JP2014205891A - 微粒子生成装置 - Google Patents

微粒子生成装置 Download PDF

Info

Publication number
JP2014205891A
JP2014205891A JP2013084555A JP2013084555A JP2014205891A JP 2014205891 A JP2014205891 A JP 2014205891A JP 2013084555 A JP2013084555 A JP 2013084555A JP 2013084555 A JP2013084555 A JP 2013084555A JP 2014205891 A JP2014205891 A JP 2014205891A
Authority
JP
Japan
Prior art keywords
base material
plasma
material portion
fine particle
plasma torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013084555A
Other languages
English (en)
Other versions
JP6005577B2 (ja
Inventor
謙資 渡辺
Kenshi Watanabe
謙資 渡辺
三浦 明
Akira Miura
明 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2013084555A priority Critical patent/JP6005577B2/ja
Publication of JP2014205891A publication Critical patent/JP2014205891A/ja
Application granted granted Critical
Publication of JP6005577B2 publication Critical patent/JP6005577B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

【課題】本発明は、直流プラズマトーチを利用した微粒子発生装置において、処理効率の低下を抑制することができる、簡単な構成の微粒子生成装置を提供する。
【解決手段】本発明に係る微粒子生成装置は、直流プラズマトーチ50と、直流プラズマトーチから離隔して対向して配置され、微粒子生成の原料となり、導電性を有する母材部85と、直流プラズマトーチお50よび母材部85が内部に配置される密閉容器70A,70Bとを、備えている。そして、密閉容器70A,70Bの底面には、開口部が形成されており、母材部85は、当該開口部から挿通されている。
【選択図】図6

Description

本発明は、プラズマトーチを利用した、微粒子生成装置に関するものである。
プラズマトーチを利用した微粒子生成に関する先行文献として、たとえば特許文献1が存在している。特許文献1に係る技術では、プラズマトーチを、試料である金属上面に対して斜めに配設している。そして、プラズマにより生成された金属からの微粒子を、プラズマトーチとは別に配設された吸引器から取り出している。
しかしながら、特許文献1に係る技術では、プラズマトーチと吸引器とが別途配設されているので、微粒子生成装置全体の拡大化およびエネルギー効率が悪い、という問題を有している。
そこで、上記問題を解決し、本願発明に関連する先行特許出願として、たとえば、特願2012−265051が存在している。当該先行特許出願に係る微粒子生成装置では、直流プラズマトーチから発生した移行型プラズマを利用して母材部を気化させているので、エネルギー効率を向上させることができる。
特開昭58−104103号公報
ところで、直流プラズマトーチを利用した微粒子発生装置において、微粒子生成の原料となる母材部を、直流プラズマトーチが配設された密閉容器内に配設する必要がある。ここで、プラズマ照射により母材部が蒸発し、新たに密閉容器内に母材部を配設させるためには、密閉容器を一度開放する必要がある。そして、密閉容器内に新たな母材部を配置させた後には、密閉容器内の真空引き処理、および当該真空引き処理後の密閉容器内へガス置換が必要となる。
このように、直流プラズマトーチを利用した微粒子発生装置では、密閉容器内に母材部を新たに配置さえる度に、比較的に処理時間の長い複数の処理を繰り返す必要があり、処理効率が低下するという問題がある。
そこで、本発明は、直流プラズマトーチを利用した微粒子発生装置において、処理効率の低下を抑制することができる、簡単な構成の微粒子生成装置を提供することを目的とする。
上記の目的を達成するために、本発明に係る微粒子生成装置は、直流プラズマトーチと、前記直流プラズマトーチから離隔して対向して配置され、微粒子生成の原料となり、導電性を有する母材部と、前記直流プラズマトーチおよび前記母材部が内部に配置されるチャンバーとを、備えており、前記直流プラズマトーチは、リング状の磁石と、円筒形状であり、前記磁石が前記円筒の空洞内部に配置され、前記磁石と所定の距離だけ離隔している移行型プラズマ用電極とを、有しており、前記母材部に負極を印加し、前記移行型プラズマ用電極に正極を印加する直流電源を、さらに備えており、前記チャンバーの底面には、開口部が形成されており、前記母材部は、前記開口部から挿通されている。
本発明に係る微粒子生成装置は、直流プラズマトーチと、前記直流プラズマトーチから離隔して対向して配置され、微粒子生成の原料となり、導電性を有する母材部と、前記直流プラズマトーチおよび前記母材部が内部に配置されるチャンバーとを、備えており、前記直流プラズマトーチは、リング状の磁石と、円筒形状であり、前記磁石が前記円筒の空洞内部に配置され、前記磁石と所定の距離だけ離隔している移行型プラズマ用電極とを、有しており、前記母材部に負極を印加し、前記移行型プラズマ用電極に正極を印加する直流電源を、さらに備えており、前記チャンバーの底面には、開口部が形成されており、前記母材部は、前記開口部から挿通されている。
したがって、本発明に係る微粒子生成装置では、チャンバーを開放することなく、チャンバー内への連続した母材部の供給(再充填)が可能となる。よって、母材部をチャンバー内に再充填する度に、真空引きをしたり、プラズマガスを再供給し直したりする必要もない。したがって、本発明に係る微粒子生成装置では、母材部の再充填に伴う、処理効率の低下および処理コスト高を抑制することができる。また、母材部の連続再充填も可能であるので、長時間に渡る連続した微粒子の生成処理も可能となる。なお、母材部の再充填も、次から次へと直列的に母材部を下から上方向へ押し出すだけであり、母材部の再充填機構は、極めて簡易となる。
本発明の前提となる微粒子生成装置100の全体構成を示す図である。 直流プラズマトーチ50の先端部付近の構成を示す拡大断面図である。 リング形状の磁石3の磁化の方向を示す斜視図である。 移行型プラズマP1が回転する原理を説明するための断面図である。 直流プラズマトーチ50と母材部85との間の距離を変化させることにより、螺旋形状のプラズマが形成されることを説明するための拡大断面図である。 本実施の形態に係る微粒子生成装置の密閉容器付近の構成を示す拡大断面図である。 本実施の形態に係る微粒子生成装置の密閉容器付近の他の構成を示す拡大断面図である。 本実施の形態に係る微粒子生成装置の密閉容器付近の他の構成を示す拡大断面図である。
まず、本発明の前提となる微粒子生成装置の構成及び微粒子生成方法について、説明する。
図1は、微粒子生成装置100の全体構成を示す図である。図1に示すように、微粒子生成装置100は、直流プラズマトーチ50を具備する。また、図2は、図1に示す直流プラズマトーチ50の先端部付近(図1の丸で囲まれた領域)の構成を示す拡大断面図である。
図1に示すように、微粒子生成装置100は、直流プラズマトーチ50、真空ポンプ60、プラズマ電源61、冷却水供給部62、プラズマガス供給部63,64、プラズマトーチ昇降機構65、密閉容器70、微粒子捕獲器71、微粒子捕獲フィルター72、熱交換器73、筒部77、循環ポンプ83および母材部85を、備えている。
上記したように、図1に示した丸で囲まれた領域の構成(つまり、直流プラズマトーチ50の先端部付近の構成)が、図2に示されている。図2に示すように、直流プラズマトーチ50は、移行型プラズマ用電極1、内筒2、磁石3、外筒4、および複数の絶縁物5,6,7を、備えている。なお、図2に示すように、これらの部材1〜7は全て、プラズマトーチ先端部において配設されている。
<直流プラズマトーチおよびその周辺の構成>
まず、図2を用いて、直流プラズマトーチ50の構成について説明する。
移行型プラズマ用電極1、内筒2および外筒4は各々、円筒形状を有しており、導電性材料から成る。移行型プラズマ用電極1は、内筒2を、所定の距離だけ離れて囲繞している。つまり、移行型プラズマ用電極1の円筒形の径は、内筒2の円筒形の径よりも大きい。また、外筒4は、移行型プラズマ用電極1を、所定の距離だけ離れて囲繞している。つまり、外筒4の円筒形の径は、移行型プラズマ用電極1の円筒形の径よりも大きい。
外筒4の空洞内には、内筒2および移行型プラズマ用電極1が配置されており、移行型プラズマ用電極1の空洞内には、内筒2が配置されている。ここで、移行型プラズマ用電極1の円筒形の中心軸と、内筒2の円筒形の中心軸と、外筒4の円筒形の中心軸は、一致している。当該中心軸を、図2において中心軸AXとして図示している。
なお、以下の説明において、当該中心軸AXの方向(換言すると、直流プラズマトーチ50が母材部85と対向している方向)を、「軸方向」と称する。また、各部材1,2,4の円筒形の径の方向(換言すると、前記対向している方向(中心軸AXの方向)に垂直な方向であり、水平方向)を、「径方向」と称する。
内筒2の空洞は、母材部85から生成された微粒子が通る微粒子通路部25として機能し、直流プラズマトーチ50の略中心部に存する。また、内筒2と移行型プラズマ用電極1との間に形成された空間は、プラズマガスが通るガス通路部26として機能する。また、移行型プラズマ用電極1と外筒4との間に形成された空間は、プラズマガスが通るガス通路部27として機能する。
なお、後述するプラズマ電源61による電圧印加により、移行型プラズマ用電極1と母材部85との間に移行型プラズマP1が生成される。当該移行型プラズマP1が母材部85に当たることにより、母材部85から、微粒子が生成される。微粒子通路部25は、図1,2の上方向から下方向(つまり、直流プラズマトーチ50の上部から母材部85に向けて)延設されているが、当該微粒子通路部25内を、当該生成した微粒子が、図1,2の下方向から上方向に向かって通過する。
また、ガス通路部26,27も、図1,2の上方向から下方向(つまり、直流プラズマトーチ50の上部から母材部85に向けて)延設されている。後述するプラズマガス供給部63,64から供給されたプラズマガスは、ガス通路部26,27内を、図1,2の上方向から下方向に向かって通過する。
また、磁石3は、リング形状を有する、永久磁石である。当該磁石3のリング形状の中心軸も、上記中心軸AXと一致している。また、磁石3は、中心軸AX方向に磁化している。具体的に、図3に示しているように、リング状の磁石3において、上部(母材部85と対面していない側)が「N極」であり、下部(母材部85と対面している側)が「S極」である。
また、移行型プラズマ用電極1は、磁石3を、所定の距離だけ離れて囲繞している。つまり、磁石3は、移行型プラズマ用電極1の円筒の空洞内部に配置される。図2に示す形態で、磁石3は、内筒2の内部に配設(内蔵)されている。より具体的には、磁石3は、内筒2の内部において、母材部85配置側(内筒2の底部付近)に、配置されている。つまり、母材部85により近い位置に、磁石3は配設されている。
また、図2に示すように、絶縁物5は、内筒2の底面側端部を被覆するように形成されている。より具体的に、絶縁物5は、内筒2の母材部85と対面する部分および、当該部分付近における内筒2の側面部の一部を覆っている。つまり、絶縁物5は、軸方向における磁石3の磁場が径方向における磁石3の磁場より大きくなる領域において、配設されている。
さらに、外筒4と対面する移行型プラズマ用電極1の側面部には、絶縁物6が配設され、移行型プラズマ用電極1と対面する外筒4の側面部には、絶縁物7が配設されている。当該絶縁物6は、母材部85と対面する側の移行型プラズマ用電極1の端部付近において、所定の範囲で、磁石3を囲繞するように配設されている。また、当該絶縁物7は、母材部85と対面する側の外筒4の端部付近において、所定の範囲で、磁石3を囲繞するように配設されている。つまり、絶縁物6,7は各々、軸方向における磁石3の磁場が径方向における磁石3の磁場より大きくなる領域において、配設されている。
ここで、各絶縁物5,6,7として、たとえば高温耐久性を有する窒化ボロン(または酸化シリコン)、または安価なアルミナなどを採用することができる。
なお、内筒2の端部(底部)、移行型プラズマ用電極1の端部(底部)および外筒4の端部(底部)の、母材部85側への突出具合は、次の通りである。外筒4の底部が、最も母材部85側に突出しおり、内筒2の端部が、最も母材部85側に突出していない。移行型プラズマ用電極1の母材部85への突出具体は、前者両者の間である。
ここで、上記構成の直流プラズマトーチ50は、図2における上下方向に、移動することができる。換言すれば、直流プラズマトーチ50は、母材部85と対面している方向(中心軸方向AX)に、移動可能である。
さて、上述の構成からも分かるように、図1,2に示すように、直流プラズマトーチ50のプラズマ出力側において、当該直流プラズマトーチ50から上下方向離隔・対向して、母材部85が設けられている(つまり、母材部85は、直流プラズマトーチ50の下方に配設される)。当該母材部85は、微粒子生成の原料となる金属等であり、導電性を有する。当該母材部85としては、たとえば、銅、鉄、ニッケルなどを採用することができる。
図1に示すように、密閉容器70内には、直流プラズマトーチ50の先端部および母材部85が配設されている。そして、直流プラズマトーチ50の先端部および母材部85が配設されている状態において、密閉容器70内は密封される(気密性が保持されている)。
なお、図1に示すように、密閉容器70の上部において、密閉容器70と筒部77とは連接されている。そして、当該連接された、筒部77内の空洞部および密閉容器70の空洞部に渡って、直流プラズマトーチ50が、図1,2の上下方向(中心軸AXの方向)移動可能に、配設されている。
ここで、直流プラズマトーチ50でなく、母材部85を、密閉容器70内において図1,2の上下方向(中心軸AXの方向)に移動可能に配設しても良い。つまり、直流プラズマトーチ50および母材部85の少なくとも何れか一方が、図1,2の上下方向(中心軸AXの方向)移動可能に、密閉容器70内に配設されていれば良い。
<微粒子生成装置の構成>
次に、図1を用いて、微粒子生成装置100全体の構成を説明する。
プラズマトーチ昇降機構65は、直流プラズマトーチ50の上方に配設されており、当該直流プラズマトーチ50を、図1,2に示す上下方向(中心軸AXの方向)に移動させる。なお、上記の通り、プラズマトーチ昇降機構65の代わりに(またはこれと共に)、母材部85を図1,2に示す上下方向(中心軸AXの方向)に移動させる昇降機構を設けても良い。なお、当該各昇降機構が、直流プラズマトーチ50と母材部85との間の距離を可変可能とする距離移動部であると、把握できる。
プラズマ電源(直流電源と把握できる)61は、移行型プラズマ用電極1および母材部85に対して、逆極性の直流電圧を印加する。具体的に、プラズマ電源61は、図1,2に示すように、移行型プラズマ用電極1に正極(陽極、+:プラス)を印加し、母材部85に負極(陰極、−:マイナス)を印加する(逆極性)。
冷却水供給部62は、直流プラズマトーチ50、密閉容器70、母材部85および熱交換機73の各々に対して、冷媒(以下、冷却水を例示して説明する)を供給する。
具体的に、冷却水供給部62は、移行型プラズマ用電極1内、内筒2内および外筒4内を、冷却水が循環する(当該冷却水が循環する部分が、冷却部であると把握できる)ように、冷却水を供給している。当該冷却水の循環により、直流プラズマトーチ50の冷却が可能となる。なお、内筒2内に内蔵されている磁石3の周囲においても、冷却水は循環している。
また、密閉容器70の壁面内・底面内・上面内には、冷却水が循環する冷却水路が形成されており、冷却水供給部62は、当該冷却水路内を冷却水が循環するように、冷却水を供給している。当該冷却水の循環により、密閉容器70自身および密閉容器70内の冷却が可能となる。
また、母材部85の底部と接する冷却部40が、密閉容器70内に配設されている(冷却部40の上面に、母材部85が載置される)。そして、冷却水供給部62は、当該冷却部40内を冷却水が循環するように、冷却水を供給している。当該冷却水の循環により、母材部85の冷却が可能となる。
また、熱交換器73においても冷却水が循環できる水路が形成されており、当該水路に対して冷却水供給部62が冷却水を循環供給することにより、当該供給された冷却水は、熱交換器73において熱交換に利用される。
ここで、図1に示す構成例では、微粒子捕獲器71は冷却水で冷却されてないが、冷却水供給部62から供給される冷却水で冷却してもよい。
プラズマガス供給部63は、直流プラズマトーチ50内の微粒子通路部25の外側を通って、母材部85の配設方向に向けて、プラズマガスを供給する。具体的に、プラズマガス供給部63は、外筒4と移行型プラズマ用電極1との間に形成されたガス通路部27を通って、母材部85に向けて、プラズマガスを供給する。
ここで、図1に示すように、プラズマガス供給部63が供給するプラズマガスとして、不活性ガス(アルゴン、ヘリウム等)および/または母材部85から気化した成分と反応する反応ガス(酸素分子、窒素分子、水素分子等の分子ガス)などが採用できる。
プラズマガス供給部64は、直流プラズマトーチ50内の微粒子通路部25の外側を通って、母材部85に向けて、プラズマガスを供給する。具体的に、プラズマガス供給部64は、内筒2と移行型プラズマ用電極1との間に形成されたガス通路部26を通って、母材部85に向けて、プラズマガスを供給する。
ここで、図1に示すように、プラズマガス供給部64が供給するプラズマガスとして、不活性ガス(アルゴン、ヘリウム等)および/または母材部85から気化した成分と反応する反応ガス(酸素分子、窒素分子、水素分子等の分子ガス)などが採用できる。
ここで、上述した、プラズマガス供給部63,64が、第一のガス供給部であると把握できる。
プラズマ電源61からの電源供給およびプラズマガス供給部63,64からのプラズマガス供給により、密閉容器70内の移行型プラズマ用電極1と母材部85との間において、移行型プラズマP1が発生する。
なお、後述するように、当該移行型プラズマP1は、磁石3からの磁力(より具体的に、径方向の磁力)の影響を受けることにより、移行型プラズマ用電極1と母材部85との間において、中心軸AXの周りを回転する。
微粒子の原材料から成る母材部85は、上記回転状態の移行型プラズマP1により加熱される。そして、当該加熱により、移行型プラズマP1が照射されている母材部85の表面部が気化する。
密閉容器70内および直流プラズマトーチ50内の各プラズマガスの流れにより、母材部85から気化した成分は冷却され、微粒子となり、母材部85からの上昇気流に乗り、微粒子通路部25を図1の上方向に通過する。
真空ポンプ60は、密閉容器70、微粒子捕獲器71および熱交換器73内の気圧を減圧させるために、用いられる。
図1,2から分かるように、微粒子通路部25の一方端は、母材部85に面している。他方、図1に示すように、微粒子通路部25の他方端は、微粒子捕獲器71に接続されている。つまり、微粒子通路部25を図1の上方向に通過した微粒子は、微粒子捕獲器71内において捕獲される。
微粒子捕獲器71内には、微粒子捕獲フィルター72が配設されている。微粒子通路部25を通過し微粒子捕獲器71に到達した、微粒子およびプラズマガスは、当該微粒子捕獲フィルター72により分離される。つまり、微粒子捕獲フィルター72により微粒子が捕獲される一方、当該微粒子捕獲フィルター72を通過したプラズマガスは、微粒子捕獲フィルター72を介して微粒子捕獲器71に接続されている、熱交換器73に伝搬される。
ここで、微粒子捕獲器71には、微粒子捕獲フィルター72に対抗するように、当該微粒子捕獲フィルター72より下方向に、捕集容器71aが設けられている。バルブB5から、パルスエアを微粒子捕獲器71に向けて供給する。当該パルスエアの供給により、微粒子捕獲フィルター72において捕獲した微粒子を、捕集容器71aの配設方向に落下させることができる。これにより、図1に示すように、捕集容器71a内において微粒子80が捕集される。
熱交換器73の一方端は、微粒子捕獲器71内の微粒子捕獲フィルター72と接続されており、当該熱交換器73の他方端は、循環ポンプ83に接続されている。なお、循環ポンプ83の一方端は、上記の通り熱交換器73に接続されており、循環ポンプ83の他方端は、密閉容器70およびプラズマガス供給部63,64等に接続されている。
当該循環ポンプ83の循環動作により、微粒子およびプラズマガスは、微粒子通路部25を通過し、微粒子捕獲器71に到達する。そして、当該循環ポンプ83により、微粒子捕獲フィルター72を通過したプラズマガスは、熱交換器73を通過し(当該熱交換器73においてプラズマガスは十分冷却される)、密閉容器70および/またはプラズマガス供給部63,64において再供給される。
上述したように、循環ポンプ83と密閉容器70とは接続されている。具体的には、密閉容器70にはガス供給部(第二のガス供給部と把握できる)90が配設されている。そして、当該ガス供給部90には、バルブB10を介して、循環ポンプ83が接続されている。
ここで、ガス供給部90は、密閉容器70の側面部に穿設されている。なお、密閉容器70の側面部は、たとえば平面視形状(図1の上方向から見た形状)が円形である(つまり、たとえば密閉容器70は筒形状を有する)。
ガス供給部90は、一つのプラズマガス入力孔と、複数のプラズマガス噴出孔と、入力孔と各噴出孔とを接続する通路部とから構成されている。密閉容器70の外周側面部において、当該入力孔が配設されており、当該入力孔が循環ポンプ83に接続される。また、密閉容器70の内周側面部(密閉空間側)において、複数の噴出孔が配設されている。ここで、各噴出孔は、密閉容器70内の中心部(中心軸AX)に、穿設穴が面するように、密閉容器70の内周側面部に配設されている。なお、各噴出孔は、密閉容器70の側面において、密閉容器70の上記円筒の円周方向に沿って、複数配設されている。ここで、各噴出孔は、当該円周方向に均等に配設されている。なお、通路部は、プラズマガスが流れる通路として、密閉容器70の側壁内に配設されている。
当該ガス供給部90から出力されるプラズマガスは、直流プラズマトーチ50と母材部85との間の空間において、側方から(中心軸AXの外側から当該中心軸AXに向かう方向に)供給される(図2に示す符号PGaを参照)。
また、図1の構成では、循環ポンプ83は、バルブB8を介して、プラズマガス供給部63側と接続されている。これにより、プラズマガス供給部63に、微粒子捕獲フィルター72を通過して循環したプラズマガスを供給することが可能となり、プラズマガス供給部63は、当該供給されたプラズマガスを、ガス通路部27に向けて再供給することができる。
さらに、図1の構成では、循環ポンプ83は、バルブB9を介して、プラズマガス供給部64側と接続されている。これにより、プラズマガス供給部64に、微粒子捕獲フィルター72を通過して循環したプラズマガスを供給することが可能となり、プラズマガス供給部64は、当該供給されたプラズマガスを、ガス通路部26に向けて再供給することができる。
<微粒子生成装置における微粒子の生成方法>
次に、微粒子生成装置100における動作について説明する。
真空ポンプ60は、バルブB11を介して、密閉容器70内と接続されている。そこで、バルブB11を開き、真空ポンプ60を駆動させることにより、密閉容器70内の減圧処理を行う(真空引き処理)。なお、密閉容器70が所望の圧力まで減圧されたとき、真空ポンプ60を停止し、バルブB11を閉じ、密閉容器70内の圧力を当該所望の圧力で維持する。
次に、プラズマガス供給部63,64から、プラズマガスを出力する。ここで、プラズマガスとして、不活性ガスのみを出力する場合には、バルブB1,B3を開く。他方、プラズマガスとして、不活性ガスと反応ガスとの混合ガスを出力する場合には、バルブB1,B2,B3,B4を開く。
プラズマガス供給部63から出力されたプラズマガスは、直流プラズマトーチ50内のガス通路部27を通って、母材部85に向けて、密閉容器70内に供給される(図2参照)。また、プラズマガス供給部64から出力されたプラズマガスは、直流プラズマトーチ50内のガス通路部26通って、母材部85に向けて、密閉容器70内に供給される(図2参照)。このようにして、上記真空引き後の密閉容器70内に、プラズマガスが供給される。
次にまたは上記プラズマガス供給と並行して、プラズマトーチ昇降機構65を駆動する。これにより、直流プラズマトーチ50の先端部と母材部85の上面部との間の距離(空間)が小さくなる(当該処理により、移行型プラズマの初期形成が可能となる)。
さて、直流プラズマトーチ50の先端部と母材部85の上面部との間の距離(空間)が小さくなった状態(初期位置状態)で、上記プラズマガスの供給を行いつつ、プラズマ電源61を用いて、逆極性の直流電源を、移行型プラズマ用電極1と母材部85との間に印加する。つまり、プラズマ電源61は、移行型プラズマ用電極1に陽極を印加し、母材部85に陰極を印加する。
すると、図2に示すように、移行型プラズマ用電極1と母材部85との間において、移行型プラズマP1が発生する。磁石3の磁場の作用により、当該移行型プラズマP1は回転し、初期位置状態においては、円筒状のプラズマとなる。
ここで、絶縁物5,6,7の存在により、移行型プラズマP1は、両電極1,85との間で、つまり径方向における磁石3の磁場が軸方向における磁石3の磁場より大きい領域において、生成される。換言すれば、当該絶縁物5,6,7は、プラズマの回転に寄与しない磁界部分に移行型プラズマP1が移行しないようにするために、各々配設されている。
上記のとおり、移行型プラズマP1は、磁石3により生成される磁界により、中心軸AXを中心として回転する。具体的には、下記の通りである。
図2に示すように、リング状の磁石3は内筒2内に内蔵されているが、当該磁石3は、図3に示すように、中心軸AX方向に磁化している。したがって、当該磁石3により、直流プラズマトーチ50の先端部では、図4に示す磁界MFが形成される。
当該磁界MF生成下において、移行型プラズマ用電極1と母材部85との間に逆極性である所定値の直流電圧を印加すると、移行型プラズマP1が発生する。さらに、移行型プラズマ用電極1から母材部85に向かって、移行型プラズマアーク電流Iが流れる(図4参照)。
ここで、絶縁物5,6,7の存在により、母材部85と当該母材部85に対面する移行型プラズマ用電極1の端部(底部)との間においてのみ、移行型プラズマアーク電流Iが流れる。換言すれば、磁界MFの径方向の磁場が当該磁界MFの軸方向の磁場より大きい領域においてのみ、移行型プラズマアーク電流Iが流れる。
したがって、図4に示すように、フレミングの左手の法則により、移行型プラズマP1は、当該径方向の磁場Bの影響により中心軸AX廻りの力Fが働く。よって、移行型プラズマP1は、中心軸AXの回りにおいて反時計回りに回転する。なお、力Fの大きさは、径方向磁場B×移行型プラズマアーク電流I、である。このように、移行型プラズマP1は、常に回転する。
さて、バルブB6,B10を開放すると共に、循環ポンプ83を駆動する。これにより、密閉容器70→直流プラズマトーチ50→微粒子捕獲器71→熱交換器73→循環ポンプ83→密閉容器70、という循環の流れを発生させることができる。
次に、プラズマトーチ昇降機構65を駆動し、直流プラズマトーチ50の先端部と母材部85の上面部との間の距離(空間)を、上記初期位置状態よりも大きくしていく(図5参照)。ここで、プラズマトーチ昇降機構65は、移行型プラズマ用電極1の直径寸法の範囲以下で、直流プラズマトーチ50の先端部と母材部85の上面部との間の距離(空間)を、大きくさせる。
このように、両電極1,85間の距離を広げると、直流プラズマトーチ50に近い側では磁界MFの影響が大きい(磁場Bが大きい)ため、移行型プラズマP1の上記回転の速度は速くなり、母材部85に近い側では磁界MFの影響を小さくなる(磁場Bが小さい)ため、移行型プラズマP1の上記回転の速度は遅くなる。これにより、上記円筒状のプラズマ(図5の点線のP1)が、螺旋形状(略円錐形状)のプラズマ(図5の実線のP1)となる。つまり、直流プラズマトーチ50と母材部85と距離(空間)を広げることにより、螺旋形状のプラズマが形成される。ここで、螺旋形状の径は、直流プラズマトーチ50に近い側で大きく、母材部85に近づくに連れて小さくなる(図5の実線のP1参照)。
このように、直流プラズマトーチ50から母材部85に近づくに連れて、移行型プラズマP1は、中心軸AX側に近づき傾斜する。つまり、直流プラズマトーチ50と母材部85と距離(空間)を広げることにより、移行型プラズマP1は、母材部85の表面(上面)に対して斜め方向から当たる。
ここで、内筒2は、内筒2内のリング形状の磁石3の個数(積層していく個数)を変更することができる、構造である。当該磁石3の個数を変更することにより、上記プラズマの回転数は、陽極である直流プラズマトーチ50側で、80〜240Hzの範囲内で調整される。または、磁石3の個数を一つのみのとし、内筒2は、内蔵させる磁石3の置換が可能な構成であっても良い。当該構成により、内筒2における磁力の異なる磁石3の交換等が容易となり、上記プラズマの回転数の調整も可能となる。
ここで、プラズマトーチ50側におけるプラズマ回転数が80Hz未満であると、移行型プラズマP1による移行型プラズマ用電極1への加熱の影響により、移行型プラズマ用電極1がダメージを受ける。これに対して、プラズマトーチ50側におけるプラズマ回転数が240Hzより大きいと、移行型プラズマP1の形成が困難となる。したがって、プラズマの回転数は、陽極である直流プラズマトーチ50側で、80〜240Hzの範囲内で調整されることが望ましい。
その後、プラズマトーチ昇降機構65を停止し、直流プラズマトーチ50と母材部85との間の距離(空間)の増加を停止し、直流プラズマトーチ50と母材部85との間の距離(空間)を一定に保持する。つまり、直流プラズマトーチ50と母材部85との間の距離(空間)を、上記初期位置状態よりも離した位置で(移行型プラズマ用電極1におけるプラズマの回転数が80〜240Hzの場合は、移行型プラズマ用電極1の直径寸法以下の範囲で)保持する。
上記のように、移行型プラズマP1が母材部85の表面(上面)に対して斜め方向から当たることにより、母材部85は加熱し、気化する。なお、直流プラズマトーチ50と母材部85との間の距離(空間)を上記初期位置状態よりも大きく(移行型プラズマ用電極1におけるプラズマの回転数が80〜240Hzの場合は、移行型プラズマ用電極1の直径の範囲以下で)すると、プラズマの回転数が大きいほど、直流プラズマトーチ50と母材部85との間が短い距離で、母材部85における螺旋形状のプラズマの径は小さくなり(つまり、中心軸AX側に近づき)、移行型プラズマP1は母材部85の局所領域に集中して当たる(母材部85における、移行型プラズマP1の絞りがより小さくなる)。よって、移行型プラズマP1に起因して、母材部85の表面(上面)の当該局所領域における気化効率が、向上する。
上記したプラズマ回転数が大きいほど、直流プラズマトーチ50と母材部85との間が小さい距離で、母材部85においてプラズマが集中する。換言すると、上記したプラズマ回転数がより小さい場合には、直流プラズマトーチ50と母材部85との間の距離をより大きく取ることにより、母材部85においてプラズマを集中させることができる。なお、上述したように、移行型プラズマ用電極1におけるプラズマの回転数が80〜240Hzの場合には、移行型プラズマ用電極1の直径の範囲以下であれば、母材部85においてプラズマを集中させることができる。
よって、直流プラズマトーチ50と母材部85との間の距離が、母材部85における螺旋形状のプラズマの径が最も小さくなるとき、母材85の表面(上面)において、移行型プラズマP1が中心軸AXの近傍に最も集中して当たり、気化効率も最も高くなる。
上記の通り、直流プラズマトーチ50と母材部85との間の距離(空間)を一定に保持した状態で、母材部85に対して斜め方向から移行型プラズマP1を当てる。このとき、母材部85の加熱は、母材部85が陰極であるため、プラズマ中のイオンによる加熱が主体となる。したがって、母材部85が陽極であり、当該陽極におけるプラズマ中の電子による加熱の場合と比較して、プラズマ中のイオンによる加熱が主体である場合には、電子の蒸発熱の分、母材部85全体の加熱効率は低下する。
しかしながら、本発明のように母材部85が陰極である場合には、移行型プラズマP1による母材部85の気化は、陰極点(移行型プラズマP1が当たる母材部85の箇所)を中心として起こる(陰極点では熱が集中する)。しかも、陰極点付近は、イオンと電子とが存在しており、また母材部85が直流プラズマトーチ50から離れており、母材部85における磁石3の磁場MFの影響が小さいので、イオンと電子との結合が促進され、当該結合によるエネルギーにより、熱が集中する陰極点における母材部85の気化効率が向上する(陰極点が大きくなる)。
さらに、上記の通り、母材部85における磁石3の磁場MFの影響が小さいので、当該母材部85付近における移行型プラズマP1の移動範囲も少なく、直流プラズマトーチ50付近に比べて移動速度も遅いため、熱が母材部85の表面(上面)の狭い範囲でより集中する。これにより、母材部35の気化(蒸発)効率は、さらに向上する。
上記の通り、本発明では、母材部85の表面(上面)の陰極点近傍では、極めて高い気化効率を得ることができる。
これに対して、移行型プラズマ用電極1は陽極であるため、当該移行型プラズマ用電極1の加熱は、電子による加熱が主体となる。よって、加熱は、電子の蒸発熱の分だけ、より高くなる。しかしながら、電子は極めて軽く、移行型プラズマ用電極1近傍では、磁石3による磁場MFの影響が大きい。このことから、移行型プラズマ用電極1近傍における移行型プラズマP1の動きは大きく、移動範囲も大きい。したがって、移行型プラズマ用電極1では、熱が所定の箇所に集中することなく分散される。
つまり、移行型プラズマ用電極1全体が加熱される熱量は、母材部85全体が加熱される熱量より大きいが、移行型プラズマ用電極1では、母材部85付近とは異なり、熱が狭い範囲に集中しない。よって、移行型プラズマ用電極1自身が気化することを抑制できる。さらに、冷却水供給部62から直流プラズマトーチ50への冷却水の供給により、移行型プラズマ用電極1自身も十分に冷却されているため、移行型プラズマ用電極1自身の気化は完全に防止でき、移行型プラズマ用電極1の消耗は発生しない。
このように、本発明では、母材部85のみを気化させ、移行型プラズマ用電極1の気化を抑制・防止できるので、母材部85からの気化物のみが生成され、移行型プラズマ用電極1の気化に起因したコンタミネーションの生成を抑制・防止できる。したがって、気化物が冷却されることにより生成される微粒子における、移行型プラズマ用電極1に起因した異物の混入も防止できる。
さて、母材部85の中心軸AX付近において、移行型プラズマP1が当たり、陰極点から母材部85が気化する。つまり、中心軸AX付近において、母材部85は高温に加熱され、気化する。また、上記の通り、母材部85の陰極点付近(中心軸AX付近)では高温に加熱されるので、大きな上昇気流が母材部85の陰極点付近(中心軸AXの付近)から発生する。当該上昇気流に乗って、母材部85からの気化物は、微粒子通路部25に向かう。
ここで、当該移動中において気化物は冷却され、凝結するので、当該気化物から微生物が生成される。よって、微粒子通路部25内には、図2の下方向から上方向に向けて、気化物から生成された微粒子が通過する。なお、密閉容器70および直流プラズマトーチ50は、冷却水供給部62からの冷却水供給により冷却されていることから、気化物の冷却も促進可能である。また、プラズマガス供給部63,64から供給され、ガス通路部26,27を移動するプラズマガスによっても、気化物・微粒子の冷却は促進される。
なお、上述した上昇気流に乗り、ガス通路部26,27から母材部85に向けて出力されたプラズマガスも、微粒子通路部25へと向かい、当該微粒子通路部25内を図2の下方向から上方向に移動する。
たとえば、プラズマガスが不活性ガスのみである場合には、母材部85から生成された微粒子と共に、不活性ガスも、微粒子通路部25内を図2の下方向から上方向に移動する。他方、プラズマガスが不活性ガスと反応ガス(分子ガス)とである場合には、母材部85から気化した気化物と反応ガスとが反応することにより生成された反応微粒子(たとえば、反応ガスが酸素である場合には、酸化金属微粒子が生成され、反応ガスが窒素である場合には、窒化金属微粒子が生成される)と共に、不活性ガスおよび反応に寄与しなかった反応ガスも、微粒子通路部25内を図2の下方向から上方向に移動する。
また、上記の通り、母材部85側では陰極点付近に熱が集中しているため、母材部85から微粒子通路部25に向かう流れ(陰極風であり、上昇気流)は大きい。他方、移行型プラズマ用電極1側では、熱が分散し、さらには冷却水により直流プラズマトーチ50等は効率よく冷却できるため、母材部85側方向に向かう流れ(陽極風)は小さくなる。よって、微粒子等の微粒子通路部25に向かい、当該微粒子通路部25内を移動する速度は、当該陽極風に妨げることなく、加速される。
さらには、循環ポンプ83の駆動により、密閉容器70→直流プラズマトーチ50→微粒子捕獲器71→熱交換器73→循環ポンプ83→密閉容器70、という循環の流れも発生している。よって、当該循環の流れにも依存して、微粒子等の微粒子通路部25内における移動は、より促進される。
また、上述したように、移行型プラズマ用電極1と母材部85との間において発生するプラズマは螺旋形状であり、母材部85の表面(上面)に対して、中心軸AXに向かう方向に傾斜して当たる。したがって、中心軸AXに沿って微粒子通路部25に向かう微粒子等が、移行型プラズマP1により、進行が妨げられることもない。
さて、微粒子通路部25内を通過した、微粒子とプラズマガスとは、微粒子捕獲器71に収容される。微粒子捕獲器71において、微粒子は膨張冷却される。そして、微粒子捕獲フィルター72により、微粒子は捕獲される一方、プラズマガスは、微粒子捕獲フィルター72を透過し、熱交換器73へと移動する。
なお、バルブB5からパルスエアを微粒子捕獲器71に向けて供給することにより、微粒子捕獲フィルター72において捕獲した微粒子を、捕集容器71aへと落下させることができる。これにより、図1に示すように、捕集容器71a内に微粒子80が捕集される。
微粒子捕獲フィルター72において分離されたプラズマガスは、熱交換器73内において完全に冷却される。その後、熱交換器73から出力されたプラズマガスは、循環ポンプ83により、図1に示すように、ガス通路部26,27に供給されるプラズマガスとして、および/または、ガス供給部90から密閉容器70内に供給されるプラズマガスとして、再利用される。
なお、ガス供給部90から密閉容器70内に供給されるプラズマガスは、直流プラズマトーチ50と母材部85との間の空間において側方から供給される(図2の符号PGaを参照)。当該プラズマガスPGaによっても、母材部85からの気化物の冷却は促進される。
また、当該密閉容器70内へのプラズマガスPGaの供給により、母材部85からの気化した気化物が、中心軸AXから離れる方向に拡散することを防止できる。
なお、バルブB1,B2,B3,B4,B6,B7,B8,B9,B10の開閉を制御(完全に閉まらないが、開き具合を調整する制御も含む)することにより、ガス通路部26,27に供給されるプラズマガスの流量、ガス供給部90へ供給されるプラズマガスの流量を調整することができる。ここで、バルブB7および/またはバルブB12は、循環ポンプ83から出力されたプラズマガスの一部を、密閉容器70→直流プラズマトーチ50→微粒子捕獲器71→熱交換器73→循環ポンプ83→密閉容器70、という循環経路から、外部に放出するための排気バルブ(排気部と把握できる)である。
上記のように、密閉容器70内に供給される各プラズマガスは、母材部85からの気化物の冷却に寄与する。よって、各プラズマガスの流量を調整することにより、気化物から生成される微粒子の大きさも調整することができる。たとえば、各プラズマガスの全体流量が多くなればなるほど、生成される微粒子の径は小さくなる。換言すれば、各プラズマガスの全体流量が少なくなればなるほど、生成される微粒子の径は大きくなる。
微粒子生成装置100は、上記のように構成されているので、母材部85の上面に対して、移行型プラズマP1を斜め方向(中心軸AXに近づく方向)から当てることが可能となる。これにより、母材部85の表面(上面)の陰極点近傍において熱が集中するため、当該陰極点近傍における母材部85の気化効率が大幅に向上する。このように、本発明では、直流プラズマトーチ50から発生した移行型プラズマP1を利用して母材部85を気化させているので、エネルギー効率を向上させることができる。
なお、図1の構成では、当該プラズマガスPGaの供給を、循環ポンプ83を利用して、プラズマガスの再利用により実現している。しかしながら、たとえば図1のバルブB12にプラズマガス供給源を接続し、当該プラズマ供給源から、直流プラズマトーチ50と母材部85との間の空間に対して、側方からのプラズマガスPGaを供給することも可能である(当該場合には、排気部となる排気バルブは、バルブB7のみとなる)。
さて、上記構成の微粒子生成装置100では、母材部85を密閉容器70内に配置し、直流プラズマトーチ50を用いて生成される移行型プラズマP1を、当該母材部85の上面に照射し、母材部85を蒸発させ、微粒子の生成を行っている。当該密閉容器70内の母材部85が蒸発により減少したときには、更なる微粒子の生成のために、密閉容器70内に、新たに母材部85を載置させる必要がある(つまり、微粒子材料の密閉容器70への再充填)。
しかし、図1に示す構成の微粒子生成装置100において、母材部85を新たに密閉容器70に配置させる場合には、密閉容器70を開放する必要がある。さらに、密閉容器70内に新たな母材部85を配置させた後には、密閉容器70を真空引きし、その後、密閉容器70内にプラズマガスを再供給する必要がある(なお、真空引き等の処理が不十分だと、生成される微粒子に不純物が混在する)。
つまり、図1に示す構成の微粒子生成装置100において、母材部85を新たに密閉容器70に配置させる場合には、複数の処理が必要となり、各処理には比較的長い時間を要し、プラズマガスの再供給等を要するので、微粒子生成効率の低下および微粒子生成のコスト高を招く。
そこで、母材部85を新たに密閉容器70に配置させたとしても、微粒子生成効率の低下および微粒子生成コスト高を抑制することができる微粒子生成装置を、以下の実施の形態において、図面に基づいて具体的に説明する。
<実施の形態>
図6は、本実施の形態に係る微粒子生成装置の密閉容器付近の概略構成を示す拡大断面図である。なお、図6の構成では、図面簡略化のために、直流プラズマトーチ50の構成は簡略化して図示している。
図1と図6との比較から分かるように、本実施の形態に係る微粒子生成装置では、密閉容器70Aの構成が、図1に示した密閉容器70の構成と相違する。なお、本実施の形態に係る微粒子生成装置において、図1〜5を用いて説明した微粒子生成装置と異なる構成に関して、以下において詳細に説明し、共通する構成等については、以下での説明は省略する。
図6に示すように、本実施の形態に係る微粒子生成装置では、密閉容器70Aは、底面に開口部が設けられている。具体的に、図6に示すように、密閉容器70Aは、下方向に突き出るように、断面形状が凸状である挿通部70Mを有する。そして、当該挿通部70Mには、当該凸状の突き出ている先端部において、開口部が配設されている。
また、本実施の形態では、母材部85は、インゴット状(たとえば、棒状または柱状の塊)である。ここで、母材部85の図6の径(たとえば、左右・紙面表裏方向の寸法)は、開口部の径(たとえば、左右・紙面表裏方向の寸法)とほぼ同じである(母材部85の図6の径は、開口部の径よりほんの少し小さい)。
図6に示すように、挿通部70Mの開口部から、インゴット状の母材部85が挿通される。ここで、図6に示すように、密閉容器70Aの開口部付近には、シール部m1が配設されており、開口部に挿通される母材部85の側面部と接触する。当該シール部m1の配設により、開口部に母材部85挿通されている状態において、密閉容器70Aの気密性が保持される。
また、微粒子生成装置は、密閉容器70Aの外側には、ローラR1が配設されている。当該ローラR1は、挿通部70Mの下方向に配設されている。図6に示すように、開口部に挿通されている母材部85は、当該ローラR1の支持を受け、当該ローラR1の送り出しを受け、上方向(直流プラズマトーチ50に向けて)、挿通部70Mに沿って移動することができる。
直流プラズマトーチ50と母材部85の上面との距離が一定に保たれている状態において、両部材50,85間に発生した移行型プラズマP1が母材部85の上面に照射される。そして、上述したように、当該照射により母材部85の上面部は蒸発する。当該蒸発により、母材部85の上面は下方向に後退するが、直流プラズマトーチ50と母材部85の上面との距離が一定に保たれているように、当該蒸発量に応じて、母材部85は上方向へと押し上げられる(移動する)。
また、本実施の形態では、プラズマ電源61の負極は、図6に示すように、挿通部70M下方向において、当該挿通部70Mから外部に露出している母材部85と電気的に接続している。
挿通部70M内を上方向に母材部85が移動したとしても、シール部m1と母材部85の側面との接触、プラズマ電源61の負極と母材部85との接触、およびローラR1と母材部85の側面との接触は、維持される。なお、挿通部70Mの側面と母材部85の側面とは、ほぼ接触している。
また、本実施の形態に係る微粒子生成装置では、図6に示すように、挿通部70Mの側面側に誘導コイルW1が配設されている。具体的に、誘導コイルW1は、密閉容器70Aの外側に配設されている。また、誘導コイルW1は、挿通部70Mの凸形状の付け根付近に配設されている。つまり、直流プラズマトーチ50と母材部85の上面との距離が一定に保たれているが、誘導コイルW1は、母材部85の上面と同じ高さ程度の位置に配設されており、シール部m1からは距離をおいて配設されている。
上記したように、母材部85の上面部は、移行型プラズマP1の照射により蒸発する(特に、母材部85の上面の中央領域に移行型プラズマP1が照射されるので、当該中央領域においてより蒸発する)。これに加えて、誘導コイルW1を用いた電磁誘導加熱により、母材部85を溶解している。なお、少なくとも、誘導コイルW1と対面している密閉容器70Aの部分(つまり、挿通部70M)は、たとえば銅材である。したがって、当該誘導コイルW1が配設されている領域において、密閉容器70Aはコールドクルーシブルとなっており、母材部85は、コールドクルーシブル誘導溶解法によっても溶解される。
つまり、誘導コイルW1に高周波電流を流すことにより(交流磁場を印加することによって)、溶解母材部85に誘導電流が誘起される。母材部85に誘導電流が流れてジュール熱が発生し融解し、当該誘導電流と磁場とで生じるローレンツ斥力によって溶融金属が盛り上って、密閉容器70A(挿通部70M)の壁面から離れて、母材部85の側面が存在する。
さて、上述したように、母材部85の蒸発量に応じて、母材部85を上方向へと押し上げる(移動する)。ここで、挿通部70Mに挿入されている一方の母材部85の下面に、他方の母材部85の上面を接触させておく。なお、一方の母材部85の図6の左右・紙面表裏方向の寸法と、他方の母材部85の図6の左右・紙面表裏方向の寸法とは、ほぼ同じである。
これにより、一方の母材部85が蒸発により残り少なくなったときには、次の他方の母材部85が連続的に、挿通部70Mへと挿通され、上方方向へと移動する。つまり、密閉容器70Aの気密性を維持しながら、母材部85の密閉容器70A内への再充填が可能となる(換言すれば、密閉容器70Aを開放することなく、密閉容器70A内への連続した母材部85の供給が可能となる)。
なお、密閉容器70Aに納まっている一方の母材部85は、挿通部70Mの外側に少なくとも一部が露出している他方の母材部85と、電気的に接続している。当該状態においては、プラズマ電源61の負極は他方の母材部85に接続されている。
以上のように、本実施の形態に係る微粒子生成装置では、密閉容器70Aの底面には、開口部が形成されており、インゴット状の母材部85は当該開口部から挿通される。
したがって、本実施の形態に係る微粒子生成装置では、密閉容器70Aを開放することなく、密閉容器70A内への連続した母材部85の供給(再充填)が可能となる。よって、母材部85を密閉容器70A内に再充填する度に、真空引きをしたり、プラズマガスを再供給し直したりする必要もない。したがって、本実施の形態に係る微粒子生成装置では、母材部85の再充填に伴う、処理効率の低下および処理コスト高を抑制することができる。また、母材部85の連続再充填も可能であるので、長時間に渡る連続した微粒子の生成処理も可能となる。なお、母材部85の再充填も、次から次へと直列的に母材部85を下から上方向へ押し出すだけであり、母材部85の再充填機構は、極めて簡易となる。
また、本実施の形態では、インゴット状の母材部85を直接、密閉容器70A内に挿入しており、移行型プラズマP1の照射を受ける母材部85を坩堝等に入れる必要もない(坩堝を用いる場合には、プラズマ電源61の陰極を接続するために、高価な坩堝を採用する必要が有り、また複雑な加工が必要な場合もある)。また、上記から分かるように、母材部85の密閉容器70Aへの再充填も母材部85を連続的に送り出す簡単な構成を採用している。したがって、本実施の形態に係る微粒子生成装置は、低コストで簡略化された構成により実現されている。
なお、本実施の形態に係る微粒子生成装置は、母材部85を入れる坩堝等が不要であるので、坩堝の構成材料が生成される微粒子に混在することも防止できる。また、本実施の形態に係る微粒子生成装置は、密閉容器70Aの外側に、母材部85の一部を露出させることができる。よって、特に冷却部を設けることなく、母材部85の全体が高温になることを抑制できる。
ここで、母材部85を入れる坩堝等を用いる場合には、当該坩堝の蒸発等を抑制するために、坩堝等を十分に冷却する冷却器が必須であるが、本実施の形態では、上記の通り坩堝を用いず、直接母材部85が密閉容器70A内に供給されるので、上記外気を用いた冷却で十分である(つまり、当該外気を用いた冷却で、インゴット状の母材部85の外部露出分が高温により変形することを十分に防止できる)。
なお、母材部85の長さはある程度の長さである場合には、直流プラズマトーチ50近傍の母材部85の上面は溶解するが、密閉容器70Aから外側にはみ出している部分(外部露出部分)は、上記の通り、十分冷却されている。したがって、母材部85の当該外部露出部分を把持することが可能であり、当該母材部85の上昇移動を支持することもできる。また、当該外部露出部分において、プラズマ電源61の負極を容易に接触させることもできる。
また、移行型プラズマP1の照射のみによっても、母材部85の溶解・蒸発は可能である。しかし、通常、移行型プラズマP1は母材部85の上面の中央領域に照射される。よって、移行型プラズマP1の照射のみだけでは、図6に示すように、母材部85の外縁部が残りがちとなる。
そこで、本実施の形態に係る微粒子生成装置は、密閉容器70Aの外側に誘導コイルW1を配設し、コールドクルーシブル誘導溶解法を利用し、母材部85の溶融・蒸発も補助的に行っている。
したがって、母材部85の上面を均等に溶解させることが可能となり、また、上述したローレンツ斥力により、母材部85の上面付近において、溶融した母材部が密閉容器70Aの側面(挿通部70Mの側面)に密着することを防止できる(ローレンツ斥力により、溶融した母材部85は、母材部85の側面側でなく、内部へと移動する)。よって、母材部85の密閉容器70A内の移動が阻害されることもない。
なお、コールドクルーシブル誘導溶解法を、母材部85の上面近傍のみに施すことができるように、誘導コイルW1は、移行型プラズマP1が照射されている母材部85の上面領域の側方に配設させることが好ましい。また、コールドクルーシブル誘導溶解法による母材部85への影響を密閉容器70Aの開口部付近に及ぶことを抑制するために、誘導コイルW1は、当該開口部から離して配設されることが好ましい。
また、図1,2等を用いて説明したように、直流プラズマトーチ50の中央部に設けられ、上下方向に延びた微粒子通路部25を通って、微粒子捕獲器71へと回収される。つまり、本発明に係る微粒子生成装置では、密閉容器70A内に直流プラズマトーチ50の他に、別途、微粒子回収管路等を設ける必要がない。したがって、密閉容器70A内の容積をより小さくしても良い。たとえば、図7に示すように、密閉容器70Bを細長い円筒形状とし、当該円筒形状の密閉容器70Bの底面部に、母材部85を挿通させる開口部を設ける構成も採用可能である(密閉容器以外の構成は、図6と同じである)。
つまり、上記のように、直流プラズマトーチ50内部に微粒子通路部25を配設させる構成により、微粒子回収のための新たなスペースを密閉容器70B内に設ける必要が無くなり、円筒形状の密閉容器70Bの採用が可能なる。これにより、直流プラズマトーチ50の外径、密閉容器70Bの内径および母材部85の外径をほぼ同一とした、構成を採用でき、装置全体の極小化を図ることができる。
なお、密閉容器内に余計なデッドスペースが増えると、金属蒸気含有ガスがそこに入り込み、密閉容器内において微粒子が凝縮し堆積してしまう。当該微粒子の凝縮・堆積は、歩留まりの低下・コンタミ要因となる。一方で、直流プラズマトーチ50内部に微粒子通路部25を配設させる構成により、上記の取り、容積の小さい密閉容器70Bを採用することが可能となり、密閉容器70B内に余分なデットスペースが発生することも防止できる。よって、本実施の形態に係る微粒子生成装置では、上記歩留まりの低下・コンタミ要因等に関する問題点も有さない。
また、図1等を用いて述べたように、移行型プラズマP1を利用した母材部85の蒸発量を増やすために、プラズマガスに反応ガスを混合することがある(たとえば、Arガスに、30〜50vol%で水素分子ガスを混合することがある)。一方で、当該反応ガスおよび微粒子が、密閉容器から外部の大気中へと漏れることは、好ましくない。
そこで、図8に示すように、微粒子通路部25と接続される真空ポンプVaを、微粒子回収側に配設し、密閉容器70B内を大気圧よりも低い状態に維持することが望ましい。ここで、図8と異なり、図6に示した微粒子通路部25に真空ポンプVaを接続させても良い。
真空ポンプVaを利用して、密閉容器70A,70B内の圧力を大気圧より低い圧力にすることにより、密閉容器70A,70Bから外気へと、反応ガスおよび微粒子が漏れることを防止できる。さらに、当該真空ポンプVaによる減圧処理により、微粒子通路部25を通った微粒子捕獲器71への微粒子回収等も促進される。
ここで、図6に示した微粒子通路部25に真空ポンプVaを接続した構成に比べて、図8に示した構成の方が好ましい。これは、密閉容器70A,70B内の圧力を減圧にすることによって、母材部85の蒸発が加速されるが、密閉容器70Aのように内部容積が比較的大きい場合には、真空引きのエネルギーロスが大きくなる、一方で、図8で示した構成では密閉容器70B内の容積も小さくて済むので、減圧状態を維持するためのエネルギーロスも抑制され、母材部85の蒸発加速効果の恩恵をより受け易い、からである。
なお、密閉容器70A,70B内の圧力は、プラズマの放電維持電圧との関係で求められる。放電維持電圧は、パッシェンの法則に従って圧力が低くなるほど低下する。したがって、密閉容器70A,70B内の圧力を低下させすぎることは、放電電力の低下並びにプラズマ中を飛来する電子の加速エネルギーの低下を意味するため、母材部85の移行型プラズマP1による加熱や反応ガスである分子ガスの原子への解離の観点において、あまり好ましいことではない。つまり、密閉容器70A,70B内の圧力を減圧させ過ぎることは、あまり好ましくない。
よって、密閉容器70A,70B内の圧力は、大気圧より少し低い程度でよく、たとえば、大気圧よりも十数kPa低い程度で良い。
1 移行型プラズマ用電極
2 内筒
3 磁石
4 外筒
5,6,7 絶縁物
25 微粒子通路部
26,27 ガス通路部
50 直流プラズマトーチ
61 プラズマ電源
62 冷却水供給部
63,64 プラズマガス供給部
65 プラズマトーチ昇降機構
70,70A,70B 密閉容器
70M 挿通部
71 微粒子捕獲器
71a 捕集容器
72 微粒子捕獲フィルター
73 熱交換器
77 筒部
80 微粒子
83 循環ポンプ
85 母材部
90 ガス供給部
100 微粒子生成装置
AX 中心軸
B1〜B12 バルブ
MF 磁界
P1 移行型プラズマ
PGa プラズマガス
W1 誘電コイル
m1 シール部
R1 ローラ
Va 真空ポンプ

Claims (4)

  1. 直流プラズマトーチと、
    前記直流プラズマトーチから離隔して対向して配置され、微粒子生成の原料となり、導電性を有する母材部と、
    前記直流プラズマトーチおよび前記母材部が内部に配置されるチャンバーとを、備えており、
    前記直流プラズマトーチは、
    リング状の磁石と、
    円筒形状であり、前記磁石が前記円筒の空洞内部に配置され、前記磁石と所定の距離だけ離隔している移行型プラズマ用電極とを、有しており、
    前記母材部に負極を印加し、前記移行型プラズマ用電極に正極を印加する直流電源を、さらに備えており、
    前記チャンバーの底面には、
    開口部が形成されており、
    前記母材部は、
    前記開口部から挿通されている、
    ことを特徴とする微粒子生成装置。
  2. 前記チャンバーの外側において、前記母材部の側面に対面する位置に配設された誘導コイルを、さらに備えている、
    ことを特徴とする請求項1に記載の微粒子生成装置。
  3. 前記直流プラズマトーチは、
    前記直流電源による電圧印加により前記移行型プラズマ用電極と前記母材部との間に生成された移行型プラズマによって、前記母材部から生成された微粒子が、通過することが可能な、前記対向の方向に延設された微粒子通路部を、
    さらに有している、
    ことを特徴とする請求項1または請求項2に記載の微粒子生成装置。
  4. 前記母材部が内部に配設されている前記チャンバー内は、
    大気圧よりも低い圧力状態となっている、
    ことを特徴とする請求項1乃至請求項3の何れかに記載の微粒子生成装置。
JP2013084555A 2013-04-15 2013-04-15 微粒子生成装置 Expired - Fee Related JP6005577B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013084555A JP6005577B2 (ja) 2013-04-15 2013-04-15 微粒子生成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013084555A JP6005577B2 (ja) 2013-04-15 2013-04-15 微粒子生成装置

Publications (2)

Publication Number Publication Date
JP2014205891A true JP2014205891A (ja) 2014-10-30
JP6005577B2 JP6005577B2 (ja) 2016-10-12

Family

ID=52119692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013084555A Expired - Fee Related JP6005577B2 (ja) 2013-04-15 2013-04-15 微粒子生成装置

Country Status (1)

Country Link
JP (1) JP6005577B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248450A (zh) * 2016-07-08 2016-12-21 吉林大学 一种仿樟子松结构的颗粒物发生装置
CN109702215A (zh) * 2019-01-25 2019-05-03 大连理工大学 热弧蒸发多腔体纳米粉体制备装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190302A (ja) * 1983-03-11 1984-10-29 Tokyo Tekko Kk 超微粒子製造方法および装置
JPS60194003A (ja) * 1984-03-13 1985-10-02 Hosokawa Funtai Kogaku Kenkyusho:Kk 金属微粒子製造法,並びに,装置
JPH0395900A (ja) * 1989-05-17 1991-04-22 Nkk Corp 移行式プラズマトーチ
JPH06299209A (ja) * 1993-04-14 1994-10-25 Sansha Electric Mfg Co Ltd 磁性材料の粉粒体の生成方法
JP2002501661A (ja) * 1997-05-30 2002-01-15 サントル ナスィオナル デ ラ ルシェルシェ スィアンティフィーク リアクティブ噴射器を有する誘導プラズマトーチ
JP2011071081A (ja) * 2009-08-28 2011-04-07 Toshiba Mitsubishi-Electric Industrial System Corp プラズマ溶融装置
JP2012040520A (ja) * 2010-08-20 2012-03-01 Toshiba Mitsubishi-Electric Industrial System Corp 微粒子生成装置および微粒子生成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190302A (ja) * 1983-03-11 1984-10-29 Tokyo Tekko Kk 超微粒子製造方法および装置
JPS60194003A (ja) * 1984-03-13 1985-10-02 Hosokawa Funtai Kogaku Kenkyusho:Kk 金属微粒子製造法,並びに,装置
JPH0395900A (ja) * 1989-05-17 1991-04-22 Nkk Corp 移行式プラズマトーチ
JPH06299209A (ja) * 1993-04-14 1994-10-25 Sansha Electric Mfg Co Ltd 磁性材料の粉粒体の生成方法
JP2002501661A (ja) * 1997-05-30 2002-01-15 サントル ナスィオナル デ ラ ルシェルシェ スィアンティフィーク リアクティブ噴射器を有する誘導プラズマトーチ
JP2011071081A (ja) * 2009-08-28 2011-04-07 Toshiba Mitsubishi-Electric Industrial System Corp プラズマ溶融装置
JP2012040520A (ja) * 2010-08-20 2012-03-01 Toshiba Mitsubishi-Electric Industrial System Corp 微粒子生成装置および微粒子生成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248450A (zh) * 2016-07-08 2016-12-21 吉林大学 一种仿樟子松结构的颗粒物发生装置
CN109702215A (zh) * 2019-01-25 2019-05-03 大连理工大学 热弧蒸发多腔体纳米粉体制备装置
CN109702215B (zh) * 2019-01-25 2023-12-29 大连理工大学 热弧蒸发多腔体纳米粉体制备装置

Also Published As

Publication number Publication date
JP6005577B2 (ja) 2016-10-12

Similar Documents

Publication Publication Date Title
US7879203B2 (en) Method and apparatus for cathodic arc ion plasma deposition
JP5194133B2 (ja) イオンビーム装置
JP5710177B2 (ja) 微粒子生成装置および微粒子生成方法
KR101237184B1 (ko) 플라즈마 건 및 이를 구비한 플라즈마 건 성막장치
JP6215171B2 (ja) 微粒子生成装置
JP5940441B2 (ja) 微粒子生成装置および微粒子生成方法
JP6005577B2 (ja) 微粒子生成装置
KR20180135760A (ko) 나노 분말의 제조 장치 및 이 제조 장치를 이용한 제조 방법
JP2008053116A (ja) イオンガン、及び成膜装置
JP5992358B2 (ja) 微粒子生成装置
CN210030866U (zh) 一种气体弧光放电装置以及与真空腔体的耦合系统
CN209045482U (zh) 微波ecr等离子体阴极环形束电子枪
CN105088156A (zh) 一种磁控溅射设备
JP6208107B2 (ja) 微粒子生成装置
JP2013089538A (ja) 荷電粒子線装置、及び脱ガス方法
JP6095338B2 (ja) 電子銃および荷電粒子線装置
KR20200015209A (ko) 질화철 나노 분말의 제조 방법 및 제조 시스템과 이 제조 방법에 의해 제조되는 질화철 나노 분말
JP5344609B2 (ja) イオン化スパッタ真空ポンプ
JP2009170355A (ja) イオンガン及び成膜装置
JP5962979B2 (ja) 成膜装置
JP2012164677A (ja) イオンガン、及び成膜装置
JPH0770741A (ja) 蒸発源
CN110294468A (zh) 使用压缩电弧制备富勒烯的装置及方法
CN218115568U (zh) 多功能镀膜设备
JP5374288B2 (ja) スパッタリング方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160907

R150 Certificate of patent or registration of utility model

Ref document number: 6005577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees