JP2014202317A - 油圧制御装置 - Google Patents

油圧制御装置 Download PDF

Info

Publication number
JP2014202317A
JP2014202317A JP2013080651A JP2013080651A JP2014202317A JP 2014202317 A JP2014202317 A JP 2014202317A JP 2013080651 A JP2013080651 A JP 2013080651A JP 2013080651 A JP2013080651 A JP 2013080651A JP 2014202317 A JP2014202317 A JP 2014202317A
Authority
JP
Japan
Prior art keywords
hydraulic
hydraulic pressure
torque converter
control
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013080651A
Other languages
English (en)
Inventor
健太 堀池
Kenta Horiike
健太 堀池
湯浅 恵
Megumi Yuasa
恵 湯浅
星 児島
Sei Kojima
星 児島
啓允 二谷
Hiromitsu Nitani
啓允 二谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013080651A priority Critical patent/JP2014202317A/ja
Priority to US14/243,666 priority patent/US9033852B2/en
Publication of JP2014202317A publication Critical patent/JP2014202317A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • B60W10/023Fluid clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/72Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0262Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic
    • F16H61/0265Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic for gearshift control, e.g. control functions for performing shifting or generation of shift signals
    • F16H61/0267Layout of hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • F16H2061/062Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means for controlling filling of clutches or brake servos, e.g. fill time, fill level or pressure during filling

Abstract

【課題】クラッチ係合ショックおよび作動油量の消費を抑制でき、且つトルク伝達不良を抑制できる油圧制御装置を提供する。【解決手段】この油圧制御装置1は、エンジン10の回転動力を作動油を介して伝達するトルクコンバータ20と、作動油圧により係合・解放可能な走行用摩擦係合要素C1,B1を用いてトルクコンバータ20から伝達された回転動力の回転方向を切り換える前後進切換機構30と、同じ制御油圧PSLTでトルクコンバータ20内の作動油量および前後進切換機構30の作動油圧を制御するリニアソレノイドバルブSLTとを備える。リニアソレノイドバルブSLTは、エンジン10の始動時において、トルクコンバータ20内の作動油量が不足している場合は、トルクコンバータ20内の作動油量が不足していない場合と比べて、制御油圧PSLTを増加させる。【選択図】図1

Description

本発明は、車両用駆動装置の油圧制御装置に関する。
特許文献1には、前後進切換機構の作動油圧とトルクコンバータの作動油量とを1つの制御弁により制御する油圧制御装置が開示されている。この油圧制御装置では、前記制御弁は、油路を介して前記トルクコンバータおよび前記前後進切換機構に同一油圧の作動油を供給している。
特開2009−068524号公報
特許文献1の油圧制御装置では、クラッチ係合ショックを抑え且つ作動油量の消費を抑えて燃費を向上させるには、定常時において、前記制御弁から前記前後進切換機構に供給される作動油圧を極力低く設定する必要がある。
しかし、特許文献1の油圧制御装置では、1つの制御弁により前後進切換機構の作動油圧とトルクコンバータの作動油量とが制御されるので、トルクコンバータに供給される作動油量も低く制御される。
そのため、車両の長期放置等によりトルクコンバータ内の作動油量が減少しているときに、エンジン始動後に直ぐに発進しようとすると、トルクコンバータへの作動油量の供給が追い付かず、トルク伝達不良を起こす可能性があるという問題がある。
そこで、本発明は、上記の問題点を鑑みてなされたものであり、クラッチ係合ショックおよび作動油量の消費を抑制でき、且つトルク伝達不良を抑制できる油圧制御装置を提供することを目的とする。
上記課題を解決するために、本発明の油圧制御装置は、エンジンの回転動力を作動油を介して伝達するトルクコンバータと、作動油圧により係合・解放可能な走行用摩擦係合要素を有し、前記走行用摩擦係合要素の係合・解放により、前記トルクコンバータから伝達された前記回転動力の回転方向を切り換える前後進切換機構と、同じ制御油圧で前記トルクコンバータ内の作動油量および前記前後進切換機構の作動油圧を制御する制御弁と、を備える油圧制御装置において、前記制御弁は、前記エンジンの始動時または始動直後において、前記トルクコンバータ内の作動油が不足している場合は、前記トルクコンバータ内の作動油が不足していない場合と比べて、前記制御油圧を増加させることを特徴とする。
上記の構成によれば、エンジンの始動時または始動直後において、トルクコンバータ内の作動油量が不足している場合は、トルクコンバータ内の作動油量が不足していない場合と比べて、制御油圧が増加される。よって、エンジンの始動時または始動直後にトルクコンバータ内の作動油量が不足している場合は、トルクコンバータ内の作動油量を急速充填でき、トルク伝達不良を抑制できる。更に、エンジンの始動時または始動直後にトルクコンバータ内の作動油量が不足していない場合において、制御油圧を低く制御でき(即ち定常時において制御油圧を低く制御でき)、これによりクラッチ係合ショックおよび作動油量の消費を抑制できる。
また、本発明の油圧制御装置は、上記に記載の油圧制御装置であって、前記制御弁は、前記トルクコンバータ内の作動油量が不足していない場合は、前記制御油圧を前記走行用摩擦係合要素の係合に必要な最低油圧に制御し、前記トルクコンバータ内の作動油量が不足している場合は、前記制御油圧を前記最低油圧よりも高い油圧に制御することを特徴とする。
上記の構成によれば、トルクコンバータ内の作動油量が不足していない場合は、制御油圧がクラッチの係合に必要な最低油圧に制御されるので、クラッチ係合ショックおよび作動油量の消費をより一層抑制できる。また、トルクコンバータ内の作動油量が不足している場合は、制御油圧が最低油圧よりも高い油圧に制御されるので、トルクコンバータ内の作動油量を急速充填でき、トルク伝達不良を抑制できる。
また、本発明の油圧制御装置は、上記に記載の油圧制御装置であって、前記エンジンのエンジン回転速度と前記トルクコンバータのタービン回転速度との差回転が所定の閾値差回転以上の場合に、前記トルクコンバータ内の作動油量が不足していると判定されることを特徴とする。
上記の構成によれば、エンジンのエンジン回転速度とトルクコンバータのタービン回転速度との差回転が所定の閾値差回転以上の場合に、トルクコンバータ内の作動油量が不足していると判定されるので、エンジンのエンジン回転速度とトルクコンバータのタービン回転速度との差回転を利用して、トルクコンバータ内の作動油量の不足の有無を判定できる。
また、本発明の油圧制御装置は、上記に記載の油圧制御装置であって、前記前後進切換機構から伝達された前記回転動力の変速比を変化させる変速機を更に備え、前記変速機内の潤滑油の温度が所定の閾値温度以下の場合に、前記トルクコンバータ内の作動油量が不足していると判定されることを特徴とする。
上記の構成によれば、変速機内の潤滑油の温度が所定の閾値温度以下の場合に、トルクコンバータ内の作動油量が不足していると判定されるので、変速機内の潤滑油の温度を利用して、トルクコンバータ内の作動油量の不足の有無を判定できる。
また、本発明の油圧制御装置は、上記に記載の油圧制御装置であって、前記エンジンの停止時からの放置時間が所定の閾値時間以上の場合に、前記トルクコンバータ内の作動油量が不足していると判定されることを特徴とする。
上記の構成によれば、エンジンの停止時からの放置時間が所定の閾値時間以上の場合に、トルクコンバータ内の作動油量が不足していると判定されるので、エンジンの停止時からの放置時間を利用して、トルクコンバータ内の作動油量の不足の有無を判定できる。
本発明の油圧制御装置によれば、クラッチ係合ショックおよび作動油の油量消費を抑制でき、且つトルク伝達不良を抑制できる。
本発明の第1実施形態に係る油圧制御装置を搭載した車両用駆動装置の構成概略図である。 図1の制御装置の要部の構成概略図である。 図1の油圧制御回路の具体例を示した図である。 本発明の第1実施形態に係る油圧制御装置の要部の動作を説明するフローチャートである。
以下、本発明の実施形態を添付図面を参照して詳細に説明する。
≪第1実施形態≫
<構成説明>
図1は、本発明の第1実施形態に係る油圧制御装置を搭載した車両用駆動装置の構成概略図である。図2は、図1の制御装置の要部の構成概略図である。図3は、図1の油圧制御回路の具体例を示した図である。
この実施形態に係る油圧制御装置1は、図1に示すように、車両用駆動装置100に搭載されて、トルクコンバータ20、前後進切換機構30および無段変速機40などを油圧制御するものである。この油圧制御装置1は、同じ制御油圧(出力油圧PSLT)でトルクコンバータ20内の作動油量および前後進切換機構30の作動油圧を制御する制御弁(リニアソレノイドバルブSLT)を備えており、エンジン10の始動時または始動直後において、トルクコンバータ20内の作動油量が不足している場合は、前記制御弁により、制御油圧PSLTを、トルクコンバータ20内の作動油量が不足していない場合と比べて増加させることを特徴とする。以下、この実施形態に係る油圧制御装置1を搭載した車両用駆動装置100について詳細に説明する。
この実施形態の車両用駆動装置100は、例えばFF(フロントエンジン・フロントドライブ)型車両に好適に採用されるものである。この車両用駆動装置100は、図1に示すように、エンジン10と、トルクコンバータ20と、前後進切換機構30と、ベルト式の無段変速機40と、減速歯車機構50と、差動歯車機構60と、油圧制御回路70と、制御装置80とを備えている。
この実施形態では、トルクコンバータ20、前後進切換機構30、無段変速機40、減速歯車機構50および差動歯車機構60により、エンジン10の回転動力を左右の駆動輪65L,65Rに伝達する動力伝達機構90が構成されている。また、油圧制御装置1は、少なくとも、動力伝達機構90、油圧制御回路70および制御装置80を含む構成により構成されている。
動力伝達機構90では、エンジン10の回転動力は、トルクコンバータ20、前後進切換機構30、無段変速機40、減速歯車機構50および差動歯車機構60に順に伝達されて左右の駆動輪65L,65Rに分配される。
トルクコンバータ20は、エンジン10の回転動力を作動油を介して前後進切換機構30に伝達するものである。トルクコンバータ20は、フロントカバー21と、ポンプインペラ22と、タービンランナ23と、支持部材25と、ロックアップクラッチ26と、タービン軸28とを備えている。
フロントカバー21は、エンジン10の出力軸11に連結されている。ポンプインペラ22は、フロントカバー21を介して出力軸11に連結されている。タービンランナ23は、フロントカバー21内において、ポンプインペラ22に対向した状態でタービン軸28に連結されている。タービン軸28は、前後進切換機構30のサンギヤ32に連結されている。ロックアップクラッチ26は、油圧制御回路70の油圧制御によりポンプインペラ22とタービンランナ23とを直結/解除するものであり、フロントカバー21の内面に対向した状態で、支持部材25に配設されている。支持部材25は、ロックアップクラッチ26を支持する部材であり、フロントカバー21の内面に接近/離間可能にタービン軸28に配設されている。支持部材25は、フロントカバー21の内部空間をポンプインペラ22およびタービンランナ23が配置する空間(係合側油圧室)261とロックアップクラッチ26が配置する空間(解放側油圧室)262とに区画している。係合側油圧室261内の油圧(ロックアップ係合油圧)PONおよび解放側油圧室262内の油圧(ロックアップ解放油圧)POFFは、油圧制御回路70から供給される制御油圧PSLTにより制御される。係合側油圧室261内の作動油により、ポンプインペラ22とタービンランナ23との間の作動油を介しての動力伝達が行われる。なお、係合側油圧室261内の作動油をトルクコンバータ20内の作動油とも呼ぶ。
このトルクコンバータ20では、油圧制御回路70の油圧制御によりロックアップ差圧ΔP(=PON−POFF)が所定差圧ΔP1未満に制御されると、支持部材25が可動してロックアップクラッチ26が解放され(即ちロックアップクラッチ26とフロントカバー21の内面とが離間して)、ポンプインペラ22とタービンランナ23との直結が解除される。この解除状態では、エンジン10の回転動力によりポンプインペラ22が回転され、その回転が係合側油圧室261内の作動油を介してタービンランナ23に伝達してタービンランナ23が回転され、タービン軸28が回転される。このように、係合側油圧室261内の作動油を介してエンジン10の回転動力が伝達される。
また、油圧制御回路70の油圧制御によりロックアップ差圧ΔPが所定差圧ΔP1以上に制御されると、支持部材25が可動してロックアップクラッチ26が係合し(即ちロックアップクラッチ26とフロントカバー21の内面とが完全系合し)、それらを介してポンプインペラ22とタービンランナ23とが直結される。この直結状態では、エンジン10の回転動力は、出力軸11、フロントカバー21、ロックアップクラッチ26およびタービン軸28と順に伝達される。このように作動油を介さずにエンジン10の回転動力が伝達される。
前後進切換機構30は、トルクコンバータ20からの回転動力の回転方向を前進方向または後進方向に切り換えたり、トルクコンバータ20からの回転動力を遮断するものである。前後進切換機構30は、例えばダブルピニオン型の遊星歯車機構31と、油圧制御回路70の油圧制御により係合/解放される走行用摩擦係合要素(前進用クラッチC1および後進用ブレークB1、以後、走行用摩擦係合要素C1,B1とも呼ぶ)とを備えている。
遊星歯車機構31は、サンギヤ32と、リングギヤ33と、ピニオンギヤ34,35と、キャリア36とを備えている。
サンギヤ32は、トルクコンバータ20のタービン軸28に連結されている。キャリア36は、無段変速機40の入力軸47に連結されている。サンギヤ32およびキャリア36は、前進用クラッチC1を介して選択的に相互に連結される。リングギヤ33は、後進用ブレークB1を介してハウジングに選択的に連結される。サンギヤ32とリングギヤ33との間には、サンギヤ32に噛合する内側のピニオンギヤ34と、ピニオンギヤ34およびリングギヤ33に噛合する外側のピニオンギヤ35とが配置されている。各ピニオンギヤ34,35は、キャリア36によって自転かつ公転自在に保持されている。
この前後進切換機構30では、前進用クラッチC1の係合状態で且つ後進用ブレークB1の解放状態では、トルクコンバータ20からの回転動力は、前進方向に回転されて無段変速機40の入力軸47に出力される。また、前進用クラッチC1の解放状態で且つ後進用ブレークB1の係合状態では、トルクコンバータ20からの回転動力は、後進方向に回転されて無段変速機40の入力軸47に出力される。また、前進用クラッチC1の解放状態で且つ後進用ブレークB1の解放状態では、トルクコンバータ20からの回転動力は、遮断されて無段変速機40に出力されない。
無段変速機40は、前後進切換機構30からの回転動力の変速比γ(=入力回転軸回転速度NIN/出力軸回転速度NOUT)を無段階に変化させるものである。無段変速機40は、前後進切換機構30のキャリア36に連結された入力軸47と、減速歯車機構50に連結された出力軸48と、入力軸47に連結された駆動側プーリ(プライマリプーリ)41と、出力軸48に連結された従動側プーリ(セカンダリプーリ)42と、駆動側プーリ41および従動側プーリ42間に巻き掛けられた伝動ベルト45とを備えている。駆動側プーリ41および従動側プーリ42は、油圧制御回路70の油圧制御により、それらの溝幅が制御可能に構成されている。
この無段変速機40では、前後進切換機構30からの回転動力により入力軸47が回転されると、この回転により駆動側プーリ41が回転され、この回転により伝動ベルト45が循環移動して従動側プーリ42が回転され、この回転により出力軸48が回転される。これにより、前後進切換機構30からの回転動力が無段変速機40を介して減速歯車機構50に伝達される。その際、油圧制御回路70の油圧制御により、駆動側プーリ41および従動側プーリ42の各々の溝幅が制御される。駆動側プーリ41の溝幅の制御(変速制御)により、伝動ベルト45の掛かり径が連続的に変更されて、変速比γが無段階に変化される。また、従動側プーリ42の溝幅の制御(ベルト挟圧制御)により、伝動ベルト45の滑りが防止される。
減速歯車機構50は、無段変速機40からの回転動力を減速するものである。差動歯車機構60は、減速歯車機構50からの回転動力を、左右の駆動輪65L,65Rの内輪差を吸収しつつ左右の駆動輪65L,65Rに分配するものである。
油圧制御回路70は、制御装置80の制御に応じて、トルクコンバータ20のロックアップクラッチ26と、前後進切換機構30の走行用摩擦係合要素C1,B1と、無段変速機40の駆動側プーリ41および従動側プーリ42とを油圧制御するものである。
油圧制御回路70は、例えば図3に示すように、変速制御バルブ120と、ベルト挟圧制御バルブ130と、ロックアップ制御バルブ140と、ガレージシフトバルブ160と、マニュアルバルブ170と、プライマリレギュレータバルブ110と、減圧バルブ180と、各リニアソレノイドバルブSLP,SLS,SLTと、ON−OFFソレノイドバルブSL1と、オイルポンプ27とを備えている。
オイルポンプ27は、例えばエンジン10の回転動力により駆動され、元圧となるライン油圧PLを発生し、そのライン油圧PLを、油路101を通じて、プライマリレギュレータバルブ110、変速制御バルブ120およびベルト挟圧制御バルブ130に供給する。
プライマリレギュレータバルブ110は、各リニアソレノイドバルブSLS,SLTの出力油圧PSLS,PSLTに応じて、油路101内のライン油圧PLを所定油圧に調整するものである。
プライマリレギュレータバルブ110は、例えば、第1スプール111aと、第2スプール111bと、スプリング112と、制御ポート115a,115b,115cと、入力ポート116と、出力ポート117とを備えている。
第1スプール111aおよび第2スプール111bは、プライマリレギュレータバルブ110内に上下に配置されると共に、上下方向に移動可能に配置されている。スプリング112は、第2スプール111bを上方に付勢するものである。制御ポート115aおよび入力ポート116は、油路101に接続されている。制御ポート115bは、油路102を通じてリニアソレノイドバルブSLSの出力ポートSLSbに接続されている。制御ポート115cは、油路103を通じて減圧バルブ180の出力ポート187に接続されている。出力ポート117は、セカンダリレギュレータバルブ(図示省略)に接続されている。
なお、前記セカンダリレギュレータバルブは、所定の入力ポート(図示省略)および所定の出力ポート(図示省略)を有している。前記所定の入力ポートには、リニアソレノイドバルブSLTの出力ポートSLTcに接続されており、リニアソレノイドバルブSLTの出力油圧PSLTが入力される。また、前記所定の出力ポートは、ロックアップ制御バルブ140の各入力ポート146a,146bに接続されており、前記セカンダリレギュレータバルブの出力油圧PSECを各入力ポート146a,146bに出力する。前記セカンダリレギュレータバルブは、前記所定の入力ポートに入力される出力油圧PSLTに応じて、前記所定の出力ポートから各入力ポート146a,146bに出力する出力油圧PSECが制御される。
このプライマリレギュレータバルブ110では、制御ポート115aから油路101内のライン油圧PLが導入され、制御ポート115bからリニアソレノイドバルブSLSの出力油圧PSLSが導入され、制御ポート115cから減圧バルブ180の出力油圧PCTLが導入される。そして、各出力油圧PSLS,PCTLの大きい方およびスプリング112の付勢力の合成力とライン油圧PLとの大小関係に応じて、第1スプール111aが上下動される。
即ち、ライン油圧PLが前記合成力よりも大きい場合は、第1スプール111aが下方に移動されて入力ポート116および出力ポート117が互いに連通する。これにより、油路101内のライン油圧PLは、入力ポート116および出力ポート117を通じてドレーン(排圧)されて、減圧される。他方、前記合成力がライン油圧PLよりも大きい場合は、第1スプール111aが上方に移動されて入力ポート116および出力ポート117が互いに遮断される。これにより、油路101内のライン油圧PLは、保持される。この場合、出力油圧PSLSが出力油圧PCTLよりも大きい場合は、第1スプール111aは、第2スプール111bから離間した状態で上方に移動され、他方、出力油圧PCTLが出力油圧PSLSよりも大きい場合は、第1スプール111aは、第2スプール111bと一体的な状態で上方に移動される。
変速制御バルブ120は、リニアソレノイドバルブSLPの出力油圧(制御油圧)PSLPbをパイロット圧として、油路101を通じてオイルポンプ27から供給されるライン油圧PLを調整し、その調整したライン油圧(以後、変速油圧と呼ぶ)PINを作動油圧として油路109aを通じて無段変速機40の油圧アクチュエータ413に供給して、無段変速機40の駆動側プーリ41の溝幅を制御する。
ベルト挟圧制御バルブ130は、リニアソレノイドバルブSLSの出力油圧(制御油圧)PSLSをパイロット圧として、油路101を通じてオイルポンプ27から供給されるライン油圧PLを調整し、その調整したライン油圧(以後、ベルト挟圧油圧とも呼ぶ)POUTを作動油圧として油路109bを通じて無段変速機40の油圧アクチュエータ423に供給して、無段変速機40の従動側プーリ42の溝幅を制御する。
減圧バルブ180は、リニアソレノイドバルブSLTの出力油圧PSLTを減圧してプライマリレギュレータバルブ110の制御ポート115cに供給するものである。減圧バルブ180は、例えば、スプール181と、スプリング182と、制御ポート185と、入力ポート186と、出力ポート187と、フィードバックポート188と、ドレーンポート189とを備えている。
スプール181は、減圧バルブ180内に上下方向に移動可能に配置されている。スプリング182は、スプール181を上方に付勢するものである。制御ポート185は、油路104を通じてリニアソレノイドバルブSLTの出力ポートSLTbに接続されている。入力ポート186は、第1モジュレータバルブ(図示省略)に接続されている。前記第1モジュレータバルブは、ライン油圧PLを調整して出力油圧(第1モジュレータ油圧)PM1として入力ポート186に出力する。出力ポート187は、油路103を通じてプライマリレギュレータバルブ110の制御ポート115cに接続されている。フィードバックポート188は、油路103を通じて出力ポート187に接続されている。
この減圧バルブ180では、制御ポート185にリニアソレノイドバルブSLTの出力油圧(制御油圧)PSLTが導入され、入力ポート186に前記第1モジュレータバルブの出力油圧PM1が導入され、フィードバックポート188に出力ポート187の出力油圧PCTLが導入される。そして、出力油圧PCTLおよびスプリング182の付勢力の圧力P182の合成力と出力油圧PSLTとの大小関係に応じて、スプール181が上下動される。
即ち、出力油圧PSLTがスプリング182の付勢力の圧力P182よりも小さい場合は、スプール181が上方に移動されて、出力ポート187とドレーンポート189とが連通されると共に入力ポート186が遮断される。これにより、出力ポート187の出力油圧PCTLは、ドレーンポート189からドレーン(排圧)されて値0になる。
なお、減圧バルブ180の出力油圧PCTLが値0の場合は、出力油圧PCTLによりプライマリレギュレータバルブ110を油圧制御できないので、リニアソレノイドバルブSLSの出力油圧PSLSが油路102を通じてプライマリレギュレータバルブ110の制御ポート115bに供給されることで、プライマリレギュレータバルブ110が油圧制御される。
他方、出力油圧PSLTがスプリング182の付勢力の圧力P182以上の場合は、スプール181が下方に移動されて、出力ポート187と入力ポート186とが連通されると共にドレーンポート189が遮断される。この場合の出力油圧PCTLは、前記合成力と出力油圧PSLTとの均衡関係からPCTL=PSLT−P182となる。このように、減圧バルブ180は、リニアソレノイドバルブSLTの出力油圧PSLTを(PSLT−P182)に減圧して、出力油圧PCTLとしてプライマリレギュレータバルブ110の制御ポート115cに供給する。
マニュアルバルブ170は、シフトレバー171の操作位置に従って、ガレージシフトバルブ160の出力油圧(作動油圧)P160を作動油圧として前後進切換機構30の前進用クラッチC1および後進用ブレーキB1を油圧制御するものである。
シフトレバー171は、前進用クラッチC1および後進用ブレーキB1の係合/解放の組み合わせを切換操作する為のものである。ここでは、シフトレバー171の操作位置として、例えば、駐車のためのパーキング位置「P」、後進走行のためのリバース位置「R」、動力伝達を遮断するニュートラル位置「N」、前進走行のためのドライブ位置「D」などが設定されている。
シフトレバー171の操作位置がパーキング位置「P」またはニュートラル位置「N」に切り換えられた場合は、マニュアルバルブ170は、出力油圧P160を前進用クラッチC1および後進用ブレーキB1に供給せず、前進用クラッチC1および後進用ブレーキB1内の作動油をドレーン(排出)する。これにより、前進用クラッチC1および後進用ブレーキB1は共に解放される。
また、シフトレバー171の操作位置がリバース位置「R」に切り換えられた場合は、マニュアルバルブ170は、後進用ブレーキB1には出力油圧P160を供給し、前進用クラッチC1には油圧P160を供給せず、前進用クラッチC1内の作動油をドレーンする。これにより、後進用ブレーキB1は係合され、前進用クラッチC1は解放される。
また、シフトレバー171の操作位置がドライブ位置「D」に切り換えられた場合は、マニュアルバルブ170は、出力油圧P160を前進用クラッチC1には供給し、後進用ブレーキB1には供給せず、後進用ブレーキB1内の作動油をドレーンする。これにより、前進用クラッチC1は係合され、後進用ブレーキB1は解放される。
ガレージシフトバルブ160は、ON−OFFソレノイドバルブSL1の出力油圧(制御油圧)PSL1に基づいて、リニアソレノイドバルブSLTの出力油圧(制御油圧)PSLTおよび第2モジュレータバルブ(図示省略)の出力油圧PM2のうちの一方を選択して、出力油圧(作動油圧)P160としてマニュアルバルブ170に出力するものである。
ガレージシフトバルブ160は、スプール161と、スプリング162と、制御ポート165と、入力ポート166a,166bと、出力ポート167と、ドレーンポート169とを備えている。
スプール161は、ガレージシフトバルブ160内に上下方向に移動可能に配置されている。スプリング162は、スプール161を上方に付勢するものである。制御ポート165は、ON−OFFソレノイドバルブSL1の出力ポートSL1bに接続されている。入力ポート166aは、前記第2モジュレータバルブに接続されている。なお、前記第2モジュレータバルブは、ライン油圧PLを調整して出力油圧PM2として入力ポート166aに出力する。入力ポート166bは、油路105を通じてリニアソレノイドバルブSLTの出力ポートSLTcに接続されている。出力ポート167は、油路107を通じてマニュアルバルブ170の所定の入力ポートに接続されている。
このガレージシフトバルブ160では、ON−OFFソレノイドバルブSL1がON制御(通電制御)されてON−OFFソレノイドバルブSL1の出力油圧PSL1が制御ポート165に導入されると、スプール161がスプリング162の付勢力に抗して下方に移動されて、ガレージシフトバルブ160がコントロール位置(図2のガレージシフトバルブ160の左半分に示す位置)に保持される。
このコントロール位置では、入力ポート166bと出力ポート167とが連通されると共に、入力ポート166aと出力ポート167とが遮断される。これにより、リニアソレノイドバルブSLTの出力油圧PSLTが入力ポート166bおよび出力ポート167を介して出力油圧(作動油圧)P160として出力されて、油路107を通じてマニュアルバルブ170に供給される。そして、マニュアルバルブ170では、上述のように、シフトレバー171の操作位置に従って、その出力油圧P160を用いて前進用クラッチC1または後進用ブレーキB1を係合させる(即ち、リニアソレノイドバルブSLTの出力油圧PSLTが直圧で前進用クラッチC1または後進用ブレーキB1に入力される)。これにより、例えばガレージモード時に、リニアソレノイドバルブSLTの出力油圧PSLTが直圧で前進用クラッチC1に入力される。
他方、ON−OFFソレノイドバルブSL1がOFF制御(非通電制御)されて出力油圧PSL1が停止されると、スプール161がスプリング162の付勢力により上方に移動されて、ガレージシフトバルブ160がノーマル位置(図2のガレージシフトバルブ160の右半分に示す位置)に保持される。
このノーマル位置では、入力ポート166aと出力ポート167とが連通されると共に、入力ポート166bと出力ポート167とが遮断される。これにより、前記第2モジュレータバルブの出力油圧PM2が入力ポート166aおよび出力ポート167を介して出力油圧P160として出力されて、油路107を通じてマニュアルバルブ170に供給される。そして、マニュアルバルブ170では、上述のように、シフトレバー171の操作位置に従って、その出力油圧P160を用いて前進用クラッチC1または後進用ブレーキB1を係合させる。
ここでは、ON−OFFソレノイドバルブSL1は、例えば車両発進時等のガレージシフトの際にシフトレバー171の操作位置が非走行位置(例えば「P」または「N」)から走行位置(例えば「D」)に切り換えられた場合、または、シフトレバー171の操作位置がリバース位置「R」に切り換えられた場合は、制御装置80の制御により先ずON制御された後にOFF制御される。
即ち、ON−OFFソレノイドバルブSL1は、走行用摩擦係合要素C1,B1の係合過度時(即ち係合動作開始時から完全係合状態に至るまでの間)は、ON制御されて、リニアソレノイドバルブSLTの出力油圧PSLTを係合過度時の出力油圧(作動油圧)P160として出力し、走行用摩擦係合要素C1,B1が完全係合状態に至ると、OFF制御されて、前記第2モジュレータバルブの出力油圧PM2を完全係合時用の出力油圧(作動油圧)P160として出力する。
なお、シフトレバー171の操作位置が非走行位置(例えば「P」または「N」)の場合は、ON−OFFソレノイドバルブSL1はOFF制御される。この場合は、マニュアルバルブ170は走行用摩擦係合要素C1,B1に出力油圧P160を供給しないので、前記第2モジュレータバルブの出力油圧PM2は走行用摩擦係合要素C1,B1に供給されない。
ロックアップ制御バルブ140は、リニアソレノイドバルブSLTの出力油圧PSLTおよびON−OFFソレノイドバルブSL1の出力油圧PSL1に応じて、トルクコンバータ20のロックアップクラッチ26の係合/解放を油圧制御するものである。
ロックアップ制御バルブ140は、スプール141と、スプリング142と、制御ポート145aと、バックアップポート145bと、入力ポート146a,146bと、解放側ポート147aと、係合側ポート147bと、フィードバックポート148と、ドレーンポート149a,149bとを備えている。
スプール141は、ロックアップ制御バルブ140内に上下方向に移動可能に配置されている。スプリング142は、スプール141を上方に付勢するものである。制御ポート145aは、油路105を通じてリニアソレノイドバルブSLTの出力ポートSLTcに接続されている。バックアップポート145bは、油路108を通じてON−OFFソレノイドバルブSL1の出力ポートSL1bに接続されている。入力ポート146a,146bは、プライマリレギュレータバルブ110の出力ポート117に接続された前記セカンダリレギュレータバルブに接続されている。解放側ポート147aは、油路106aを通じてロックアップクラッチ26の解放側油圧室262に接続されている。係合側ポート147bおよびフィードバックポート148は、油路106bを介してロックアップクラッチ26の係合側油圧室261に接続されている。
このロックアップ制御バルブ140では、ON−OFFソレノイドバルブSL1のOFF状態で、制御ポート145aにリニアソレノイドバルブSLTの出力油圧PSLTが導入されると、スプール141が下方に移動される。その際、その出力油圧PSLTが所定油圧PSLTc以上の場合は、ロックアップ制御バルブ140はON位置(図2のロックアップ制御バルブ140の右半分に示す位置)に保持される。
このON位置では、入力ポート146bと係合側ポート147bとが連通されると共に、解放側ポート147aとドレーンポート149aとが連通される。これにより、前記セカンダリレギュレータバルブの出力油圧PSECが順に入力ポート146b、係合側ポート147bおよび油路106bを介してロックアップクラッチ26の係合側油圧室261に作動油圧として供給される。即ち、出力油圧PSECがトルクコンバータ20に入力される。これにより、係合側油圧室261のロックアップ係合油圧PONは、出力油圧PSECと等しくなる。その際、係合側ポート147bの出力油圧(=PON=PSEC)は、油路106bを通じてフィードバックポート148に導入される。また、解放側油圧室262のロックアップ解放油圧POUTが順に油路106a、解放側ポート147aおよびドレーンポート149aを介してドレーン(排圧)される。これにより、ロックアップ解放油圧POUTは、値0になる。
そして、このON位置では、スプール141を下方に押圧する力(出力油圧PSLT)と、スプール141を上方に押圧する力(スプリング142の付勢力の圧力P142およびフィードバックポート148への導入油圧(=PON))の合成力とは均衡する。よって、ロックアップ差圧ΔP(=PON−POFF)は、ΔP=PSLT−P142と表現される。これにより、ロックアップ差圧ΔPの制御(即ちロックアップクラッチ26の係合・解放制御)は、出力油圧PSLTの制御により行える。
即ち、このON位置が保持可能な範囲で、出力油圧PSLTが高くなるほど、ロックアップ差圧ΔPが大きくなって、ロックアップクラッチ26の係合度合いが大きくなる。他方、出力油圧PSLTが低くなるほど、ロックアップ差圧ΔPが小さくなって、ロックアップクラッチ26の係合度合いが小さくなる。
また、ON−OFFソレノイドバルブSL1のOFF状態で、リニアソレノイドバルブSLTの出力油圧PSLTが所定油圧PSLTc未満の場合(出力油圧PSLTの停止状態を含む)(第1の場合)、または、ON−OFFソレノイドバルブSL1のON状態によりバックアップポート145bにON−OFFソレノイドバルブSL1の出力油圧PSL1が導入される場合(第2の場合)は、スプール141が上方に移動されて、ロックアップ制御バルブ140がOFF位置(図2のロックアップ制御バルブ140の左半分に示す位置)に保持される。
このOFF位置では、入力ポート146aと解放側ポート147aとが連通されると共に、係合側ポート147bとドレーンポート149bとが連通される。これにより、前記セカンダリレギュレータバルブの出力油圧PSECが順に入力ポート146a、解放側ポート147aおよび油路106aを介してロックアップクラッチ26の解放側油圧室262に供給される。また、係合側油圧室261のロックアップ係合油圧PONが順に油路106b、係合側ポート147bおよびドレーンポート149bを介して排圧される。これにより、ロックアップ差圧ΔP(=PON−POUT)が負値になり、ロックアップクラッチ26が解放状態となる。
特に前記第2の場合では、ON−OFFソレノイドバルブSL1の出力油圧PSL1により、リニアソレノイドバルブSLTのON/OFF状態に関係なく強制的に、ロックアップ差圧ΔPが負値になり、ロックアップクラッチ26が解放状態になる。換言すれば、ON−OFFソレノイドバルブSL1のON状態でガレージシフトバルブ160がコントロール位置に保持されて走行用摩擦係合要素C1,B1が係合過度制御される場合は、ロックアップクラッチ26は強制的に解放される。
ここでは、出力油圧PSLTの増加/減少に応じて、ロックアップ差圧ΔPが増加/減少する。その際、ロックアップ差圧ΔPの増加/減少に伴って、トルクコンバータ20内の作動油量(即ち係合側油圧室261内の作動油量)も増加/減少する。よって、出力油圧PSLTの制御により、トルクコンバータ20内の作動油量の制御も行われる。
ON−OFFソレノイドバルブSL1は、制御装置80から供給される励磁電流に応じてガレージシフトバルブ160を制御する制御弁であり、例えばノーマルクローズタイプの電磁弁として構成されている。
ON−OFFソレノイドバルブSL1は、入力ポートSL1aと出力ポートSL1bとを備えている。入力ポートSL1aは、前記第1モジュレータバルブに接続されている。出力ポートSL1bは、ガレージシフトバルブ160の制御ポート165に接続されている。
ON−OFFソレノイドバルブSL1は、励磁電流の通電時は、入力ポートSL1aから導入した前記第1モジュレータバルブの出力油圧(第1モジュレータ油圧)PM1を、出力ポートSL1bから出力油圧(制御油圧)PSL1として出力する。また、ON−OFFソレノイドバルブSL1は、励磁電流の非通電時は、出力ポートSL1bの出力油圧PSL1を停止する。この出力油圧PSL1の出力/停止により、上述のように、ガレージシフトバルブ160がコントロール位置/ノーマル位置に制御される。
リニアソレノイドバルブSLTは、制御装置80から供給される励磁電流に応じて、ライン油圧PLの調圧制御、ロックアップクラッチ26の係合・解放制御、および、走行用摩擦係合要素C1,B1の係合過渡制御を行う制御弁であり、例えばノーマルオープンタイプの電磁弁として構成されている。
リニアソレノイドバルブSLTは、入力ポートSLTaと出力ポートSLTb,SLTcとを備えている。入力ポートSLTaは、前記第2モジュレータバルブに接続されている。出力ポートSLTbは、油路104を通じて減圧バルブ180の制御ポート185に接続されている。出力ポートSLTcは、油路105を通じてロックアップ制御バルブ140の制御ポート145a、ガレージシフトバルブ160の入力ポート166bおよび前記セカンダリレギュレータバルブの前記所定の入力ポートに接続されている。
リニアソレノイドバルブSLTは、励磁電流の非通電時は、入力ポートSLTaから導入した前記第2モジュレータバルブの出力油圧(第2モジュレータ油圧)PM2を、各出力ポートSLTb,SLTcから出力油圧(制御油圧)PSLTとして出力する。また、リニアソレノイドバルブSLTは、励磁電流の通電時は、入力ポートSLTaから導入した前記第2モジュレータバルブの出力油圧PM2を、励磁電流に応じて調圧して、各出力ポートSLTb,SLTcから出力油圧(制御油圧)PSLTとして出力する。
出力ポートSLTbの出力油圧PSLTは、油路104を通じて減圧バルブ180の制御ポート185に供給される。ライン油圧PLの調圧制御は、その出力油圧PSLTに基づいて直接行われるのではなく、上述のように、その出力油圧PSLTが減圧バルブ180により減圧されて得られる出力油圧PCTLに基づいて行われる。また、出力ポートSLTcの出力油圧PSLTは、油路105を通じてロックアップ制御バルブ140の制御ポート145aおよびガレージシフトバルブ160の入力ポート166bに供給される。ロックアップクラッチ26の係合・解放制御、および、走行用摩擦係合要素C1,B1の係合過渡制御は、上述のように、その出力油圧PSLTに基づいて行われる。
リニアソレノイドバルブSLPは、制御装置80から供給される励磁電流に応じて、無段変速機40の変速油圧PINの調圧制御を行う制御弁であり、例えばノーマルクローズタイプの電磁弁として構成されている。
リニアソレノイドバルブSLPは、入力ポートSLPaと出力ポートSLPbとを備えている。入力ポートSLPaは、前記第2モジュレータバルブに接続されている。出力ポートSLPbは、変速制御バルブ120に接続されている。
リニアソレノイドバルブSLPは、励磁電流の非通電時は、入力ポートSLPaから導入した前記第2モジュレータバルブの出力油圧PM2を、出力ポートSLPbから出力油圧PSLPとして出力する。また、リニアソレノイドバルブSLPは、励磁電流の通電時は、入力ポートSLPaから導入した前記第2モジュレータバルブの出力油圧PM2を、励磁電流に応じて調圧して、出力ポートSLPbから出力油圧PSLPとして出力する。無段変速機40の変速油圧PINの調圧制御は、上述のように、その出力油圧PSLPに基づいて行われる。
リニアソレノイドバルブSLSは、制御装置80から供給される励磁電流に応じて、ライン油圧PLの調圧制御、および、無段変速機40のベルト挟圧油圧POUTの調圧制御を行う制御弁であり、例えばノーマルクローズタイプの電磁弁として構成されている。
リニアソレノイドバルブSLSは、入力ポートSLSaと出力ポートSLSbとを備えている。入力ポートSLSaは、前記第2モジュレータバルブに接続されている。出力ポートSLSbは、プライマリレギュレータバルブ110の制御ポート115bおよびベルト挟圧制御バルブ130に接続されている。
リニアソレノイドバルブSLSは、励磁電流の非通電時は、入力ポートSLSaから導入した前記第2モジュレータバルブの出力油圧PM2を、出力ポートSLSbから出力油圧PSLSとして出力する。また、リニアソレノイドバルブSLSは、励磁電流の通電時は、入力ポートSLSaから導入した前記第2モジュレータバルブの出力油圧PM2を、励磁電流に応じて調圧して、出力ポートSLSbから出力油圧PSLSとして出力する。ライン油圧PLの調圧、および、無段変速機40のベルト挟圧油圧POUTの調圧は、上述のように、その出力油圧PSLSに基づいて行われる。
制御装置80には、図2に示すように、各種の車載センサとして、例えば、レバーポジションセンサ81、アクセル操作量センサ82、エンジン回転速度センサ83、出力軸回転速度センサ84、入力軸回転速度センサ85、タービン回転速度センサ86が接続されている。
レバーポジションセンサ81は、シフトレバー171の操作位置PSHを検出する。アクセル操作量センサ82は、アクセルペダルの操作量θACCを検出する。エンジン回転速度センサ83は、エンジン10の回転速度(出力軸11の回転速度)NEを検出する。出力軸回転速度センサ84は、無段変速機40の出力軸48の回転速度(出力軸回転速度)NOUTを検出する。入力軸回転速度センサ85は、無段変速機40の入力軸47の回転速度(入力軸回転速度)NINを検出する。タービン回転速度センサ86は、トルクコンバータ20のタービン軸28の回転速度(タービン回転速度)NTを検出する。また、制御装置80には、エンジン10を始動させるためのイグニッションスイッチIGも接続されている。
制御装置80は、各種の車載センサ81〜86の検出値PSH,θACC,NE,NOUT,NIN,NTに基づいて、油圧制御回路70の各ソレノイドバルブSLP,SLS,SLT,SL1に供給する励磁電流を制御して、各ソレノイドバルブSLP,SLS,SLT,SL1の出力油圧PSLP,PSLS,PSLT,PSL1を制御する。これにより、無段変速機40の変速油圧PINおよびベルト挟圧油圧POUTの調圧制御、前後進切換機構30の走行用摩擦係合要素C1,B1の係合・解放制御、ロックアップクラッチ26の係合・解放制御、トルクコンバータ20内の作動油量の制御、ライン油圧PLの調圧制御が行われる。
なお、各ソレノイドバルブSLP,SLS,SL1の出力油圧PSLP,PSLS,PSL1の制御については、周知の制御が適用されるので、詳細な説明は省略する。以下では、リニアソレノイドバルブSLTの出力油圧PSLTの制御について詳細に説明する。
制御装置80は、リニアソレノイドバルブSLTの出力油圧PSLTを制御して、走行用摩擦係合要素C1,B1の係合・解放制御、および、トルクコンバータ20内の作動油量の制御を行う。より詳細には、制御装置80は、トルクコンバータ20内の作動油量の不足の有無に応じて、リニアソレノイドバルブSLTの出力油圧(制御油圧)PSLTを、走行用摩擦係合要素C1,B1の係合に必要な最低油圧PSLTa、または、最低油圧PSLTaよりも高い所定油圧PSLTbに制御する。
なお、最低油圧PSLTaでは、トルクコンバータ20内の作動油量(即ち係合側油圧室261内の作動油量)Qは、ポンプインペラ22とタービンランナ23との間で作動油を介して良好な動力伝達が可能な最低油量Qmin以上の油量Qaに制御される。また、所定油圧PSLTbは、例えば、トルクコンバータ20内の作動油量Qを急速充填させる為の出力油圧PSLTである。
制御装置80は、エンジン始動を検出するエンジン始動検出部87と、エンジン始動時にトルクコンバータ20内の作動油量Qの不足の有無を判定する判定部88と、判定部88の判定結果に基づいてリニアソレノイドバルブSLTの出力油圧PSLTを制御する制御部89とを備えている。
エンジン始動検出部87は、イグニッションスイッチIGのオン操作によりイグニッションスイッチIGから出力されるオン信号の有無に応じて、エンジン10の始動を検出する。
判定部88は、例えばエンジン始動時(即ちエンジン始動検出部87によるエンジン始動検出時)に、エンジン回転速度NEとタービン回転速度NTとの差回転ΔN(=NE−NT)に基づいて、トルクコンバータ20内の作動油量Qの不足の有無を判定する。即ち、判定部88は、差回転ΔNが所定の閾値差回転ΔN1以上の場合は、トルクコンバータ20内の作動油量Qは不足していると判定し、差回転ΔNが所定の閾値差回転ΔN1未満の場合は、トルクコンバータ20内の作動油量Qは不足していないと判定する。
この判定は、トルクコンバータ20内の作動油量Qが不足すると、ポンプインペラ22とタービンランナ23との間の作動油を介しての動力伝達の伝達効率が低下する(即ち差回転ΔNが大きくなる)ことを考慮したものである。
ここでは、判定部88の判定は、エンジン始動時に行われるが、エンジン始動直後に行われてもよい。
制御部89は、判定部88がトルクコンバータ20内の作動油量Qが不足していないと判定した場合は、リニアソレノイドバルブSLTの出力油圧PSLTが最低油圧PSLTaとなるように、リニアソレノイドバルブSLTに供給する励磁電流を制御する。
これにより、リニアソレノイドバルブSLTの出力油圧PSLTが最低油圧PSLTaに制御され、その最低油圧PSLTaがガレージシフトバルブ160の入力ポート166bおよびロックアップ制御バルブ140の制御ポート145aに導入される。
これにより、ガレージシフトバルブ160では、コントロール位置での出力油圧P160が最低油圧PSLTaに制御され、走行用摩擦係合要素C1,B1の係合過渡時の作動油圧(クラッチ圧)が最低油圧PSLTaに制御される。これにより、走行用摩擦係合要素C1,B1の係合ショックが低減される。
他方、ロックアップ制御バルブ140では、ロックアップ差圧ΔPが、最低油圧PSLTaに対応するロックアップ差圧ΔPaに制御される。これにより、トルクコンバータ20内の作動油量Qが最低油圧PSLTaに対応する作動油量Qa(≧Qmin)に制御されて、ポンプインペラ22とタービンランナ23との間で作動油を介して良好な動力伝達が可能になる。
また、制御部89は、判定部88がトルクコンバータ20内の作動油量Qが不足していると判定した場合は、リニアソレノイドバルブSLTの出力油圧PSLTが所定油圧PSLTbとなるように、リニアソレノイドバルブSLTに供給する励磁電流を制御する。
これにより、リニアソレノイドバルブSLTの出力油圧PSLTが所定油圧PSLTbに制御され、その所定油圧PSLTbがガレージシフトバルブ160の入力ポート166bおよびロックアップ制御バルブ140の制御ポート145aに導入される。
これにより、ロックアップ制御バルブ140では、ロックアップ差圧ΔPが、所定油圧PSLTbに対応するロックアップ差圧ΔPbへと急速に増加される。これにより、トルクコンバータ20内の作動油量Qが所定油圧PSLTbに対応する作動油量Qbへと急速充填される。なお、作動油量Qbは、トルクコンバータ20内の作動油量Qの不足が解消する作動油量(例えばQmin)以上の油量である。他方、ガレージシフトバルブ160では、コントロール位置での出力油圧P160が所定油圧PSLTbへと増加されて、走行用摩擦係合要素C1,B1の係合過渡時の作動油圧が所定油圧PSLTbに制御される。
そして、この急速充填中に、判定部88がトルクコンバータ20内の作動油量Qが不足していないと判定すると、制御部89は、リニアソレノイドバルブSLTの出力油圧PSLTが最低油圧PSLTaとなるように、リニアソレノイドバルブSLTに供給する励磁電流を制御する。これにより、その急速充填が終了する。
<動作説明>
次に図4に基づいて、この油圧制御装置1の要部の動作を説明する。図4は、第1実施形態に係る油圧制御装置の要部の動作を説明するフローチャートである。
ステップS1では、制御装置80は、エンジン始動検出部87において、イグニッションスイッチIGからのオン信号を取得することで、エンジン10の始動を検出する。そして、処理がステップS2に移行する。
ステップS2では、制御装置80は、エンジン回転速度センサ83からエンジン回転速度NEを取得すると共に、タービン回転速度センサ86からタービン回転速度NTを取得する。そして、制御装置80は、判定部88において、それらエンジン回転速度NEとタービン回転速度NTとの差回転ΔNに基づいて、トルクコンバータ20内の作動油量Qの不足の有無を判定する。この判定で、判定部88がトルクコンバータ20内の作動油量Qは不足していないと判定した場合(No)は、処理がステップS3に進む。他方、この判定で、判定部88がトルクコンバータ20内の作動油量Qは不足していると判定した場合(Yes)は、処理がステップS4に進む。
ステップS3では、制御装置80は、制御部89において、リニアソレノイドバルブSLTの出力油圧PSLTが最低油圧PSLTaとなるように、リニアソレノイドバルブSLTに供給する励磁電流を制御する。これにより、出力油圧PSLTが最低油圧PSLTaに制御される。そして、処理がステップS4に進む。
ステップS4では、出力油圧PSLTが最低油圧PSLTaに制御されることで、ガレージシフトバルブ160では、コントロール位置での出力油圧P160が最低油圧PSLTaに制御され、走行用摩擦係合要素C1,B1の係合過渡時の作動油圧が最低油圧PSLTaに制御される。これにより、走行用摩擦係合要素C1,B1の係合ショックが低減される。
ステップS5では、出力油圧PSLTが最低油圧PSLTaに制御されることで、ロックアップ制御バルブ140では、ロックアップ差圧ΔPが、最低油圧PSLTaに対応するロックアップ差圧ΔPaに制御される。これにより、トルクコンバータ20内の作動油量Qが最低油圧PSLTaに対応する作動油量Qaに制御されて、ポンプインペラ22とタービンランナ23との間で作動油を介して良好な動力伝達が可能になる。そして、処理が終了する。
他方、ステップS6では、制御部89は、リニアソレノイドバルブSLTの出力油圧PSLTが所定油圧PSLTbとなるように、リニアソレノイドバルブSLTに供給する励磁電流を制御する。これにより、出力油圧PSLTが所定油圧PSLTbに制御される。そして、処理がステップS7に進む。
ステップS7では、出力油圧PSLTが所定油圧PSLTbに制御されることで、ロックアップ制御バルブ140では、ロックアップ差圧ΔPが、所定油圧PSLTbに対応するロックアップ差圧ΔPbへと急速に増加される。これにより、トルクコンバータ20内の作動油量Qが所定油圧PSLTbに対応する作動油量Qbへと急速充填される。
なお、出力油圧PSLTが所定油圧PSLTbに制御されることで、ガレージシフトバルブ160では、コントロール位置での出力油圧P160が所定油圧PSLTbへと増加され、走行用摩擦係合要素C1,B1の係合過渡時の作動油圧が所定油圧PSLTbへと制御される。そして、処理がステップS8に進む。
ステップS8では、制御装置80は、ステップS2と同様に、判定部88において、エンジン回転速度NEとタービン回転速度NTとの差回転ΔNに基づいて、トルクコンバータ20内の作動油量Qの不足の有無を判定する。この判定で、判定部88がトルクコンバータ20内の作動油量Qは不足していないと判定した場合(No)は、処理がステップS9に進む。他方、この判定で、判定部88がトルクコンバータ20内の作動油量Qは不足していると判定した場合(Yes)は、処理がステップS7に戻る。
ステップS9では、制御装置80は、制御部89においては、リニアソレノイドバルブSLTの出力油圧PSLTが所定油圧PSLTaとなるように、リニアソレノイドバルブSLTに供給する励磁電流を制御する。これにより、出力油圧PSLTが所定油圧PSLTaに制御される。これにより、ステップS7でのトルクコンバータ20内の作動油量Qの急速充填が終了する。そして、処理がステップS4に進む。
<主要な効果>
以上のように、この実施形態によれば、リニアソレノイドバルブ(制御弁)SLTにより同じ制御油圧PSLTでトルクコンバータ20内の作動油量Qおよび前後進切換機構30の走行用摩擦係合要素C1,B1の作動油圧が制御される。そして、エンジン10の始動時または始動直後において、トルクコンバータ20内の作動油量Qが不足している場合は、トルクコンバータ20内の作動油量Qが不足していない場合と比べて、制御油圧PSLTが増加される。よって、エンジン10の始動時または始動直後にトルクコンバータ20内の作動油量Qが不足している場合は、トルクコンバータ20内の作動油量Qを急速充填でき、トルク伝達不良を抑制できる。更に、エンジン10の始動時または始動直後にトルクコンバータ20内の作動油量Qが不足していない場合において、制御油圧PSLTを低く制御でき(即ち定常時において制御油圧PSLTを低く制御でき)、これによりクラッチ係合ショックおよび作動油量の消費を抑制できる。
また、トルクコンバータ20内の作動油量Qが不足していない場合は、制御油圧PSLTが走行用摩擦係合要素C1,B1の係合に必要な最低油圧PSLTaに制御されるので、クラッチ係合ショックおよび作動油量の消費をより一層抑制できる。また、トルクコンバータ20内の作動油量Qが不足している場合は、制御油圧PSLTが最低油圧PSLTaよりも高い油圧PSLTbに制御されるので、トルクコンバータ20内の作動油量Qを急速充填でき、トルク伝達不良を抑制できる。
また、エンジン10のエンジン回転速度NEとトルクコンバータ20のタービン回転速度NTとの差回転ΔNが所定の閾値差回転ΔN1以上の場合に、トルクコンバータ20内の作動油量Qが不足していると判定されるので、エンジン10のエンジン回転速度NEとトルクコンバータ20のタービン回転速度NTとの差回転ΔNを利用して、トルクコンバータ20内の作動油量Qの不足の有無を判定できる。
≪第2実施形態≫
第1実施形態では、エンジン回転速度NEとタービン回転速度NTとの差回転ΔNに基づいて、トルクコンバータ20内の作動油量Qの不足の有無を判定したが、この実施形態では、前後進切換機構30から伝達された回転動力の変速比γを変化させる無段変速機(変速機)40内の潤滑油の温度Tに基づいて、トルクコンバータ20内の作動油量Qの不足の有無を判定する。
即ち、この実施形態では、制御装置80には、更に、無段変速機40内の潤滑油の温度Tを検出する温度センサ(図示省略)が接続されている。そして、判定部88は、無段変速機40内の潤滑油の温度(即ち前記温度センサの検出値)Tが所定の閾値温度T1以下の場合は、トルクコンバータ20内の作動油量Qは不足していると判定し、他方、無段変速機40内の潤滑油の温度Tが所定の閾値温度T1よりも高い場合は、トルクコンバータ20内の作動油量Qは不足していないと判定する。
この判定は、トルクコンバータ20内の作動油量Qが不足すると、無段変速機40に伝達する回転動力が低下して、無段変速機40内の潤滑油の温度Tが上昇し難くなることを考慮したものである。
この実施形態によれば、無段変速機40内の潤滑油の温度Tが所定の閾値温度T1以下の場合に、トルクコンバータ20内の作動油量Qが不足していると判定されるので、無段変速機40内の潤滑油の温度Tを利用して、トルクコンバータ20内の作動油量の不足の有無を判定できる。
≪第3実施形態≫
第1実施形態では、エンジン回転速度NEとタービン回転速度NTとの差回転ΔNに基づいて、トルクコンバータ20内の作動油量Qの不足の有無を判定したが、この実施形態では、エンジン10の停止時からの放置時間Δtに基づいて、トルクコンバータ20内の作動油量Qの不足の有無を判定する。
即ち、この実施形態では、制御装置80は、エンジン10の停止時からの放置時間Δtを計時するタイマ(図示省略)を備えている。そして、判定部88は、放置時間Δtが所定の閾値時間Δt1以上の場合は、トルクコンバータ20内の作動油量Qは不足していると判定し、他方、放置時間Δtが所定の閾値時間Δt1未満の場合は、トルクコンバータ20内の作動油量は不足していないと判定する。
この判定は、エンジン10の停止時からの放置時間Δtが長いほど、トルクコンバータ20内から自然に抜ける作動油量が増加する(即ちトルクコンバータ20内の作動油量Qが減少する)ことを考慮したものである。
この実施形態によれば、エンジン10の停止時からの放置時間Δtが所定の閾値時間Δt1以上の場合に、トルクコンバータ20内の作動油量Qが不足していると判定されるので、エンジン10の停止時からの放置時間Δtを利用して、トルクコンバータ20内の作動油量Qの不足の有無を判定できる。
≪付帯事項≫
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は斯かる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと解される。
また、第1から第3実施形態の何れかを組み合わせた発明についても、当然に本発明の技術的範囲に属するものと解される。
本発明は、車両用駆動装置の油圧制御装置であって、前後進切換機構の走行用摩擦係合要素の作動油圧とトルクコンバータの作動油量とを1つの制御弁により制御する油圧制御装置への適用に最適である。
1 油圧制御装置
10 エンジン
20 トルクコンバータ
30 前後進切換機構
40 無段変速機(変速機)
C1,B1 走行用摩擦係合要素
NE エンジン回転速度
NT タービン回転速度
PSLT 出力油圧(制御油圧)
PSLTa 最低油圧
PSLTb 所定油圧(高い油圧)
SLT リニアソレノイドバルブ(制御弁)
T 潤滑油の温度
T1 所定の閾値温度
ΔN 差回転
ΔN1 所定の閾値差回転
Δt 放置時間
Δt1 所定の閾値時間
γ 変速比

Claims (5)

  1. エンジンの回転動力を作動油を介して伝達するトルクコンバータと、
    作動油圧により係合・解放可能な走行用摩擦係合要素を有し、前記走行用摩擦係合要素の係合・解放により、前記トルクコンバータから伝達された前記回転動力の回転方向を切り換える前後進切換機構と、
    同じ制御油圧で前記トルクコンバータ内の作動油量および前記前後進切換機構の作動油圧を制御する制御弁と、
    を備える油圧制御装置において、
    前記制御弁は、前記エンジンの始動時または始動直後において、前記トルクコンバータ内の作動油量が不足している場合は、前記トルクコンバータ内の作動油量が不足していない場合と比べて、前記制御油圧を増加させることを特徴とする油圧制御装置。
  2. 請求項1に記載の油圧制御装置であって、
    前記制御弁は、前記トルクコンバータ内の作動油量が不足していない場合は、前記制御油圧を前記走行用摩擦係合要素の係合に必要な最低油圧に制御し、前記トルクコンバータ内の作動油量が不足している場合は、前記制御油圧を前記最低油圧よりも高い油圧に制御することを特徴とする油圧制御装置。
  3. 請求項1または2に記載の油圧制御装置であって、
    前記エンジンのエンジン回転速度と前記トルクコンバータのタービン回転速度との差回転が所定の閾値差回転以上の場合に、前記トルクコンバータ内の作動油量が不足していると判定されることを特徴とする油圧制御装置。
  4. 請求項1または2に記載の油圧制御装置であって、
    前記前後進切換機構から伝達された前記回転動力の変速比を変化させる変速機を更に備え、
    前記変速機内の潤滑油の温度が所定の閾値温度以下の場合に、前記トルクコンバータ内の作動油量が不足していると判定されることを特徴とする油圧制御装置。
  5. 請求項1または2に記載の油圧制御装置であって、
    前記エンジンの停止時からの放置時間が所定の閾値時間以上の場合に、前記トルクコンバータ内の作動油量が不足していると判定されることを特徴とする油圧制御装置。
JP2013080651A 2013-04-08 2013-04-08 油圧制御装置 Pending JP2014202317A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013080651A JP2014202317A (ja) 2013-04-08 2013-04-08 油圧制御装置
US14/243,666 US9033852B2 (en) 2013-04-08 2014-04-02 Hydraulic control device and control method of hydraulic control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013080651A JP2014202317A (ja) 2013-04-08 2013-04-08 油圧制御装置

Publications (1)

Publication Number Publication Date
JP2014202317A true JP2014202317A (ja) 2014-10-27

Family

ID=51654842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013080651A Pending JP2014202317A (ja) 2013-04-08 2013-04-08 油圧制御装置

Country Status (2)

Country Link
US (1) US9033852B2 (ja)
JP (1) JP2014202317A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222082A (ja) * 2014-05-22 2015-12-10 本田技研工業株式会社 車両の制御装置
JPWO2016084588A1 (ja) * 2014-11-28 2017-06-08 アイシン・エィ・ダブリュ株式会社 自動変速機
JP2017160944A (ja) * 2016-03-07 2017-09-14 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
CN115046006A (zh) * 2022-06-09 2022-09-13 中国第一汽车股份有限公司 液力变矩器的扭矩确定方法、装置以及电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101713794B1 (ko) * 2015-10-21 2017-03-09 현대오트론 주식회사 자동 변속기의 필타임 연산장치 및 그 제어방법
US10344810B2 (en) * 2017-05-05 2019-07-09 GM Global Technology Operations LLC CVT low oil pressure input clutch fill compensation
CN109057727A (zh) * 2018-08-10 2018-12-21 江苏如东联丰石油机械有限公司 一种液压吊卡或卡盘的卡瓦夹紧触碰装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273151U (ja) * 1985-10-29 1987-05-11
JPH10267115A (ja) * 1997-03-26 1998-10-09 Aisin Aw Co Ltd 油圧制御装置
JP2008116005A (ja) * 2006-11-07 2008-05-22 Toyota Motor Corp ロックアップクラッチを備えた自動変速機を搭載した車両の制御装置および制御方法ならびにその制御方法を実現するプログラムおよび記録媒体
JP2009068524A (ja) * 2007-09-10 2009-04-02 Toyota Motor Corp 油圧制御装置
JP2011205831A (ja) * 2010-03-26 2011-10-13 Toyota Motor Corp 車両の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4648587B2 (ja) * 2001-07-18 2011-03-09 本田技研工業株式会社 動力伝達装置におけるエンジン再始動発進制御装置
US6556910B2 (en) * 2001-08-31 2003-04-29 Aisin Aw Co., Ltd. Control apparatus and method for vehicle having an idle stop function
JP4129264B2 (ja) * 2005-02-14 2008-08-06 ジヤトコ株式会社 自動変速機の制御装置
JP4424399B2 (ja) 2007-09-10 2010-03-03 トヨタ自動車株式会社 油圧制御装置
JP4781336B2 (ja) 2007-09-10 2011-09-28 トヨタ自動車株式会社 油圧制御装置
JP5527873B2 (ja) * 2009-03-18 2014-06-25 株式会社エフ・シー・シー 動力伝達装置
JP5266111B2 (ja) 2009-03-19 2013-08-21 株式会社豊田中央研究所 自動変速機の油圧供給装置
CA2860472C (en) * 2012-01-11 2019-06-11 Developpement Effenco Inc. Fuel saving system that facilitates vehicle re-starts with the engine off

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273151U (ja) * 1985-10-29 1987-05-11
JPH10267115A (ja) * 1997-03-26 1998-10-09 Aisin Aw Co Ltd 油圧制御装置
JP2008116005A (ja) * 2006-11-07 2008-05-22 Toyota Motor Corp ロックアップクラッチを備えた自動変速機を搭載した車両の制御装置および制御方法ならびにその制御方法を実現するプログラムおよび記録媒体
JP2009068524A (ja) * 2007-09-10 2009-04-02 Toyota Motor Corp 油圧制御装置
JP2011205831A (ja) * 2010-03-26 2011-10-13 Toyota Motor Corp 車両の制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222082A (ja) * 2014-05-22 2015-12-10 本田技研工業株式会社 車両の制御装置
JPWO2016084588A1 (ja) * 2014-11-28 2017-06-08 アイシン・エィ・ダブリュ株式会社 自動変速機
US10309530B2 (en) 2014-11-28 2019-06-04 Aisin Aw Co., Ltd. Automatic transmission
JP2017160944A (ja) * 2016-03-07 2017-09-14 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
CN115046006A (zh) * 2022-06-09 2022-09-13 中国第一汽车股份有限公司 液力变矩器的扭矩确定方法、装置以及电子设备
CN115046006B (zh) * 2022-06-09 2024-03-15 中国第一汽车股份有限公司 液力变矩器的扭矩确定方法、装置以及电子设备

Also Published As

Publication number Publication date
US9033852B2 (en) 2015-05-19
US20140302965A1 (en) 2014-10-09

Similar Documents

Publication Publication Date Title
US8012051B2 (en) Oil pressure control apparatus
JP2014202317A (ja) 油圧制御装置
US8038553B2 (en) Oil pressure control apparatus
US7951026B2 (en) Oil pressure control apparatus
US10001179B2 (en) Control apparatus for power transmission system
US20160146338A1 (en) Hydraulic control system for vehicles (as amended)
JP4289407B2 (ja) 油圧供給装置
JP5630372B2 (ja) 油圧制御装置
JP2010190371A (ja) 車両用動力伝達装置の制御装置
JP5742708B2 (ja) 油圧制御装置及び車両制御装置
JP2010096287A (ja) 無段変速機の油圧制御装置
JP4826166B2 (ja) 車両用無段変速機の油圧制御装置
JP2009287781A (ja) 油圧制御装置
JP5733048B2 (ja) 車両用自動変速機の油圧制御装置
US20090248262A1 (en) Control device and control method for continuously variable transmission
JP7114978B2 (ja) 車両用油圧制御装置
JP2005042888A (ja) 車両用無段変速機の油圧制御装置
JP7155572B2 (ja) 車両用油圧制御装置
JP2012082886A (ja) 車両用動力伝達装置の油圧制御装置
US10054221B2 (en) Hydraulic control device of belt-type continuously variable transmission
JP5790185B2 (ja) 車両用油圧制御装置
JP5125654B2 (ja) 車両用無段変速機の変速制御装置
JP2011190852A (ja) 車両用無段変速機の制御装置
JP2019184011A (ja) 車両用油圧制御装置
JP2019173821A (ja) 車両用油圧制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804