媒配管19から第1吸入管21aへと流れる低圧冷媒と過冷却インジェクション配管93を流れる低圧冷媒とが合流した合流冷媒と、の間で熱交換によって冷却され、温度が下がった高圧冷媒(点N)となる。
液ガス熱交換器61を出た高圧冷媒(点N)は、2つに分岐され、一方が膨張機構70の膨張機71に向けて流れ、他方が膨張機構70の第3室外膨張弁72に向けて流れる。第3室外膨張弁72では、超臨界状態から臨界圧力以下の圧力まで減圧されることで、中間圧冷媒(点O1)となる。また、膨張機71においても、超臨界状態から臨界圧力以下の圧力まで減圧されることで、中間圧冷媒(点O2)となる。これら中間圧冷媒(点O1)と中間圧冷媒(点O2)は、合流した後にレシーバ81の内部空間へと流れ込む(点P)。このレシーバ81に流れ込んだ気液二相状態の中間圧冷媒は、レシーバ81の内部空間において液冷媒とガス冷媒とに分離される。
レシーバ81で分離された液冷媒(点Q)は、液冷媒出口管83を流れる。液冷媒出口管83を流れる冷媒の一部は、過冷却熱交換器91を通過して過冷却状態となり(点W)、過冷却冷媒配管84やブリッジ回路49の第1逆止弁49aを通って、液冷媒連絡配管14を介して、第1室内膨張弁12b、第2室内膨張弁13bへと送られる。液冷媒出口管83を流れる冷媒の他の一部は、過冷却熱交換器91に流入する前に、分岐して、過冷却インジェクション配管93を流れる。過冷却インジェクション配管93を流れる冷媒は、過冷却膨張弁92において減圧されて気液二相状態の低圧冷媒となる(点R)。
レシーバ81で分離されたガス冷媒(点S)は、分離ガス配管80を流れる。分離ガス配管80を流れる冷媒は、途中の分離ガス膨張弁82で減圧され低圧冷媒(点T)となる。分離ガス膨張弁82で減圧された低圧冷媒(点T)は、さらに分離ガス配管80を流れて、過冷却インジェクション配管93のうち、過冷却膨張弁92よりも下流側であって過冷却熱交換器91よりも上流側の部分に合流する(点U)。
過冷却熱交換器91では、レシーバ81で分離された液冷媒(点Q)は、分離ガス配管80を介して過冷却インジェクション配管93に合流した気液二相状態の低圧冷媒(点U)との間で熱交換することで冷却され、冷却されることによって過冷却度が付いた状態になる(点W)。他方で、分離ガス配管80を介して過冷却インジェクション配管93に合流した気液二相状態の低圧冷媒(点U)は、過冷却熱交換器91において、レシーバ81で分離された液冷媒(点Q)によって加熱される(点V、なお、点Vは過熱が付いた状態を例示しているが、運転条件や過渡的な状況によっては湿り状態になる場合がある。)。
液冷媒連絡配管14から第1室内ユニット12、第2室内ユニット13に流入した冷媒は、第1室内膨張弁12bや第2室内膨張弁13bを通過するときに膨張し、気液二相の低圧冷媒(点X)となって第1室内熱交換器12aや第2室内熱交換器13aに流れ込む。この低圧冷媒は、第1室内熱交換器12aや第2室内熱交換器13aで室内空気から熱を奪い、過熱のついた低圧のガス冷媒(点Y)になる。第1室内ユニット12や第2室内ユニット13を出た低圧冷媒は、ガス冷媒連絡配管15および第4四路切換弁29を経て低圧冷媒配管19へと流れていく。
第1室内ユニット12や第2室内ユニット13から戻ってきて低圧冷媒配管19を流れる低圧冷媒(点Y)と、過冷却インジェクション配管93から流れてくる低圧冷媒(点V)とは、合流点65で合流し(点Z)、液ガス熱交換器61の低圧側を通って第1吸入管21aから四段圧縮機20へと戻っていく。なお、ここで、液ガス熱交換器61では、四段圧縮機20の第1吸入管21aに向かう低圧冷媒(点Z)と、エコノマイザ熱交換器51を通過した後に膨張機構70へと向かう高圧冷媒(点M)との間で熱交換が行われる。
以上のように冷媒が冷媒回路内を循環することにより、空気調和装置1は冷房運転サイクルを行う。
(2−2)暖房運転モード時の動作
暖房運転時は、四路切換弁群25が図3で示す接続状態に切り換えられ、図6に示す冷媒配管に沿った矢印の方向に、冷媒が、四段圧縮機20、第1室内熱交換器12a、第2室内熱交換器13a、膨張機構70、室外熱交換器40の順に冷媒回路内を循環する。以下、暖房運転時における空気調和装置1の動作について、図6および図7を参照しながら説明する。
第1吸入管21aから四段圧縮機20に吸い込まれる低圧のガス冷媒(点A)は、第1圧縮部21で圧縮されて、第1吐出管21bに吐出される(点B)。吐出された冷媒は、第1四路切換弁26を通過し、第2吸入管22aを流れる(点C)。
第2吸入管22aから第2圧縮部22に吸い込まれた冷媒は、圧縮されて第2吐出管22bに吐出される(点D)。吐出された冷媒は、第2四路切換弁27を通過し、第3吸入管23aを流れる。なお、第3吸入管23aには、エコノマイザ熱交換器51において熱交換されてインジェクション配管53を流れてくる中間圧の冷媒(点L)も流れ込んでくるため、冷媒の温度が下がる(点F)。
第3吸入管23aから第3圧縮部23に吸い込まれた冷媒は、圧縮されて第3吐出管23bに吐出される(点G)。吐出された冷媒は、第3四路切換弁28を通過し、第4吸入管24aを流れる(点H)。
第4吸入管24aから第4圧縮部24に吸い込まれた冷媒は、圧縮されて第4吐出管24bに吐出される(点I)。吐出された高圧の冷媒は、臨界圧力を超えた超臨界状態となっている。この超臨界状態の冷媒は、第4四路切換弁29を通過し、ガス冷媒連絡配管15を介して第1室内ユニット12や第2室内ユニット13に流入する(点Y)。
ガス冷媒連絡配管15から第1室内ユニット12や第2室内ユニット13に入った高圧冷媒は、冷媒の放熱器として機能する第1室内熱交換器12aや第2室内熱交換器13aで室内空気に放熱し、室内空気を暖める。第1室内熱交換器12aや第2室内熱交換器13aでの熱交換によって温度が下がった高圧冷媒(点X)は、第1室内膨張弁12bや第2室内膨張弁13bを通過する際にわずかに減圧され、液冷媒連絡配管14を通って室外ユニット11のブリッジ回路49へと流れる。ブリッジ回路49では、第2逆止弁49bを通過して、エコノマイザ熱交換器51へ向かう(点J)。
ブリッジ回路49の第2逆止弁49bを通過した高圧冷媒(点J)は、その一部がエコノマイザインジェクション配管53に分岐して流れて、エコノマイザ膨張弁52において減圧される。エコノマイザ膨張弁52において減圧されて気液二相状態となった中間圧冷媒(点K)は、エコノマイザ熱交換器51において、他の一部の冷媒(ブリッジ回路49から液ガス熱交換器61に向かう高圧冷媒(点J))と熱交換し、中間圧のガス冷媒(点L)となる。この中間圧のガス冷媒(点L)は、上述のようにインジェクション配管53から第2インタークーラ管42cへと流れ込む。
ここで、制御部7は、暖房運転時には液ガス熱交回路60に冷媒を流さず、液ガス熱交換器61での熱交換を行わせないために、第1液ガス開閉弁62を閉状態にし、第2液ガス開閉弁63を開状態にしている。
エコノマイザ膨張弁52を出た中間圧冷媒と熱交換をし、更に温度が下がった状態でエコノマイザ熱交換器51を出た高圧冷媒(点M)は、液ガス熱交換器61を流れることなく、第2液ガス開閉弁63を通過して、膨張機構70へと流れていく(点N)。
膨張機構70に流入する高圧冷媒(点N)は、2つに分岐され、一方が膨張機構70の膨張機71に向けて流れ、他方が膨張機構70の第3室外膨張弁72に向けて流れる。第3室外膨張弁72では、超臨界状態から臨界圧力以下の圧力まで減圧されることで、中間圧冷媒(点O1)となる。また、膨張機71においても、超臨界状態から臨界圧力以下の圧力まで減圧されることで、中間圧冷媒(点O2)となる。これら中間圧冷媒(点O1)と中間圧冷媒(点O2)は、合流した後にレシーバ81の内部空間へと流れ込む(点P)。このレシーバ81に流れ込んだ気液二相状態の中間圧冷媒は、レシーバ81の内部空間において液冷媒とガス冷媒とに分離される。
レシーバ81で分離された液冷媒(点Q)は、液冷媒出口管83を流れる。液冷媒出口管83を流れる冷媒は、全て、過冷却熱交換器91を通過して過冷却状態となり(点W)、過冷却冷媒配管84やブリッジ回路49を通って、室外熱交換器40へと送られる。
なお、暖房運転時には、制御部7は、過冷却膨張弁92を全閉状態に制御しているため、液冷媒出口管83を流れる冷媒は、過冷却インジェクション配管93に向けて分流しない。
レシーバ81で分離されたガス冷媒(点S)は、分離ガス配管80を流れる。分離ガス配管80を流れる冷媒は、途中の分離ガス膨張弁82で減圧され低圧冷媒(点T)となる。分離ガス膨張弁82で減圧された低圧冷媒(点T)は、さらに分離ガス配管80を流れて、過冷却インジェクション配管93のうち、過冷却膨張弁92よりも下流側であって過冷却熱交換器91よりも上流側の部分に流れ込む(点U)。
過冷却熱交換器91では、レシーバ81の液冷媒出口管83から流れてくる中間圧冷媒(点Q)と、分離ガス膨張弁82で減圧された低圧冷媒(点T,U)との間で熱交換が行われる。この熱交換によって、過冷却インジェクション配管93を流れる低圧冷媒(点T、U)は、蒸発して過熱のついた低圧冷媒(点V)となって、合流点65に向けて流れていく。レシーバ81の液冷媒出口管83から流れてくる中間圧冷媒(点Q)は、熱を奪われて過冷却のついた中間圧冷媒(点W)となり、過冷却冷媒配管84を介してブリッジ回路49に向けて流れていく。
過冷却冷媒配管84をブリッジ回路49に向けて流れる冷媒は、一部がブリッジ回路49の手前で共通配管47aを流れるように分離し、他の一部がブリッジ回路49の第2室外膨張弁48を通過する。
共通配管47aを流れる冷媒は、第1室外膨張弁47で減圧されて低圧冷媒となり(点WX)、第5配管41b、第6配管42b、第7配管43bへとそれぞれ分岐して流れていく。第5配管41bに分岐した冷媒は、キャピラリーチューブと逆止弁を通過して第1室外熱交換器41において蒸発し、過熱のついた低圧のガス冷媒となり、第1配管41aと第1四路切換弁26と四路接続配管30を通過して低圧冷媒配管19へと向けて流れる(点XY)。第6配管42bに分岐した冷媒は、キャピラリーチューブと逆止弁を通過して第2室外熱交換器42において蒸発し、過熱のついた低圧のガス冷媒となり、第2配管42aと第2四路切換弁27と四路接続配管30を通過して低圧冷媒配管19へと向けて流れる(点XY)。第7配管43bに分岐した冷媒は、キャピラリーチューブと逆止弁を通過して第3室外熱交換器43において蒸発し、過熱のついた低圧のガス冷媒となり、第3配管43aと第3四路切換弁28と四路接続配管30を通過して低圧冷媒配管19へと向けて流れる(点XY)。すなわち、これらの第1〜第3室外熱交換器41〜43において蒸発した冷媒は、各四路切換弁26、27、28を介して合流し、低圧冷媒配管19へと向けて流れる。
ブリッジ回路49の第2室外膨張弁48を通過して減圧された冷媒(点VW)は、第8配管44bを流れた後に第4室外熱交換器44において蒸発し、過熱のついた低圧のガス冷媒となり、第4配管44aと第4四路切換弁29を通過して低圧冷媒配管19へと向けて流れる(点XY)。
すなわち、低圧冷媒配管19には、第1〜第4室外熱交換器41〜44において蒸発した冷媒が合流して流れる。なお、このとき、制御部7は、第1室外膨張弁47と第2室外膨張弁48の弁開度を各熱交換器の容量や圧力損失量に応じて調節することで、いずれかの熱交換器に冷媒が偏流してしまうことを抑制している。
低圧冷媒配管19を流れる低圧のガス冷媒(点XY)は、過冷却インジェクション配管93を流れる低圧のガス冷媒(点V)と、合流点65において合流した後(点Z)、液ガス熱交換器61の低圧側を流れる。なお、暖房運転時には、液ガス熱交換器61の高圧側には冷媒は流れていないため、ここでの熱交換は行われない。
液ガス熱交換器61の低圧側を通過した低圧のガス冷媒は、第1吸入管21aを介して四段圧縮機20に吸入される(点A)。
以上のように冷媒が冷媒回路内を循環することにより、空気調和装置1は暖房運転サイ
クルを行う。
(3)パイロット弁16による切り換え動作の詳細
パイロット弁16は、上述したように、冷房運転時には、図2に示すように、高圧引用ポート16aにおいて引用してきた高圧を、第1作用ポート16bに作用するように、内部の接続状態を電気的エネルギによって切り換える。これにより、第4四路切換弁29の第1ポート29aを流れる高圧冷媒の圧力を、パイロット弁16の高圧引用ポート16a、第1作用ポート16b、および、第1作用管37を介して、第1四路切換弁26の第1圧力作用部26x、第2四路切換弁27の第1圧力作用部27x、第3四路切換弁28の第1圧力作用部28x、および、第4四路切換弁29の第1圧力作用部29xにそれぞれ作用させることが可能になっている。
また、パイロット弁16は、上述したように、冷房運転時には、図2に示すように、低圧引用ポート16cにおいて引用してきた低圧を、第2作用ポート16dに作用するように、内部の接続状態を電気的エネルギによって切り換える。これにより、第4四路切換弁29の第3ポート29cを流れる低圧冷媒の圧力を、パイロット弁16の低圧引用ポート16c、第2作用ポート16d、および、第2作用管39を介して、第1四路切換弁26の第2圧力作用部26y、第2四路切換弁27の第2圧力作用部27y、第3四路切換弁28の第2圧力作用部28y、および、第4四路切換弁29の第2圧力作用部29yにそれぞれ作用させることが可能になっている。
以上によって、第1四路切換弁26の第1弁可動部26mが高圧作用側から低圧作用側に移動し、第2四路切換弁27の第2弁可動部27mが高圧作用側から低圧作用側に移動し、第3四路切換弁28の第3弁可動部28mが高圧作用側から低圧作用側に移動し、第4四路切換弁29の第4弁可動部29mが高圧作用側から低圧作用側に移動する。このとき、第1〜第4四路切換弁26〜29のいずれの弁においても、第1弁可動部26m〜29mが、第4圧縮部24から吐出された冷媒の圧力と第1圧縮部21に吸入される冷媒の圧力との差圧が作用することによって移動している。このため、空気調和装置1における最も圧力差の大きな部分を利用して、より確実に第1弁可動部26m〜29mの切り換え移動を完結させることが可能になっている。
また、パイロット弁16は、上述したように、暖房運転時には、図3に示すように、高圧引用ポート16aにおいて引用してきた高圧を、第2作用ポート16dに作用するように、内部の接続状態を電気的エネルギによって切り換える。これにより、第4四路切換弁29の第1ポート29aを流れる高圧冷媒の圧力を、パイロット弁16の高圧引用ポート16a、第2作用ポート16d、および、第2作用管39を介して、第1四路切換弁26の第2圧力作用部26y、第2四路切換弁27の第2圧力作用部27y、第3四路切換弁28の第2圧力作用部28y、および、第4四路切換弁29の第2圧力作用部29yにそれぞれ作用させることが可能になっている。
また、パイロット弁16は、上述したように、暖房運転時には、図3に示すように、低圧引用ポート16cにおいて引用してきた低圧を、第1作用ポート16bに作用するように、内部の接続状態を電気的エネルギによって切り換える。これにより、第4四路切換弁29の第3ポート29cを流れる低圧冷媒の圧力を、パイロット弁16の低圧引用ポート16c、第1作用ポート16b、および、第1作用管37を介して、第1四路切換弁26の第1圧力作用部26x、第2四路切換弁27の第1圧力作用部27x、第3四路切換弁28の第1圧力作用部28x、および、第4四路切換弁29の第1圧力作用部29xにそれぞれ作用させることが可能になっている。
以上によって、暖房運転時には冷房運転時とは逆になるように、第1四路切換弁26の第1弁可動部26mが高圧作用側から低圧作用側に移動し、第2四路切換弁27の第2弁可動部27mが高圧作用側から低圧作用側に移動し、第3四路切換弁28の第3弁可動部28mが高圧作用側から低圧作用側に移動し、第4四路切換弁29の第4弁可動部29mが高圧作用側から低圧作用側に移動する。このとき、第1〜第4四路切換弁26〜29のいずれの弁においても、第1弁可動部26m〜29mが、第4圧縮部24から吐出された冷媒の圧力と第1圧縮部21に吸入される冷媒の圧力との差圧が作用することによって移動している。このため、空気調和装置1における最も圧力差の大きな部分を利用して、より確実に第1弁可動部26m〜29mの切り換え移動を完結させることが可能になっている。
(4)空気調和装置の特徴
空気調和装置1では、冷房運転状態と暖房運転状態とを切り換える際に、パイロット弁16において電気的エネルギを用いた接続状態の切り換えが行われることで、第1四路切換弁26の第1弁可動部26m、第2四路切換弁27の第2弁可動部27m、第3四路切換弁28の第3弁可動部28m、第4四路切換弁29の第4弁可動部29mの全てを、十分な圧力差によって確実に切り換えることができる。
しかも、パイロット弁16に接続されている高圧引用管36、第1作用管37、低圧引用管38、第2作用管39は、いずれもキャピラリーチューブのように細い配管によって構成されている。このため、パイロット弁16において高圧引用ポート16a、第1作用ポート16b、低圧引用ポート16c、第2作用ポート16dの接続状態を切り換えるために必要な力を、各第1〜第4四路切換弁26〜29の第1〜第4弁可動部26m〜29mを直接可動させるために必要な力と比べて、小さく抑えることができる。このため、パイロット弁16では、微小な電気的エネルギを作用させるだけで、簡単に、接続状態を切り換えることができる。そして、一旦、パイロット弁16の接続状態が切り換えられると、各第1〜第4四路切換弁26〜29に作用する高圧や低圧の位置が変化するため、第1〜第4弁可動部26m〜29mを可動させることができる。
しかも、当該第1〜第4弁可動部26m〜29mに作用している圧力差は、空気調和装置1における冷凍サイクルのなかで最も大きな圧力差である、第4圧縮部24から吐出された冷媒の圧力と、第1圧縮部21に吸入される冷媒の圧力と、の圧力差である。すなわち、第4圧縮部24から吐出された冷媒の圧力と第1圧縮部21から吐出された冷媒との圧力差や、第3圧縮部23から吐出された冷媒の圧力と第1圧縮部21に吸入される冷媒の圧力との圧力差等よりも大きな圧力差によって、第1〜第4弁可動部26m〜29mを移動させることができる。このため、第1〜第4弁可動部26m〜29mが、移動の途中で止まってしまったり、移動し始めないような事態を避けることができ、四路切換弁群25の切り換えの信頼性を高めることができている。
さらに、空気調和装置1の四路切換弁群25は、4つの第1〜第4四路切換弁26〜29の切り換えを、1つのパイロット弁16によって行うことが可能になっており、各四路切換弁毎に個別のパイロット弁を用意する必要が無くなっている。
しかも、特に、第2四路切換弁27については、自己が切り換えを行う冷媒流れの対象である2種の冷媒圧力の圧力差よりもより大きな圧力差を用いて、第2弁可動部27mを移動させることが可能になっている。この点は、第3四路切換弁28の第3弁可動部28mや第4四路切換弁29の第4部可動部29mについても同様である。
(5)変形例
(5−1)変形例A
上記実施形態では、4つの四路切換弁26〜29が設けられた空気調和装置1を例に挙げて説明した。
しかし、四路切換弁は4つに限られず、共通の圧力差を作用させることが可能な2以上の複数台存在していればよい。
(5−2)変形例B
上記実施形態では、4段圧縮の冷凍サイクルを行う空気調和装置1を例に挙げて説明した。
しかし、冷凍サイクルについては、4段圧縮を行うものに限定されず、例えば、2段圧縮であっても、3段圧縮であってもよく、冷凍サイクルにおける冷媒の圧力が3種類以上存在すればよい。
そして、当該3種類以上存在する冷媒圧力のうち、四路切換弁に作用させる高い冷媒圧力と低い冷媒圧力との2種類の冷媒圧力の大きさの間に(当該高い冷媒圧力よりも低く、当該低い冷媒圧力よりも高い)他の種類の冷媒圧力が存在すればよい。この場合には、当該高い冷媒圧力と他の種類の冷媒圧力との圧力差よりも大きな圧力差で、かつ、他の種類の冷媒圧力と当該低い冷媒圧力との圧力差よりも大きな圧力差を、四路切換弁の接続状態の切り換えに利用することが可能になる。
(5−3)変形例C
上記実施形態では、複数の四路切換弁26〜29に対して、1つのパイロット弁16が設けられた空気調和装置1を例に挙げて説明した。
しかし、パイロット弁16が、空気調和装置の全ての四路切換弁の接続状態をまとめて切り換える必要は無く、パイロット弁は複数設けられていてもよい。
例えば、第4四路切換弁29に対して第1パイロット弁が設けられ、第1〜第3四路切換弁26〜28の接続状態の切り換えをまとめて行う第2パイロット弁(第1パイロット弁とは別のもの)が設けられていてもよい。この場合には、第1パイロット弁においては第4圧縮部24の吐出冷媒と第1圧縮部21の吸入冷媒の圧力差を用いた切り換えが行われ、第2パイロット弁においては第3圧縮部23の吐出冷媒と第1圧縮部21の吸入冷媒の圧力差を用いた切り換えが行われてもよい。また、特に、上記実施形態のように第1〜第3四路切換弁26〜28が、インタークーラとして機能しうる第3〜第1室外熱交換器43〜41にそれぞれ接続されている場合に、互いに関連性の強い第1〜第3四路切換弁26〜28のみをまとめて切り換え制御を行うことが可能になる。
(5−4)変形例D
上記実施形態および上記各変形例において、例えば、冷凍サイクルにおいて4種類以上の冷媒圧力が存在している場合には、当該4種類以上の冷媒圧力のうち、最低の冷媒圧力と、2番目に低い冷媒圧力と、の圧力差を用いて四路切換弁の切り換えを行うことが無いことが好ましい。4つ以上の複数種類の冷媒圧力が存在する場合に、最低の冷媒圧力と、2番目に低い冷媒圧力と、の圧力差は非常に小さくなりがちであり、当該圧力差を用いた四路切換弁の切り換えでは、切り換えを確実に完了させることが困難になるおそれがあるためである。
(5−5)変形例E
上記実施形態および各変形例では、切り換え弁が四路切換弁である場合を例に挙げて説明した。
しかし、切り換えの確実性を高めるという効果は、四路切換弁でなくても、例えば、2方弁や3方弁であっても奏することができる。
1 空気調和装置(冷凍装置)
7 制御部
16 パイロット弁(電気的切換弁)
20 四段圧縮機
21 第1圧縮部
22 第2圧縮部
23 第3圧縮部
24 第4圧縮部
25 四路切換弁群
26 第1四路切換弁
27 第2四路切換弁
28 第3四路切換弁
29 第4四路切換弁
30 四路接続配管
36 高圧引用管(高圧細流路)
37 第1作用管(第1細流路)
38 低圧引用管(低圧細流路)
39 第2作用管(第2細流路)
40 室外熱交換器
41 第1室外熱交換器
42 第2室外熱交換器
43 第3室外熱交換器
44 第4室外熱交換器
47 第1室外膨張弁
48 第2室外膨張弁
49 ブリッジ回路
50 エコノマイザ回路
51 エコノマイザ熱交換器
52 エコノマイザ膨張弁
53 エコノマイザインジェクション配管
60 液ガス熱交回路
61 液ガス熱交換器
62 第1液ガス開閉弁
63 第2液ガス開閉弁
64t 合流冷媒温度センサ
70 膨張機構
71 膨張機
72 膨張弁
80 分離ガス配管
81 レシーバ
82 分離ガス膨張弁
83 液冷媒出口管
90 過冷却回路
90t 過冷却温度センサ
91 過冷却熱交換器
92 過冷却膨張弁
93 過冷却インジェクション配管
特開2010−112582号公報

Claims (3)

  1. 第1の圧力の冷媒が流れる第1流路と、
    前記第1の圧力よりも小さい第2の圧力の冷媒が流れる第2流路と、
    前記第2の圧力より小さい第3の圧力の冷媒が流れる第3流路と、
    圧力が異なる2つの冷媒の圧力を作用させることで動かすことが可能な第1弁可動部を有しており、前記第1弁可動部が動くことで流路の接続状態の切り換えが行われ、切り換え対象の流路として前記第1流路を含んでいる第1切換弁(27、28,29)と、
    圧力が異なる2つの冷媒の圧力を作用させることで動かすことが可能な第2弁可動部を有しており、前記第2弁可動部が動くことで流路の接続状態の切り換えが行われ、切り換え対象の流路として前記第2流路を含んでいる第2切換弁(26、27、28)と、
    前記第1切換弁および前記第2切換弁の両方に対して、前記第1の圧力と前記第3の圧力との圧力差の作用のさせ方を切り換えることで、前記第1弁可動部および前記第2弁可動部の両方を動かして接続状態の切り換えを行う電気的切換弁(16)と、
    を備えた冷凍装置(1)。
  2. 前記第1の圧力を前記電気的切換弁に導くための流路であって、前記高圧流路よりも細い流路である高圧細流路(36)と、
    前記第3の圧力を前記電気的切換弁に導くための流路であって、前記低圧流路よりも細い流路である低圧細流路(38)と、
    前記電気的切換弁に導かれた前記第1の圧力および前記第3の圧力のうちの前記電気的切換弁による切り換え状態に応じて定まるいずれか一方を、前記第1切換弁および前記第2切換弁の両方に作用させるための流路であって、前記低圧流路よりも細い流路である第1細流路(37)と、
    前記電気的切換弁に導かれた前記第1の圧力および前記第3の圧力のうちの前記電気的切換弁による切り換え状態に応じて定まるいずれか他方を、前記第1切換弁および前記第2切換弁の両方に作用させるための流路であって、前記低圧流路よりも細い流路である第2細流路(39)と、
    をさらに備えた請求項1に記載の冷凍装置。
  3. 前記第1の圧力より小さく前記第2の圧力より大きな第4の圧力の冷媒が流れる第4流路を備え、
    圧力が異なる2つの冷媒の圧力を作用させることで動かすことが可能な第3弁可動部を有しており、前記第3弁可動部が動くことで流路の接続状態の切り換えが行われる第3切換弁を、前記第1切換弁および前記第2切換弁以外の圧力差で切り換えが行われる切換弁として、少なくとも1つ備えており、
    前記圧力差で切り換えが行われる前記切換弁の全ては、前記第2の圧力と前記第3の圧力との圧力差より大きな圧力差を用いて切り換えが行われる、
    請求項1または2のいずれか1項に記載の冷凍装置。
JP2013088904A 2013-04-19 2013-04-19 冷凍装置 Active JP6179172B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013088904A JP6179172B2 (ja) 2013-04-19 2013-04-19 冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013088904A JP6179172B2 (ja) 2013-04-19 2013-04-19 冷凍装置

Publications (2)

Publication Number Publication Date
JP2014211293A true JP2014211293A (ja) 2014-11-13
JP6179172B2 JP6179172B2 (ja) 2017-08-16

Family

ID=51931173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013088904A Active JP6179172B2 (ja) 2013-04-19 2013-04-19 冷凍装置

Country Status (1)

Country Link
JP (1) JP6179172B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412679A (zh) * 2020-03-02 2020-07-14 珠海格力电器股份有限公司 四通阀、空调系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5088959U (ja) * 1973-12-15 1975-07-28
JPS6421276A (en) * 1987-07-13 1989-01-24 Daikin Ind Ltd Four-way selector valve
JPH04254158A (ja) * 1991-01-31 1992-09-09 Daikin Ind Ltd ヒートポンプ式空気調和装置の冷凍サイクル
WO2009087733A1 (ja) * 2008-01-07 2009-07-16 Mitsubishi Electric Corporation 冷凍サイクル装置および四方弁
JP2010112582A (ja) * 2008-11-04 2010-05-20 Daikin Ind Ltd 冷凍装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5088959U (ja) * 1973-12-15 1975-07-28
JPS6421276A (en) * 1987-07-13 1989-01-24 Daikin Ind Ltd Four-way selector valve
JPH04254158A (ja) * 1991-01-31 1992-09-09 Daikin Ind Ltd ヒートポンプ式空気調和装置の冷凍サイクル
WO2009087733A1 (ja) * 2008-01-07 2009-07-16 Mitsubishi Electric Corporation 冷凍サイクル装置および四方弁
JP2010112582A (ja) * 2008-11-04 2010-05-20 Daikin Ind Ltd 冷凍装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412679A (zh) * 2020-03-02 2020-07-14 珠海格力电器股份有限公司 四通阀、空调系统及其控制方法
CN111412679B (zh) * 2020-03-02 2021-02-23 珠海格力电器股份有限公司 四通阀、空调系统及其控制方法

Also Published As

Publication number Publication date
JP6179172B2 (ja) 2017-08-16

Similar Documents

Publication Publication Date Title
JP5288020B1 (ja) 冷凍装置
JP4752765B2 (ja) 空気調和装置
JP5324749B2 (ja) 冷凍装置
US11009247B2 (en) Air conditioner
WO2013111176A1 (ja) 空気調和装置
JP6160725B1 (ja) 冷凍装置
WO2009087733A1 (ja) 冷凍サイクル装置および四方弁
WO2013146415A1 (ja) ヒートポンプ式加熱装置
JP2015132413A (ja) 冷凍装置
JP6149485B2 (ja) 冷凍装置
JP5895662B2 (ja) 冷凍装置
JP6179172B2 (ja) 冷凍装置
JP2006090683A (ja) 多室型空気調和機
JP5958022B2 (ja) 冷凍装置
WO2013099895A1 (ja) 冷凍装置
JP2014126324A (ja) 冷凍装置
JP6398363B2 (ja) 冷凍装置
JP6354209B2 (ja) 冷凍装置
JP2006170489A (ja) 空気調和機
JP5991196B2 (ja) 冷凍装置
JP4258425B2 (ja) 冷凍・空調装置
JP2015132414A (ja) 冷凍装置
JP6435718B2 (ja) 冷凍装置
JP2013210160A (ja) 冷凍装置
JP2016125749A (ja) 冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170703

R151 Written notification of patent or utility model registration

Ref document number: 6179172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151